spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / arch / powerpc / kernel / perf_event.c
blob64483fde95c62cfa0cc5411e2c2cc6fce5cab453
1 /*
2 * Performance event support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
22 struct cpu_hw_events {
23 int n_events;
24 int n_percpu;
25 int disabled;
26 int n_added;
27 int n_limited;
28 u8 pmcs_enabled;
29 struct perf_event *event[MAX_HWEVENTS];
30 u64 events[MAX_HWEVENTS];
31 unsigned int flags[MAX_HWEVENTS];
32 unsigned long mmcr[3];
33 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
36 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
37 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
39 unsigned int group_flag;
40 int n_txn_start;
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
44 struct power_pmu *ppmu;
47 * Normally, to ignore kernel events we set the FCS (freeze counters
48 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
49 * hypervisor bit set in the MSR, or if we are running on a processor
50 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
51 * then we need to use the FCHV bit to ignore kernel events.
53 static unsigned int freeze_events_kernel = MMCR0_FCS;
56 * 32-bit doesn't have MMCRA but does have an MMCR2,
57 * and a few other names are different.
59 #ifdef CONFIG_PPC32
61 #define MMCR0_FCHV 0
62 #define MMCR0_PMCjCE MMCR0_PMCnCE
64 #define SPRN_MMCRA SPRN_MMCR2
65 #define MMCRA_SAMPLE_ENABLE 0
67 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
69 return 0;
71 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
72 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
74 return 0;
76 static inline void perf_read_regs(struct pt_regs *regs) { }
77 static inline int perf_intr_is_nmi(struct pt_regs *regs)
79 return 0;
82 #endif /* CONFIG_PPC32 */
85 * Things that are specific to 64-bit implementations.
87 #ifdef CONFIG_PPC64
89 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
91 unsigned long mmcra = regs->dsisr;
93 if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
94 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
95 if (slot > 1)
96 return 4 * (slot - 1);
98 return 0;
102 * The user wants a data address recorded.
103 * If we're not doing instruction sampling, give them the SDAR
104 * (sampled data address). If we are doing instruction sampling, then
105 * only give them the SDAR if it corresponds to the instruction
106 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
107 * bit in MMCRA.
109 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
111 unsigned long mmcra = regs->dsisr;
112 unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
113 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
115 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
116 *addrp = mfspr(SPRN_SDAR);
119 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
121 unsigned long mmcra = regs->dsisr;
122 unsigned long sihv = MMCRA_SIHV;
123 unsigned long sipr = MMCRA_SIPR;
125 if (TRAP(regs) != 0xf00)
126 return 0; /* not a PMU interrupt */
128 if (ppmu->flags & PPMU_ALT_SIPR) {
129 sihv = POWER6_MMCRA_SIHV;
130 sipr = POWER6_MMCRA_SIPR;
133 /* PR has priority over HV, so order below is important */
134 if (mmcra & sipr)
135 return PERF_RECORD_MISC_USER;
136 if ((mmcra & sihv) && (freeze_events_kernel != MMCR0_FCHV))
137 return PERF_RECORD_MISC_HYPERVISOR;
138 return PERF_RECORD_MISC_KERNEL;
142 * Overload regs->dsisr to store MMCRA so we only need to read it once
143 * on each interrupt.
145 static inline void perf_read_regs(struct pt_regs *regs)
147 regs->dsisr = mfspr(SPRN_MMCRA);
151 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
152 * it as an NMI.
154 static inline int perf_intr_is_nmi(struct pt_regs *regs)
156 return !regs->softe;
159 #endif /* CONFIG_PPC64 */
161 static void perf_event_interrupt(struct pt_regs *regs);
163 void perf_event_print_debug(void)
168 * Read one performance monitor counter (PMC).
170 static unsigned long read_pmc(int idx)
172 unsigned long val;
174 switch (idx) {
175 case 1:
176 val = mfspr(SPRN_PMC1);
177 break;
178 case 2:
179 val = mfspr(SPRN_PMC2);
180 break;
181 case 3:
182 val = mfspr(SPRN_PMC3);
183 break;
184 case 4:
185 val = mfspr(SPRN_PMC4);
186 break;
187 case 5:
188 val = mfspr(SPRN_PMC5);
189 break;
190 case 6:
191 val = mfspr(SPRN_PMC6);
192 break;
193 #ifdef CONFIG_PPC64
194 case 7:
195 val = mfspr(SPRN_PMC7);
196 break;
197 case 8:
198 val = mfspr(SPRN_PMC8);
199 break;
200 #endif /* CONFIG_PPC64 */
201 default:
202 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
203 val = 0;
205 return val;
209 * Write one PMC.
