Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[zen-stable.git] / fs / gfs2 / rgrp.c
blob96bd6d759f29126ece781add6a91f264acc08c88
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
35 #define BFITNOENT ((u32)~0)
36 #define NO_BLOCK ((u64)~0)
38 #if BITS_PER_LONG == 32
39 #define LBITMASK (0x55555555UL)
40 #define LBITSKIP55 (0x55555555UL)
41 #define LBITSKIP00 (0x00000000UL)
42 #else
43 #define LBITMASK (0x5555555555555555UL)
44 #define LBITSKIP55 (0x5555555555555555UL)
45 #define LBITSKIP00 (0x0000000000000000UL)
46 #endif
49 * These routines are used by the resource group routines (rgrp.c)
50 * to keep track of block allocation. Each block is represented by two
51 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53 * 0 = Free
54 * 1 = Used (not metadata)
55 * 2 = Unlinked (still in use) inode
56 * 3 = Used (metadata)
59 static const char valid_change[16] = {
60 /* current */
61 /* n */ 0, 1, 1, 1,
62 /* e */ 1, 0, 0, 0,
63 /* w */ 0, 0, 0, 1,
64 1, 0, 0, 0
67 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
68 unsigned char old_state, unsigned char new_state,
69 unsigned int *n);
71 /**
72 * gfs2_setbit - Set a bit in the bitmaps
73 * @buffer: the buffer that holds the bitmaps
74 * @buflen: the length (in bytes) of the buffer
75 * @block: the block to set
76 * @new_state: the new state of the block
80 static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf1,
81 unsigned char *buf2, unsigned int offset,
82 struct gfs2_bitmap *bi, u32 block,
83 unsigned char new_state)
85 unsigned char *byte1, *byte2, *end, cur_state;
86 unsigned int buflen = bi->bi_len;
87 const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
89 byte1 = buf1 + offset + (block / GFS2_NBBY);
90 end = buf1 + offset + buflen;
92 BUG_ON(byte1 >= end);
94 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
96 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
97 printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, "
98 "new_state=%d\n",
99 (unsigned long long)block, cur_state, new_state);
100 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n",
101 (unsigned long long)rgd->rd_addr,
102 (unsigned long)bi->bi_start);
103 printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n",
104 (unsigned long)bi->bi_offset,
105 (unsigned long)bi->bi_len);
106 dump_stack();
107 gfs2_consist_rgrpd(rgd);
108 return;
110 *byte1 ^= (cur_state ^ new_state) << bit;
112 if (buf2) {
113 byte2 = buf2 + offset + (block / GFS2_NBBY);
114 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
115 *byte2 ^= (cur_state ^ new_state) << bit;
120 * gfs2_testbit - test a bit in the bitmaps
121 * @buffer: the buffer that holds the bitmaps
122 * @buflen: the length (in bytes) of the buffer
123 * @block: the block to read
127 static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd,
128 const unsigned char *buffer,
129 unsigned int buflen, u32 block)
131 const unsigned char *byte, *end;
132 unsigned char cur_state;
133 unsigned int bit;
135 byte = buffer + (block / GFS2_NBBY);
136 bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
137 end = buffer + buflen;
139 gfs2_assert(rgd->rd_sbd, byte < end);
141 cur_state = (*byte >> bit) & GFS2_BIT_MASK;
143 return cur_state;
147 * gfs2_bit_search
148 * @ptr: Pointer to bitmap data
149 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
150 * @state: The state we are searching for
152 * We xor the bitmap data with a patter which is the bitwise opposite
153 * of what we are looking for, this gives rise to a pattern of ones
154 * wherever there is a match. Since we have two bits per entry, we
155 * take this pattern, shift it down by one place and then and it with
156 * the original. All the even bit positions (0,2,4, etc) then represent
157 * successful matches, so we mask with 0x55555..... to remove the unwanted
158 * odd bit positions.
160 * This allows searching of a whole u64 at once (32 blocks) with a
161 * single test (on 64 bit arches).
164 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
166 u64 tmp;
167 static const u64 search[] = {
168 [0] = 0xffffffffffffffffULL,
169 [1] = 0xaaaaaaaaaaaaaaaaULL,
170 [2] = 0x5555555555555555ULL,
171 [3] = 0x0000000000000000ULL,
173 tmp = le64_to_cpu(*ptr) ^ search[state];
174 tmp &= (tmp >> 1);
175 tmp &= mask;
176 return tmp;
180 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
181 * a block in a given allocation state.
182 * @buffer: the buffer that holds the bitmaps
183 * @len: the length (in bytes) of the buffer
184 * @goal: start search at this block's bit-pair (within @buffer)
185 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
187 * Scope of @goal and returned block number is only within this bitmap buffer,
188 * not entire rgrp or filesystem. @buffer will be offset from the actual
189 * beginning of a bitmap block buffer, skipping any header structures, but
190 * headers are always a multiple of 64 bits long so that the buffer is
191 * always aligned to a 64 bit boundary.
193 * The size of the buffer is in bytes, but is it assumed that it is
194 * always ok to read a complete multiple of 64 bits at the end
195 * of the block in case the end is no aligned to a natural boundary.
