spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / arch / powerpc / kernel / time.c
blob567dd7c3ac2ad9b2b5c9236804daf83064e967f0
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/export.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/irq_work.h>
57 #include <asm/trace.h>
59 #include <asm/io.h>
60 #include <asm/processor.h>
61 #include <asm/nvram.h>
62 #include <asm/cache.h>
63 #include <asm/machdep.h>
64 #include <asm/uaccess.h>
65 #include <asm/time.h>
66 #include <asm/prom.h>
67 #include <asm/irq.h>
68 #include <asm/div64.h>
69 #include <asm/smp.h>
70 #include <asm/vdso_datapage.h>
71 #include <asm/firmware.h>
72 #include <asm/cputime.h>
73 #ifdef CONFIG_PPC_ISERIES
74 #include <asm/iseries/it_lp_queue.h>
75 #include <asm/iseries/hv_call_xm.h>
76 #endif
78 /* powerpc clocksource/clockevent code */
80 #include <linux/clockchips.h>
81 #include <linux/clocksource.h>
83 static cycle_t rtc_read(struct clocksource *);
84 static struct clocksource clocksource_rtc = {
85 .name = "rtc",
86 .rating = 400,
87 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
88 .mask = CLOCKSOURCE_MASK(64),
89 .read = rtc_read,
92 static cycle_t timebase_read(struct clocksource *);
93 static struct clocksource clocksource_timebase = {
94 .name = "timebase",
95 .rating = 400,
96 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
97 .mask = CLOCKSOURCE_MASK(64),
98 .read = timebase_read,
101 #define DECREMENTER_MAX 0x7fffffff
103 static int decrementer_set_next_event(unsigned long evt,
104 struct clock_event_device *dev);
105 static void decrementer_set_mode(enum clock_event_mode mode,
106 struct clock_event_device *dev);
108 static struct clock_event_device decrementer_clockevent = {
109 .name = "decrementer",
110 .rating = 200,
111 .irq = 0,
112 .set_next_event = decrementer_set_next_event,
113 .set_mode = decrementer_set_mode,
114 .features = CLOCK_EVT_FEAT_ONESHOT,
117 DEFINE_PER_CPU(u64, decrementers_next_tb);
118 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
120 #ifdef CONFIG_PPC_ISERIES
121 static unsigned long __initdata iSeries_recal_titan;
122 static signed long __initdata iSeries_recal_tb;
124 /* Forward declaration is only needed for iSereis compiles */
125 static void __init clocksource_init(void);
126 #endif
128 #define XSEC_PER_SEC (1024*1024)
130 #ifdef CONFIG_PPC64
131 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
132 #else
133 /* compute ((xsec << 12) * max) >> 32 */
134 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
135 #endif
137 unsigned long tb_ticks_per_jiffy;
138 unsigned long tb_ticks_per_usec = 100; /* sane default */
139 EXPORT_SYMBOL(tb_ticks_per_usec);
140 unsigned long tb_ticks_per_sec;
141 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
143 DEFINE_SPINLOCK(rtc_lock);
144 EXPORT_SYMBOL_GPL(rtc_lock);
146 static u64 tb_to_ns_scale __read_mostly;
147 static unsigned tb_to_ns_shift __read_mostly;
148 static u64 boot_tb __read_mostly;
150 extern struct timezone sys_tz;
151 static long timezone_offset;
153 unsigned long ppc_proc_freq;
154 EXPORT_SYMBOL_GPL(ppc_proc_freq);
155 unsigned long ppc_tb_freq;
156 EXPORT_SYMBOL_GPL(ppc_tb_freq);
158 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
160 * Factors for converting from cputime_t (timebase ticks) to
161 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
162 * These are all stored as 0.64 fixed-point binary fractions.
164 u64 __cputime_jiffies_factor;
165 EXPORT_SYMBOL(__cputime_jiffies_factor);
166 u64 __cputime_usec_factor;
167 EXPORT_SYMBOL(__cputime_usec_factor);
168 u64 __cputime_sec_factor;
169 EXPORT_SYMBOL(__cputime_sec_factor);
170 u64 __cputime_clockt_factor;
171 EXPORT_SYMBOL(__cputime_clockt_factor);
172 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
173 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
175 cputime_t cputime_one_jiffy;
177 void (*dtl_consumer)(struct dtl_entry *, u64);
179 static void calc_cputime_factors(void)
181 struct div_result res;
183 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
184 __cputime_jiffies_factor = res.result_low;
185 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
186 __cputime_usec_factor = res.result_low;
187 div128_by_32(1, 0, tb_ticks_per_sec, &res);
188 __cputime_sec_factor = res.result_low;
189 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
190 __cputime_clockt_factor = res.result_low;
194 * Read the SPURR on systems that have it, otherwise the PURR,
195 * or if that doesn't exist return the timebase value passed in.
