Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[zen-stable.git] / drivers / firewire / core-transaction.c
blob855ab3f5936fb8a4e69c640def0294d89aec914c
1 /*
2 * Core IEEE1394 transaction logic
4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bug.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/idr.h>
30 #include <linux/jiffies.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/timer.h>
38 #include <linux/types.h>
39 #include <linux/workqueue.h>
41 #include <asm/byteorder.h>
43 #include "core.h"
45 #define HEADER_PRI(pri) ((pri) << 0)
46 #define HEADER_TCODE(tcode) ((tcode) << 4)
47 #define HEADER_RETRY(retry) ((retry) << 8)
48 #define HEADER_TLABEL(tlabel) ((tlabel) << 10)
49 #define HEADER_DESTINATION(destination) ((destination) << 16)
50 #define HEADER_SOURCE(source) ((source) << 16)
51 #define HEADER_RCODE(rcode) ((rcode) << 12)
52 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
53 #define HEADER_DATA_LENGTH(length) ((length) << 16)
54 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
56 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
57 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
58 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
59 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
60 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
61 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
62 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
63 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
65 #define HEADER_DESTINATION_IS_BROADCAST(q) \
66 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
68 #define PHY_PACKET_CONFIG 0x0
69 #define PHY_PACKET_LINK_ON 0x1
70 #define PHY_PACKET_SELF_ID 0x2
72 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
73 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
74 #define PHY_IDENTIFIER(id) ((id) << 30)
76 /* returns 0 if the split timeout handler is already running */
77 static int try_cancel_split_timeout(struct fw_transaction *t)
79 if (t->is_split_transaction)
80 return del_timer(&t->split_timeout_timer);
81 else
82 return 1;
85 static int close_transaction(struct fw_transaction *transaction,
86 struct fw_card *card, int rcode)
88 struct fw_transaction *t;
89 unsigned long flags;
91 spin_lock_irqsave(&card->lock, flags);
92 list_for_each_entry(t, &card->transaction_list, link) {
93 if (t == transaction) {
94 if (!try_cancel_split_timeout(t)) {
95 spin_unlock_irqrestore(&card->lock, flags);
96 goto timed_out;
98 list_del_init(&t->link);
99 card->tlabel_mask &= ~(1ULL << t->tlabel);
100 break;
103 spin_unlock_irqrestore(&card->lock, flags);
105 if (&t->link != &card->transaction_list) {
106 t->callback(card, rcode, NULL, 0, t->callback_data);
107 return 0;
110 timed_out:
111 return -ENOENT;
115 * Only valid for transactions that are potentially pending (ie have
116 * been sent).
118 int fw_cancel_transaction(struct fw_card *card,
119 struct fw_transaction *transaction)
122 * Cancel the packet transmission if it's still queued. That
123 * will call the packet transmission callback which cancels
124 * the transaction.
127 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
128 return 0;
131 * If the request packet has already been sent, we need to see
132 * if the transaction is still pending and remove it in that case.
135 return close_transaction(transaction, card, RCODE_CANCELLED);
137 EXPORT_SYMBOL(fw_cancel_transaction);
139 static void split_transaction_timeout_callback(unsigned long data)
141 struct fw_transaction *t = (struct fw_transaction *)data;
142 struct fw_card *card = t->card;
143 unsigned long flags;
145 spin_lock_irqsave(&card->lock, flags);
146 if (list_empty(&t->link)) {
147 spin_unlock_irqrestore(&card->lock, flags);
148 return;
150 list_del(&t->link);
151 card->tlabel_mask &= ~(1ULL << t->tlabel);
152 spin_unlock_irqrestore(&card->lock, flags);
154 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
157 static void start_split_transaction_timeout(struct fw_transaction *t,
158 struct fw_card *card)
160 unsigned long flags;
162 spin_lock_irqsave(&card->lock, flags);
164 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
165 spin_unlock_irqrestore(&card->lock, flags);
166 return;
169 t->is_split_transaction = true;
170 mod_timer(&t->split_timeout_timer,
171 jiffies + card->split_timeout_jiffies);
173 spin_unlock_irqrestore(&card->lock, flags);
176 static void transmit_complete_callback(struct fw_packet *packet,
177 struct fw_card *card, int status)
179 struct fw_transaction *t =
180 container_of(packet, struct fw_transaction, packet);
182 switch (status) {
183 case ACK_COMPLETE:
184 close_transaction(t, card, RCODE_COMPLETE);
185 break;
186 case ACK_PENDING:
187 start_split_transaction_timeout(t, card);
188 break;
189 case ACK_BUSY_X:
190 case ACK_BUSY_A:
191 case ACK_BUSY_B:
192 close_transaction(t, card, RCODE_BUSY);
193 break;
194 case ACK_DATA_ERROR:
195 close_transaction(t, card, RCODE_DATA_ERROR);
196 break;
197 case ACK_TYPE_ERROR:
198 close_transaction(t, card, RCODE_TYPE_ERROR);
199 break;
200 default:
202 * In this case the ack is really a juju specific
203 * rcode, so just forward that to the callback.