197 * Return: the block number (bitmap buffer scope) that was found
200 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
201 u32 goal, u8 state)
203 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
204 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
205 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
206 u64 tmp;
207 u64 mask = 0x5555555555555555ULL;
208 u32 bit;
210 BUG_ON(state > 3);
212 /* Mask off bits we don't care about at the start of the search */
213 mask <<= spoint;
214 tmp = gfs2_bit_search(ptr, mask, state);
215 ptr++;
216 while(tmp == 0 && ptr < end) {
217 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
218 ptr++;
220 /* Mask off any bits which are more than len bytes from the start */
221 if (ptr == end && (len & (sizeof(u64) - 1)))
222 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
223 /* Didn't find anything, so return */
224 if (tmp == 0)
225 return BFITNOENT;
226 ptr--;
227 bit = __ffs64(tmp);
228 bit /= 2; /* two bits per entry in the bitmap */
229 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
233 * gfs2_bitcount - count the number of bits in a certain state
234 * @buffer: the buffer that holds the bitmaps
235 * @buflen: the length (in bytes) of the buffer
236 * @state: the state of the block we're looking for
238 * Returns: The number of bits
241 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
242 unsigned int buflen, u8 state)
244 const u8 *byte = buffer;
245 const u8 *end = buffer + buflen;
246 const u8 state1 = state << 2;
247 const u8 state2 = state << 4;
248 const u8 state3 = state << 6;
249 u32 count = 0;
251 for (; byte < end; byte++) {
252 if (((*byte) & 0x03) == state)
253 count++;
254 if (((*byte) & 0x0C) == state1)
255 count++;
256 if (((*byte) & 0x30) == state2)
257 count++;
258 if (((*byte) & 0xC0) == state3)
259 count++;
262 return count;
266 * gfs2_rgrp_verify - Verify that a resource group is consistent
267 * @sdp: the filesystem
268 * @rgd: the rgrp
272 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
274 struct gfs2_sbd *sdp = rgd->rd_sbd;
275 struct gfs2_bitmap *bi = NULL;
276 u32 length = rgd->rd_length;
277 u32 count[4], tmp;
278 int buf, x;
280 memset(count, 0, 4 * sizeof(u32));
282 /* Count # blocks in each of 4 possible allocation states */
283 for (buf = 0; buf < length; buf++) {
284 bi = rgd->rd_bits + buf;
285 for (x = 0; x < 4; x++)
286 count[x] += gfs2_bitcount(rgd,
287 bi->bi_bh->b_data +
288 bi->bi_offset,
289 bi->bi_len, x);
292 if (count[0] != rgd->rd_free) {
293 if (gfs2_consist_rgrpd(rgd))
294 fs_err(sdp, "free data mismatch: %u != %u\n",
295 count[0], rgd->rd_free);
296 return;
299 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
300 if (count[1] != tmp) {
301 if (gfs2_consist_rgrpd(rgd))
302 fs_err(sdp, "used data mismatch: %u != %u\n",
303 count[1], tmp);
304 return;
307 if (count[2] + count[3] != rgd->rd_dinodes) {
308 if (gfs2_consist_rgrpd(rgd))
309 fs_err(sdp, "used metadata mismatch: %u != %u\n",
310 count[2] + count[3], rgd->rd_dinodes);
311 return;
315 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
317 u64 first = rgd->rd_data0;
318 u64 last = first + rgd->rd_data;
319 return first <= block && block < last;
323 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
324 * @sdp: The GFS2 superblock
325 * @n: The data block number
327 * Returns: The resource group, or NULL if not found
330 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk)
332 struct rb_node **newn;
333 struct gfs2_rgrpd *cur;
335 spin_lock(&sdp->sd_rindex_spin);
336 newn = &sdp->sd_rindex_tree.rb_node;
337 while (*newn) {
338 cur = rb_entry(*newn, struct gfs2_rgrpd, rd_node);
339 if (blk < cur->rd_addr)
340 newn = &((*newn)->rb_left);
341 else if (blk >= cur->rd_data0 + cur->rd_data)
342 newn = &((*newn)->rb_right);
343 else {
344 spin_unlock(&sdp->sd_rindex_spin);
345 return cur;
348 spin_unlock(&sdp->sd_rindex_spin);
350 return NULL;
354 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
355 * @sdp: The GFS2 superblock
357 * Returns: The first rgrp in the filesystem
360 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
362 const struct rb_node *n;
363 struct gfs2_rgrpd *rgd;
365 spin_lock(&sdp->sd_rindex_spin);
366 n = rb_first(&sdp->sd_rindex_tree);
367 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
368 spin_unlock(&sdp->sd_rindex_spin);
370 return rgd;
374 * gfs2_rgrpd_get_next - get the next RG
375 * @rgd: A RG
377 * Returns: The next rgrp
380 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
382 struct gfs2_sbd *sdp = rgd->rd_sbd;
383 const struct rb_node *n;
385 spin_lock(&sdp->sd_rindex_spin);
386 n = rb_next(&rgd->rd_node);
387 if (n == NULL)
388 n = rb_first(&sdp->sd_rindex_tree);
390 if (unlikely(&rgd->rd_node == n)) {
391 spin_unlock(&sdp->sd_rindex_spin);
392 return NULL;
394 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
395 spin_unlock(&sdp->sd_rindex_spin);
396 return rgd;
399 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
401 int x;
403 for (x = 0; x < rgd->rd_length; x++) {
404 struct gfs2_bitmap *bi = rgd->rd_bits + x;
405 kfree(bi->bi_clone);
406 bi->bi_clone = NULL;
410 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
412 struct rb_node *n;
413 struct gfs2_rgrpd *rgd;
414 struct gfs2_glock *gl;
416 while ((n = rb_first(&sdp->sd_rindex_tree))) {
417 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
418 gl = rgd->rd_gl;
420 rb_erase(n, &sdp->sd_rindex_tree);
422 if (gl) {
423 spin_lock(&gl->gl_spin);
424 gl->gl_object = NULL;
425 spin_unlock(&gl->gl_spin);
426 gfs2_glock_add_to_lru(gl);
427 gfs2_glock_put(gl);
430 gfs2_free_clones(rgd);
431 kfree(rgd->rd_bits);
432 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
436 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
438 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
439 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length);
440 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
441 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data);
442 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes);
446 * gfs2_compute_bitstructs - Compute the bitmap sizes
447 * @rgd: The resource group descriptor
