2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
58 #include "coalesced_mmio.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 DEFINE_RAW_SPINLOCK(kvm_lock
);
76 static cpumask_var_t cpus_hardware_enabled
;
77 static int kvm_usage_count
= 0;
78 static atomic_t hardware_enable_failed
;
80 struct kmem_cache
*kvm_vcpu_cache
;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
83 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
85 struct dentry
*kvm_debugfs_dir
;
87 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
90 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
96 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
99 EXPORT_SYMBOL_GPL(kvm_rebooting
);
101 static bool largepages_enabled
= true;
103 static struct page
*hwpoison_page
;
104 static pfn_t hwpoison_pfn
;
106 struct page
*fault_page
;
109 inline int kvm_is_mmio_pfn(pfn_t pfn
)
111 if (pfn_valid(pfn
)) {
113 struct page
*tail
= pfn_to_page(pfn
);
114 struct page
*head
= compound_trans_head(tail
);
115 reserved
= PageReserved(head
);
118 * "head" is not a dangling pointer
119 * (compound_trans_head takes care of that)
120 * but the hugepage may have been splitted
121 * from under us (and we may not hold a
122 * reference count on the head page so it can
123 * be reused before we run PageReferenced), so
124 * we've to check PageTail before returning
131 return PageReserved(tail
);
138 * Switches to specified vcpu, until a matching vcpu_put()
140 void vcpu_load(struct kvm_vcpu
*vcpu
)
144 mutex_lock(&vcpu
->mutex
);
145 if (unlikely(vcpu
->pid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
146 /* The thread running this VCPU changed. */
147 struct pid
*oldpid
= vcpu
->pid
;
148 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
149 rcu_assign_pointer(vcpu
->pid
, newpid
);
154 preempt_notifier_register(&vcpu
->preempt_notifier
);
155 kvm_arch_vcpu_load(vcpu
, cpu
);
159 void vcpu_put(struct kvm_vcpu
*vcpu
)
162 kvm_arch_vcpu_put(vcpu
);
163 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
165 mutex_unlock(&vcpu
->mutex
);
168 static void ack_flush(void *_completed
)
172 static bool make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
177 struct kvm_vcpu
*vcpu
;
179 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
182 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
183 kvm_make_request(req
, vcpu
);
186 /* Set ->requests bit before we read ->mode */
189 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
190 kvm_vcpu_exiting_guest_mode(vcpu
) != OUTSIDE_GUEST_MODE
)
191 cpumask_set_cpu(cpu
, cpus
);
193 if (unlikely(cpus
== NULL
))
194 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
195 else if (!cpumask_empty(cpus
))
196 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
200 free_cpumask_var(cpus
);
204 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
206 int dirty_count
= kvm
->tlbs_dirty
;
209 if (make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
210 ++kvm
->stat
.remote_tlb_flush
;
211 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
214 void kvm_reload_remote_mmus(struct kvm
*kvm
)
216 make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
219 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
224 mutex_init(&vcpu
->mutex
);
229 init_waitqueue_head(&vcpu
->wq
);
230 kvm_async_pf_vcpu_init(vcpu
);
232 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
237 vcpu
->run
= page_address(page
);
239 r
= kvm_arch_vcpu_init(vcpu
);
245 free_page((unsigned long)vcpu
->run
);
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
251 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
254 kvm_arch_vcpu_uninit(vcpu
);
255 free_page((unsigned long)vcpu
->run
);
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
262 return container_of(mn
, struct kvm
, mmu_notifier
);
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
266 struct mm_struct
*mm
,
267 unsigned long address
)
269 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
270 int need_tlb_flush
, idx
;
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
290 idx
= srcu_read_lock(&kvm
->srcu
);
291 spin_lock(&kvm
->mmu_lock
);
292 kvm
->mmu_notifier_seq
++;
293 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
294 spin_unlock(&kvm
->mmu_lock
);
295 srcu_read_unlock(&kvm
->srcu
, idx
);
297 /* we've to flush the tlb before the pages can be freed */
299 kvm_flush_remote_tlbs(kvm
);
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
304 struct mm_struct
*mm
,
305 unsigned long address
,
308 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
311 idx
= srcu_read_lock(&kvm
->srcu
);
312 spin_lock(&kvm
->mmu_lock
);
313 kvm
->mmu_notifier_seq
++;
314 kvm_set_spte_hva(kvm
, address
, pte
);
315 spin_unlock(&kvm
->mmu_lock
);
316 srcu_read_unlock(&kvm
->srcu
, idx
);
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
320 struct mm_struct
*mm
,
324 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
325 int need_tlb_flush
= 0, idx
;
327 idx
= srcu_read_lock(&kvm
->srcu
);
328 spin_lock(&kvm
->mmu_lock
);
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
334 kvm
->mmu_notifier_count
++;
335 for (; start
< end
; start
+= PAGE_SIZE
)
336 need_tlb_flush
|= kvm_unmap_hva(kvm
, start
);
337 need_tlb_flush
|= kvm
->tlbs_dirty
;
338 spin_unlock(&kvm
->mmu_lock
);
339 srcu_read_unlock(&kvm
->srcu
, idx
);
341 /* we've to flush the tlb before the pages can be freed */
343 kvm_flush_remote_tlbs(kvm
);
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
347 struct mm_struct
*mm
,
351 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
353 spin_lock(&kvm
->mmu_lock
);
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
359 kvm
->mmu_notifier_seq
++;
361 * The above sequence increase must be visible before the
362 * below count decrease but both values are read by the kvm
363 * page fault under mmu_lock spinlock so we don't need to add
364 * a smb_wmb() here in between the two.