205 close_transaction(t, card, status);
206 break;
210 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
211 int destination_id, int source_id, int generation, int speed,
212 unsigned long long offset, void *payload, size_t length)
214 int ext_tcode;
216 if (tcode == TCODE_STREAM_DATA) {
217 packet->header[0] =
218 HEADER_DATA_LENGTH(length) |
219 destination_id |
220 HEADER_TCODE(TCODE_STREAM_DATA);
221 packet->header_length = 4;
222 packet->payload = payload;
223 packet->payload_length = length;
225 goto common;
228 if (tcode > 0x10) {
229 ext_tcode = tcode & ~0x10;
230 tcode = TCODE_LOCK_REQUEST;
231 } else
232 ext_tcode = 0;
234 packet->header[0] =
235 HEADER_RETRY(RETRY_X) |
236 HEADER_TLABEL(tlabel) |
237 HEADER_TCODE(tcode) |
238 HEADER_DESTINATION(destination_id);
239 packet->header[1] =
240 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
241 packet->header[2] =
242 offset;
244 switch (tcode) {
245 case TCODE_WRITE_QUADLET_REQUEST:
246 packet->header[3] = *(u32 *)payload;
247 packet->header_length = 16;
248 packet->payload_length = 0;
249 break;
251 case TCODE_LOCK_REQUEST:
252 case TCODE_WRITE_BLOCK_REQUEST:
253 packet->header[3] =
254 HEADER_DATA_LENGTH(length) |
255 HEADER_EXTENDED_TCODE(ext_tcode);
256 packet->header_length = 16;
257 packet->payload = payload;
258 packet->payload_length = length;
259 break;
261 case TCODE_READ_QUADLET_REQUEST:
262 packet->header_length = 12;
263 packet->payload_length = 0;
264 break;
266 case TCODE_READ_BLOCK_REQUEST:
267 packet->header[3] =
268 HEADER_DATA_LENGTH(length) |
269 HEADER_EXTENDED_TCODE(ext_tcode);
270 packet->header_length = 16;
271 packet->payload_length = 0;
272 break;
274 default:
275 WARN(1, "wrong tcode %d\n", tcode);
277 common:
278 packet->speed = speed;
279 packet->generation = generation;
280 packet->ack = 0;
281 packet->payload_mapped = false;
284 static int allocate_tlabel(struct fw_card *card)
286 int tlabel;
288 tlabel = card->current_tlabel;
289 while (card->tlabel_mask & (1ULL << tlabel)) {
290 tlabel = (tlabel + 1) & 0x3f;
291 if (tlabel == card->current_tlabel)
292 return -EBUSY;
295 card->current_tlabel = (tlabel + 1) & 0x3f;
296 card->tlabel_mask |= 1ULL << tlabel;
298 return tlabel;
302 * fw_send_request() - submit a request packet for transmission
303 * @card: interface to send the request at
304 * @t: transaction instance to which the request belongs
305 * @tcode: transaction code
306 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
307 * @generation: bus generation in which request and response are valid
308 * @speed: transmission speed
309 * @offset: 48bit wide offset into destination's address space
310 * @payload: data payload for the request subaction
311 * @length: length of the payload, in bytes
312 * @callback: function to be called when the transaction is completed
313 * @callback_data: data to be passed to the transaction completion callback
315 * Submit a request packet into the asynchronous request transmission queue.
316 * Can be called from atomic context. If you prefer a blocking API, use
317 * fw_run_transaction() in a context that can sleep.
319 * In case of lock requests, specify one of the firewire-core specific %TCODE_
320 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
322 * Make sure that the value in @destination_id is not older than the one in
323 * @generation. Otherwise the request is in danger to be sent to a wrong node.
325 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
326 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
327 * It will contain tag, channel, and sy data instead of a node ID then.
329 * The payload buffer at @data is going to be DMA-mapped except in case of
330 * @length <= 8 or of local (loopback) requests. Hence make sure that the
331 * buffer complies with the restrictions of the streaming DMA mapping API.