449 * Calculates bitmap descriptors, one for each block that contains bitmap data
451 * Returns: errno
454 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
456 struct gfs2_sbd *sdp = rgd->rd_sbd;
457 struct gfs2_bitmap *bi;
458 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
459 u32 bytes_left, bytes;
460 int x;
462 if (!length)
463 return -EINVAL;
465 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
466 if (!rgd->rd_bits)
467 return -ENOMEM;
469 bytes_left = rgd->rd_bitbytes;
471 for (x = 0; x < length; x++) {
472 bi = rgd->rd_bits + x;
474 bi->bi_flags = 0;
475 /* small rgrp; bitmap stored completely in header block */
476 if (length == 1) {
477 bytes = bytes_left;
478 bi->bi_offset = sizeof(struct gfs2_rgrp);
479 bi->bi_start = 0;
480 bi->bi_len = bytes;
481 /* header block */
482 } else if (x == 0) {
483 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
484 bi->bi_offset = sizeof(struct gfs2_rgrp);
485 bi->bi_start = 0;
486 bi->bi_len = bytes;
487 /* last block */
488 } else if (x + 1 == length) {
489 bytes = bytes_left;
490 bi->bi_offset = sizeof(struct gfs2_meta_header);
491 bi->bi_start = rgd->rd_bitbytes - bytes_left;
492 bi->bi_len = bytes;
493 /* other blocks */
494 } else {
495 bytes = sdp->sd_sb.sb_bsize -
496 sizeof(struct gfs2_meta_header);
497 bi->bi_offset = sizeof(struct gfs2_meta_header);
498 bi->bi_start = rgd->rd_bitbytes - bytes_left;
499 bi->bi_len = bytes;
502 bytes_left -= bytes;
505 if (bytes_left) {
506 gfs2_consist_rgrpd(rgd);
507 return -EIO;
509 bi = rgd->rd_bits + (length - 1);
510 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
511 if (gfs2_consist_rgrpd(rgd)) {
512 gfs2_rindex_print(rgd);
513 fs_err(sdp, "start=%u len=%u offset=%u\n",
514 bi->bi_start, bi->bi_len, bi->bi_offset);
516 return -EIO;
519 return 0;
523 * gfs2_ri_total - Total up the file system space, according to the rindex.
526 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
528 u64 total_data = 0;
529 struct inode *inode = sdp->sd_rindex;
530 struct gfs2_inode *ip = GFS2_I(inode);
531 char buf[sizeof(struct gfs2_rindex)];
532 struct file_ra_state ra_state;
533 int error, rgrps;
535 mutex_lock(&sdp->sd_rindex_mutex);
536 file_ra_state_init(&ra_state, inode->i_mapping);
537 for (rgrps = 0;; rgrps++) {
538 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
540 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
541 break;
542 error = gfs2_internal_read(ip, &ra_state, buf, &pos,
543 sizeof(struct gfs2_rindex));
544 if (error != sizeof(struct gfs2_rindex))
545 break;
546 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
548 mutex_unlock(&sdp->sd_rindex_mutex);
549 return total_data;
552 static void rgd_insert(struct gfs2_rgrpd *rgd)
554 struct gfs2_sbd *sdp = rgd->rd_sbd;
555 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
557 /* Figure out where to put new node */
558 while (*newn) {
559 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
560 rd_node);
562 parent = *newn;
563 if (rgd->rd_addr < cur->rd_addr)
564 newn = &((*newn)->rb_left);
565 else if (rgd->rd_addr > cur->rd_addr)
566 newn = &((*newn)->rb_right);
567 else
568 return;
571 rb_link_node(&rgd->rd_node, parent, newn);
572 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
576 * read_rindex_entry - Pull in a new resource index entry from the disk
577 * @gl: The glock covering the rindex inode
579 * Returns: 0 on success, > 0 on EOF, error code otherwise
582 static int read_rindex_entry(struct gfs2_inode *ip,
583 struct file_ra_state *ra_state)
585 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
586 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
587 struct gfs2_rindex buf;
588 int error;
589 struct gfs2_rgrpd *rgd;
591 if (pos >= i_size_read(&ip->i_inode))
592 return 1;
594 error = gfs2_internal_read(ip, ra_state, (char *)&buf, &pos,
595 sizeof(struct gfs2_rindex));
597 if (error != sizeof(struct gfs2_rindex))
598 return (error == 0) ? 1 : error;
600 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
601 error = -ENOMEM;
602 if (!rgd)
603 return error;
605 rgd->rd_sbd = sdp;
606 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
607 rgd->rd_length = be32_to_cpu(buf.ri_length);
608 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
609 rgd->rd_data = be32_to_cpu(buf.ri_data);
610 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
612 error = compute_bitstructs(rgd);
613 if (error)
614 goto fail;
616 error = gfs2_glock_get(sdp, rgd->rd_addr,
617 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
618 if (error)
619 goto fail;
621 rgd->rd_gl->gl_object = rgd;
622 rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
623 if (rgd->rd_data > sdp->sd_max_rg_data)
624 sdp->sd_max_rg_data = rgd->rd_data;
625 spin_lock(&sdp->sd_rindex_spin);
626 rgd_insert(rgd);
627 sdp->sd_rgrps++;
628 spin_unlock(&sdp->sd_rindex_spin);
629 return error;
631 fail:
632 kfree(rgd->rd_bits);
633 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
634 return error;
638 * gfs2_ri_update - Pull in a new resource index from the disk
639 * @ip: pointer to the rindex inode
641 * Returns: 0 on successful update, error code otherwise
644 static int gfs2_ri_update(struct gfs2_inode *ip)
646 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
647 struct inode *inode = &ip->i_inode;
648 struct file_ra_state ra_state;
649 int error;
651 file_ra_state_init(&ra_state, inode->i_mapping);
652 do {
653 error = read_rindex_entry(ip, &ra_state);
654 } while (error == 0);
656 if (error < 0)
657 return error;
659 sdp->sd_rindex_uptodate = 1;
660 return 0;
664 * gfs2_rindex_update - Update the rindex if required
665 * @sdp: The GFS2 superblock
667 * We grab a lock on the rindex inode to make sure that it doesn't
668 * change whilst we are performing an operation. We keep this lock
669 * for quite long periods of time compared to other locks. This
670 * doesn't matter, since it is shared and it is very, very rarely
671 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
673 * This makes sure that we're using the latest copy of the resource index
674 * special file, which might have been updated if someone expanded the
675 * filesystem (via gfs2_grow utility), which adds new resource groups.