366 kvm
->mmu_notifier_count
--;
367 spin_unlock(&kvm
->mmu_lock
);
369 BUG_ON(kvm
->mmu_notifier_count
< 0);
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
373 struct mm_struct
*mm
,
374 unsigned long address
)
376 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
379 idx
= srcu_read_lock(&kvm
->srcu
);
380 spin_lock(&kvm
->mmu_lock
);
381 young
= kvm_age_hva(kvm
, address
);
382 spin_unlock(&kvm
->mmu_lock
);
383 srcu_read_unlock(&kvm
->srcu
, idx
);
386 kvm_flush_remote_tlbs(kvm
);
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
392 struct mm_struct
*mm
,
393 unsigned long address
)
395 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
398 idx
= srcu_read_lock(&kvm
->srcu
);
399 spin_lock(&kvm
->mmu_lock
);
400 young
= kvm_test_age_hva(kvm
, address
);
401 spin_unlock(&kvm
->mmu_lock
);
402 srcu_read_unlock(&kvm
->srcu
, idx
);
407 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
408 struct mm_struct
*mm
)
410 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
413 idx
= srcu_read_lock(&kvm
->srcu
);
414 kvm_arch_flush_shadow(kvm
);
415 srcu_read_unlock(&kvm
->srcu
, idx
);
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
419 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
420 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
421 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
422 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
423 .test_young
= kvm_mmu_notifier_test_young
,
424 .change_pte
= kvm_mmu_notifier_change_pte
,
425 .release
= kvm_mmu_notifier_release
,
428 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
430 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
431 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
436 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
443 static void kvm_init_memslots_id(struct kvm
*kvm
)
446 struct kvm_memslots
*slots
= kvm
->memslots
;
448 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
449 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
452 static struct kvm
*kvm_create_vm(void)
455 struct kvm
*kvm
= kvm_arch_alloc_vm();
458 return ERR_PTR(-ENOMEM
);
460 r
= kvm_arch_init_vm(kvm
);
462 goto out_err_nodisable
;
464 r
= hardware_enable_all();
466 goto out_err_nodisable
;
468 #ifdef CONFIG_HAVE_KVM_IRQCHIP
469 INIT_HLIST_HEAD(&kvm
->mask_notifier_list
);
470 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
474 kvm
->memslots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
477 kvm_init_memslots_id(kvm
);
478 if (init_srcu_struct(&kvm
->srcu
))
480 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
481 kvm
->buses
[i
] = kzalloc(sizeof(struct kvm_io_bus
),
487 spin_lock_init(&kvm
->mmu_lock
);
488 kvm
->mm
= current
->mm
;
489 atomic_inc(&kvm
->mm
->mm_count
);
490 kvm_eventfd_init(kvm
);
491 mutex_init(&kvm
->lock
);
492 mutex_init(&kvm
->irq_lock
);
493 mutex_init(&kvm
->slots_lock
);
494 atomic_set(&kvm
->users_count
, 1);
496 r
= kvm_init_mmu_notifier(kvm
);
500 raw_spin_lock(&kvm_lock
);
501 list_add(&kvm
->vm_list
, &vm_list
);
502 raw_spin_unlock(&kvm_lock
);
507 cleanup_srcu_struct(&kvm
->srcu
);
509 hardware_disable_all();
511 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
512 kfree(kvm
->buses
[i
]);
513 kfree(kvm
->memslots
);
514 kvm_arch_free_vm(kvm
);
518 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
520 if (!memslot
->dirty_bitmap
)
523 if (2 * kvm_dirty_bitmap_bytes(memslot
) > PAGE_SIZE
)
524 vfree(memslot
->dirty_bitmap_head
);
526 kfree(memslot
->dirty_bitmap_head
);
528 memslot
->dirty_bitmap
= NULL
;
529 memslot
->dirty_bitmap_head
= NULL
;
533 * Free any memory in @free but not in @dont.
535 static void kvm_free_physmem_slot(struct kvm_memory_slot
*free
,
536 struct kvm_memory_slot
*dont
)
540 if (!dont
|| free
->rmap
!= dont
->rmap
)
543 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
544 kvm_destroy_dirty_bitmap(free
);
547 for (i
= 0; i
< KVM_NR_PAGE_SIZES
- 1; ++i
) {
548 if (!dont
|| free
->lpage_info
[i
] != dont
->lpage_info
[i
]) {
549 vfree(free
->lpage_info
[i
]);
550 free
->lpage_info
[i
] = NULL
;
558 void kvm_free_physmem(struct kvm
*kvm
)
560 struct kvm_memslots
*slots
= kvm
->memslots
;
561 struct kvm_memory_slot
*memslot
;
563 kvm_for_each_memslot(memslot
, slots
)
564 kvm_free_physmem_slot(memslot
, NULL
);
566 kfree(kvm
->memslots
);
569 static void kvm_destroy_vm(struct kvm
*kvm
)
572 struct mm_struct
*mm
= kvm
->mm
;
574 kvm_arch_sync_events(kvm
);
575 raw_spin_lock(&kvm_lock
);
576 list_del(&kvm
->vm_list
);
577 raw_spin_unlock(&kvm_lock
);
578 kvm_free_irq_routing(kvm
);
579 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
580 kvm_io_bus_destroy(kvm
->buses
[i
]);
581 kvm_coalesced_mmio_free(kvm
);
582 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
583 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
585 kvm_arch_flush_shadow(kvm
);
587 kvm_arch_destroy_vm(kvm
);
588 kvm_free_physmem(kvm
);
589 cleanup_srcu_struct(&kvm
->srcu
);
590 kvm_arch_free_vm(kvm
);
591 hardware_disable_all();
595 void kvm_get_kvm(struct kvm
*kvm
)
597 atomic_inc(&kvm
->users_count
);
599 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
601 void kvm_put_kvm(struct kvm
*kvm
)
603 if (atomic_dec_and_test(&kvm
->users_count
))
606 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
609 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
611 struct kvm
*kvm
= filp
->private_data
;
613 kvm_irqfd_release(kvm
);
621 * Allocation size is twice as large as the actual dirty bitmap size.
622 * This makes it possible to do double buffering: see x86's
623 * kvm_vm_ioctl_get_dirty_log().
625 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
627 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
629 if (dirty_bytes
> PAGE_SIZE
)
630 memslot
->dirty_bitmap
= vzalloc(dirty_bytes
);
632 memslot
->dirty_bitmap
= kzalloc(dirty_bytes
, GFP_KERNEL
);
634 if (!memslot
->dirty_bitmap
)
637 memslot
->dirty_bitmap_head
= memslot
->dirty_bitmap
;
638 memslot
->nr_dirty_pages
= 0;
641 #endif /* !CONFIG_S390 */
643 static struct kvm_memory_slot
*
644 search_memslots(struct kvm_memslots
*slots
, gfn_t gfn
)
646 struct kvm_memory_slot
*memslot
;
648 kvm_for_each_memslot(memslot
, slots
)
649 if (gfn
>= memslot
->base_gfn
&&
650 gfn
< memslot
->base_gfn
+ memslot
->npages
)
656 static int cmp_memslot(const void *slot1
, const void *slot2
)
658 struct kvm_memory_slot
*s1
, *s2
;
660 s1
= (struct kvm_memory_slot
*)slot1
;
661 s2
= (struct kvm_memory_slot
*)slot2
;
663 if (s1
->npages
< s2
->npages
)
665 if (s1
->npages
> s2
->npages
)
672 * Sort the memslots base on its size, so the larger slots
673 * will get better fit.
675 static void sort_memslots(struct kvm_memslots
*slots
)
679 sort(slots
->memslots
, KVM_MEM_SLOTS_NUM
,
680 sizeof(struct kvm_memory_slot
), cmp_memslot
, NULL
);
682 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
683 slots
->id_to_index
[slots
->memslots
[i
].id
] = i
;
686 void update_memslots(struct kvm_memslots
*slots
, struct kvm_memory_slot
*new)
690 struct kvm_memory_slot
*old
= id_to_memslot(slots
, id
);
691 unsigned long npages
= old
->npages
;
694 if (new->npages
!= npages
)
695 sort_memslots(slots
);
702 * Allocate some memory and give it an address in the guest physical address
705 * Discontiguous memory is allowed, mostly for framebuffers.
707 * Must be called holding mmap_sem for write.