332 * @payload must not be freed before the @callback is called.
334 * In case of request types without payload, @data is NULL and @length is 0.
336 * After the transaction is completed successfully or unsuccessfully, the
337 * @callback will be called. Among its parameters is the response code which
338 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
339 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
340 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
341 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
342 * generation, or missing ACK respectively.
344 * Note some timing corner cases: fw_send_request() may complete much earlier
345 * than when the request packet actually hits the wire. On the other hand,
346 * transaction completion and hence execution of @callback may happen even
347 * before fw_send_request() returns.
349 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
350 int destination_id, int generation, int speed,
351 unsigned long long offset, void *payload, size_t length,
352 fw_transaction_callback_t callback, void *callback_data)
354 unsigned long flags;
355 int tlabel;
358 * Allocate tlabel from the bitmap and put the transaction on
359 * the list while holding the card spinlock.
362 spin_lock_irqsave(&card->lock, flags);
364 tlabel = allocate_tlabel(card);
365 if (tlabel < 0) {
366 spin_unlock_irqrestore(&card->lock, flags);
367 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
368 return;
371 t->node_id = destination_id;
372 t->tlabel = tlabel;
373 t->card = card;
374 t->is_split_transaction = false;
375 setup_timer(&t->split_timeout_timer,
376 split_transaction_timeout_callback, (unsigned long)t);
377 t->callback = callback;
378 t->callback_data = callback_data;
380 fw_fill_request(&t->packet, tcode, t->tlabel,
381 destination_id, card->node_id, generation,
382 speed, offset, payload, length);
383 t->packet.callback = transmit_complete_callback;
385 list_add_tail(&t->link, &card->transaction_list);
387 spin_unlock_irqrestore(&card->lock, flags);
389 card->driver->send_request(card, &t->packet);
391 EXPORT_SYMBOL(fw_send_request);
393 struct transaction_callback_data {
394 struct completion done;
395 void *payload;
396 int rcode;
399 static void transaction_callback(struct fw_card *card, int rcode,
400 void *payload, size_t length, void *data)
402 struct transaction_callback_data *d = data;
404 if (rcode == RCODE_COMPLETE)
405 memcpy(d->payload, payload, length);
406 d->rcode = rcode;
407 complete(&d->done);
411 * fw_run_transaction() - send request and sleep until transaction is completed
413 * Returns the RCODE. See fw_send_request() for parameter documentation.
414 * Unlike fw_send_request(), @data points to the payload of the request or/and
415 * to the payload of the response. DMA mapping restrictions apply to outbound
416 * request payloads of >= 8 bytes but not to inbound response payloads.
418 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
419 int generation, int speed, unsigned long long offset,
420 void *payload, size_t length)
422 struct transaction_callback_data d;
423 struct fw_transaction t;
425 init_timer_on_stack(&t.split_timeout_timer);
426 init_completion(&d.done);
427 d.payload = payload;
428 fw_send_request(card, &t, tcode, destination_id, generation, speed,
429 offset, payload, length, transaction_callback, &d);
430 wait_for_completion(&d.done);
431 destroy_timer_on_stack(&t.split_timeout_timer);
433 return d.rcode;
435 EXPORT_SYMBOL(fw_run_transaction);
437 static DEFINE_MUTEX(phy_config_mutex);
438 static DECLARE_COMPLETION(phy_config_done);
440 static void transmit_phy_packet_callback(struct fw_packet *packet,
441 struct fw_card *card, int status)
443 complete(&phy_config_done);
446 static struct fw_packet phy_config_packet = {
447 .header_length = 12,
448 .header[0] = TCODE_LINK_INTERNAL << 4,
449 .payload_length = 0,
450 .speed = SCODE_100,
451 .callback = transmit_phy_packet_callback,
454 void fw_send_phy_config(struct fw_card *card,
455 int node_id, int generation, int gap_count)
457 long timeout = DIV_ROUND_UP(HZ, 10);
458 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
460 if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
461 data |= PHY_CONFIG_ROOT_ID(node_id);
463 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
464 gap_count = card->driver->read_phy_reg(card, 1);
465 if (gap_count < 0)
466 return;
468 gap_count &= 63;
469 if (gap_count == 63)
470 return;
472 data |= PHY_CONFIG_GAP_COUNT(gap_count);
474 mutex_lock(&phy_config_mutex);
476 phy_config_packet.header[1] = data;
477 phy_config_packet.header[2] = ~data;