677 * Returns: 0 on succeess, error code otherwise
680 int gfs2_rindex_update(struct gfs2_sbd *sdp)
682 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
683 struct gfs2_glock *gl = ip->i_gl;
684 struct gfs2_holder ri_gh;
685 int error = 0;
687 /* Read new copy from disk if we don't have the latest */
688 if (!sdp->sd_rindex_uptodate) {
689 mutex_lock(&sdp->sd_rindex_mutex);
690 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
691 if (error)
692 return error;
693 if (!sdp->sd_rindex_uptodate)
694 error = gfs2_ri_update(ip);
695 gfs2_glock_dq_uninit(&ri_gh);
696 mutex_unlock(&sdp->sd_rindex_mutex);
700 return error;
703 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
705 const struct gfs2_rgrp *str = buf;
706 u32 rg_flags;
708 rg_flags = be32_to_cpu(str->rg_flags);
709 rg_flags &= ~GFS2_RDF_MASK;
710 rgd->rd_flags &= GFS2_RDF_MASK;
711 rgd->rd_flags |= rg_flags;
712 rgd->rd_free = be32_to_cpu(str->rg_free);
713 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
714 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
717 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
719 struct gfs2_rgrp *str = buf;
721 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
722 str->rg_free = cpu_to_be32(rgd->rd_free);
723 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
724 str->__pad = cpu_to_be32(0);
725 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
726 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
730 * gfs2_rgrp_go_lock - Read in a RG's header and bitmaps
731 * @rgd: the struct gfs2_rgrpd describing the RG to read in
733 * Read in all of a Resource Group's header and bitmap blocks.
734 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
736 * Returns: errno
739 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
741 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
742 struct gfs2_sbd *sdp = rgd->rd_sbd;
743 struct gfs2_glock *gl = rgd->rd_gl;
744 unsigned int length = rgd->rd_length;
745 struct gfs2_bitmap *bi;
746 unsigned int x, y;
747 int error;
749 for (x = 0; x < length; x++) {
750 bi = rgd->rd_bits + x;
751 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
752 if (error)
753 goto fail;
756 for (y = length; y--;) {
757 bi = rgd->rd_bits + y;
758 error = gfs2_meta_wait(sdp, bi->bi_bh);
759 if (error)
760 goto fail;
761 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
762 GFS2_METATYPE_RG)) {
763 error = -EIO;
764 goto fail;
768 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
769 for (x = 0; x < length; x++)
770 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
771 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
772 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
773 rgd->rd_free_clone = rgd->rd_free;
776 return 0;
778 fail:
779 while (x--) {
780 bi = rgd->rd_bits + x;
781 brelse(bi->bi_bh);
782 bi->bi_bh = NULL;
783 gfs2_assert_warn(sdp, !bi->bi_clone);
786 return error;
790 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
791 * @rgd: the struct gfs2_rgrpd describing the RG to read in
795 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
797 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
798 int x, length = rgd->rd_length;
800 for (x = 0; x < length; x++) {
801 struct gfs2_bitmap *bi = rgd->rd_bits + x;
802 brelse(bi->bi_bh);
803 bi->bi_bh = NULL;
808 void gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
809 struct buffer_head *bh,
810 const struct gfs2_bitmap *bi)
812 struct super_block *sb = sdp->sd_vfs;
813 struct block_device *bdev = sb->s_bdev;
814 const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
815 bdev_logical_block_size(sb->s_bdev);
816 u64 blk;
817 sector_t start = 0;
818 sector_t nr_sects = 0;
819 int rv;
820 unsigned int x;
822 for (x = 0; x < bi->bi_len; x++) {
823 const u8 *orig = bh->b_data + bi->bi_offset + x;
824 const u8 *clone = bi->bi_clone + bi->bi_offset + x;
825 u8 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
826 diff &= 0x55;
827 if (diff == 0)
828 continue;
829 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
830 blk *= sects_per_blk; /* convert to sectors */
831 while(diff) {
832 if (diff & 1) {
833 if (nr_sects == 0)
834 goto start_new_extent;
835 if ((start + nr_sects) != blk) {
836 rv = blkdev_issue_discard(bdev, start,
837 nr_sects, GFP_NOFS,
839 if (rv)
840 goto fail;
841 nr_sects = 0;
842 start_new_extent:
843 start = blk;
845 nr_sects += sects_per_blk;
847 diff >>= 2;
848 blk += sects_per_blk;
851 if (nr_sects) {
852 rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
853 if (rv)
854 goto fail;
856 return;
857 fail:
858 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
859 sdp->sd_args.ar_discard = 0;
863 * gfs2_alloc_get - get the struct gfs2_alloc structure for an inode
864 * @ip: the incore GFS2 inode structure
866 * Returns: the struct gfs2_alloc
869 struct gfs2_alloc *gfs2_alloc_get(struct gfs2_inode *ip)
871 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
872 int error;
873 BUG_ON(ip->i_alloc != NULL);
874 ip->i_alloc = kzalloc(sizeof(struct gfs2_alloc), GFP_NOFS);
875 error = gfs2_rindex_update(sdp);
876 if (error)
877 fs_warn(sdp, "rindex update returns %d\n", error);
878 return ip->i_alloc;
882 * try_rgrp_fit - See if a given reservation will fit in a given RG
883 * @rgd: the RG data
884 * @ip: the inode
886 * If there's room for the requested blocks to be allocated from the RG:
888 * Returns: 1 on success (it fits), 0 on failure (it doesn't fit)
891 static int try_rgrp_fit(const struct gfs2_rgrpd *rgd, const struct gfs2_inode *ip)
893 const struct gfs2_alloc *al = ip->i_alloc;
895 if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
896 return 0;
897 if (rgd->rd_free_clone >= al->al_requested)
898 return 1;
899 return 0;
903 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
904 * @rgd: The rgrp
906 * Returns: 0 if no error
907 * The inode, if one has been found, in inode.