211 static void write_pmc(int idx, unsigned long val)
213 switch (idx) {
214 case 1:
215 mtspr(SPRN_PMC1, val);
216 break;
217 case 2:
218 mtspr(SPRN_PMC2, val);
219 break;
220 case 3:
221 mtspr(SPRN_PMC3, val);
222 break;
223 case 4:
224 mtspr(SPRN_PMC4, val);
225 break;
226 case 5:
227 mtspr(SPRN_PMC5, val);
228 break;
229 case 6:
230 mtspr(SPRN_PMC6, val);
231 break;
232 #ifdef CONFIG_PPC64
233 case 7:
234 mtspr(SPRN_PMC7, val);
235 break;
236 case 8:
237 mtspr(SPRN_PMC8, val);
238 break;
239 #endif /* CONFIG_PPC64 */
240 default:
241 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
246 * Check if a set of events can all go on the PMU at once.
247 * If they can't, this will look at alternative codes for the events
248 * and see if any combination of alternative codes is feasible.
249 * The feasible set is returned in event_id[].
251 static int power_check_constraints(struct cpu_hw_events *cpuhw,
252 u64 event_id[], unsigned int cflags[],
253 int n_ev)
255 unsigned long mask, value, nv;
256 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
257 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
258 int i, j;
259 unsigned long addf = ppmu->add_fields;
260 unsigned long tadd = ppmu->test_adder;
262 if (n_ev > ppmu->n_counter)
263 return -1;
265 /* First see if the events will go on as-is */
266 for (i = 0; i < n_ev; ++i) {
267 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
268 && !ppmu->limited_pmc_event(event_id[i])) {
269 ppmu->get_alternatives(event_id[i], cflags[i],
270 cpuhw->alternatives[i]);
271 event_id[i] = cpuhw->alternatives[i][0];
273 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
274 &cpuhw->avalues[i][0]))
275 return -1;
277 value = mask = 0;
278 for (i = 0; i < n_ev; ++i) {
279 nv = (value | cpuhw->avalues[i][0]) +
280 (value & cpuhw->avalues[i][0] & addf);
281 if ((((nv + tadd) ^ value) & mask) != 0 ||
282 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
283 cpuhw->amasks[i][0]) != 0)
284 break;
285 value = nv;
286 mask |= cpuhw->amasks[i][0];
288 if (i == n_ev)
289 return 0; /* all OK */
291 /* doesn't work, gather alternatives... */
292 if (!ppmu->get_alternatives)
293 return -1;
294 for (i = 0; i < n_ev; ++i) {
295 choice[i] = 0;
296 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
297 cpuhw->alternatives[i]);
298 for (j = 1; j < n_alt[i]; ++j)
299 ppmu->get_constraint(cpuhw->alternatives[i][j],
300 &cpuhw->amasks[i][j],
301 &cpuhw->avalues[i][j]);
304 /* enumerate all possibilities and see if any will work */
305 i = 0;
306 j = -1;
307 value = mask = nv = 0;
308 while (i < n_ev) {
309 if (j >= 0) {
310 /* we're backtracking, restore context */
311 value = svalues[i];
312 mask = smasks[i];
313 j = choice[i];
316 * See if any alternative k for event_id i,
317 * where k > j, will satisfy the constraints.
319 while (++j < n_alt[i]) {
320 nv = (value | cpuhw->avalues[i][j]) +
321 (value & cpuhw->avalues[i][j] & addf);
322 if ((((nv + tadd) ^ value) & mask) == 0 &&
323 (((nv + tadd) ^ cpuhw->avalues[i][j])
324 & cpuhw->amasks[i][j]) == 0)
325 break;
327 if (j >= n_alt[i]) {
329 * No feasible alternative, backtrack
330 * to event_id i-1 and continue enumerating its
331 * alternatives from where we got up to.
333 if (--i < 0)
334 return -1;
335 } else {
337 * Found a feasible alternative for event_id i,
338 * remember where we got up to with this event_id,
339 * go on to the next event_id, and start with
340 * the first alternative for it.
342 choice[i] = j;
343 svalues[i] = value;
344 smasks[i] = mask;
345 value = nv;
346 mask |= cpuhw->amasks[i][j];
347 ++i;
348 j = -1;
352 /* OK, we have a feasible combination, tell the caller the solution */
353 for (i = 0; i < n_ev; ++i)
354 event_id[i] = cpuhw->alternatives[i][choice[i]];
355 return 0;
359 * Check if newly-added events have consistent settings for
360 * exclude_{user,kernel,hv} with each other and any previously
361 * added events.