478 phy_config_packet.generation = generation;
479 INIT_COMPLETION(phy_config_done);
481 card->driver->send_request(card, &phy_config_packet);
482 wait_for_completion_timeout(&phy_config_done, timeout);
484 mutex_unlock(&phy_config_mutex);
487 static struct fw_address_handler *lookup_overlapping_address_handler(
488 struct list_head *list, unsigned long long offset, size_t length)
490 struct fw_address_handler *handler;
492 list_for_each_entry(handler, list, link) {
493 if (handler->offset < offset + length &&
494 offset < handler->offset + handler->length)
495 return handler;
498 return NULL;
501 static bool is_enclosing_handler(struct fw_address_handler *handler,
502 unsigned long long offset, size_t length)
504 return handler->offset <= offset &&
505 offset + length <= handler->offset + handler->length;
508 static struct fw_address_handler *lookup_enclosing_address_handler(
509 struct list_head *list, unsigned long long offset, size_t length)
511 struct fw_address_handler *handler;
513 list_for_each_entry(handler, list, link) {
514 if (is_enclosing_handler(handler, offset, length))
515 return handler;
518 return NULL;
521 static DEFINE_SPINLOCK(address_handler_lock);
522 static LIST_HEAD(address_handler_list);
524 const struct fw_address_region fw_high_memory_region =
525 { .start = 0x000100000000ULL, .end = 0xffffe0000000ULL, };
526 EXPORT_SYMBOL(fw_high_memory_region);
528 #if 0
529 const struct fw_address_region fw_low_memory_region =
530 { .start = 0x000000000000ULL, .end = 0x000100000000ULL, };
531 const struct fw_address_region fw_private_region =
532 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
533 const struct fw_address_region fw_csr_region =
534 { .start = CSR_REGISTER_BASE,
535 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
536 const struct fw_address_region fw_unit_space_region =
537 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
538 #endif /* 0 */
540 static bool is_in_fcp_region(u64 offset, size_t length)
542 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
543 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
547 * fw_core_add_address_handler() - register for incoming requests
548 * @handler: callback
549 * @region: region in the IEEE 1212 node space address range
551 * region->start, ->end, and handler->length have to be quadlet-aligned.
553 * When a request is received that falls within the specified address range,
554 * the specified callback is invoked. The parameters passed to the callback
555 * give the details of the particular request.
557 * Return value: 0 on success, non-zero otherwise.
559 * The start offset of the handler's address region is determined by
560 * fw_core_add_address_handler() and is returned in handler->offset.
562 * Address allocations are exclusive, except for the FCP registers.
564 int fw_core_add_address_handler(struct fw_address_handler *handler,
565 const struct fw_address_region *region)
567 struct fw_address_handler *other;
568 unsigned long flags;
569 int ret = -EBUSY;
571 if (region->start & 0xffff000000000003ULL ||
572 region->start >= region->end ||
573 region->end > 0x0001000000000000ULL ||
574 handler->length & 3 ||
575 handler->length == 0)
576 return -EINVAL;
578 spin_lock_irqsave(&address_handler_lock, flags);
580 handler->offset = region->start;
581 while (handler->offset + handler->length <= region->end) {
582 if (is_in_fcp_region(handler->offset, handler->length))
583 other = NULL;
584 else
585 other = lookup_overlapping_address_handler
586 (&address_handler_list,
587 handler->offset, handler->length);
588 if (other != NULL) {
589 handler->offset += other->length;
590 } else {
591 list_add_tail(&handler->link, &address_handler_list);
592 ret = 0;
593 break;
597 spin_unlock_irqrestore(&address_handler_lock, flags);
599 return ret;
601 EXPORT_SYMBOL(fw_core_add_address_handler);
604 * fw_core_remove_address_handler() - unregister an address handler
606 void fw_core_remove_address_handler(struct fw_address_handler *handler)
608 unsigned long flags;
610 spin_lock_irqsave(&address_handler_lock, flags);
611 list_del(&handler->link);
612 spin_unlock_irqrestore(&address_handler_lock, flags);
614 EXPORT_SYMBOL(fw_core_remove_address_handler);
616 struct fw_request {
617 struct fw_packet response;
618 u32 request_header[4];
619 int ack;
620 u32 length;
621 u32 data[0];
624 static void free_response_callback(struct fw_packet *packet,
625 struct fw_card *card, int status)
627 struct fw_request *request;
629 request = container_of(packet, struct fw_request, response);
630 kfree(request);
633 int fw_get_response_length(struct fw_request *r)