910 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
912 u32 goal = 0, block;
913 u64 no_addr;
914 struct gfs2_sbd *sdp = rgd->rd_sbd;
915 unsigned int n;
916 struct gfs2_glock *gl;
917 struct gfs2_inode *ip;
918 int error;
919 int found = 0;
921 while (goal < rgd->rd_data) {
922 down_write(&sdp->sd_log_flush_lock);
923 n = 1;
924 block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED,
925 GFS2_BLKST_UNLINKED, &n);
926 up_write(&sdp->sd_log_flush_lock);
927 if (block == BFITNOENT)
928 break;
929 /* rgblk_search can return a block < goal, so we need to
930 keep it marching forward. */
931 no_addr = block + rgd->rd_data0;
932 goal = max(block + 1, goal + 1);
933 if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked)
934 continue;
935 if (no_addr == skip)
936 continue;
937 *last_unlinked = no_addr;
939 error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl);
940 if (error)
941 continue;
943 /* If the inode is already in cache, we can ignore it here
944 * because the existing inode disposal code will deal with
945 * it when all refs have gone away. Accessing gl_object like
946 * this is not safe in general. Here it is ok because we do
947 * not dereference the pointer, and we only need an approx
948 * answer to whether it is NULL or not.
950 ip = gl->gl_object;
952 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
953 gfs2_glock_put(gl);
954 else
955 found++;
957 /* Limit reclaim to sensible number of tasks */
958 if (found > NR_CPUS)
959 return;
962 rgd->rd_flags &= ~GFS2_RDF_CHECK;
963 return;
967 * get_local_rgrp - Choose and lock a rgrp for allocation
968 * @ip: the inode to reserve space for
969 * @rgp: the chosen and locked rgrp
971 * Try to acquire rgrp in way which avoids contending with others.
973 * Returns: errno
976 static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked)
978 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
979 struct gfs2_rgrpd *rgd, *begin = NULL;
980 struct gfs2_alloc *al = ip->i_alloc;
981 int error, rg_locked;
982 int loops = 0;
984 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal))
985 rgd = begin = ip->i_rgd;
986 else
987 rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal);
989 if (rgd == NULL)
990 return -EBADSLT;
992 while (loops < 3) {
993 rg_locked = 0;
995 if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
996 rg_locked = 1;
997 error = 0;
998 } else {
999 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1000 LM_FLAG_TRY, &al->al_rgd_gh);
1002 switch (error) {
1003 case 0:
1004 if (try_rgrp_fit(rgd, ip)) {
1005 ip->i_rgd = rgd;
1006 return 0;
1008 if (rgd->rd_flags & GFS2_RDF_CHECK)
1009 try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr);
1010 if (!rg_locked)
1011 gfs2_glock_dq_uninit(&al->al_rgd_gh);
1012 /* fall through */
1013 case GLR_TRYFAILED:
1014 rgd = gfs2_rgrpd_get_next(rgd);
1015 if (rgd == begin)
1016 loops++;
1017 break;
1018 default:
1019 return error;
1023 return -ENOSPC;
1027 * gfs2_inplace_reserve - Reserve space in the filesystem
1028 * @ip: the inode to reserve space for
1030 * Returns: errno
1033 int gfs2_inplace_reserve(struct gfs2_inode *ip)
1035 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1036 struct gfs2_alloc *al = ip->i_alloc;
1037 int error = 0;
1038 u64 last_unlinked = NO_BLOCK;
1039 int tries = 0;
1041 if (gfs2_assert_warn(sdp, al->al_requested))
1042 return -EINVAL;
1044 do {
1045 error = get_local_rgrp(ip, &last_unlinked);
1046 if (error != -ENOSPC)
1047 break;
1048 /* Check that fs hasn't grown if writing to rindex */
1049 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1050 error = gfs2_ri_update(ip);
1051 if (error)
1052 break;
1053 continue;
1055 /* Flushing the log may release space */
1056 gfs2_log_flush(sdp, NULL);
1057 } while (tries++ < 3);
1059 return error;
1063 * gfs2_inplace_release - release an inplace reservation
1064 * @ip: the inode the reservation was taken out on
1066 * Release a reservation made by gfs2_inplace_reserve().