363 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
364 int n_prev, int n_new)
366 int eu = 0, ek = 0, eh = 0;
367 int i, n, first;
368 struct perf_event *event;
370 n = n_prev + n_new;
371 if (n <= 1)
372 return 0;
374 first = 1;
375 for (i = 0; i < n; ++i) {
376 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
377 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
378 continue;
380 event = ctrs[i];
381 if (first) {
382 eu = event->attr.exclude_user;
383 ek = event->attr.exclude_kernel;
384 eh = event->attr.exclude_hv;
385 first = 0;
386 } else if (event->attr.exclude_user != eu ||
387 event->attr.exclude_kernel != ek ||
388 event->attr.exclude_hv != eh) {
389 return -EAGAIN;
393 if (eu || ek || eh)
394 for (i = 0; i < n; ++i)
395 if (cflags[i] & PPMU_LIMITED_PMC_OK)
396 cflags[i] |= PPMU_LIMITED_PMC_REQD;
398 return 0;
401 static u64 check_and_compute_delta(u64 prev, u64 val)
403 u64 delta = (val - prev) & 0xfffffffful;
406 * POWER7 can roll back counter values, if the new value is smaller
407 * than the previous value it will cause the delta and the counter to
408 * have bogus values unless we rolled a counter over. If a coutner is
409 * rolled back, it will be smaller, but within 256, which is the maximum
410 * number of events to rollback at once. If we dectect a rollback
411 * return 0. This can lead to a small lack of precision in the
412 * counters.
414 if (prev > val && (prev - val) < 256)
415 delta = 0;
417 return delta;
420 static void power_pmu_read(struct perf_event *event)
422 s64 val, delta, prev;
424 if (event->hw.state & PERF_HES_STOPPED)
425 return;
427 if (!event->hw.idx)
428 return;
430 * Performance monitor interrupts come even when interrupts
431 * are soft-disabled, as long as interrupts are hard-enabled.
432 * Therefore we treat them like NMIs.
434 do {
435 prev = local64_read(&event->hw.prev_count);
436 barrier();
437 val = read_pmc(event->hw.idx);
438 delta = check_and_compute_delta(prev, val);
439 if (!delta)
440 return;
441 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
443 local64_add(delta, &event->count);
444 local64_sub(delta, &event->hw.period_left);
448 * On some machines, PMC5 and PMC6 can't be written, don't respect
449 * the freeze conditions, and don't generate interrupts. This tells
450 * us if `event' is using such a PMC.
452 static int is_limited_pmc(int pmcnum)
454 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
455 && (pmcnum == 5 || pmcnum == 6);
458 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
459 unsigned long pmc5, unsigned long pmc6)
461 struct perf_event *event;
462 u64 val, prev, delta;
463 int i;
465 for (i = 0; i < cpuhw->n_limited; ++i) {
466 event = cpuhw->limited_counter[i];
467 if (!event->hw.idx)
468 continue;
469 val = (event->hw.idx == 5) ? pmc5 : pmc6;
470 prev = local64_read(&event->hw.prev_count);
471 event->hw.idx = 0;
472 delta = check_and_compute_delta(prev, val);
473 if (delta)
474 local64_add(delta, &event->count);
478 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
479 unsigned long pmc5, unsigned long pmc6)
481 struct perf_event *event;
482 u64 val, prev;
483 int i;
485 for (i = 0; i < cpuhw->n_limited; ++i) {
486 event = cpuhw->limited_counter[i];
487 event->hw.idx = cpuhw->limited_hwidx[i];
488 val = (event->hw.idx == 5) ? pmc5 : pmc6;
489 prev = local64_read(&event->hw.prev_count);
490 if (check_and_compute_delta(prev, val))
491 local64_set(&event->hw.prev_count, val);
492 perf_event_update_userpage(event);
497 * Since limited events don't respect the freeze conditions, we
498 * have to read them immediately after freezing or unfreezing the
499 * other events. We try to keep the values from the limited
500 * events as consistent as possible by keeping the delay (in
501 * cycles and instructions) between freezing/unfreezing and reading
502 * the limited events as small and consistent as possible.
503 * Therefore, if any limited events are in use, we read them
504 * both, and always in the same order, to minimize variability,
505 * and do it inside the same asm that writes MMCR0.
507 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
509 unsigned long pmc5, pmc6;
511 if (!cpuhw->n_limited) {
512 mtspr(SPRN_MMCR0, mmcr0);
513 return;
517 * Write MMCR0, then read PMC5 and PMC6 immediately.
518 * To ensure we don't get a performance monitor interrupt
519 * between writing MMCR0 and freezing/thawing the limited
520 * events, we first write MMCR0 with the event overflow
521 * interrupt enable bits turned off.
523 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
524 : "=&r" (pmc5), "=&r" (pmc6)
525 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
526 "i" (SPRN_MMCR0),
527 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
529 if (mmcr0 & MMCR0_FC)
530 freeze_limited_counters(cpuhw, pmc5, pmc6);
531 else
532 thaw_limited_counters(cpuhw, pmc5, pmc6);
535 * Write the full MMCR0 including the event overflow interrupt
536 * enable bits, if necessary.
538 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
539 mtspr(SPRN_MMCR0, mmcr0);
543 * Disable all events to prevent PMU interrupts and to allow
544 * events to be added or removed.