709 int __kvm_set_memory_region(struct kvm
*kvm
,
710 struct kvm_userspace_memory_region
*mem
,
715 unsigned long npages
;
717 struct kvm_memory_slot
*memslot
;
718 struct kvm_memory_slot old
, new;
719 struct kvm_memslots
*slots
, *old_memslots
;
722 /* General sanity checks */
723 if (mem
->memory_size
& (PAGE_SIZE
- 1))
725 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
727 /* We can read the guest memory with __xxx_user() later on. */
729 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
730 !access_ok(VERIFY_WRITE
,
731 (void __user
*)(unsigned long)mem
->userspace_addr
,
734 if (mem
->slot
>= KVM_MEM_SLOTS_NUM
)
736 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
739 memslot
= id_to_memslot(kvm
->memslots
, mem
->slot
);
740 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
741 npages
= mem
->memory_size
>> PAGE_SHIFT
;
744 if (npages
> KVM_MEM_MAX_NR_PAGES
)
748 mem
->flags
&= ~KVM_MEM_LOG_DIRTY_PAGES
;
750 new = old
= *memslot
;
753 new.base_gfn
= base_gfn
;
755 new.flags
= mem
->flags
;
757 /* Disallow changing a memory slot's size. */
759 if (npages
&& old
.npages
&& npages
!= old
.npages
)
762 /* Check for overlaps */
764 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
765 struct kvm_memory_slot
*s
= &kvm
->memslots
->memslots
[i
];
767 if (s
== memslot
|| !s
->npages
)
769 if (!((base_gfn
+ npages
<= s
->base_gfn
) ||
770 (base_gfn
>= s
->base_gfn
+ s
->npages
)))
774 /* Free page dirty bitmap if unneeded */
775 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
776 new.dirty_bitmap
= NULL
;
780 /* Allocate if a slot is being created */
782 if (npages
&& !new.rmap
) {
783 new.rmap
= vzalloc(npages
* sizeof(*new.rmap
));
788 new.user_alloc
= user_alloc
;
789 new.userspace_addr
= mem
->userspace_addr
;
794 for (i
= 0; i
< KVM_NR_PAGE_SIZES
- 1; ++i
) {
800 /* Avoid unused variable warning if no large pages */
803 if (new.lpage_info
[i
])
806 lpages
= 1 + ((base_gfn
+ npages
- 1)
807 >> KVM_HPAGE_GFN_SHIFT(level
));
808 lpages
-= base_gfn
>> KVM_HPAGE_GFN_SHIFT(level
);
810 new.lpage_info
[i
] = vzalloc(lpages
* sizeof(*new.lpage_info
[i
]));
812 if (!new.lpage_info
[i
])
815 if (base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
816 new.lpage_info
[i
][0].write_count
= 1;
817 if ((base_gfn
+npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
818 new.lpage_info
[i
][lpages
- 1].write_count
= 1;
819 ugfn
= new.userspace_addr
>> PAGE_SHIFT
;
821 * If the gfn and userspace address are not aligned wrt each
822 * other, or if explicitly asked to, disable large page
823 * support for this slot
825 if ((base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
827 for (j
= 0; j
< lpages
; ++j
)
828 new.lpage_info
[i
][j
].write_count
= 1;
833 /* Allocate page dirty bitmap if needed */
834 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
835 if (kvm_create_dirty_bitmap(&new) < 0)
837 /* destroy any largepage mappings for dirty tracking */
839 #else /* not defined CONFIG_S390 */
840 new.user_alloc
= user_alloc
;
842 new.userspace_addr
= mem
->userspace_addr
;
843 #endif /* not defined CONFIG_S390 */
846 struct kvm_memory_slot
*slot
;
849 slots
= kmemdup(kvm
->memslots
, sizeof(struct kvm_memslots
),
853 slot
= id_to_memslot(slots
, mem
->slot
);
854 slot
->flags
|= KVM_MEMSLOT_INVALID
;
856 update_memslots(slots
, NULL
);
858 old_memslots
= kvm
->memslots
;
859 rcu_assign_pointer(kvm
->memslots
, slots
);
860 synchronize_srcu_expedited(&kvm
->srcu
);
861 /* From this point no new shadow pages pointing to a deleted
862 * memslot will be created.
864 * validation of sp->gfn happens in:
865 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
866 * - kvm_is_visible_gfn (mmu_check_roots)
868 kvm_arch_flush_shadow(kvm
);
872 r
= kvm_arch_prepare_memory_region(kvm
, &new, old
, mem
, user_alloc
);
876 /* map the pages in iommu page table */
878 r
= kvm_iommu_map_pages(kvm
, &new);
884 slots
= kmemdup(kvm
->memslots
, sizeof(struct kvm_memslots
),
889 /* actual memory is freed via old in kvm_free_physmem_slot below */
892 new.dirty_bitmap
= NULL
;
893 for (i
= 0; i
< KVM_NR_PAGE_SIZES
- 1; ++i
)
894 new.lpage_info
[i
] = NULL
;
897 update_memslots(slots
, &new);
898 old_memslots
= kvm
->memslots
;
899 rcu_assign_pointer(kvm
->memslots
, slots
);
900 synchronize_srcu_expedited(&kvm
->srcu
);
902 kvm_arch_commit_memory_region(kvm
, mem
, old
, user_alloc
);
905 * If the new memory slot is created, we need to clear all
908 if (npages
&& old
.base_gfn
!= mem
->guest_phys_addr
>> PAGE_SHIFT
)
909 kvm_arch_flush_shadow(kvm
);
911 kvm_free_physmem_slot(&old
, &new);
917 kvm_free_physmem_slot(&new, &old
);
922 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
924 int kvm_set_memory_region(struct kvm
*kvm
,
925 struct kvm_userspace_memory_region
*mem
,
930 mutex_lock(&kvm
->slots_lock
);
931 r
= __kvm_set_memory_region(kvm
, mem
, user_alloc
);
932 mutex_unlock(&kvm
->slots_lock
);
935 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
937 int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
939 kvm_userspace_memory_region
*mem
,
942 if (mem
->slot
>= KVM_MEMORY_SLOTS
)
944 return kvm_set_memory_region(kvm
, mem
, user_alloc
);
947 int kvm_get_dirty_log(struct kvm
*kvm
,
948 struct kvm_dirty_log
*log
, int *is_dirty
)
950 struct kvm_memory_slot
*memslot
;
953 unsigned long any
= 0;
956 if (log
->slot
>= KVM_MEMORY_SLOTS
)
959 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
961 if (!memslot
->dirty_bitmap
)
964 n
= kvm_dirty_bitmap_bytes(memslot
);
966 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
967 any
= memslot
->dirty_bitmap
[i
];
970 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
981 void kvm_disable_largepages(void)
983 largepages_enabled
= false;
985 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
987 int is_error_page(struct page
*page
)
989 return page
== bad_page
|| page
== hwpoison_page
|| page
== fault_page
;
991 EXPORT_SYMBOL_GPL(is_error_page
);
993 int is_error_pfn(pfn_t pfn
)
995 return pfn
== bad_pfn
|| pfn
== hwpoison_pfn
|| pfn
== fault_pfn
;
997 EXPORT_SYMBOL_GPL(is_error_pfn
);
999 int is_hwpoison_pfn(pfn_t pfn
)
1001 return pfn
== hwpoison_pfn
;
1003 EXPORT_SYMBOL_GPL(is_hwpoison_pfn
);
1005 int is_fault_pfn(pfn_t pfn
)
1007 return pfn
== fault_pfn
;
1009 EXPORT_SYMBOL_GPL(is_fault_pfn
);
1011 int is_noslot_pfn(pfn_t pfn
)
1013 return pfn
== bad_pfn
;
1015 EXPORT_SYMBOL_GPL(is_noslot_pfn
);
1017 int is_invalid_pfn(pfn_t pfn
)
1019 return pfn
== hwpoison_pfn
|| pfn
== fault_pfn
;
1021 EXPORT_SYMBOL_GPL(is_invalid_pfn
);
1023 static inline unsigned long bad_hva(void)
1028 int kvm_is_error_hva(unsigned long addr
)
1030 return addr
== bad_hva();
1032 EXPORT_SYMBOL_GPL(kvm_is_error_hva
);
1034 static struct kvm_memory_slot
*__gfn_to_memslot(struct kvm_memslots
*slots
,
1037 return search_memslots(slots
, gfn
);
1040 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1042 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1044 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