197 static u64 read_spurr(u64 tb)
199 if (cpu_has_feature(CPU_FTR_SPURR))
200 return mfspr(SPRN_SPURR);
201 if (cpu_has_feature(CPU_FTR_PURR))
202 return mfspr(SPRN_PURR);
203 return tb;
206 #ifdef CONFIG_PPC_SPLPAR
209 * Scan the dispatch trace log and count up the stolen time.
210 * Should be called with interrupts disabled.
212 static u64 scan_dispatch_log(u64 stop_tb)
214 u64 i = local_paca->dtl_ridx;
215 struct dtl_entry *dtl = local_paca->dtl_curr;
216 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
217 struct lppaca *vpa = local_paca->lppaca_ptr;
218 u64 tb_delta;
219 u64 stolen = 0;
220 u64 dtb;
222 if (!dtl)
223 return 0;
225 if (i == vpa->dtl_idx)
226 return 0;
227 while (i < vpa->dtl_idx) {
228 if (dtl_consumer)
229 dtl_consumer(dtl, i);
230 dtb = dtl->timebase;
231 tb_delta = dtl->enqueue_to_dispatch_time +
232 dtl->ready_to_enqueue_time;
233 barrier();
234 if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
235 /* buffer has overflowed */
236 i = vpa->dtl_idx - N_DISPATCH_LOG;
237 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
238 continue;
240 if (dtb > stop_tb)
241 break;
242 stolen += tb_delta;
243 ++i;
244 ++dtl;
245 if (dtl == dtl_end)
246 dtl = local_paca->dispatch_log;
248 local_paca->dtl_ridx = i;
249 local_paca->dtl_curr = dtl;
250 return stolen;
254 * Accumulate stolen time by scanning the dispatch trace log.
255 * Called on entry from user mode.
257 void accumulate_stolen_time(void)
259 u64 sst, ust;
261 u8 save_soft_enabled = local_paca->soft_enabled;
262 u8 save_hard_enabled = local_paca->hard_enabled;
264 /* We are called early in the exception entry, before
265 * soft/hard_enabled are sync'ed to the expected state
266 * for the exception. We are hard disabled but the PACA
267 * needs to reflect that so various debug stuff doesn't
268 * complain
270 local_paca->soft_enabled = 0;
271 local_paca->hard_enabled = 0;
273 sst = scan_dispatch_log(local_paca->starttime_user);
274 ust = scan_dispatch_log(local_paca->starttime);
275 local_paca->system_time -= sst;
276 local_paca->user_time -= ust;
277 local_paca->stolen_time += ust + sst;
279 local_paca->soft_enabled = save_soft_enabled;
280 local_paca->hard_enabled = save_hard_enabled;
283 static inline u64 calculate_stolen_time(u64 stop_tb)
285 u64 stolen = 0;
287 if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
288 stolen = scan_dispatch_log(stop_tb);
289 get_paca()->system_time -= stolen;
292 stolen += get_paca()->stolen_time;
293 get_paca()->stolen_time = 0;
294 return stolen;
297 #else /* CONFIG_PPC_SPLPAR */
298 static inline u64 calculate_stolen_time(u64 stop_tb)
300 return 0;
303 #endif /* CONFIG_PPC_SPLPAR */
306 * Account time for a transition between system, hard irq
307 * or soft irq state.
309 void account_system_vtime(struct task_struct *tsk)
311 u64 now, nowscaled, delta, deltascaled;
312 unsigned long flags;
313 u64 stolen, udelta, sys_scaled, user_scaled;
315 local_irq_save(flags);
316 now = mftb();
317 nowscaled = read_spurr(now);
318 get_paca()->system_time += now - get_paca()->starttime;
319 get_paca()->starttime = now;
320 deltascaled = nowscaled - get_paca()->startspurr;
321 get_paca()->startspurr = nowscaled;
323 stolen = calculate_stolen_time(now);
325 delta = get_paca()->system_time;
326 get_paca()->system_time = 0;
327 udelta = get_paca()->user_time - get_paca()->utime_sspurr;
328 get_paca()->utime_sspurr = get_paca()->user_time;
331 * Because we don't read the SPURR on every kernel entry/exit,
332 * deltascaled includes both user and system SPURR ticks.
