Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[zen-stable.git] / fs / libfs.c
blobf6d411eef1e73d52c4d62c3b65432565accdff49
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h>
17 #include <asm/uaccess.h>
19 #include "internal.h"
21 static inline int simple_positive(struct dentry *dentry)
23 return dentry->d_inode && !d_unhashed(dentry);
26 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
27 struct kstat *stat)
29 struct inode *inode = dentry->d_inode;
30 generic_fillattr(inode, stat);
31 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
32 return 0;
35 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
37 buf->f_type = dentry->d_sb->s_magic;
38 buf->f_bsize = PAGE_CACHE_SIZE;
39 buf->f_namelen = NAME_MAX;
40 return 0;
44 * Retaining negative dentries for an in-memory filesystem just wastes
45 * memory and lookup time: arrange for them to be deleted immediately.
47 static int simple_delete_dentry(const struct dentry *dentry)
49 return 1;
53 * Lookup the data. This is trivial - if the dentry didn't already
54 * exist, we know it is negative. Set d_op to delete negative dentries.
56 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
58 static const struct dentry_operations simple_dentry_operations = {
59 .d_delete = simple_delete_dentry,
62 if (dentry->d_name.len > NAME_MAX)
63 return ERR_PTR(-ENAMETOOLONG);
64 d_set_d_op(dentry, &simple_dentry_operations);
65 d_add(dentry, NULL);
66 return NULL;
69 int dcache_dir_open(struct inode *inode, struct file *file)
71 static struct qstr cursor_name = {.len = 1, .name = "."};
73 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
75 return file->private_data ? 0 : -ENOMEM;
78 int dcache_dir_close(struct inode *inode, struct file *file)
80 dput(file->private_data);
81 return 0;
84 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
86 struct dentry *dentry = file->f_path.dentry;
87 mutex_lock(&dentry->d_inode->i_mutex);
88 switch (origin) {
89 case 1:
90 offset += file->f_pos;
91 case 0:
92 if (offset >= 0)
93 break;
94 default:
95 mutex_unlock(&dentry->d_inode->i_mutex);
96 return -EINVAL;
98 if (offset != file->f_pos) {
99 file->f_pos = offset;
100 if (file->f_pos >= 2) {
101 struct list_head *p;
102 struct dentry *cursor = file->private_data;
103 loff_t n = file->f_pos - 2;
105 spin_lock(&dentry->d_lock);
106 /* d_lock not required for cursor */
107 list_del(&cursor->d_u.d_child);
108 p = dentry->d_subdirs.next;
109 while (n && p != &dentry->d_subdirs) {
110 struct dentry *next;
111 next = list_entry(p, struct dentry, d_u.d_child);
112 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
113 if (simple_positive(next))
114 n--;
115 spin_unlock(&next->d_lock);
116 p = p->next;
118 list_add_tail(&cursor->d_u.d_child, p);
119 spin_unlock(&dentry->d_lock);
122 mutex_unlock(&dentry->d_inode->i_mutex);
123 return offset;
126 /* Relationship between i_mode and the DT_xxx types */
127 static inline unsigned char dt_type(struct inode *inode)
129 return (inode->i_mode >> 12) & 15;
133 * Directory is locked and all positive dentries in it are safe, since
134 * for ramfs-type trees they can't go away without unlink() or rmdir(),
135 * both impossible due to the lock on directory.