1046 int kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1048 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1050 if (!memslot
|| memslot
->id
>= KVM_MEMORY_SLOTS
||
1051 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1056 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1058 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1060 struct vm_area_struct
*vma
;
1061 unsigned long addr
, size
;
1065 addr
= gfn_to_hva(kvm
, gfn
);
1066 if (kvm_is_error_hva(addr
))
1069 down_read(¤t
->mm
->mmap_sem
);
1070 vma
= find_vma(current
->mm
, addr
);
1074 size
= vma_kernel_pagesize(vma
);
1077 up_read(¤t
->mm
->mmap_sem
);
1082 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1085 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1089 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1091 return gfn_to_hva_memslot(slot
, gfn
);
1094 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1096 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1098 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1100 static pfn_t
get_fault_pfn(void)
1102 get_page(fault_page
);
1106 int get_user_page_nowait(struct task_struct
*tsk
, struct mm_struct
*mm
,
1107 unsigned long start
, int write
, struct page
**page
)
1109 int flags
= FOLL_TOUCH
| FOLL_NOWAIT
| FOLL_HWPOISON
| FOLL_GET
;
1112 flags
|= FOLL_WRITE
;
1114 return __get_user_pages(tsk
, mm
, start
, 1, flags
, page
, NULL
, NULL
);
1117 static inline int check_user_page_hwpoison(unsigned long addr
)
1119 int rc
, flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_WRITE
;
1121 rc
= __get_user_pages(current
, current
->mm
, addr
, 1,
1122 flags
, NULL
, NULL
, NULL
);
1123 return rc
== -EHWPOISON
;
1126 static pfn_t
hva_to_pfn(struct kvm
*kvm
, unsigned long addr
, bool atomic
,
1127 bool *async
, bool write_fault
, bool *writable
)
1129 struct page
*page
[1];
1133 /* we can do it either atomically or asynchronously, not both */
1134 BUG_ON(atomic
&& async
);
1136 BUG_ON(!write_fault
&& !writable
);
1141 if (atomic
|| async
)
1142 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1144 if (unlikely(npages
!= 1) && !atomic
) {
1148 *writable
= write_fault
;
1151 down_read(¤t
->mm
->mmap_sem
);
1152 npages
= get_user_page_nowait(current
, current
->mm
,
1153 addr
, write_fault
, page
);
1154 up_read(¤t
->mm
->mmap_sem
);
1156 npages
= get_user_pages_fast(addr
, 1, write_fault
,
1159 /* map read fault as writable if possible */
1160 if (unlikely(!write_fault
) && npages
== 1) {
1161 struct page
*wpage
[1];
1163 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1173 if (unlikely(npages
!= 1)) {
1174 struct vm_area_struct
*vma
;
1177 return get_fault_pfn();
1179 down_read(¤t
->mm
->mmap_sem
);
1180 if (npages
== -EHWPOISON
||
1181 (!async
&& check_user_page_hwpoison(addr
))) {
1182 up_read(¤t
->mm
->mmap_sem
);
1183 get_page(hwpoison_page
);
1184 return page_to_pfn(hwpoison_page
);
1187 vma
= find_vma_intersection(current
->mm
, addr
, addr
+1);
1190 pfn
= get_fault_pfn();
1191 else if ((vma
->vm_flags
& VM_PFNMAP
)) {
1192 pfn
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
1194 BUG_ON(!kvm_is_mmio_pfn(pfn
));
1196 if (async
&& (vma
->vm_flags
& VM_WRITE
))
1198 pfn
= get_fault_pfn();
1200 up_read(¤t
->mm
->mmap_sem
);
1202 pfn
= page_to_pfn(page
[0]);
1207 pfn_t
hva_to_pfn_atomic(struct kvm
*kvm
, unsigned long addr
)
1209 return hva_to_pfn(kvm
, addr
, true, NULL
, true, NULL
);
1211 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic
);
1213 static pfn_t
__gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
, bool atomic
, bool *async
,
1214 bool write_fault
, bool *writable
)
1221 addr
= gfn_to_hva(kvm
, gfn
);
1222 if (kvm_is_error_hva(addr
)) {
1224 return page_to_pfn(bad_page
);
1227 return hva_to_pfn(kvm
, addr
, atomic
, async
, write_fault
, writable
);
1230 pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1232 return __gfn_to_pfn(kvm
, gfn
, true, NULL
, true, NULL
);
1234 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1236 pfn_t
gfn_to_pfn_async(struct kvm
*kvm
, gfn_t gfn
, bool *async
,
1237 bool write_fault
, bool *writable
)
1239 return __gfn_to_pfn(kvm
, gfn
, false, async
, write_fault
, writable
);
1241 EXPORT_SYMBOL_GPL(gfn_to_pfn_async
);
1243 pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1245 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, true, NULL
);
1247 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1249 pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1252 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, write_fault
, writable
);
1254 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1256 pfn_t
gfn_to_pfn_memslot(struct kvm
*kvm
,
1257 struct kvm_memory_slot
*slot
, gfn_t gfn
)
1259 unsigned long addr
= gfn_to_hva_memslot(slot
, gfn
);
1260 return hva_to_pfn(kvm
, addr
, false, NULL
, true, NULL
);
1263 int gfn_to_page_many_atomic(struct kvm
*kvm
, gfn_t gfn
, struct page
**pages
,
1269 addr
= gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, &entry
);
1270 if (kvm_is_error_hva(addr
))
1273 if (entry
< nr_pages
)
1276 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1278 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1280 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1284 pfn
= gfn_to_pfn(kvm
, gfn
);
1285 if (!kvm_is_mmio_pfn(pfn
))
1286 return pfn_to_page(pfn
);
1288 WARN_ON(kvm_is_mmio_pfn(pfn
));
1294 EXPORT_SYMBOL_GPL(gfn_to_page
);
1296 void kvm_release_page_clean(struct page
*page
)
1298 kvm_release_pfn_clean(page_to_pfn(page
));
1300 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1302 void kvm_release_pfn_clean(pfn_t pfn
)
1304 if (!kvm_is_mmio_pfn(pfn
))
1305 put_page(pfn_to_page(pfn
));
1307 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1309 void kvm_release_page_dirty(struct page
*page
)
1311 kvm_release_pfn_dirty(page_to_pfn(page
));
1313 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1315 void kvm_release_pfn_dirty(pfn_t pfn
)
1317 kvm_set_pfn_dirty(pfn
);
1318 kvm_release_pfn_clean(pfn
);
1320 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty
);
1322 void kvm_set_page_dirty(struct page
*page
)
1324 kvm_set_pfn_dirty(page_to_pfn(page
));
1326 EXPORT_SYMBOL_GPL(kvm_set_page_dirty
);
1328 void kvm_set_pfn_dirty(pfn_t pfn
)
1330 if (!kvm_is_mmio_pfn(pfn
)) {
1331 struct page
*page
= pfn_to_page(pfn
);
1332 if (!PageReserved(page
))
1336 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1338 void kvm_set_pfn_accessed(pfn_t pfn
)
1340 if (!kvm_is_mmio_pfn(pfn
))
1341 mark_page_accessed(pfn_to_page(pfn
));
1343 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1345 void kvm_get_pfn(pfn_t pfn
)
1347 if (!kvm_is_mmio_pfn(pfn
))
1348 get_page(pfn_to_page(pfn
));
1350 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1352 static int next_segment(unsigned long len
, int offset
)
1354 if (len
> PAGE_SIZE
- offset
)
1355 return PAGE_SIZE
- offset
;