333 * Apportion these ticks to system SPURR ticks and user
334 * SPURR ticks in the same ratio as the system time (delta)
335 * and user time (udelta) values obtained from the timebase
336 * over the same interval. The system ticks get accounted here;
337 * the user ticks get saved up in paca->user_time_scaled to be
338 * used by account_process_tick.
340 sys_scaled = delta;
341 user_scaled = udelta;
342 if (deltascaled != delta + udelta) {
343 if (udelta) {
344 sys_scaled = deltascaled * delta / (delta + udelta);
345 user_scaled = deltascaled - sys_scaled;
346 } else {
347 sys_scaled = deltascaled;
350 get_paca()->user_time_scaled += user_scaled;
352 if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
353 account_system_time(tsk, 0, delta, sys_scaled);
354 if (stolen)
355 account_steal_time(stolen);
356 } else {
357 account_idle_time(delta + stolen);
359 local_irq_restore(flags);
361 EXPORT_SYMBOL_GPL(account_system_vtime);
364 * Transfer the user and system times accumulated in the paca
365 * by the exception entry and exit code to the generic process
366 * user and system time records.
367 * Must be called with interrupts disabled.
368 * Assumes that account_system_vtime() has been called recently
369 * (i.e. since the last entry from usermode) so that
370 * get_paca()->user_time_scaled is up to date.
372 void account_process_tick(struct task_struct *tsk, int user_tick)
374 cputime_t utime, utimescaled;
376 utime = get_paca()->user_time;
377 utimescaled = get_paca()->user_time_scaled;
378 get_paca()->user_time = 0;
379 get_paca()->user_time_scaled = 0;
380 get_paca()->utime_sspurr = 0;
381 account_user_time(tsk, utime, utimescaled);
384 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
385 #define calc_cputime_factors()
386 #endif
388 void __delay(unsigned long loops)
390 unsigned long start;
391 int diff;
393 if (__USE_RTC()) {
394 start = get_rtcl();
395 do {
396 /* the RTCL register wraps at 1000000000 */
397 diff = get_rtcl() - start;
398 if (diff < 0)
399 diff += 1000000000;
400 } while (diff < loops);
401 } else {
402 start = get_tbl();
403 while (get_tbl() - start < loops)
404 HMT_low();
405 HMT_medium();
408 EXPORT_SYMBOL(__delay);
410 void udelay(unsigned long usecs)
412 __delay(tb_ticks_per_usec * usecs);
414 EXPORT_SYMBOL(udelay);
416 #ifdef CONFIG_SMP
417 unsigned long profile_pc(struct pt_regs *regs)
419 unsigned long pc = instruction_pointer(regs);
421 if (in_lock_functions(pc))
422 return regs->link;
424 return pc;
426 EXPORT_SYMBOL(profile_pc);
427 #endif
429 #ifdef CONFIG_PPC_ISERIES
432 * This function recalibrates the timebase based on the 49-bit time-of-day
433 * value in the Titan chip. The Titan is much more accurate than the value
434 * returned by the service processor for the timebase frequency.
437 static int __init iSeries_tb_recal(void)
439 unsigned long titan, tb;
441 /* Make sure we only run on iSeries */
442 if (!firmware_has_feature(FW_FEATURE_ISERIES))
443 return -ENODEV;
445 tb = get_tb();
446 titan = HvCallXm_loadTod();
447 if ( iSeries_recal_titan ) {
448 unsigned long tb_ticks = tb - iSeries_recal_tb;
449 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
450 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
451 unsigned long new_tb_ticks_per_jiffy =
452 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
453 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
454 char sign = '+';
455 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
456 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
458 if ( tick_diff < 0 ) {
459 tick_diff = -tick_diff;
460 sign = '-';
462 if ( tick_diff ) {
463 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
464 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
465 new_tb_ticks_per_jiffy, sign, tick_diff );
466 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
467 tb_ticks_per_sec = new_tb_ticks_per_sec;
468 calc_cputime_factors();
469 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
470 setup_cputime_one_jiffy();
472 else {
473 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
474 " new tb_ticks_per_jiffy = %lu\n"
475 " old tb_ticks_per_jiffy = %lu\n",
476 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
480 iSeries_recal_titan = titan;
481 iSeries_recal_tb = tb;
483 /* Called here as now we know accurate values for the timebase */
484 clocksource_init();
485 return 0;
487 late_initcall(iSeries_tb_recal);