138 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
140 struct dentry *dentry = filp->f_path.dentry;
141 struct dentry *cursor = filp->private_data;
142 struct list_head *p, *q = &cursor->d_u.d_child;
143 ino_t ino;
144 int i = filp->f_pos;
146 switch (i) {
147 case 0:
148 ino = dentry->d_inode->i_ino;
149 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
150 break;
151 filp->f_pos++;
152 i++;
153 /* fallthrough */
154 case 1:
155 ino = parent_ino(dentry);
156 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
157 break;
158 filp->f_pos++;
159 i++;
160 /* fallthrough */
161 default:
162 spin_lock(&dentry->d_lock);
163 if (filp->f_pos == 2)
164 list_move(q, &dentry->d_subdirs);
166 for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
167 struct dentry *next;
168 next = list_entry(p, struct dentry, d_u.d_child);
169 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
170 if (!simple_positive(next)) {
171 spin_unlock(&next->d_lock);
172 continue;
175 spin_unlock(&next->d_lock);
176 spin_unlock(&dentry->d_lock);
177 if (filldir(dirent, next->d_name.name,
178 next->d_name.len, filp->f_pos,
179 next->d_inode->i_ino,
180 dt_type(next->d_inode)) < 0)
181 return 0;
182 spin_lock(&dentry->d_lock);
183 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
184 /* next is still alive */
185 list_move(q, p);
186 spin_unlock(&next->d_lock);
187 p = q;
188 filp->f_pos++;
190 spin_unlock(&dentry->d_lock);
192 return 0;
195 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
197 return -EISDIR;
200 const struct file_operations simple_dir_operations = {
201 .open = dcache_dir_open,
202 .release = dcache_dir_close,
203 .llseek = dcache_dir_lseek,
204 .read = generic_read_dir,
205 .readdir = dcache_readdir,
206 .fsync = noop_fsync,
209 const struct inode_operations simple_dir_inode_operations = {
210 .lookup = simple_lookup,
213 static const struct super_operations simple_super_operations = {
214 .statfs = simple_statfs,
218 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
219 * will never be mountable)
221 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
222 const struct super_operations *ops,
223 const struct dentry_operations *dops, unsigned long magic)
225 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
226 struct dentry *dentry;
227 struct inode *root;
228 struct qstr d_name = {.name = name, .len = strlen(name)};
230 if (IS_ERR(s))
231 return ERR_CAST(s);
233 s->s_flags = MS_NOUSER;
234 s->s_maxbytes = MAX_LFS_FILESIZE;
235 s->s_blocksize = PAGE_SIZE;
236 s->s_blocksize_bits = PAGE_SHIFT;
237 s->s_magic = magic;
238 s->s_op = ops ? ops : &simple_super_operations;
239 s->s_time_gran = 1;
240 root = new_inode(s);
241 if (!root)
242 goto Enomem;
244 * since this is the first inode, make it number 1. New inodes created
245 * after this must take care not to collide with it (by passing
246 * max_reserved of 1 to iunique).
248 root->i_ino = 1;
249 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
250 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
251 dentry = __d_alloc(s, &d_name);
252 if (!dentry) {
253 iput(root);
254 goto Enomem;
256 d_instantiate(dentry, root);
257 s->s_root = dentry;
258 s->s_d_op = dops;
259 s->s_flags |= MS_ACTIVE;
260 return dget(s->s_root);
262 Enomem:
263 deactivate_locked_super(s);
264 return ERR_PTR(-ENOMEM);
267 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
269 struct inode *inode = old_dentry->d_inode;
271 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
272 inc_nlink(inode);
273 ihold(inode);
274 dget(dentry);
275 d_instantiate(dentry, inode);
276 return 0;
279 int simple_empty(struct dentry *dentry)
281 struct dentry *child;
282 int ret = 0;
284 spin_lock(&dentry->d_lock);
285 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
286 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
287 if (simple_positive(child)) {
288 spin_unlock(&child->d_lock);
289 goto out;
291 spin_unlock(&child->d_lock);
293 ret = 1;
294 out:
295 spin_unlock(&dentry->d_lock);
296 return ret;
299 int simple_unlink(struct inode *dir, struct dentry *dentry)
301 struct inode *inode = dentry->d_inode;
303 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
304 drop_nlink(inode);
305 dput(dentry);
306 return 0;
309 int simple_rmdir(struct inode *dir, struct dentry *dentry)
311 if (!simple_empty(dentry))
312 return -ENOTEMPTY;
314 drop_nlink(dentry->d_inode);
315 simple_unlink(dir, dentry);
316 drop_nlink(dir);
317 return 0;
320 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
321 struct inode *new_dir, struct dentry *new_dentry)
323 struct inode *inode = old_dentry->d_inode;
324 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
326 if (!simple_empty(new_dentry))
327 return -ENOTEMPTY;
329 if (new_dentry->d_inode) {
330 simple_unlink(new_dir, new_dentry);
331 if (they_are_dirs) {
332 drop_nlink(new_dentry->d_inode);
333 drop_nlink(old_dir);
335 } else if (they_are_dirs) {
336 drop_nlink(old_dir);
337 inc_nlink(new_dir);
340 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
341 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
343 return 0;
347 * simple_setattr - setattr for simple filesystem
348 * @dentry: dentry
349 * @iattr: iattr structure
351 * Returns 0 on success, -error on failure.