546 static void power_pmu_disable(struct pmu *pmu)
548 struct cpu_hw_events *cpuhw;
549 unsigned long flags;
551 if (!ppmu)
552 return;
553 local_irq_save(flags);
554 cpuhw = &__get_cpu_var(cpu_hw_events);
556 if (!cpuhw->disabled) {
557 cpuhw->disabled = 1;
558 cpuhw->n_added = 0;
561 * Check if we ever enabled the PMU on this cpu.
563 if (!cpuhw->pmcs_enabled) {
564 ppc_enable_pmcs();
565 cpuhw->pmcs_enabled = 1;
569 * Disable instruction sampling if it was enabled
571 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
572 mtspr(SPRN_MMCRA,
573 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
574 mb();
578 * Set the 'freeze counters' bit.
579 * The barrier is to make sure the mtspr has been
580 * executed and the PMU has frozen the events
581 * before we return.
583 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
584 mb();
586 local_irq_restore(flags);
590 * Re-enable all events if disable == 0.
591 * If we were previously disabled and events were added, then
592 * put the new config on the PMU.
594 static void power_pmu_enable(struct pmu *pmu)
596 struct perf_event *event;
597 struct cpu_hw_events *cpuhw;
598 unsigned long flags;
599 long i;
600 unsigned long val;
601 s64 left;
602 unsigned int hwc_index[MAX_HWEVENTS];
603 int n_lim;
604 int idx;
606 if (!ppmu)
607 return;
608 local_irq_save(flags);
609 cpuhw = &__get_cpu_var(cpu_hw_events);
610 if (!cpuhw->disabled) {
611 local_irq_restore(flags);
612 return;
614 cpuhw->disabled = 0;
617 * If we didn't change anything, or only removed events,
618 * no need to recalculate MMCR* settings and reset the PMCs.
619 * Just reenable the PMU with the current MMCR* settings
620 * (possibly updated for removal of events).
622 if (!cpuhw->n_added) {
623 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
624 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
625 if (cpuhw->n_events == 0)
626 ppc_set_pmu_inuse(0);
627 goto out_enable;
631 * Compute MMCR* values for the new set of events
633 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
634 cpuhw->mmcr)) {
635 /* shouldn't ever get here */
636 printk(KERN_ERR "oops compute_mmcr failed\n");
637 goto out;
641 * Add in MMCR0 freeze bits corresponding to the
642 * attr.exclude_* bits for the first event.
643 * We have already checked that all events have the
644 * same values for these bits as the first event.
646 event = cpuhw->event[0];
647 if (event->attr.exclude_user)
648 cpuhw->mmcr[0] |= MMCR0_FCP;
649 if (event->attr.exclude_kernel)
650 cpuhw->mmcr[0] |= freeze_events_kernel;
651 if (event->attr.exclude_hv)
652 cpuhw->mmcr[0] |= MMCR0_FCHV;
655 * Write the new configuration to MMCR* with the freeze
656 * bit set and set the hardware events to their initial values.
657 * Then unfreeze the events.
659 ppc_set_pmu_inuse(1);
660 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
661 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
662 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
663 | MMCR0_FC);
666 * Read off any pre-existing events that need to move
667 * to another PMC.
669 for (i = 0; i < cpuhw->n_events; ++i) {
670 event = cpuhw->event[i];
671 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
672 power_pmu_read(event);
673 write_pmc(event->hw.idx, 0);
674 event->hw.idx = 0;
679 * Initialize the PMCs for all the new and moved events.
681 cpuhw->n_limited = n_lim = 0;
682 for (i = 0; i < cpuhw->n_events; ++i) {
683 event = cpuhw->event[i];
684 if (event->hw.idx)
685 continue;
686 idx = hwc_index[i] + 1;
687 if (is_limited_pmc(idx)) {
688 cpuhw->limited_counter[n_lim] = event;
689 cpuhw->limited_hwidx[n_lim] = idx;
690 ++n_lim;
691 continue;
693 val = 0;
694 if (event->hw.sample_period) {
695 left = local64_read(&event->hw.period_left);
696 if (left < 0x80000000L)
697 val = 0x80000000L - left;
699 local64_set(&event->hw.prev_count, val);
700 event->hw.idx = idx;
701 if (event->hw.state & PERF_HES_STOPPED)
702 val = 0;
703 write_pmc(idx, val);
704 perf_event_update_userpage(event);
706 cpuhw->n_limited = n_lim;
707 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
709 out_enable:
710 mb();
711 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
714 * Enable instruction sampling if necessary
716 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
717 mb();
718 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
721 out:
722 local_irq_restore(flags);
725 static int collect_events(struct perf_event *group, int max_count,
726 struct perf_event *ctrs[], u64 *events,
727 unsigned int *flags)
729 int n = 0;
730 struct perf_event *event;
732 if (!is_software_event(group)) {
733 if (n >= max_count)
734 return -1;
735 ctrs[n] = group;
736 flags[n] = group->hw.event_base;
737 events[n++] = group->hw.config;
739 list_for_each_entry(event, &group->sibling_list, group_entry) {
740 if (!is_software_event(event) &&
741 event->state != PERF_EVENT_STATE_OFF) {
742 if (n >= max_count)
743 return -1;
744 ctrs[n] = event;
745 flags[n] = event->hw.event_base;
746 events[n++] = event->hw.config;
749 return n;
753 * Add a event to the PMU.