489 /* Called from platform early init */
490 void __init iSeries_time_init_early(void)
492 iSeries_recal_tb = get_tb();
493 iSeries_recal_titan = HvCallXm_loadTod();
495 #endif /* CONFIG_PPC_ISERIES */
497 #ifdef CONFIG_IRQ_WORK
500 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
502 #ifdef CONFIG_PPC64
503 static inline unsigned long test_irq_work_pending(void)
505 unsigned long x;
507 asm volatile("lbz %0,%1(13)"
508 : "=r" (x)
509 : "i" (offsetof(struct paca_struct, irq_work_pending)));
510 return x;
513 static inline void set_irq_work_pending_flag(void)
515 asm volatile("stb %0,%1(13)" : :
516 "r" (1),
517 "i" (offsetof(struct paca_struct, irq_work_pending)));
520 static inline void clear_irq_work_pending(void)
522 asm volatile("stb %0,%1(13)" : :
523 "r" (0),
524 "i" (offsetof(struct paca_struct, irq_work_pending)));
527 #else /* 32-bit */
529 DEFINE_PER_CPU(u8, irq_work_pending);
531 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
532 #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
533 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
535 #endif /* 32 vs 64 bit */
537 void arch_irq_work_raise(void)
539 preempt_disable();
540 set_irq_work_pending_flag();
541 set_dec(1);
542 preempt_enable();
545 #else /* CONFIG_IRQ_WORK */
547 #define test_irq_work_pending() 0
548 #define clear_irq_work_pending()
550 #endif /* CONFIG_IRQ_WORK */
553 * For iSeries shared processors, we have to let the hypervisor
554 * set the hardware decrementer. We set a virtual decrementer
555 * in the lppaca and call the hypervisor if the virtual
556 * decrementer is less than the current value in the hardware
557 * decrementer. (almost always the new decrementer value will
558 * be greater than the current hardware decementer so the hypervisor
559 * call will not be needed)
563 * timer_interrupt - gets called when the decrementer overflows,
564 * with interrupts disabled.
566 void timer_interrupt(struct pt_regs * regs)
568 struct pt_regs *old_regs;
569 u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
570 struct clock_event_device *evt = &__get_cpu_var(decrementers);
572 /* Ensure a positive value is written to the decrementer, or else
573 * some CPUs will continue to take decrementer exceptions.
575 set_dec(DECREMENTER_MAX);
577 /* Some implementations of hotplug will get timer interrupts while
578 * offline, just ignore these
580 if (!cpu_online(smp_processor_id()))
581 return;
583 trace_timer_interrupt_entry(regs);
585 __get_cpu_var(irq_stat).timer_irqs++;
587 #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
588 if (atomic_read(&ppc_n_lost_interrupts) != 0)
589 do_IRQ(regs);
590 #endif
592 old_regs = set_irq_regs(regs);
593 irq_enter();
595 if (test_irq_work_pending()) {
596 clear_irq_work_pending();
597 irq_work_run();
600 #ifdef CONFIG_PPC_ISERIES
601 if (firmware_has_feature(FW_FEATURE_ISERIES))
602 get_lppaca()->int_dword.fields.decr_int = 0;
603 #endif
605 *next_tb = ~(u64)0;
606 if (evt->event_handler)
607 evt->event_handler(evt);
609 #ifdef CONFIG_PPC_ISERIES
610 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
611 process_hvlpevents();
612 #endif
614 #ifdef CONFIG_PPC64
615 /* collect purr register values often, for accurate calculations */
616 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
617 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
618 cu->current_tb = mfspr(SPRN_PURR);
620 #endif
622 irq_exit();
623 set_irq_regs(old_regs);
625 trace_timer_interrupt_exit(regs);
628 #ifdef CONFIG_SUSPEND
629 static void generic_suspend_disable_irqs(void)
631 /* Disable the decrementer, so that it doesn't interfere
632 * with suspending.
635 set_dec(DECREMENTER_MAX);
636 local_irq_disable();
637 set_dec(DECREMENTER_MAX);
640 static void generic_suspend_enable_irqs(void)
642 local_irq_enable();
645 /* Overrides the weak version in kernel/power/main.c */
646 void arch_suspend_disable_irqs(void)
648 if (ppc_md.suspend_disable_irqs)
649 ppc_md.suspend_disable_irqs();
650 generic_suspend_disable_irqs();
653 /* Overrides the weak version in kernel/power/main.c */
654 void arch_suspend_enable_irqs(void)
656 generic_suspend_enable_irqs();
657 if (ppc_md.suspend_enable_irqs)
658 ppc_md.suspend_enable_irqs();
660 #endif
663 * Scheduler clock - returns current time in nanosec units.
665 * Note: mulhdu(a, b) (multiply high double unsigned) returns
666 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
667 * are 64-bit unsigned numbers.