353 * simple_setattr is a simple ->setattr implementation without a proper
354 * implementation of size changes.
356 * It can either be used for in-memory filesystems or special files
357 * on simple regular filesystems. Anything that needs to change on-disk
358 * or wire state on size changes needs its own setattr method.
360 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
362 struct inode *inode = dentry->d_inode;
363 int error;
365 WARN_ON_ONCE(inode->i_op->truncate);
367 error = inode_change_ok(inode, iattr);
368 if (error)
369 return error;
371 if (iattr->ia_valid & ATTR_SIZE)
372 truncate_setsize(inode, iattr->ia_size);
373 setattr_copy(inode, iattr);
374 mark_inode_dirty(inode);
375 return 0;
377 EXPORT_SYMBOL(simple_setattr);
379 int simple_readpage(struct file *file, struct page *page)
381 clear_highpage(page);
382 flush_dcache_page(page);
383 SetPageUptodate(page);
384 unlock_page(page);
385 return 0;
388 int simple_write_begin(struct file *file, struct address_space *mapping,
389 loff_t pos, unsigned len, unsigned flags,
390 struct page **pagep, void **fsdata)
392 struct page *page;
393 pgoff_t index;
395 index = pos >> PAGE_CACHE_SHIFT;
397 page = grab_cache_page_write_begin(mapping, index, flags);
398 if (!page)
399 return -ENOMEM;
401 *pagep = page;
403 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
404 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
406 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
408 return 0;
412 * simple_write_end - .write_end helper for non-block-device FSes
413 * @available: See .write_end of address_space_operations
414 * @file: "
415 * @mapping: "
416 * @pos: "
417 * @len: "
418 * @copied: "
419 * @page: "
420 * @fsdata: "
422 * simple_write_end does the minimum needed for updating a page after writing is
423 * done. It has the same API signature as the .write_end of
424 * address_space_operations vector. So it can just be set onto .write_end for
425 * FSes that don't need any other processing. i_mutex is assumed to be held.
426 * Block based filesystems should use generic_write_end().
427 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
428 * is not called, so a filesystem that actually does store data in .write_inode
429 * should extend on what's done here with a call to mark_inode_dirty() in the
430 * case that i_size has changed.
432 int simple_write_end(struct file *file, struct address_space *mapping,
433 loff_t pos, unsigned len, unsigned copied,
434 struct page *page, void *fsdata)
436 struct inode *inode = page->mapping->host;
437 loff_t last_pos = pos + copied;
439 /* zero the stale part of the page if we did a short copy */
440 if (copied < len) {
441 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
443 zero_user(page, from + copied, len - copied);
446 if (!PageUptodate(page))
447 SetPageUptodate(page);
449 * No need to use i_size_read() here, the i_size
450 * cannot change under us because we hold the i_mutex.
452 if (last_pos > inode->i_size)
453 i_size_write(inode, last_pos);
455 set_page_dirty(page);
456 unlock_page(page);
457 page_cache_release(page);
459 return copied;
463 * the inodes created here are not hashed. If you use iunique to generate
464 * unique inode values later for this filesystem, then you must take care
465 * to pass it an appropriate max_reserved value to avoid collisions.