754 * If all events are not already frozen, then we disable and
755 * re-enable the PMU in order to get hw_perf_enable to do the
756 * actual work of reconfiguring the PMU.
758 static int power_pmu_add(struct perf_event *event, int ef_flags)
760 struct cpu_hw_events *cpuhw;
761 unsigned long flags;
762 int n0;
763 int ret = -EAGAIN;
765 local_irq_save(flags);
766 perf_pmu_disable(event->pmu);
769 * Add the event to the list (if there is room)
770 * and check whether the total set is still feasible.
772 cpuhw = &__get_cpu_var(cpu_hw_events);
773 n0 = cpuhw->n_events;
774 if (n0 >= ppmu->n_counter)
775 goto out;
776 cpuhw->event[n0] = event;
777 cpuhw->events[n0] = event->hw.config;
778 cpuhw->flags[n0] = event->hw.event_base;
780 if (!(ef_flags & PERF_EF_START))
781 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
784 * If group events scheduling transaction was started,
785 * skip the schedulability test here, it will be performed
786 * at commit time(->commit_txn) as a whole
788 if (cpuhw->group_flag & PERF_EVENT_TXN)
789 goto nocheck;
791 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
792 goto out;
793 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
794 goto out;
795 event->hw.config = cpuhw->events[n0];
797 nocheck:
798 ++cpuhw->n_events;
799 ++cpuhw->n_added;
801 ret = 0;
802 out:
803 perf_pmu_enable(event->pmu);
804 local_irq_restore(flags);
805 return ret;
809 * Remove a event from the PMU.
811 static void power_pmu_del(struct perf_event *event, int ef_flags)
813 struct cpu_hw_events *cpuhw;
814 long i;
815 unsigned long flags;
817 local_irq_save(flags);
818 perf_pmu_disable(event->pmu);
820 power_pmu_read(event);
822 cpuhw = &__get_cpu_var(cpu_hw_events);
823 for (i = 0; i < cpuhw->n_events; ++i) {
824 if (event == cpuhw->event[i]) {
825 while (++i < cpuhw->n_events) {
826 cpuhw->event[i-1] = cpuhw->event[i];
827 cpuhw->events[i-1] = cpuhw->events[i];
828 cpuhw->flags[i-1] = cpuhw->flags[i];
830 --cpuhw->n_events;
831 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
832 if (event->hw.idx) {
833 write_pmc(event->hw.idx, 0);
834 event->hw.idx = 0;
836 perf_event_update_userpage(event);
837 break;
840 for (i = 0; i < cpuhw->n_limited; ++i)
841 if (event == cpuhw->limited_counter[i])
842 break;
843 if (i < cpuhw->n_limited) {
844 while (++i < cpuhw->n_limited) {
845 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
846 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
848 --cpuhw->n_limited;
850 if (cpuhw->n_events == 0) {
851 /* disable exceptions if no events are running */
852 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
855 perf_pmu_enable(event->pmu);
856 local_irq_restore(flags);
860 * POWER-PMU does not support disabling individual counters, hence
861 * program their cycle counter to their max value and ignore the interrupts.
864 static void power_pmu_start(struct perf_event *event, int ef_flags)
866 unsigned long flags;
867 s64 left;
868 unsigned long val;
870 if (!event->hw.idx || !event->hw.sample_period)
871 return;
873 if (!(event->hw.state & PERF_HES_STOPPED))
874 return;
876 if (ef_flags & PERF_EF_RELOAD)
877 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
879 local_irq_save(flags);
880 perf_pmu_disable(event->pmu);
882 event->hw.state = 0;
883 left = local64_read(&event->hw.period_left);
885 val = 0;
886 if (left < 0x80000000L)
887 val = 0x80000000L - left;
889 write_pmc(event->hw.idx, val);
891 perf_event_update_userpage(event);
892 perf_pmu_enable(event->pmu);
893 local_irq_restore(flags);
896 static void power_pmu_stop(struct perf_event *event, int ef_flags)
898 unsigned long flags;
900 if (!event->hw.idx || !event->hw.sample_period)
901 return;
903 if (event->hw.state & PERF_HES_STOPPED)
904 return;
906 local_irq_save(flags);
907 perf_pmu_disable(event->pmu);
909 power_pmu_read(event);
910 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
911 write_pmc(event->hw.idx, 0);
913 perf_event_update_userpage(event);
914 perf_pmu_enable(event->pmu);
915 local_irq_restore(flags);
919 * Start group events scheduling transaction
920 * Set the flag to make pmu::enable() not perform the
921 * schedulability test, it will be performed at commit time
923 void power_pmu_start_txn(struct pmu *pmu)
925 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
927 perf_pmu_disable(pmu);
928 cpuhw->group_flag |= PERF_EVENT_TXN;
929 cpuhw->n_txn_start = cpuhw->n_events;
933 * Stop group events scheduling transaction
934 * Clear the flag and pmu::enable() will perform the
935 * schedulability test.