1069 void gfs2_inplace_release(struct gfs2_inode *ip)
1071 struct gfs2_alloc *al = ip->i_alloc;
1073 if (al->al_rgd_gh.gh_gl)
1074 gfs2_glock_dq_uninit(&al->al_rgd_gh);
1078 * gfs2_get_block_type - Check a block in a RG is of given type
1079 * @rgd: the resource group holding the block
1080 * @block: the block number
1082 * Returns: The block type (GFS2_BLKST_*)
1085 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1087 struct gfs2_bitmap *bi = NULL;
1088 u32 length, rgrp_block, buf_block;
1089 unsigned int buf;
1090 unsigned char type;
1092 length = rgd->rd_length;
1093 rgrp_block = block - rgd->rd_data0;
1095 for (buf = 0; buf < length; buf++) {
1096 bi = rgd->rd_bits + buf;
1097 if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1098 break;
1101 gfs2_assert(rgd->rd_sbd, buf < length);
1102 buf_block = rgrp_block - bi->bi_start * GFS2_NBBY;
1104 type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
1105 bi->bi_len, buf_block);
1107 return type;
1111 * rgblk_search - find a block in @old_state, change allocation
1112 * state to @new_state
1113 * @rgd: the resource group descriptor
1114 * @goal: the goal block within the RG (start here to search for avail block)
1115 * @old_state: GFS2_BLKST_XXX the before-allocation state to find
1116 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1117 * @n: The extent length
1119 * Walk rgrp's bitmap to find bits that represent a block in @old_state.
1120 * Add the found bitmap buffer to the transaction.
1121 * Set the found bits to @new_state to change block's allocation state.
1123 * This function never fails, because we wouldn't call it unless we
1124 * know (from reservation results, etc.) that a block is available.
1126 * Scope of @goal and returned block is just within rgrp, not the whole
1127 * filesystem.
1129 * Returns: the block number allocated
1132 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
1133 unsigned char old_state, unsigned char new_state,
1134 unsigned int *n)
1136 struct gfs2_bitmap *bi = NULL;
1137 const u32 length = rgd->rd_length;
1138 u32 blk = BFITNOENT;
1139 unsigned int buf, x;
1140 const unsigned int elen = *n;
1141 const u8 *buffer = NULL;
1143 *n = 0;
1144 /* Find bitmap block that contains bits for goal block */
1145 for (buf = 0; buf < length; buf++) {
1146 bi = rgd->rd_bits + buf;
1147 /* Convert scope of "goal" from rgrp-wide to within found bit block */
1148 if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) {
1149 goal -= bi->bi_start * GFS2_NBBY;
1150 goto do_search;
1153 buf = 0;
1154 goal = 0;
1156 do_search:
1157 /* Search (up to entire) bitmap in this rgrp for allocatable block.
1158 "x <= length", instead of "x < length", because we typically start
1159 the search in the middle of a bit block, but if we can't find an
1160 allocatable block anywhere else, we want to be able wrap around and
1161 search in the first part of our first-searched bit block. */
1162 for (x = 0; x <= length; x++) {
1163 bi = rgd->rd_bits + buf;
1165 if (test_bit(GBF_FULL, &bi->bi_flags) &&
1166 (old_state == GFS2_BLKST_FREE))
1167 goto skip;
1169 /* The GFS2_BLKST_UNLINKED state doesn't apply to the clone
1170 bitmaps, so we must search the originals for that. */
1171 buffer = bi->bi_bh->b_data + bi->bi_offset;
1172 WARN_ON(!buffer_uptodate(bi->bi_bh));
1173 if (old_state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1174 buffer = bi->bi_clone + bi->bi_offset;
1176 blk = gfs2_bitfit(buffer, bi->bi_len, goal, old_state);
1177 if (blk != BFITNOENT)
1178 break;
1180 if ((goal == 0) && (old_state == GFS2_BLKST_FREE))
1181 set_bit(GBF_FULL, &bi->bi_flags);
1183 /* Try next bitmap block (wrap back to rgrp header if at end) */
1184 skip:
1185 buf++;
1186 buf %= length;
1187 goal = 0;
1190 if (blk == BFITNOENT)
1191 return blk;
1193 *n = 1;
1194 if (old_state == new_state)
1195 goto out;
1197 gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1198 gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset,
1199 bi, blk, new_state);
1200 goal = blk;
1201 while (*n < elen) {
1202 goal++;
1203 if (goal >= (bi->bi_len * GFS2_NBBY))
1204 break;
1205 if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) !=
1206 GFS2_BLKST_FREE)
1207 break;
1208 gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset,
1209 bi, goal, new_state);
1210 (*n)++;
1212 out:
1213 return (bi->bi_start * GFS2_NBBY) + blk;
1217 * rgblk_free - Change alloc state of given block(s)
1218 * @sdp: the filesystem
1219 * @bstart: the start of a run of blocks to free
1220 * @blen: the length of the block run (all must lie within ONE RG!)