1360 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1366 addr
= gfn_to_hva(kvm
, gfn
);
1367 if (kvm_is_error_hva(addr
))
1369 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1374 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1376 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1378 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1380 int offset
= offset_in_page(gpa
);
1383 while ((seg
= next_segment(len
, offset
)) != 0) {
1384 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1394 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1396 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1401 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1402 int offset
= offset_in_page(gpa
);
1404 addr
= gfn_to_hva(kvm
, gfn
);
1405 if (kvm_is_error_hva(addr
))
1407 pagefault_disable();
1408 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1414 EXPORT_SYMBOL(kvm_read_guest_atomic
);
1416 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
, const void *data
,
1417 int offset
, int len
)
1422 addr
= gfn_to_hva(kvm
, gfn
);
1423 if (kvm_is_error_hva(addr
))
1425 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1428 mark_page_dirty(kvm
, gfn
);
1431 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1433 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1436 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1438 int offset
= offset_in_page(gpa
);
1441 while ((seg
= next_segment(len
, offset
)) != 0) {
1442 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1453 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1456 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1457 int offset
= offset_in_page(gpa
);
1458 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1461 ghc
->generation
= slots
->generation
;
1462 ghc
->memslot
= __gfn_to_memslot(slots
, gfn
);
1463 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, gfn
, NULL
);
1464 if (!kvm_is_error_hva(ghc
->hva
))
1471 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1473 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1474 void *data
, unsigned long len
)
1476 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1479 if (slots
->generation
!= ghc
->generation
)
1480 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
);
1482 if (kvm_is_error_hva(ghc
->hva
))
1485 r
= __copy_to_user((void __user
*)ghc
->hva
, data
, len
);
1488 mark_page_dirty_in_slot(kvm
, ghc
->memslot
, ghc
->gpa
>> PAGE_SHIFT
);
1492 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1494 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1495 void *data
, unsigned long len
)
1497 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1500 if (slots
->generation
!= ghc
->generation
)
1501 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
);
1503 if (kvm_is_error_hva(ghc
->hva
))
1506 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
1512 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
1514 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
1516 return kvm_write_guest_page(kvm
, gfn
, (const void *) empty_zero_page
,
1519 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
1521 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
1523 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1525 int offset
= offset_in_page(gpa
);
1528 while ((seg
= next_segment(len
, offset
)) != 0) {
1529 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
1538 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
1540 void mark_page_dirty_in_slot(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
1543 if (memslot
&& memslot
->dirty_bitmap
) {
1544 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
1546 if (!test_and_set_bit_le(rel_gfn
, memslot
->dirty_bitmap
))
1547 memslot
->nr_dirty_pages
++;
1551 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
1553 struct kvm_memory_slot
*memslot
;
1555 memslot
= gfn_to_memslot(kvm
, gfn
);
1556 mark_page_dirty_in_slot(kvm
, memslot
, gfn
);
1560 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1562 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
1567 prepare_to_wait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
1569 if (kvm_arch_vcpu_runnable(vcpu
)) {
1570 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
1573 if (kvm_cpu_has_pending_timer(vcpu
))
1575 if (signal_pending(current
))
1581 finish_wait(&vcpu
->wq
, &wait
);
1584 void kvm_resched(struct kvm_vcpu
*vcpu
)
1586 if (!need_resched())
1590 EXPORT_SYMBOL_GPL(kvm_resched
);
1592 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
1594 struct kvm
*kvm
= me
->kvm
;
1595 struct kvm_vcpu
*vcpu
;
1596 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
1602 * We boost the priority of a VCPU that is runnable but not
1603 * currently running, because it got preempted by something
1604 * else and called schedule in __vcpu_run. Hopefully that
1605 * VCPU is holding the lock that we need and will release it.
1606 * We approximate round-robin by starting at the last boosted VCPU.
1608 for (pass
= 0; pass
< 2 && !yielded
; pass
++) {
1609 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1610 struct task_struct
*task
= NULL
;
1612 if (!pass
&& i
< last_boosted_vcpu
) {
1613 i
= last_boosted_vcpu
;
1615 } else if (pass
&& i
> last_boosted_vcpu
)
1619 if (waitqueue_active(&vcpu
->wq
))
1622 pid
= rcu_dereference(vcpu
->pid
);
1624 task
= get_pid_task(vcpu
->pid
, PIDTYPE_PID
);
1628 if (task
->flags
& PF_VCPU
) {
1629 put_task_struct(task
);
1632 if (yield_to(task
, 1)) {
1633 put_task_struct(task
);
1634 kvm
->last_boosted_vcpu
= i
;
1638 put_task_struct(task
);
1642 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
1644 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1646 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
1649 if (vmf
->pgoff
== 0)
1650 page
= virt_to_page(vcpu
->run
);
1652 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
1653 page
= virt_to_page(vcpu
->arch
.pio_data
);
1655 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1656 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
1657 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
1660 return VM_FAULT_SIGBUS
;
1666 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
1667 .fault
= kvm_vcpu_fault
,
1670 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1672 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
1676 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
1678 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1680 kvm_put_kvm(vcpu
->kvm
);
1684 static struct file_operations kvm_vcpu_fops
= {
1685 .release
= kvm_vcpu_release
,
1686 .unlocked_ioctl
= kvm_vcpu_ioctl
,
1687 #ifdef CONFIG_COMPAT
1688 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
1690 .mmap
= kvm_vcpu_mmap
,
1691 .llseek
= noop_llseek
,
1695 * Allocates an inode for the vcpu.
1697 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
1699 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
);
1703 * Creates some virtual cpus. Good luck creating more than one.