635 int tcode, ext_tcode, data_length;
637 tcode = HEADER_GET_TCODE(r->request_header[0]);
639 switch (tcode) {
640 case TCODE_WRITE_QUADLET_REQUEST:
641 case TCODE_WRITE_BLOCK_REQUEST:
642 return 0;
644 case TCODE_READ_QUADLET_REQUEST:
645 return 4;
647 case TCODE_READ_BLOCK_REQUEST:
648 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
649 return data_length;
651 case TCODE_LOCK_REQUEST:
652 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
653 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
654 switch (ext_tcode) {
655 case EXTCODE_FETCH_ADD:
656 case EXTCODE_LITTLE_ADD:
657 return data_length;
658 default:
659 return data_length / 2;
662 default:
663 WARN(1, "wrong tcode %d\n", tcode);
664 return 0;
668 void fw_fill_response(struct fw_packet *response, u32 *request_header,
669 int rcode, void *payload, size_t length)
671 int tcode, tlabel, extended_tcode, source, destination;
673 tcode = HEADER_GET_TCODE(request_header[0]);
674 tlabel = HEADER_GET_TLABEL(request_header[0]);
675 source = HEADER_GET_DESTINATION(request_header[0]);
676 destination = HEADER_GET_SOURCE(request_header[1]);
677 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
679 response->header[0] =
680 HEADER_RETRY(RETRY_1) |
681 HEADER_TLABEL(tlabel) |
682 HEADER_DESTINATION(destination);
683 response->header[1] =
684 HEADER_SOURCE(source) |
685 HEADER_RCODE(rcode);
686 response->header[2] = 0;
688 switch (tcode) {
689 case TCODE_WRITE_QUADLET_REQUEST:
690 case TCODE_WRITE_BLOCK_REQUEST:
691 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
692 response->header_length = 12;
693 response->payload_length = 0;
694 break;
696 case TCODE_READ_QUADLET_REQUEST:
697 response->header[0] |=
698 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
699 if (payload != NULL)
700 response->header[3] = *(u32 *)payload;
701 else
702 response->header[3] = 0;
703 response->header_length = 16;
704 response->payload_length = 0;
705 break;
707 case TCODE_READ_BLOCK_REQUEST:
708 case TCODE_LOCK_REQUEST:
709 response->header[0] |= HEADER_TCODE(tcode + 2);
710 response->header[3] =
711 HEADER_DATA_LENGTH(length) |
712 HEADER_EXTENDED_TCODE(extended_tcode);
713 response->header_length = 16;
714 response->payload = payload;
715 response->payload_length = length;
716 break;
718 default:
719 WARN(1, "wrong tcode %d\n", tcode);
722 response->payload_mapped = false;
724 EXPORT_SYMBOL(fw_fill_response);
726 static u32 compute_split_timeout_timestamp(struct fw_card *card,
727 u32 request_timestamp)
729 unsigned int cycles;
730 u32 timestamp;
732 cycles = card->split_timeout_cycles;
733 cycles += request_timestamp & 0x1fff;
735 timestamp = request_timestamp & ~0x1fff;
736 timestamp += (cycles / 8000) << 13;
737 timestamp |= cycles % 8000;
739 return timestamp;
742 static struct fw_request *allocate_request(struct fw_card *card,
743 struct fw_packet *p)
745 struct fw_request *request;
746 u32 *data, length;
747 int request_tcode;
749 request_tcode = HEADER_GET_TCODE(p->header[0]);
750 switch (request_tcode) {
751 case TCODE_WRITE_QUADLET_REQUEST:
752 data = &p->header[3];
753 length = 4;
754 break;
756 case TCODE_WRITE_BLOCK_REQUEST:
757 case TCODE_LOCK_REQUEST:
758 data = p->payload;
759 length = HEADER_GET_DATA_LENGTH(p->header[3]);
760 break;
762 case TCODE_READ_QUADLET_REQUEST:
763 data = NULL;
764 length = 4;
765 break;
767 case TCODE_READ_BLOCK_REQUEST:
768 data = NULL;
769 length = HEADER_GET_DATA_LENGTH(p->header[3]);
770 break;
772 default:
773 fw_error("ERROR - corrupt request received - %08x %08x %08x\n",
774 p->header[0], p->header[1], p->header[2]);
775 return NULL;
778 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
779 if (request == NULL)
780 return NULL;
782 request->response.speed = p->speed;
783 request->response.timestamp =
784 compute_split_timeout_timestamp(card, p->timestamp);
785 request->response.generation = p->generation;
786 request->response.ack = 0;
787 request->response.callback = free_response_callback;
788 request->ack = p->ack;
789 request->length = length;
790 if (data)
791 memcpy(request->data, data, length);
793 memcpy(request->request_header, p->header, sizeof(p->header));
795 return request;
798 void fw_send_response(struct fw_card *card,
799 struct fw_request *request, int rcode)
801 if (WARN_ONCE(!request, "invalid for FCP address handlers"))
802 return;
804 /* unified transaction or broadcast transaction: don't respond */
805 if (request->ack != ACK_PENDING ||
806 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
807 kfree(request);
808 return;
811 if (rcode == RCODE_COMPLETE)