1221 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1223 * Returns: Resource group containing the block(s)
1226 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1227 u32 blen, unsigned char new_state)
1229 struct gfs2_rgrpd *rgd;
1230 struct gfs2_bitmap *bi = NULL;
1231 u32 length, rgrp_blk, buf_blk;
1232 unsigned int buf;
1234 rgd = gfs2_blk2rgrpd(sdp, bstart);
1235 if (!rgd) {
1236 if (gfs2_consist(sdp))
1237 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1238 return NULL;
1241 length = rgd->rd_length;
1243 rgrp_blk = bstart - rgd->rd_data0;
1245 while (blen--) {
1246 for (buf = 0; buf < length; buf++) {
1247 bi = rgd->rd_bits + buf;
1248 if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1249 break;
1252 gfs2_assert(rgd->rd_sbd, buf < length);
1254 buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY;
1255 rgrp_blk++;
1257 if (!bi->bi_clone) {
1258 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
1259 GFP_NOFS | __GFP_NOFAIL);
1260 memcpy(bi->bi_clone + bi->bi_offset,
1261 bi->bi_bh->b_data + bi->bi_offset,
1262 bi->bi_len);
1264 gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1265 gfs2_setbit(rgd, bi->bi_bh->b_data, NULL, bi->bi_offset,
1266 bi, buf_blk, new_state);
1269 return rgd;
1273 * gfs2_rgrp_dump - print out an rgrp
1274 * @seq: The iterator
1275 * @gl: The glock in question
1279 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
1281 const struct gfs2_rgrpd *rgd = gl->gl_object;
1282 if (rgd == NULL)
1283 return 0;
1284 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n",
1285 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
1286 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes);
1287 return 0;
1290 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
1292 struct gfs2_sbd *sdp = rgd->rd_sbd;
1293 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
1294 (unsigned long long)rgd->rd_addr);
1295 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
1296 gfs2_rgrp_dump(NULL, rgd->rd_gl);
1297 rgd->rd_flags |= GFS2_RDF_ERROR;
1301 * gfs2_alloc_block - Allocate one or more blocks
1302 * @ip: the inode to allocate the block for
1303 * @bn: Used to return the starting block number
1304 * @n: requested number of blocks/extent length (value/result)
1306 * Returns: 0 or error
1309 int gfs2_alloc_block(struct gfs2_inode *ip, u64 *bn, unsigned int *n)
1311 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1312 struct buffer_head *dibh;
1313 struct gfs2_alloc *al = ip->i_alloc;
1314 struct gfs2_rgrpd *rgd;
1315 u32 goal, blk;
1316 u64 block;
1317 int error;
1319 /* Only happens if there is a bug in gfs2, return something distinctive
1320 * to ensure that it is noticed.
1322 if (al == NULL)
1323 return -ECANCELED;
1325 rgd = ip->i_rgd;
1327 if (rgrp_contains_block(rgd, ip->i_goal))
1328 goal = ip->i_goal - rgd->rd_data0;
1329 else
1330 goal = rgd->rd_last_alloc;
1332 blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, GFS2_BLKST_USED, n);
1334 /* Since all blocks are reserved in advance, this shouldn't happen */
1335 if (blk == BFITNOENT)
1336 goto rgrp_error;
1338 rgd->rd_last_alloc = blk;
1339 block = rgd->rd_data0 + blk;
1340 ip->i_goal = block + *n - 1;
1341 error = gfs2_meta_inode_buffer(ip, &dibh);
1342 if (error == 0) {
1343 struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
1344 gfs2_trans_add_bh(ip->i_gl, dibh, 1);
1345 di->di_goal_meta = di->di_goal_data = cpu_to_be64(ip->i_goal);
1346 brelse(dibh);
1348 if (rgd->rd_free < *n)
1349 goto rgrp_error;
1351 rgd->rd_free -= *n;
1353 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1354 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1356 al->al_alloced += *n;
1358 gfs2_statfs_change(sdp, 0, -(s64)*n, 0);
1359 gfs2_quota_change(ip, *n, ip->i_inode.i_uid, ip->i_inode.i_gid);
1361 rgd->rd_free_clone -= *n;
1362 trace_gfs2_block_alloc(ip, block, *n, GFS2_BLKST_USED);
1363 *bn = block;
1364 return 0;
1366 rgrp_error:
1367 gfs2_rgrp_error(rgd);
1368 return -EIO;
1372 * gfs2_alloc_di - Allocate a dinode
1373 * @dip: the directory that the inode is going in
1374 * @bn: the block number which is allocated
1375 * @generation: the generation number of the inode
1377 * Returns: 0 on success or error
1380 int gfs2_alloc_di(struct gfs2_inode *dip, u64 *bn, u64 *generation)
1382 struct gfs2_sbd *sdp = GFS2_SB(&dip->i_inode);
1383 struct gfs2_alloc *al = dip->i_alloc;
1384 struct gfs2_rgrpd *rgd = dip->i_rgd;
1385 u32 blk;
1386 u64 block;
1387 unsigned int n = 1;
1389 blk = rgblk_search(rgd, rgd->rd_last_alloc,
1390 GFS2_BLKST_FREE, GFS2_BLKST_DINODE, &n);
1392 /* Since all blocks are reserved in advance, this shouldn't happen */
1393 if (blk == BFITNOENT)
1394 goto rgrp_error;
1396 rgd->rd_last_alloc = blk;
1397 block = rgd->rd_data0 + blk;
1398 if (rgd->rd_free == 0)
1399 goto rgrp_error;
1401 rgd->rd_free--;
1402 rgd->rd_dinodes++;
1403 *generation = rgd->rd_igeneration++;
1404 if (*generation == 0)
1405 *generation = rgd->rd_igeneration++;
1406 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1407 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1409 al->al_alloced++;
1411 gfs2_statfs_change(sdp, 0, -1, +1);
1412 gfs2_trans_add_unrevoke(sdp, block, 1);
1414 rgd->rd_free_clone--;
1415 trace_gfs2_block_alloc(dip, block, 1, GFS2_BLKST_DINODE);
1416 *bn = block;
1417 return 0;
1419 rgrp_error:
1420 gfs2_rgrp_error(rgd);
1421 return -EIO;
1425 * __gfs2_free_blocks - free a contiguous run of block(s)
1426 * @ip: the inode these blocks are being freed from
1427 * @bstart: first block of a run of contiguous blocks
1428 * @blen: the length of the block run