1705 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
1708 struct kvm_vcpu
*vcpu
, *v
;
1710 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
1712 return PTR_ERR(vcpu
);
1714 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
1716 r
= kvm_arch_vcpu_setup(vcpu
);
1720 mutex_lock(&kvm
->lock
);
1721 if (atomic_read(&kvm
->online_vcpus
) == KVM_MAX_VCPUS
) {
1723 goto unlock_vcpu_destroy
;
1726 kvm_for_each_vcpu(r
, v
, kvm
)
1727 if (v
->vcpu_id
== id
) {
1729 goto unlock_vcpu_destroy
;
1732 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
1734 /* Now it's all set up, let userspace reach it */
1736 r
= create_vcpu_fd(vcpu
);
1739 goto unlock_vcpu_destroy
;
1742 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
1744 atomic_inc(&kvm
->online_vcpus
);
1746 mutex_unlock(&kvm
->lock
);
1749 unlock_vcpu_destroy
:
1750 mutex_unlock(&kvm
->lock
);
1752 kvm_arch_vcpu_destroy(vcpu
);
1756 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
1759 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
1760 vcpu
->sigset_active
= 1;
1761 vcpu
->sigset
= *sigset
;
1763 vcpu
->sigset_active
= 0;
1767 static long kvm_vcpu_ioctl(struct file
*filp
,
1768 unsigned int ioctl
, unsigned long arg
)
1770 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1771 void __user
*argp
= (void __user
*)arg
;
1773 struct kvm_fpu
*fpu
= NULL
;
1774 struct kvm_sregs
*kvm_sregs
= NULL
;
1776 if (vcpu
->kvm
->mm
!= current
->mm
)
1779 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1781 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1782 * so vcpu_load() would break it.
1784 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_INTERRUPT
)
1785 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
1795 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
1796 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
1798 case KVM_GET_REGS
: {
1799 struct kvm_regs
*kvm_regs
;
1802 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
1805 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
1809 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
1816 case KVM_SET_REGS
: {
1817 struct kvm_regs
*kvm_regs
;
1820 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
1821 if (IS_ERR(kvm_regs
)) {
1822 r
= PTR_ERR(kvm_regs
);
1825 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
1833 case KVM_GET_SREGS
: {
1834 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
1838 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
1842 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
1847 case KVM_SET_SREGS
: {
1848 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
1849 if (IS_ERR(kvm_sregs
)) {
1850 r
= PTR_ERR(kvm_sregs
);
1853 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
1859 case KVM_GET_MP_STATE
: {
1860 struct kvm_mp_state mp_state
;
1862 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
1866 if (copy_to_user(argp
, &mp_state
, sizeof mp_state
))
1871 case KVM_SET_MP_STATE
: {
1872 struct kvm_mp_state mp_state
;
1875 if (copy_from_user(&mp_state
, argp
, sizeof mp_state
))
1877 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
1883 case KVM_TRANSLATE
: {
1884 struct kvm_translation tr
;
1887 if (copy_from_user(&tr
, argp
, sizeof tr
))
1889 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
1893 if (copy_to_user(argp
, &tr
, sizeof tr
))
1898 case KVM_SET_GUEST_DEBUG
: {
1899 struct kvm_guest_debug dbg
;
1902 if (copy_from_user(&dbg
, argp
, sizeof dbg
))
1904 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
1910 case KVM_SET_SIGNAL_MASK
: {
1911 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
1912 struct kvm_signal_mask kvm_sigmask
;
1913 sigset_t sigset
, *p
;
1918 if (copy_from_user(&kvm_sigmask
, argp
,
1919 sizeof kvm_sigmask
))
1922 if (kvm_sigmask
.len
!= sizeof sigset
)
1925 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
1930 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
1934 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
1938 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
1942 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
1948 fpu
= memdup_user(argp
, sizeof(*fpu
));
1953 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
1960 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
1969 #ifdef CONFIG_COMPAT
1970 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
1971 unsigned int ioctl
, unsigned long arg
)
1973 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1974 void __user
*argp
= compat_ptr(arg
);
1977 if (vcpu
->kvm
->mm
!= current
->mm
)
1981 case KVM_SET_SIGNAL_MASK
: {
1982 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
1983 struct kvm_signal_mask kvm_sigmask
;
1984 compat_sigset_t csigset
;
1989 if (copy_from_user(&kvm_sigmask
, argp
,
1990 sizeof kvm_sigmask
))
1993 if (kvm_sigmask
.len
!= sizeof csigset
)
1996 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
2000 sigset_from_compat(&sigset
, &csigset
);
2001 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2005 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2013 static long kvm_vm_ioctl(struct file
*filp
,
2014 unsigned int ioctl
, unsigned long arg
)
2016 struct kvm
*kvm
= filp
->private_data
;
2017 void __user
*argp
= (void __user
*)arg
;
2020 if (kvm
->mm
!= current
->mm
)
2023 case KVM_CREATE_VCPU
:
2024 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2028 case KVM_SET_USER_MEMORY_REGION
: {
2029 struct kvm_userspace_memory_region kvm_userspace_mem
;
2032 if (copy_from_user(&kvm_userspace_mem
, argp
,
2033 sizeof kvm_userspace_mem
))
2036 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 1);
2041 case KVM_GET_DIRTY_LOG
: {
2042 struct kvm_dirty_log log
;
2045 if (copy_from_user(&log
, argp
, sizeof log
))
2047 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2052 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2053 case KVM_REGISTER_COALESCED_MMIO
: {
2054 struct kvm_coalesced_mmio_zone zone
;
2056 if (copy_from_user(&zone
, argp
, sizeof zone
))
2058 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
2064 case KVM_UNREGISTER_COALESCED_MMIO
: {
2065 struct kvm_coalesced_mmio_zone zone
;
2067 if (copy_from_user(&zone
, argp
, sizeof zone
))
2069 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
2077 struct kvm_irqfd data
;
2080 if (copy_from_user(&data
, argp
, sizeof data
))
2082 r
= kvm_irqfd(kvm
, data
.fd
, data
.gsi
, data
.flags
);
2085 case KVM_IOEVENTFD
: {
2086 struct kvm_ioeventfd data
;
2089 if (copy_from_user(&data
, argp
, sizeof data
))
2091 r
= kvm_ioeventfd(kvm
, &data
);
2094 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2095 case KVM_SET_BOOT_CPU_ID
:
2097 mutex_lock(&kvm
->lock
);
2098 if (atomic_read(&kvm
->online_vcpus
) != 0)
2101 kvm
->bsp_vcpu_id
= arg
;
2102 mutex_unlock(&kvm
->lock
);
2106 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
2108 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
2114 #ifdef CONFIG_COMPAT
2115 struct compat_kvm_dirty_log
{
2119 compat_uptr_t dirty_bitmap
; /* one bit per page */
2124 static long kvm_vm_compat_ioctl(struct file