467 int simple_fill_super(struct super_block *s, unsigned long magic,
468 struct tree_descr *files)
470 struct inode *inode;
471 struct dentry *root;
472 struct dentry *dentry;
473 int i;
475 s->s_blocksize = PAGE_CACHE_SIZE;
476 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
477 s->s_magic = magic;
478 s->s_op = &simple_super_operations;
479 s->s_time_gran = 1;
481 inode = new_inode(s);
482 if (!inode)
483 return -ENOMEM;
485 * because the root inode is 1, the files array must not contain an
486 * entry at index 1
488 inode->i_ino = 1;
489 inode->i_mode = S_IFDIR | 0755;
490 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
491 inode->i_op = &simple_dir_inode_operations;
492 inode->i_fop = &simple_dir_operations;
493 set_nlink(inode, 2);
494 root = d_alloc_root(inode);
495 if (!root) {
496 iput(inode);
497 return -ENOMEM;
499 for (i = 0; !files->name || files->name[0]; i++, files++) {
500 if (!files->name)
501 continue;
503 /* warn if it tries to conflict with the root inode */
504 if (unlikely(i == 1))
505 printk(KERN_WARNING "%s: %s passed in a files array"
506 "with an index of 1!\n", __func__,
507 s->s_type->name);
509 dentry = d_alloc_name(root, files->name);
510 if (!dentry)
511 goto out;
512 inode = new_inode(s);
513 if (!inode) {
514 dput(dentry);
515 goto out;
517 inode->i_mode = S_IFREG | files->mode;
518 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
519 inode->i_fop = files->ops;
520 inode->i_ino = i;
521 d_add(dentry, inode);
523 s->s_root = root;
524 return 0;
525 out:
526 d_genocide(root);
527 dput(root);
528 return -ENOMEM;
531 static DEFINE_SPINLOCK(pin_fs_lock);
533 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
535 struct vfsmount *mnt = NULL;
536 spin_lock(&pin_fs_lock);
537 if (unlikely(!*mount)) {
538 spin_unlock(&pin_fs_lock);
539 mnt = vfs_kern_mount(type, 0, type->name, NULL);
540 if (IS_ERR(mnt))
541 return PTR_ERR(mnt);
542 spin_lock(&pin_fs_lock);
543 if (!*mount)
544 *mount = mnt;
546 mntget(*mount);
547 ++*count;
548 spin_unlock(&pin_fs_lock);
549 mntput(mnt);
550 return 0;
553 void simple_release_fs(struct vfsmount **mount, int *count)
555 struct vfsmount *mnt;
556 spin_lock(&pin_fs_lock);
557 mnt = *mount;
558 if (!--*count)
559 *mount = NULL;
560 spin_unlock(&pin_fs_lock);
561 mntput(mnt);
565 * simple_read_from_buffer - copy data from the buffer to user space
566 * @to: the user space buffer to read to
567 * @count: the maximum number of bytes to read
568 * @ppos: the current position in the buffer
569 * @from: the buffer to read from
570 * @available: the size of the buffer
572 * The simple_read_from_buffer() function reads up to @count bytes from the
573 * buffer @from at offset @ppos into the user space address starting at @to.
575 * On success, the number of bytes read is returned and the offset @ppos is
576 * advanced by this number, or negative value is returned on error.
578 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
579 const void *from, size_t available)
581 loff_t pos = *ppos;
582 size_t ret;
584 if (pos < 0)
585 return -EINVAL;
586 if (pos >= available || !count)
587 return 0;
588 if (count > available - pos)
589 count = available - pos;
590 ret = copy_to_user(to, from + pos, count);
591 if (ret == count)
592 return -EFAULT;
593 count -= ret;
594 *ppos = pos + count;
595 return count;
599 * simple_write_to_buffer - copy data from user space to the buffer
600 * @to: the buffer to write to
601 * @available: the size of the buffer
602 * @ppos: the current position in the buffer
603 * @from: the user space buffer to read from
604 * @count: the maximum number of bytes to read
606 * The simple_write_to_buffer() function reads up to @count bytes from the user
607 * space address starting at @from into the buffer @to at offset @ppos.