937 void power_pmu_cancel_txn(struct pmu *pmu)
939 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
941 cpuhw->group_flag &= ~PERF_EVENT_TXN;
942 perf_pmu_enable(pmu);
946 * Commit group events scheduling transaction
947 * Perform the group schedulability test as a whole
948 * Return 0 if success
950 int power_pmu_commit_txn(struct pmu *pmu)
952 struct cpu_hw_events *cpuhw;
953 long i, n;
955 if (!ppmu)
956 return -EAGAIN;
957 cpuhw = &__get_cpu_var(cpu_hw_events);
958 n = cpuhw->n_events;
959 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
960 return -EAGAIN;
961 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
962 if (i < 0)
963 return -EAGAIN;
965 for (i = cpuhw->n_txn_start; i < n; ++i)
966 cpuhw->event[i]->hw.config = cpuhw->events[i];
968 cpuhw->group_flag &= ~PERF_EVENT_TXN;
969 perf_pmu_enable(pmu);
970 return 0;
974 * Return 1 if we might be able to put event on a limited PMC,
975 * or 0 if not.
976 * A event can only go on a limited PMC if it counts something
977 * that a limited PMC can count, doesn't require interrupts, and
978 * doesn't exclude any processor mode.
980 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
981 unsigned int flags)
983 int n;
984 u64 alt[MAX_EVENT_ALTERNATIVES];
986 if (event->attr.exclude_user
987 || event->attr.exclude_kernel
988 || event->attr.exclude_hv
989 || event->attr.sample_period)
990 return 0;
992 if (ppmu->limited_pmc_event(ev))
993 return 1;
996 * The requested event_id isn't on a limited PMC already;
997 * see if any alternative code goes on a limited PMC.
999 if (!ppmu->get_alternatives)
1000 return 0;
1002 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1003 n = ppmu->get_alternatives(ev, flags, alt);
1005 return n > 0;
1009 * Find an alternative event_id that goes on a normal PMC, if possible,
1010 * and return the event_id code, or 0 if there is no such alternative.
1011 * (Note: event_id code 0 is "don't count" on all machines.)
1013 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1015 u64 alt[MAX_EVENT_ALTERNATIVES];
1016 int n;
1018 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1019 n = ppmu->get_alternatives(ev, flags, alt);
1020 if (!n)
1021 return 0;
1022 return alt[0];
1025 /* Number of perf_events counting hardware events */
1026 static atomic_t num_events;
1027 /* Used to avoid races in calling reserve/release_pmc_hardware */
1028 static DEFINE_MUTEX(pmc_reserve_mutex);
1031 * Release the PMU if this is the last perf_event.
1033 static void hw_perf_event_destroy(struct perf_event *event)
1035 if (!atomic_add_unless(&num_events, -1, 1)) {
1036 mutex_lock(&pmc_reserve_mutex);
1037 if (atomic_dec_return(&num_events) == 0)
1038 release_pmc_hardware();
1039 mutex_unlock(&pmc_reserve_mutex);
1044 * Translate a generic cache event_id config to a raw event_id code.
1046 static int hw_perf_cache_event(u64 config, u64 *eventp)
1048 unsigned long type, op, result;
1049 int ev;
1051 if (!ppmu->cache_events)
1052 return -EINVAL;
1054 /* unpack config */
1055 type = config & 0xff;
1056 op = (config >> 8) & 0xff;
1057 result = (config >> 16) & 0xff;
1059 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1060 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1061 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1062 return -EINVAL;
1064 ev = (*ppmu->cache_events)[type][op][result];
1065 if (ev == 0)
1066 return -EOPNOTSUPP;
1067 if (ev == -1)
1068 return -EINVAL;
1069 *eventp = ev;
1070 return 0;
1073 static int power_pmu_event_init(struct perf_event *event)
1075 u64 ev;
1076 unsigned long flags;
1077 struct perf_event *ctrs[MAX_HWEVENTS];
1078 u64 events[MAX_HWEVENTS];
1079 unsigned int cflags[MAX_HWEVENTS];
1080 int n;
1081 int err;
1082 struct cpu_hw_events *cpuhw;
1084 if (!ppmu)
1085 return -ENOENT;
1087 switch (event->attr.type) {
1088 case PERF_TYPE_HARDWARE:
1089 ev = event->attr.config;
1090 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1091 return -EOPNOTSUPP;
1092 ev = ppmu->generic_events[ev];
1093 break;
1094 case PERF_TYPE_HW_CACHE:
1095 err = hw_perf_cache_event(event->attr.config, &ev);
1096 if (err)
1097 return err;
1098 break;
1099 case PERF_TYPE_RAW:
1100 ev = event->attr.config;
1101 break;
1102 default:
1103 return -ENOENT;
1106 event->hw.config_base = ev;
1107 event->hw.idx = 0;
1110 * If we are not running on a hypervisor, force the
1111 * exclude_hv bit to 0 so that we don't care what
1112 * the user set it to.