812 fw_fill_response(&request->response, request->request_header,
813 rcode, request->data,
814 fw_get_response_length(request));
815 else
816 fw_fill_response(&request->response, request->request_header,
817 rcode, NULL, 0);
819 card->driver->send_response(card, &request->response);
821 EXPORT_SYMBOL(fw_send_response);
823 static void handle_exclusive_region_request(struct fw_card *card,
824 struct fw_packet *p,
825 struct fw_request *request,
826 unsigned long long offset)
828 struct fw_address_handler *handler;
829 unsigned long flags;
830 int tcode, destination, source;
832 destination = HEADER_GET_DESTINATION(p->header[0]);
833 source = HEADER_GET_SOURCE(p->header[1]);
834 tcode = HEADER_GET_TCODE(p->header[0]);
835 if (tcode == TCODE_LOCK_REQUEST)
836 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
838 spin_lock_irqsave(&address_handler_lock, flags);
839 handler = lookup_enclosing_address_handler(&address_handler_list,
840 offset, request->length);
841 spin_unlock_irqrestore(&address_handler_lock, flags);
844 * FIXME: lookup the fw_node corresponding to the sender of
845 * this request and pass that to the address handler instead
846 * of the node ID. We may also want to move the address
847 * allocations to fw_node so we only do this callback if the
848 * upper layers registered it for this node.
851 if (handler == NULL)
852 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
853 else
854 handler->address_callback(card, request,
855 tcode, destination, source,
856 p->generation, offset,
857 request->data, request->length,
858 handler->callback_data);
861 static void handle_fcp_region_request(struct fw_card *card,
862 struct fw_packet *p,
863 struct fw_request *request,
864 unsigned long long offset)
866 struct fw_address_handler *handler;
867 unsigned long flags;
868 int tcode, destination, source;
870 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
871 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
872 request->length > 0x200) {
873 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
875 return;
878 tcode = HEADER_GET_TCODE(p->header[0]);
879 destination = HEADER_GET_DESTINATION(p->header[0]);
880 source = HEADER_GET_SOURCE(p->header[1]);
882 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
883 tcode != TCODE_WRITE_BLOCK_REQUEST) {
884 fw_send_response(card, request, RCODE_TYPE_ERROR);
886 return;
889 spin_lock_irqsave(&address_handler_lock, flags);
890 list_for_each_entry(handler, &address_handler_list, link) {
891 if (is_enclosing_handler(handler, offset, request->length))
892 handler->address_callback(card, NULL, tcode,
893 destination, source,
894 p->generation, offset,
895 request->data,
896 request->length,
897 handler->callback_data);
899 spin_unlock_irqrestore(&address_handler_lock, flags);
901 fw_send_response(card, request, RCODE_COMPLETE);
904 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
906 struct fw_request *request;
907 unsigned long long offset;
909 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
910 return;
912 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
913 fw_cdev_handle_phy_packet(card, p);
914 return;
917 request = allocate_request(card, p);
918 if (request == NULL) {
919 /* FIXME: send statically allocated busy packet. */
920 return;
923 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
924 p->header[2];
926 if (!is_in_fcp_region(offset, request->length))
927 handle_exclusive_region_request(card, p, request, offset);
928 else
929 handle_fcp_region_request(card, p, request, offset);
932 EXPORT_SYMBOL(fw_core_handle_request);
934 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
936 struct fw_transaction *t;
937 unsigned long flags;
938 u32 *data;
939 size_t data_length;
940 int tcode, tlabel, source, rcode;
942 tcode = HEADER_GET_TCODE(p->header[0]);
943 tlabel = HEADER_GET_TLABEL(p->header[0]);
944 source = HEADER_GET_SOURCE(p->header[1]);
945 rcode = HEADER_GET_RCODE(p->header[1]);
947 spin_lock_irqsave(&card->lock, flags);
948 list_for_each_entry(t, &card->transaction_list, link) {
949 if (t->node_id == source && t->tlabel == tlabel) {
950 if (!try_cancel_split_timeout(t)) {
951 spin_unlock_irqrestore(&card->lock, flags);
952 goto timed_out;
954 list_del_init(&t->link);
955 card->tlabel_mask &= ~(1ULL << t->tlabel);
956 break;
959 spin_unlock_irqrestore(&card->lock, flags);
961 if (&t->link == &card->transaction_list) {
962 timed_out:
963 fw_notify("Unsolicited response (source %x, tlabel %x)\n",
964 source, tlabel);
965 return;
969 * FIXME: sanity check packet, is length correct, does tcodes
970 * and addresses match.