609 * On success, the number of bytes written is returned and the offset @ppos is
610 * advanced by this number, or negative value is returned on error.
612 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
613 const void __user *from, size_t count)
615 loff_t pos = *ppos;
616 size_t res;
618 if (pos < 0)
619 return -EINVAL;
620 if (pos >= available || !count)
621 return 0;
622 if (count > available - pos)
623 count = available - pos;
624 res = copy_from_user(to + pos, from, count);
625 if (res == count)
626 return -EFAULT;
627 count -= res;
628 *ppos = pos + count;
629 return count;
633 * memory_read_from_buffer - copy data from the buffer
634 * @to: the kernel space buffer to read to
635 * @count: the maximum number of bytes to read
636 * @ppos: the current position in the buffer
637 * @from: the buffer to read from
638 * @available: the size of the buffer
640 * The memory_read_from_buffer() function reads up to @count bytes from the
641 * buffer @from at offset @ppos into the kernel space address starting at @to.
643 * On success, the number of bytes read is returned and the offset @ppos is
644 * advanced by this number, or negative value is returned on error.
646 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
647 const void *from, size_t available)
649 loff_t pos = *ppos;
651 if (pos < 0)
652 return -EINVAL;
653 if (pos >= available)
654 return 0;
655 if (count > available - pos)
656 count = available - pos;
657 memcpy(to, from + pos, count);
658 *ppos = pos + count;
660 return count;
664 * Transaction based IO.
665 * The file expects a single write which triggers the transaction, and then
666 * possibly a read which collects the result - which is stored in a
667 * file-local buffer.
670 void simple_transaction_set(struct file *file, size_t n)
672 struct simple_transaction_argresp *ar = file->private_data;
674 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
677 * The barrier ensures that ar->size will really remain zero until
678 * ar->data is ready for reading.
680 smp_mb();
681 ar->size = n;
684 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
686 struct simple_transaction_argresp *ar;
687 static DEFINE_SPINLOCK(simple_transaction_lock);
689 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
690 return ERR_PTR(-EFBIG);
692 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
693 if (!ar)
694 return ERR_PTR(-ENOMEM);
696 spin_lock(&simple_transaction_lock);
698 /* only one write allowed per open */
699 if (file->private_data) {
700 spin_unlock(&simple_transaction_lock);
701 free_page((unsigned long)ar);
702 return ERR_PTR(-EBUSY);
705 file->private_data = ar;
707 spin_unlock(&simple_transaction_lock);
709 if (copy_from_user(ar->data, buf, size))
710 return ERR_PTR(-EFAULT);
712 return ar->data;
715 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
717 struct simple_transaction_argresp *ar = file->private_data;
719 if (!ar)
720 return 0;
721 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
724 int simple_transaction_release(struct inode *inode, struct file *file)
726 free_page((unsigned long)file->private_data);
727 return 0;
730 /* Simple attribute files */
732 struct simple_attr {
733 int (*get)(void *, u64 *);
734 int (*set)(void *, u64);
735 char get_buf[24]; /* enough to store a u64 and "\n\0" */
736 char set_buf[24];
737 void *data;
738 const char *fmt; /* format for read operation */
739 struct mutex mutex; /* protects access to these buffers */
742 /* simple_attr_open is called by an actual attribute open file operation
743 * to set the attribute specific access operations. */
744 int simple_attr_open(struct inode *inode, struct file *file,
745 int (*get)(void *, u64 *), int (*set)(void *, u64),
746 const char *fmt)
748 struct simple_attr *attr;
750 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
751 if (!attr)
752 return -ENOMEM;
754 attr->get = get;
755 attr->set = set;
756 attr->data = inode->i_private;
757 attr->fmt = fmt;
758 mutex_init(&attr->mutex);
760 file->private_data = attr;
762 return nonseekable_open(inode, file);
