spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / arch / parisc / kernel / time.c
blob7c0774397b896a0e42450bf1dc0266ad903b67b1
1 /*
2 * linux/arch/parisc/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25 #include <linux/clocksource.h>
26 #include <linux/platform_device.h>
27 #include <linux/ftrace.h>
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <asm/param.h>
33 #include <asm/pdc.h>
34 #include <asm/led.h>
36 #include <linux/timex.h>
38 static unsigned long clocktick __read_mostly; /* timer cycles per tick */
41 * We keep time on PA-RISC Linux by using the Interval Timer which is
42 * a pair of registers; one is read-only and one is write-only; both
43 * accessed through CR16. The read-only register is 32 or 64 bits wide,
44 * and increments by 1 every CPU clock tick. The architecture only
45 * guarantees us a rate between 0.5 and 2, but all implementations use a
46 * rate of 1. The write-only register is 32-bits wide. When the lowest
47 * 32 bits of the read-only register compare equal to the write-only
48 * register, it raises a maskable external interrupt. Each processor has
49 * an Interval Timer of its own and they are not synchronised.
51 * We want to generate an interrupt every 1/HZ seconds. So we program
52 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
53 * is programmed with the intended time of the next tick. We can be
54 * held off for an arbitrarily long period of time by interrupts being
55 * disabled, so we may miss one or more ticks.
57 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
59 unsigned long now, now2;
60 unsigned long next_tick;
61 unsigned long cycles_elapsed, ticks_elapsed = 1;
62 unsigned long cycles_remainder;
63 unsigned int cpu = smp_processor_id();
64 struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
66 /* gcc can optimize for "read-only" case with a local clocktick */
67 unsigned long cpt = clocktick;
69 profile_tick(CPU_PROFILING);
71 /* Initialize next_tick to the expected tick time. */
72 next_tick = cpuinfo->it_value;
74 /* Get current cycle counter (Control Register 16). */
75 now = mfctl(16);
77 cycles_elapsed = now - next_tick;
79 if ((cycles_elapsed >> 6) < cpt) {
80 /* use "cheap" math (add/subtract) instead
81 * of the more expensive div/mul method
83 cycles_remainder = cycles_elapsed;
84 while (cycles_remainder > cpt) {
85 cycles_remainder -= cpt;
86 ticks_elapsed++;
88 } else {
89 /* TODO: Reduce this to one fdiv op */
90 cycles_remainder = cycles_elapsed % cpt;
91 ticks_elapsed += cycles_elapsed / cpt;
94 /* convert from "division remainder" to "remainder of clock tick" */
95 cycles_remainder = cpt - cycles_remainder;
97 /* Determine when (in CR16 cycles) next IT interrupt will fire.
98 * We want IT to fire modulo clocktick even if we miss/skip some.
99 * But those interrupts don't in fact get delivered that regularly.
101 next_tick = now + cycles_remainder;
103 cpuinfo->it_value = next_tick;
105 /* Program the IT when to deliver the next interrupt.
106 * Only bottom 32-bits of next_tick are writable in CR16!
108 mtctl(next_tick, 16);
110 /* Skip one clocktick on purpose if we missed next_tick.
111 * The new CR16 must be "later" than current CR16 otherwise
112 * itimer would not fire until CR16 wrapped - e.g 4 seconds
113 * later on a 1Ghz processor. We'll account for the missed
114 * tick on the next timer interrupt.
116 * "next_tick - now" will always give the difference regardless
117 * if one or the other wrapped. If "now" is "bigger" we'll end up
118 * with a very large unsigned number.
120 now2 = mfctl(16);
121 if (next_tick - now2 > cpt)
122 mtctl(next_tick+cpt, 16);
124 #if 1
126 * GGG: DEBUG code for how many cycles programming CR16 used.
128 if (unlikely(now2 - now > 0x3000)) /* 12K cycles */
129 printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
130 " cyc %lX rem %lX "
131 " next/now %lX/%lX\n",
132 cpu, now2 - now, cycles_elapsed, cycles_remainder,
133 next_tick, now );
134 #endif
136 /* Can we differentiate between "early CR16" (aka Scenario 1) and
137 * "long delay" (aka Scenario 3)? I don't think so.
139 * Timer_interrupt will be delivered at least a few hundred cycles
140 * after the IT fires. But it's arbitrary how much time passes
141 * before we call it "late". I've picked one second.
143 * It's important NO printk's are between reading CR16 and
144 * setting up the next value. May introduce huge variance.
146 if (unlikely(ticks_elapsed > HZ)) {
147 /* Scenario 3: very long delay? bad in any case */
148 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
149 " cycles %lX rem %lX "
150 " next/now %lX/%lX\n",
151 cpu,
152 cycles_elapsed, cycles_remainder,
153 next_tick, now );
156 /* Done mucking with unreliable delivery of interrupts.
157 * Go do system house keeping.
160 if (!--cpuinfo->prof_counter) {
161 cpuinfo->prof_counter = cpuinfo->prof_multiplier;
162 update_process_times(user_mode(get_irq_regs()));
165 if (cpu == 0)
166 xtime_update(ticks_elapsed);
168 return IRQ_HANDLED;
172 unsigned long profile_pc(struct pt_regs *regs)
174 unsigned long pc = instruction_pointer(regs);
176 if (regs->gr[0] & PSW_N)
177 pc -= 4;
179 #ifdef CONFIG_SMP
180 if (in_lock_functions(pc))
181 pc = regs->gr[2];
182 #endif
184 return pc;
186 EXPORT_SYMBOL(profile_pc);
189 /* clock source code */
191 static cycle_t read_cr16(struct clocksource *cs)
193 return get_cycles();
196 static struct clocksource clocksource_cr16 = {
197 .name = "cr16",
198 .rating = 300,
199 .read = read_cr16,
200 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
201 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
204 #ifdef CONFIG_SMP
205 int update_cr16_clocksource(void)
207 /* since the cr16 cycle counters are not synchronized across CPUs,
208 we'll check if we should switch to a safe clocksource: */
209 if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
210 clocksource_change_rating(&clocksource_cr16, 0);
211 return 1;
214 return 0;
216 #else
217 int update_cr16_clocksource(void)
219 return 0; /* no change */
221 #endif /*CONFIG_SMP*/
223 void __init start_cpu_itimer(void)
225 unsigned int cpu = smp_processor_id();
226 unsigned long next_tick = mfctl(16) + clocktick;
228 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
230 per_cpu(cpu_data, cpu).it_value = next_tick;
233 static struct platform_device rtc_generic_dev = {
234 .name = "rtc-generic",
235 .id = -1,
238 static int __init rtc_init(void)
240 if (platform_device_register(&rtc_generic_dev) < 0)
241 printk(KERN_ERR "unable to register rtc device...\n");
243 /* not necessarily an error */
244 return 0;
246 module_init(rtc_init);
248 void read_persistent_clock(struct timespec *ts)
250 static struct pdc_tod tod_data;
251 if (pdc_tod_read(&tod_data) == 0) {
252 ts->tv_sec = tod_data.tod_sec;
253 ts->tv_nsec = tod_data.tod_usec * 1000;
254 } else {
255 printk(KERN_ERR "Error reading tod clock\n");
256 ts->tv_sec = 0;
257 ts->tv_nsec = 0;
261 void __init time_init(void)
263 unsigned long current_cr16_khz;
265 clocktick = (100 * PAGE0->mem_10msec) / HZ;
267 start_cpu_itimer(); /* get CPU 0 started */
269 /* register at clocksource framework */
270 current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
271 clocksource_register_khz(&clocksource_cr16, current_cr16_khz);