*filp
,
2125 unsigned int ioctl
, unsigned long arg
)
2127 struct kvm
*kvm
= filp
->private_data
;
2130 if (kvm
->mm
!= current
->mm
)
2133 case KVM_GET_DIRTY_LOG
: {
2134 struct compat_kvm_dirty_log compat_log
;
2135 struct kvm_dirty_log log
;
2138 if (copy_from_user(&compat_log
, (void __user
*)arg
,
2139 sizeof(compat_log
)))
2141 log
.slot
= compat_log
.slot
;
2142 log
.padding1
= compat_log
.padding1
;
2143 log
.padding2
= compat_log
.padding2
;
2144 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
2146 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2152 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
2160 static int kvm_vm_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2162 struct page
*page
[1];
2165 gfn_t gfn
= vmf
->pgoff
;
2166 struct kvm
*kvm
= vma
->vm_file
->private_data
;
2168 addr
= gfn_to_hva(kvm
, gfn
);
2169 if (kvm_is_error_hva(addr
))
2170 return VM_FAULT_SIGBUS
;
2172 npages
= get_user_pages(current
, current
->mm
, addr
, 1, 1, 0, page
,
2174 if (unlikely(npages
!= 1))
2175 return VM_FAULT_SIGBUS
;
2177 vmf
->page
= page
[0];
2181 static const struct vm_operations_struct kvm_vm_vm_ops
= {
2182 .fault
= kvm_vm_fault
,
2185 static int kvm_vm_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2187 vma
->vm_ops
= &kvm_vm_vm_ops
;
2191 static struct file_operations kvm_vm_fops
= {
2192 .release
= kvm_vm_release
,
2193 .unlocked_ioctl
= kvm_vm_ioctl
,
2194 #ifdef CONFIG_COMPAT
2195 .compat_ioctl
= kvm_vm_compat_ioctl
,
2197 .mmap
= kvm_vm_mmap
,
2198 .llseek
= noop_llseek
,
2201 static int kvm_dev_ioctl_create_vm(void)
2206 kvm
= kvm_create_vm();
2208 return PTR_ERR(kvm
);
2209 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2210 r
= kvm_coalesced_mmio_init(kvm
);
2216 r
= anon_inode_getfd("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
);
2223 static long kvm_dev_ioctl_check_extension_generic(long arg
)
2226 case KVM_CAP_USER_MEMORY
:
2227 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2228 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2229 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2230 case KVM_CAP_SET_BOOT_CPU_ID
:
2232 case KVM_CAP_INTERNAL_ERROR_DATA
:
2234 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2235 case KVM_CAP_IRQ_ROUTING
:
2236 return KVM_MAX_IRQ_ROUTES
;
2241 return kvm_dev_ioctl_check_extension(arg
);
2244 static long kvm_dev_ioctl(struct file
*filp
,
2245 unsigned int ioctl
, unsigned long arg
)
2250 case KVM_GET_API_VERSION
:
2254 r
= KVM_API_VERSION
;
2260 r
= kvm_dev_ioctl_create_vm();
2262 case KVM_CHECK_EXTENSION
:
2263 r
= kvm_dev_ioctl_check_extension_generic(arg
);
2265 case KVM_GET_VCPU_MMAP_SIZE
:
2269 r
= PAGE_SIZE
; /* struct kvm_run */
2271 r
+= PAGE_SIZE
; /* pio data page */
2273 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2274 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
2277 case KVM_TRACE_ENABLE
:
2278 case KVM_TRACE_PAUSE
:
2279 case KVM_TRACE_DISABLE
:
2283 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
2289 static struct file_operations kvm_chardev_ops
= {
2290 .unlocked_ioctl
= kvm_dev_ioctl
,
2291 .compat_ioctl
= kvm_dev_ioctl
,
2292 .llseek
= noop_llseek
,
2295 static struct miscdevice kvm_dev
= {
2301 static void hardware_enable_nolock(void *junk
)
2303 int cpu
= raw_smp_processor_id();
2306 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2309 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
2311 r
= kvm_arch_hardware_enable(NULL
);
2314 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2315 atomic_inc(&hardware_enable_failed
);
2316 printk(KERN_INFO
"kvm: enabling virtualization on "
2317 "CPU%d failed\n", cpu
);
2321 static void hardware_enable(void *junk
)
2323 raw_spin_lock(&kvm_lock
);
2324 hardware_enable_nolock(junk
);
2325 raw_spin_unlock(&kvm_lock
);
2328 static void hardware_disable_nolock(void *junk
)
2330 int cpu
= raw_smp_processor_id();
2332 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2334 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2335 kvm_arch_hardware_disable(NULL
);
2338 static void hardware_disable(void *junk
)
2340 raw_spin_lock(&kvm_lock
);
2341 hardware_disable_nolock(junk
);
2342 raw_spin_unlock(&kvm_lock
);
2345 static void hardware_disable_all_nolock(void)
2347 BUG_ON(!kvm_usage_count
);
2350 if (!kvm_usage_count
)
2351 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2354 static void hardware_disable_all(void)
2356 raw_spin_lock(&kvm_lock
);
2357 hardware_disable_all_nolock();
2358 raw_spin_unlock(&kvm_lock
);
2361 static int hardware_enable_all(void)
2365 raw_spin_lock(&kvm_lock
);
2368 if (kvm_usage_count
== 1) {
2369 atomic_set(&hardware_enable_failed
, 0);
2370 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
2372 if (atomic_read(&hardware_enable_failed
)) {
2373 hardware_disable_all_nolock();
2378 raw_spin_unlock(&kvm_lock
);
2383 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
2388 if (!kvm_usage_count
)
2391 val
&= ~CPU_TASKS_FROZEN
;
2394 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
2396 hardware_disable(NULL
);
2399 printk(KERN_INFO
"kvm: enabling virtualization on CPU%d\n",
2401 hardware_enable(NULL
);
2408 asmlinkage
void kvm_spurious_fault(void)
2410 /* Fault while not rebooting. We want the trace. */
2413 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
2415 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
2419 * Some (well, at least mine) BIOSes hang on reboot if
2422 * And Intel TXT required VMX off for all cpu when system shutdown.
2424 printk(KERN_INFO
"kvm: exiting hardware virtualization\n");
2425 kvm_rebooting
= true;
2426 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2430 static struct notifier_block kvm_reboot_notifier
= {
2431 .notifier_call
= kvm_reboot
,
2435 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
2439 for (i
= 0; i
< bus
->dev_count
; i
++) {
2440 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
2442 kvm_iodevice_destructor(pos
);
2447 int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
2449 const struct kvm_io_range
*r1
= p1
;
2450 const struct kvm_io_range
*r2
= p2
;
2452 if (r1
->addr
< r2
->addr
)
2454 if (r1
->addr
+ r1
->len
> r2
->addr
+ r2
->len
)
2459 int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
2460 gpa_t addr
, int len
)
2462 if (bus
->dev_count
== NR_IOBUS_DEVS
)
2465 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
2471 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
2472 kvm_io_bus_sort_cmp
, NULL
);
2477 int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
2478 gpa_t addr
, int len
)
2480 struct kvm_io_range
*range
, key
;
2483 key
= (struct kvm_io_range
) {
2488 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
2489 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
2493 off
= range
- bus
->range
;
2495 while (off
> 0 && kvm_io_bus_sort_cmp(&key
, &bus
->range
[off
-1]) == 0)
2501 /* kvm_io_bus_write - called under kvm->slots_lock */
2502 int kvm_io_bus_write(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2503 int len