765 int simple_attr_release(struct inode *inode, struct file *file)
767 kfree(file->private_data);
768 return 0;
771 /* read from the buffer that is filled with the get function */
772 ssize_t simple_attr_read(struct file *file, char __user *buf,
773 size_t len, loff_t *ppos)
775 struct simple_attr *attr;
776 size_t size;
777 ssize_t ret;
779 attr = file->private_data;
781 if (!attr->get)
782 return -EACCES;
784 ret = mutex_lock_interruptible(&attr->mutex);
785 if (ret)
786 return ret;
788 if (*ppos) { /* continued read */
789 size = strlen(attr->get_buf);
790 } else { /* first read */
791 u64 val;
792 ret = attr->get(attr->data, &val);
793 if (ret)
794 goto out;
796 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
797 attr->fmt, (unsigned long long)val);
800 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
801 out:
802 mutex_unlock(&attr->mutex);
803 return ret;
806 /* interpret the buffer as a number to call the set function with */
807 ssize_t simple_attr_write(struct file *file, const char __user *buf,
808 size_t len, loff_t *ppos)
810 struct simple_attr *attr;
811 u64 val;
812 size_t size;
813 ssize_t ret;
815 attr = file->private_data;
816 if (!attr->set)
817 return -EACCES;
819 ret = mutex_lock_interruptible(&attr->mutex);
820 if (ret)
821 return ret;
823 ret = -EFAULT;
824 size = min(sizeof(attr->set_buf) - 1, len);
825 if (copy_from_user(attr->set_buf, buf, size))
826 goto out;
828 attr->set_buf[size] = '\0';
829 val = simple_strtoll(attr->set_buf, NULL, 0);
830 ret = attr->set(attr->data, val);
831 if (ret == 0)
832 ret = len; /* on success, claim we got the whole input */
833 out:
834 mutex_unlock(&attr->mutex);
835 return ret;
839 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
840 * @sb: filesystem to do the file handle conversion on
841 * @fid: file handle to convert
842 * @fh_len: length of the file handle in bytes
843 * @fh_type: type of file handle
844 * @get_inode: filesystem callback to retrieve inode
846 * This function decodes @fid as long as it has one of the well-known
847 * Linux filehandle types and calls @get_inode on it to retrieve the
848 * inode for the object specified in the file handle.
850 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
851 int fh_len, int fh_type, struct inode *(*get_inode)
852 (struct super_block *sb, u64 ino, u32 gen))
854 struct inode *inode = NULL;
856 if (fh_len < 2)
857 return NULL;
859 switch (fh_type) {
860 case FILEID_INO32_GEN:
861 case FILEID_INO32_GEN_PARENT:
862 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
863 break;
866 return d_obtain_alias(inode);
868 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
871 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
872 * @sb: filesystem to do the file handle conversion on
873 * @fid: file handle to convert
874 * @fh_len: length of the file handle in bytes
875 * @fh_type: type of file handle
876 * @get_inode: filesystem callback to retrieve inode
878 * This function decodes @fid as long as it has one of the well-known
879 * Linux filehandle types and calls @get_inode on it to retrieve the
880 * inode for the _parent_ object specified in the file handle if it
881 * is specified in the file handle, or NULL otherwise.
883 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
884 int fh_len, int fh_type, struct inode *(*get_inode)
885 (struct super_block *sb, u64 ino, u32 gen))
887 struct inode *inode = NULL;
889 if (fh_len <= 2)
890 return NULL;
892 switch (fh_type) {
893 case FILEID_INO32_GEN_PARENT:
894 inode = get_inode(sb, fid->i32.parent_ino,
895 (fh_len > 3 ? fid->i32.parent_gen : 0));
896 break;
899 return d_obtain_alias(inode);
901 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
904 * generic_file_fsync - generic fsync implementation for simple filesystems
905 * @file: file to synchronize
906 * @datasync: only synchronize essential metadata if true
908 * This is a generic implementation of the fsync method for simple
909 * filesystems which track all non-inode metadata in the buffers list
910 * hanging off the address_space structure.