973 switch (tcode) {
974 case TCODE_READ_QUADLET_RESPONSE:
975 data = (u32 *) &p->header[3];
976 data_length = 4;
977 break;
979 case TCODE_WRITE_RESPONSE:
980 data = NULL;
981 data_length = 0;
982 break;
984 case TCODE_READ_BLOCK_RESPONSE:
985 case TCODE_LOCK_RESPONSE:
986 data = p->payload;
987 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
988 break;
990 default:
991 /* Should never happen, this is just to shut up gcc. */
992 data = NULL;
993 data_length = 0;
994 break;
998 * The response handler may be executed while the request handler
999 * is still pending. Cancel the request handler.
1001 card->driver->cancel_packet(card, &t->packet);
1003 t->callback(card, rcode, data, data_length, t->callback_data);
1005 EXPORT_SYMBOL(fw_core_handle_response);
1007 static const struct fw_address_region topology_map_region =
1008 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1009 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1011 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1012 int tcode, int destination, int source, int generation,
1013 unsigned long long offset, void *payload, size_t length,
1014 void *callback_data)
1016 int start;
1018 if (!TCODE_IS_READ_REQUEST(tcode)) {
1019 fw_send_response(card, request, RCODE_TYPE_ERROR);
1020 return;
1023 if ((offset & 3) > 0 || (length & 3) > 0) {
1024 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1025 return;
1028 start = (offset - topology_map_region.start) / 4;
1029 memcpy(payload, &card->topology_map[start], length);
1031 fw_send_response(card, request, RCODE_COMPLETE);
1034 static struct fw_address_handler topology_map = {
1035 .length = 0x400,
1036 .address_callback = handle_topology_map,
1039 static const struct fw_address_region registers_region =
1040 { .start = CSR_REGISTER_BASE,
1041 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1043 static void update_split_timeout(struct fw_card *card)
1045 unsigned int cycles;
1047 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1049 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1050 cycles = clamp(cycles, 800u, 3u * 8000u);
1052 card->split_timeout_cycles = cycles;
1053 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1056 static void handle_registers(struct fw_card *card, struct fw_request *request,
1057 int tcode, int destination, int source, int generation,
1058 unsigned long long offset, void *payload, size_t length,
1059 void *callback_data)
1061 int reg = offset & ~CSR_REGISTER_BASE;
1062 __be32 *data = payload;
1063 int rcode = RCODE_COMPLETE;
1064 unsigned long flags;
1066 switch (reg) {
1067 case CSR_PRIORITY_BUDGET:
1068 if (!card->priority_budget_implemented) {
1069 rcode = RCODE_ADDRESS_ERROR;
1070 break;
1072 /* else fall through */
1074 case CSR_NODE_IDS:
1076 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1077 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1079 /* fall through */
1081 case CSR_STATE_CLEAR:
1082 case CSR_STATE_SET:
1083 case CSR_CYCLE_TIME:
1084 case CSR_BUS_TIME:
1085 case CSR_BUSY_TIMEOUT:
1086 if (tcode == TCODE_READ_QUADLET_REQUEST)
1087 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1088 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1089 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1090 else
1091 rcode = RCODE_TYPE_ERROR;
1092 break;
1094 case CSR_RESET_START:
1095 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1096 card->driver->write_csr(card, CSR_STATE_CLEAR,
1097 CSR_STATE_BIT_ABDICATE);
1098 else
1099 rcode = RCODE_TYPE_ERROR;
1100 break;
1102 case CSR_SPLIT_TIMEOUT_HI:
1103 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1104 *data = cpu_to_be32(card->split_timeout_hi);
1105 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1106 spin_lock_irqsave(&card->lock, flags);
1107 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1108 update_split_timeout(card);