1429 * @meta: 1 if the blocks represent metadata
1433 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
1435 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1436 struct gfs2_rgrpd *rgd;
1438 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
1439 if (!rgd)
1440 return;
1441 trace_gfs2_block_alloc(ip, bstart, blen, GFS2_BLKST_FREE);
1442 rgd->rd_free += blen;
1444 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1445 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1447 /* Directories keep their data in the metadata address space */
1448 if (meta || ip->i_depth)
1449 gfs2_meta_wipe(ip, bstart, blen);
1453 * gfs2_free_meta - free a contiguous run of data block(s)
1454 * @ip: the inode these blocks are being freed from
1455 * @bstart: first block of a run of contiguous blocks
1456 * @blen: the length of the block run
1460 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
1462 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1464 __gfs2_free_blocks(ip, bstart, blen, 1);
1465 gfs2_statfs_change(sdp, 0, +blen, 0);
1466 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
1469 void gfs2_unlink_di(struct inode *inode)
1471 struct gfs2_inode *ip = GFS2_I(inode);
1472 struct gfs2_sbd *sdp = GFS2_SB(inode);
1473 struct gfs2_rgrpd *rgd;
1474 u64 blkno = ip->i_no_addr;
1476 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
1477 if (!rgd)
1478 return;
1479 trace_gfs2_block_alloc(ip, blkno, 1, GFS2_BLKST_UNLINKED);
1480 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1481 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1484 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
1486 struct gfs2_sbd *sdp = rgd->rd_sbd;
1487 struct gfs2_rgrpd *tmp_rgd;
1489 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
1490 if (!tmp_rgd)
1491 return;
1492 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
1494 if (!rgd->rd_dinodes)
1495 gfs2_consist_rgrpd(rgd);
1496 rgd->rd_dinodes--;
1497 rgd->rd_free++;
1499 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1500 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1502 gfs2_statfs_change(sdp, 0, +1, -1);
1506 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
1508 gfs2_free_uninit_di(rgd, ip->i_no_addr);
1509 trace_gfs2_block_alloc(ip, ip->i_no_addr, 1, GFS2_BLKST_FREE);
1510 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
1511 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
1515 * gfs2_check_blk_type - Check the type of a block
1516 * @sdp: The superblock
1517 * @no_addr: The block number to check
1518 * @type: The block type we are looking for
1520 * Returns: 0 if the block type matches the expected type
1521 * -ESTALE if it doesn't match
1522 * or -ve errno if something went wrong while checking
1525 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
1527 struct gfs2_rgrpd *rgd;
1528 struct gfs2_holder rgd_gh;
1529 int error;
1531 error = gfs2_rindex_update(sdp);
1532 if (error)
1533 return error;
1535 error = -EINVAL;
1536 rgd = gfs2_blk2rgrpd(sdp, no_addr);
1537 if (!rgd)
1538 goto fail;
1540 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
1541 if (error)
1542 goto fail;
1544 if (gfs2_get_block_type(rgd, no_addr) != type)
1545 error = -ESTALE;
1547 gfs2_glock_dq_uninit(&rgd_gh);
1548 fail:
1549 return error;
1553 * gfs2_rlist_add - add a RG to a list of RGs
1554 * @ip: the inode
1555 * @rlist: the list of resource groups
1556 * @block: the block
1558 * Figure out what RG a block belongs to and add that RG to the list
1560 * FIXME: Don't use NOFAIL
1564 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
1565 u64 block)
1567 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1568 struct gfs2_rgrpd *rgd;
1569 struct gfs2_rgrpd **tmp;
1570 unsigned int new_space;
1571 unsigned int x;
1573 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
1574 return;
1576 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
1577 rgd = ip->i_rgd;
1578 else
1579 rgd = gfs2_blk2rgrpd(sdp, block);
1580 if (!rgd) {
1581 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
1582 return;
1584 ip->i_rgd = rgd;
1586 for (x = 0; x < rlist->rl_rgrps; x++)
1587 if (rlist->rl_rgd[x] == rgd)
1588 return;
1590 if (rlist->rl_rgrps == rlist->rl_space) {
1591 new_space = rlist->rl_space + 10;
1593 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
1594 GFP_NOFS | __GFP_NOFAIL);
1596 if (rlist->rl_rgd) {
1597 memcpy(tmp, rlist->rl_rgd,
1598 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
1599 kfree(rlist->rl_rgd);
1602 rlist->rl_space = new_space;
1603 rlist->rl_rgd = tmp;
1606 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
1610 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
1611 * and initialize an array of glock holders for them
1612 * @rlist: the list of resource groups
1613 * @state: the lock state to acquire the RG lock in
1614 * @flags: the modifier flags for the holder structures
1616 * FIXME: Don't use NOFAIL
1620 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
1622 unsigned int x;
1624 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
1625 GFP_NOFS | __GFP_NOFAIL);
1626 for (x = 0; x < rlist->rl_rgrps; x++)
1627 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
1628 state, 0,
1629 &rlist->rl_ghs[x]);
1633 * gfs2_rlist_free - free a resource group list
1634 * @list: the list of resource groups
1638 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
1640 unsigned int x;
1642 kfree(rlist->rl_rgd);
1644 if (rlist->rl_ghs) {
1645 for (x = 0; x < rlist->rl_rgrps; x++)
1646 gfs2_holder_uninit(&rlist->rl_ghs[x]);
1647 kfree(rlist->rl_ghs);