912 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
913 int datasync)
915 struct inode *inode = file->f_mapping->host;
916 int err;
917 int ret;
919 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
920 if (err)
921 return err;
923 mutex_lock(&inode->i_mutex);
924 ret = sync_mapping_buffers(inode->i_mapping);
925 if (!(inode->i_state & I_DIRTY))
926 goto out;
927 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
928 goto out;
930 err = sync_inode_metadata(inode, 1);
931 if (ret == 0)
932 ret = err;
933 out:
934 mutex_unlock(&inode->i_mutex);
935 return ret;
937 EXPORT_SYMBOL(generic_file_fsync);
940 * generic_check_addressable - Check addressability of file system
941 * @blocksize_bits: log of file system block size
942 * @num_blocks: number of blocks in file system
944 * Determine whether a file system with @num_blocks blocks (and a
945 * block size of 2**@blocksize_bits) is addressable by the sector_t
946 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
948 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
950 u64 last_fs_block = num_blocks - 1;
951 u64 last_fs_page =
952 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
954 if (unlikely(num_blocks == 0))
955 return 0;
957 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
958 return -EINVAL;
960 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
961 (last_fs_page > (pgoff_t)(~0ULL))) {
962 return -EFBIG;
964 return 0;
966 EXPORT_SYMBOL(generic_check_addressable);
969 * No-op implementation of ->fsync for in-memory filesystems.
971 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
973 return 0;
976 EXPORT_SYMBOL(dcache_dir_close);
977 EXPORT_SYMBOL(dcache_dir_lseek);
978 EXPORT_SYMBOL(dcache_dir_open);
979 EXPORT_SYMBOL(dcache_readdir);
980 EXPORT_SYMBOL(generic_read_dir);
981 EXPORT_SYMBOL(mount_pseudo);
982 EXPORT_SYMBOL(simple_write_begin);
983 EXPORT_SYMBOL(simple_write_end);
984 EXPORT_SYMBOL(simple_dir_inode_operations);
985 EXPORT_SYMBOL(simple_dir_operations);
986 EXPORT_SYMBOL(simple_empty);
987 EXPORT_SYMBOL(simple_fill_super);
988 EXPORT_SYMBOL(simple_getattr);
989 EXPORT_SYMBOL(simple_link);
990 EXPORT_SYMBOL(simple_lookup);
991 EXPORT_SYMBOL(simple_pin_fs);
992 EXPORT_SYMBOL(simple_readpage);
993 EXPORT_SYMBOL(simple_release_fs);
994 EXPORT_SYMBOL(simple_rename);
995 EXPORT_SYMBOL(simple_rmdir);
996 EXPORT_SYMBOL(simple_statfs);
997 EXPORT_SYMBOL(noop_fsync);
998 EXPORT_SYMBOL(simple_unlink);
999 EXPORT_SYMBOL(simple_read_from_buffer);
1000 EXPORT_SYMBOL(simple_write_to_buffer);
1001 EXPORT_SYMBOL(memory_read_from_buffer);
1002 EXPORT_SYMBOL(simple_transaction_set);
1003 EXPORT_SYMBOL(simple_transaction_get);
1004 EXPORT_SYMBOL(simple_transaction_read);
1005 EXPORT_SYMBOL(simple_transaction_release);
1006 EXPORT_SYMBOL_GPL(simple_attr_open);
1007 EXPORT_SYMBOL_GPL(simple_attr_release);
1008 EXPORT_SYMBOL_GPL(simple_attr_read);
1009 EXPORT_SYMBOL_GPL(simple_attr_write);