1114 if (!firmware_has_feature(FW_FEATURE_LPAR))
1115 event->attr.exclude_hv = 0;
1118 * If this is a per-task event, then we can use
1119 * PM_RUN_* events interchangeably with their non RUN_*
1120 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1121 * XXX we should check if the task is an idle task.
1123 flags = 0;
1124 if (event->attach_state & PERF_ATTACH_TASK)
1125 flags |= PPMU_ONLY_COUNT_RUN;
1128 * If this machine has limited events, check whether this
1129 * event_id could go on a limited event.
1131 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1132 if (can_go_on_limited_pmc(event, ev, flags)) {
1133 flags |= PPMU_LIMITED_PMC_OK;
1134 } else if (ppmu->limited_pmc_event(ev)) {
1136 * The requested event_id is on a limited PMC,
1137 * but we can't use a limited PMC; see if any
1138 * alternative goes on a normal PMC.
1140 ev = normal_pmc_alternative(ev, flags);
1141 if (!ev)
1142 return -EINVAL;
1147 * If this is in a group, check if it can go on with all the
1148 * other hardware events in the group. We assume the event
1149 * hasn't been linked into its leader's sibling list at this point.
1151 n = 0;
1152 if (event->group_leader != event) {
1153 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1154 ctrs, events, cflags);
1155 if (n < 0)
1156 return -EINVAL;
1158 events[n] = ev;
1159 ctrs[n] = event;
1160 cflags[n] = flags;
1161 if (check_excludes(ctrs, cflags, n, 1))
1162 return -EINVAL;
1164 cpuhw = &get_cpu_var(cpu_hw_events);
1165 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1166 put_cpu_var(cpu_hw_events);
1167 if (err)
1168 return -EINVAL;
1170 event->hw.config = events[n];
1171 event->hw.event_base = cflags[n];
1172 event->hw.last_period = event->hw.sample_period;
1173 local64_set(&event->hw.period_left, event->hw.last_period);
1176 * See if we need to reserve the PMU.
1177 * If no events are currently in use, then we have to take a
1178 * mutex to ensure that we don't race with another task doing
1179 * reserve_pmc_hardware or release_pmc_hardware.
1181 err = 0;
1182 if (!atomic_inc_not_zero(&num_events)) {
1183 mutex_lock(&pmc_reserve_mutex);
1184 if (atomic_read(&num_events) == 0 &&
1185 reserve_pmc_hardware(perf_event_interrupt))
1186 err = -EBUSY;
1187 else
1188 atomic_inc(&num_events);
1189 mutex_unlock(&pmc_reserve_mutex);
1191 event->destroy = hw_perf_event_destroy;
1193 return err;
1196 struct pmu power_pmu = {
1197 .pmu_enable = power_pmu_enable,
1198 .pmu_disable = power_pmu_disable,
1199 .event_init = power_pmu_event_init,
1200 .add = power_pmu_add,
1201 .del = power_pmu_del,
1202 .start = power_pmu_start,
1203 .stop = power_pmu_stop,
1204 .read = power_pmu_read,
1205 .start_txn = power_pmu_start_txn,
1206 .cancel_txn = power_pmu_cancel_txn,
1207 .commit_txn = power_pmu_commit_txn,
1211 * A counter has overflowed; update its count and record
1212 * things if requested. Note that interrupts are hard-disabled
1213 * here so there is no possibility of being interrupted.
1215 static void record_and_restart(struct perf_event *event, unsigned long val,
1216 struct pt_regs *regs)
1218 u64 period = event->hw.sample_period;
1219 s64 prev, delta, left;
1220 int record = 0;
1222 if (event->hw.state & PERF_HES_STOPPED) {
1223 write_pmc(event->hw.idx, 0);
1224 return;
1227 /* we don't have to worry about interrupts here */
1228 prev = local64_read(&event->hw.prev_count);
1229 delta = check_and_compute_delta(prev, val);
1230 local64_add(delta, &event->count);
1233 * See if the total period for this event has expired,
1234 * and update for the next period.