1109 spin_unlock_irqrestore(&card->lock, flags);
1110 } else {
1111 rcode = RCODE_TYPE_ERROR;
1113 break;
1115 case CSR_SPLIT_TIMEOUT_LO:
1116 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1117 *data = cpu_to_be32(card->split_timeout_lo);
1118 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1119 spin_lock_irqsave(&card->lock, flags);
1120 card->split_timeout_lo =
1121 be32_to_cpu(*data) & 0xfff80000;
1122 update_split_timeout(card);
1123 spin_unlock_irqrestore(&card->lock, flags);
1124 } else {
1125 rcode = RCODE_TYPE_ERROR;
1127 break;
1129 case CSR_MAINT_UTILITY:
1130 if (tcode == TCODE_READ_QUADLET_REQUEST)
1131 *data = card->maint_utility_register;
1132 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1133 card->maint_utility_register = *data;
1134 else
1135 rcode = RCODE_TYPE_ERROR;
1136 break;
1138 case CSR_BROADCAST_CHANNEL:
1139 if (tcode == TCODE_READ_QUADLET_REQUEST)
1140 *data = cpu_to_be32(card->broadcast_channel);
1141 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1142 card->broadcast_channel =
1143 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1144 BROADCAST_CHANNEL_INITIAL;
1145 else
1146 rcode = RCODE_TYPE_ERROR;
1147 break;
1149 case CSR_BUS_MANAGER_ID:
1150 case CSR_BANDWIDTH_AVAILABLE:
1151 case CSR_CHANNELS_AVAILABLE_HI:
1152 case CSR_CHANNELS_AVAILABLE_LO:
1154 * FIXME: these are handled by the OHCI hardware and
1155 * the stack never sees these request. If we add
1156 * support for a new type of controller that doesn't
1157 * handle this in hardware we need to deal with these
1158 * transactions.
1160 BUG();
1161 break;
1163 default:
1164 rcode = RCODE_ADDRESS_ERROR;
1165 break;
1168 fw_send_response(card, request, rcode);
1171 static struct fw_address_handler registers = {
1172 .length = 0x400,
1173 .address_callback = handle_registers,
1176 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1177 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1178 MODULE_LICENSE("GPL");
1180 static const u32 vendor_textual_descriptor[] = {
1181 /* textual descriptor leaf () */
1182 0x00060000,
1183 0x00000000,
1184 0x00000000,
1185 0x4c696e75, /* L i n u */
1186 0x78204669, /* x F i */
1187 0x72657769, /* r e w i */
1188 0x72650000, /* r e */
1191 static const u32 model_textual_descriptor[] = {
1192 /* model descriptor leaf () */
1193 0x00030000,
1194 0x00000000,
1195 0x00000000,
1196 0x4a756a75, /* J u j u */
1199 static struct fw_descriptor vendor_id_descriptor = {
1200 .length = ARRAY_SIZE(vendor_textual_descriptor),
1201 .immediate = 0x03d00d1e,
1202 .key = 0x81000000,
1203 .data = vendor_textual_descriptor,
1206 static struct fw_descriptor model_id_descriptor = {
1207 .length = ARRAY_SIZE(model_textual_descriptor),
1208 .immediate = 0x17000001,
1209 .key = 0x81000000,
1210 .data = model_textual_descriptor,
1213 static int __init fw_core_init(void)
1215 int ret;
1217 fw_workqueue = alloc_workqueue("firewire",
1218 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1219 if (!fw_workqueue)
1220 return -ENOMEM;
1222 ret = bus_register(&fw_bus_type);
1223 if (ret < 0) {
1224 destroy_workqueue(fw_workqueue);
1225 return ret;
1228 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1229 if (fw_cdev_major < 0) {
1230 bus_unregister(&fw_bus_type);
1231 destroy_workqueue(fw_workqueue);
1232 return fw_cdev_major;
1235 fw_core_add_address_handler(&topology_map, &topology_map_region);
1236 fw_core_add_address_handler(&registers, &registers_region);
1237 fw_core_add_descriptor(&vendor_id_descriptor);
1238 fw_core_add_descriptor(&model_id_descriptor);
1240 return 0;
1243 static void __exit fw_core_cleanup(void)
1245 unregister_chrdev(fw_cdev_major, "firewire");
1246 bus_unregister(&fw_bus_type);
1247 destroy_workqueue(fw_workqueue);
1248 idr_destroy(&fw_device_idr);
1251 module_init(fw_core_init);
1252 module_exit(fw_core_cleanup);