, const void *val
)
2506 struct kvm_io_bus
*bus
;
2507 struct kvm_io_range range
;
2509 range
= (struct kvm_io_range
) {
2514 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2515 idx
= kvm_io_bus_get_first_dev(bus
, addr
, len
);
2519 while (idx
< bus
->dev_count
&&
2520 kvm_io_bus_sort_cmp(&range
, &bus
->range
[idx
]) == 0) {
2521 if (!kvm_iodevice_write(bus
->range
[idx
].dev
, addr
, len
, val
))
2529 /* kvm_io_bus_read - called under kvm->slots_lock */
2530 int kvm_io_bus_read(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2534 struct kvm_io_bus
*bus
;
2535 struct kvm_io_range range
;
2537 range
= (struct kvm_io_range
) {
2542 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2543 idx
= kvm_io_bus_get_first_dev(bus
, addr
, len
);
2547 while (idx
< bus
->dev_count
&&
2548 kvm_io_bus_sort_cmp(&range
, &bus
->range
[idx
]) == 0) {
2549 if (!kvm_iodevice_read(bus
->range
[idx
].dev
, addr
, len
, val
))
2557 /* Caller must hold slots_lock. */
2558 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2559 int len
, struct kvm_io_device
*dev
)
2561 struct kvm_io_bus
*new_bus
, *bus
;
2563 bus
= kvm
->buses
[bus_idx
];
2564 if (bus
->dev_count
> NR_IOBUS_DEVS
-1)
2567 new_bus
= kmemdup(bus
, sizeof(struct kvm_io_bus
), GFP_KERNEL
);
2570 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
2571 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
2572 synchronize_srcu_expedited(&kvm
->srcu
);
2578 /* Caller must hold slots_lock. */
2579 int kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
2580 struct kvm_io_device
*dev
)
2583 struct kvm_io_bus
*new_bus
, *bus
;
2585 bus
= kvm
->buses
[bus_idx
];
2587 new_bus
= kmemdup(bus
, sizeof(*bus
), GFP_KERNEL
);
2592 for (i
= 0; i
< new_bus
->dev_count
; i
++)
2593 if (new_bus
->range
[i
].dev
== dev
) {
2595 new_bus
->dev_count
--;
2596 new_bus
->range
[i
] = new_bus
->range
[new_bus
->dev_count
];
2597 sort(new_bus
->range
, new_bus
->dev_count
,
2598 sizeof(struct kvm_io_range
),
2599 kvm_io_bus_sort_cmp
, NULL
);
2608 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
2609 synchronize_srcu_expedited(&kvm
->srcu
);
2614 static struct notifier_block kvm_cpu_notifier
= {
2615 .notifier_call
= kvm_cpu_hotplug
,
2618 static int vm_stat_get(void *_offset
, u64
*val
)
2620 unsigned offset
= (long)_offset
;
2624 raw_spin_lock(&kvm_lock
);
2625 list_for_each_entry(kvm
, &vm_list
, vm_list
)
2626 *val
+= *(u32
*)((void *)kvm
+ offset
);
2627 raw_spin_unlock(&kvm_lock
);
2631 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
2633 static int vcpu_stat_get(void *_offset
, u64
*val
)
2635 unsigned offset
= (long)_offset
;
2637 struct kvm_vcpu
*vcpu
;
2641 raw_spin_lock(&kvm_lock
);
2642 list_for_each_entry(kvm
, &vm_list
, vm_list
)
2643 kvm_for_each_vcpu(i
, vcpu
, kvm
)
2644 *val
+= *(u32
*)((void *)vcpu
+ offset
);
2646 raw_spin_unlock(&kvm_lock
);
2650 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
2652 static const struct file_operations
*stat_fops
[] = {
2653 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
2654 [KVM_STAT_VM
] = &vm_stat_fops
,
2657 static int kvm_init_debug(void)
2660 struct kvm_stats_debugfs_item
*p
;
2662 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
2663 if (kvm_debugfs_dir
== NULL
)
2666 for (p
= debugfs_entries
; p
->name
; ++p
) {
2667 p
->dentry
= debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
2668 (void *)(long)p
->offset
,
2669 stat_fops
[p
->kind
]);
2670 if (p
->dentry
== NULL
)
2677 debugfs_remove_recursive(kvm_debugfs_dir
);
2682 static void kvm_exit_debug(void)
2684 struct kvm_stats_debugfs_item
*p
;
2686 for (p
= debugfs_entries
; p
->name
; ++p
)
2687 debugfs_remove(p
->dentry
);
2688 debugfs_remove(kvm_debugfs_dir
);
2691 static int kvm_suspend(void)
2693 if (kvm_usage_count
)
2694 hardware_disable_nolock(NULL
);
2698 static void kvm_resume(void)
2700 if (kvm_usage_count
) {
2701 WARN_ON(raw_spin_is_locked(&kvm_lock
));
2702 hardware_enable_nolock(NULL
);
2706 static struct syscore_ops kvm_syscore_ops
= {
2707 .suspend
= kvm_suspend
,
2708 .resume
= kvm_resume
,
2711 struct page
*bad_page
;
2715 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
2717 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
2720 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
2722 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
2724 kvm_arch_vcpu_load(vcpu
, cpu
);
2727 static void kvm_sched_out(struct preempt_notifier
*pn
,
2728 struct task_struct
*next
)
2730 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
2732 kvm_arch_vcpu_put(vcpu
);
2735 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
2736 struct module
*module
)
2741 r
= kvm_arch_init(opaque
);
2745 bad_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2747 if (bad_page
== NULL
) {
2752 bad_pfn
= page_to_pfn(bad_page
);
2754 hwpoison_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2756 if (hwpoison_page
== NULL
) {
2761 hwpoison_pfn
= page_to_pfn(hwpoison_page
);
2763 fault_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2765 if (fault_page
== NULL
) {
2770 fault_pfn
= page_to_pfn(fault_page
);
2772 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
2777 r
= kvm_arch_hardware_setup();
2781 for_each_online_cpu(cpu
) {
2782 smp_call_function_single(cpu
,
2783 kvm_arch_check_processor_compat
,
2789 r
= register_cpu_notifier(&kvm_cpu_notifier
);
2792 register_reboot_notifier(&kvm_reboot_notifier
);
2794 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2796 vcpu_align
= __alignof__(struct kvm_vcpu
);
2797 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
2799 if (!kvm_vcpu_cache
) {
2804 r
= kvm_async_pf_init();
2808 kvm_chardev_ops
.owner
= module
;
2809 kvm_vm_fops
.owner
= module
;
2810 kvm_vcpu_fops
.owner
= module
;
2812 r
= misc_register(&kvm_dev
);
2814 printk(KERN_ERR
"kvm: misc device register failed\n");
2818 register_syscore_ops(&kvm_syscore_ops
);
2820 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
2821 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
2823 r
= kvm_init_debug();
2825 printk(KERN_ERR
"kvm: create debugfs files failed\n");
2832 unregister_syscore_ops(&kvm_syscore_ops
);
2834 kvm_async_pf_deinit();
2836 kmem_cache_destroy(kvm_vcpu_cache
);
2838 unregister_reboot_notifier(&kvm_reboot_notifier
);
2839 unregister_cpu_notifier(&kvm_cpu_notifier
);
2842 kvm_arch_hardware_unsetup();
2844 free_cpumask_var(cpus_hardware_enabled
);
2847 __free_page(fault_page
);
2849 __free_page(hwpoison_page
);
2850 __free_page(bad_page
);
2856 EXPORT_SYMBOL_GPL(kvm_init
);
2861 misc_deregister(&kvm_dev
);
2862 kmem_cache_destroy(kvm_vcpu_cache
);
2863 kvm_async_pf_deinit();
2864 unregister_syscore_ops(&kvm_syscore_ops
);
2865 unregister_reboot_notifier(&kvm_reboot_notifier
);
2866 unregister_cpu_notifier(&kvm_cpu_notifier
);
2867 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2868 kvm_arch_hardware_unsetup();
2870 free_cpumask_var(cpus_hardware_enabled
);
2871 __free_page(hwpoison_page
);
2872 __free_page(bad_page
);
2874 EXPORT_SYMBOL_GPL(kvm_exit
);