1236 val = 0;
1237 left = local64_read(&event->hw.period_left) - delta;
1238 if (period) {
1239 if (left <= 0) {
1240 left += period;
1241 if (left <= 0)
1242 left = period;
1243 record = 1;
1244 event->hw.last_period = event->hw.sample_period;
1246 if (left < 0x80000000LL)
1247 val = 0x80000000LL - left;
1250 write_pmc(event->hw.idx, val);
1251 local64_set(&event->hw.prev_count, val);
1252 local64_set(&event->hw.period_left, left);
1253 perf_event_update_userpage(event);
1256 * Finally record data if requested.
1258 if (record) {
1259 struct perf_sample_data data;
1261 perf_sample_data_init(&data, ~0ULL);
1262 data.period = event->hw.last_period;
1264 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1265 perf_get_data_addr(regs, &data.addr);
1267 if (perf_event_overflow(event, &data, regs))
1268 power_pmu_stop(event, 0);
1273 * Called from generic code to get the misc flags (i.e. processor mode)
1274 * for an event_id.
1276 unsigned long perf_misc_flags(struct pt_regs *regs)
1278 u32 flags = perf_get_misc_flags(regs);
1280 if (flags)
1281 return flags;
1282 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1283 PERF_RECORD_MISC_KERNEL;
1287 * Called from generic code to get the instruction pointer
1288 * for an event_id.
1290 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1292 unsigned long ip;
1294 if (TRAP(regs) != 0xf00)
1295 return regs->nip; /* not a PMU interrupt */
1297 ip = mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1298 return ip;
1301 static bool pmc_overflow(unsigned long val)
1303 if ((int)val < 0)
1304 return true;
1307 * Events on POWER7 can roll back if a speculative event doesn't
1308 * eventually complete. Unfortunately in some rare cases they will
1309 * raise a performance monitor exception. We need to catch this to
1310 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1311 * cycles from overflow.
1313 * We only do this if the first pass fails to find any overflowing
1314 * PMCs because a user might set a period of less than 256 and we
1315 * don't want to mistakenly reset them.
1317 if (__is_processor(PV_POWER7) && ((0x80000000 - val) <= 256))
1318 return true;
1320 return false;
1324 * Performance monitor interrupt stuff
1326 static void perf_event_interrupt(struct pt_regs *regs)
1328 int i;
1329 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1330 struct perf_event *event;
1331 unsigned long val;
1332 int found = 0;
1333 int nmi;
1335 if (cpuhw->n_limited)
1336 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1337 mfspr(SPRN_PMC6));
1339 perf_read_regs(regs);
1341 nmi = perf_intr_is_nmi(regs);
1342 if (nmi)
1343 nmi_enter();
1344 else
1345 irq_enter();
1347 for (i = 0; i < cpuhw->n_events; ++i) {
1348 event = cpuhw->event[i];
1349 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1350 continue;
1351 val = read_pmc(event->hw.idx);
1352 if ((int)val < 0) {
1353 /* event has overflowed */
1354 found = 1;
1355 record_and_restart(event, val, regs);
1360 * In case we didn't find and reset the event that caused
1361 * the interrupt, scan all events and reset any that are
1362 * negative, to avoid getting continual interrupts.
1363 * Any that we processed in the previous loop will not be negative.
1365 if (!found) {
1366 for (i = 0; i < ppmu->n_counter; ++i) {
1367 if (is_limited_pmc(i + 1))
1368 continue;
1369 val = read_pmc(i + 1);
1370 if (pmc_overflow(val))
1371 write_pmc(i + 1, 0);
1376 * Reset MMCR0 to its normal value. This will set PMXE and
1377 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1378 * and thus allow interrupts to occur again.
1379 * XXX might want to use MSR.PM to keep the events frozen until
1380 * we get back out of this interrupt.
1382 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1384 if (nmi)
1385 nmi_exit();
1386 else
1387 irq_exit();
1390 static void power_pmu_setup(int cpu)
1392 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1394 if (!ppmu)
1395 return;
1396 memset(cpuhw, 0, sizeof(*cpuhw));
1397 cpuhw->mmcr[0] = MMCR0_FC;
1400 static int __cpuinit
1401 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1403 unsigned int cpu = (long)hcpu;
1405 switch (action & ~CPU_TASKS_FROZEN) {
1406 case CPU_UP_PREPARE:
1407 power_pmu_setup(cpu);
1408 break;
1410 default:
1411 break;
1414 return NOTIFY_OK;
1417 int __cpuinit register_power_pmu(struct power_pmu *pmu)
1419 if (ppmu)
1420 return -EBUSY; /* something's already registered */
1422 ppmu = pmu;
1423 pr_info("%s performance monitor hardware support registered\n",
1424 pmu->name);
1426 #ifdef MSR_HV
1428 * Use FCHV to ignore kernel events if MSR.HV is set.
1430 if (mfmsr() & MSR_HV)
1431 freeze_events_kernel = MMCR0_FCHV;
1432 #endif /* CONFIG_PPC64 */
1434 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1435 perf_cpu_notifier(power_pmu_notifier);
1437 return 0;