669 unsigned long long sched_clock(void)
671 if (__USE_RTC())
672 return get_rtc();
673 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
676 static int __init get_freq(char *name, int cells, unsigned long *val)
678 struct device_node *cpu;
679 const unsigned int *fp;
680 int found = 0;
682 /* The cpu node should have timebase and clock frequency properties */
683 cpu = of_find_node_by_type(NULL, "cpu");
685 if (cpu) {
686 fp = of_get_property(cpu, name, NULL);
687 if (fp) {
688 found = 1;
689 *val = of_read_ulong(fp, cells);
692 of_node_put(cpu);
695 return found;
698 /* should become __cpuinit when secondary_cpu_time_init also is */
699 void start_cpu_decrementer(void)
701 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
702 /* Clear any pending timer interrupts */
703 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
705 /* Enable decrementer interrupt */
706 mtspr(SPRN_TCR, TCR_DIE);
707 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
710 void __init generic_calibrate_decr(void)
712 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
714 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
715 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
717 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
718 "(not found)\n");
721 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
723 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
724 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
726 printk(KERN_ERR "WARNING: Estimating processor frequency "
727 "(not found)\n");
731 int update_persistent_clock(struct timespec now)
733 struct rtc_time tm;
735 if (!ppc_md.set_rtc_time)
736 return 0;
738 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
739 tm.tm_year -= 1900;
740 tm.tm_mon -= 1;
742 return ppc_md.set_rtc_time(&tm);
745 static void __read_persistent_clock(struct timespec *ts)
747 struct rtc_time tm;
748 static int first = 1;
750 ts->tv_nsec = 0;
751 /* XXX this is a litle fragile but will work okay in the short term */
752 if (first) {
753 first = 0;
754 if (ppc_md.time_init)
755 timezone_offset = ppc_md.time_init();
757 /* get_boot_time() isn't guaranteed to be safe to call late */
758 if (ppc_md.get_boot_time) {
759 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
760 return;
763 if (!ppc_md.get_rtc_time) {
764 ts->tv_sec = 0;
765 return;
767 ppc_md.get_rtc_time(&tm);
769 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
770 tm.tm_hour, tm.tm_min, tm.tm_sec);
773 void read_persistent_clock(struct timespec *ts)
775 __read_persistent_clock(ts);
777 /* Sanitize it in case real time clock is set below EPOCH */
778 if (ts->tv_sec < 0) {
779 ts->tv_sec = 0;
780 ts->tv_nsec = 0;
785 /* clocksource code */
786 static cycle_t rtc_read(struct clocksource *cs)
788 return (cycle_t)get_rtc();
791 static cycle_t timebase_read(struct clocksource *cs)
793 return (cycle_t)get_tb();
796 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
797 struct clocksource *clock, u32 mult)
799 u64 new_tb_to_xs, new_stamp_xsec;
800 u32 frac_sec;
802 if (clock != &clocksource_timebase)
803 return;
805 /* Make userspace gettimeofday spin until we're done. */
806 ++vdso_data->tb_update_count;
807 smp_mb();
809 /* 19342813113834067 ~= 2^(20+64) / 1e9 */
810 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
811 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
812 do_div(new_stamp_xsec, 1000000000);
813 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
815 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
816 /* this is tv_nsec / 1e9 as a 0.32 fraction */
817 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
820 * tb_update_count is used to allow the userspace gettimeofday code
821 * to assure itself that it sees a consistent view of the tb_to_xs and
822 * stamp_xsec variables. It reads the tb_update_count, then reads
823 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
824 * the two values of tb_update_count match and are even then the
825 * tb_to_xs and stamp_xsec values are consistent. If not, then it
826 * loops back and reads them again until this criteria is met.
827 * We expect the caller to have done the first increment of
828 * vdso_data->tb_update_count already.
830 vdso_data->tb_orig_stamp = clock->cycle_last;
831 vdso_data->stamp_xsec = new_stamp_xsec;
832 vdso_data->tb_to_xs = new_tb_to_xs;
833 vdso_data->wtom_clock_sec = wtm->tv_sec;
834 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
835 vdso_data->stamp_xtime = *wall_time;
836 vdso_data->stamp_sec_fraction = frac_sec;
837 smp_wmb();
838 ++(vdso_data->tb_update_count);
841 void update_vsyscall_tz(void)
843 /* Make userspace gettimeofday spin until we're done. */
844 ++vdso_data->tb_update_count;
845 smp_mb();
846 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
847 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
848 smp_mb();
849 ++vdso_data->tb_update_count;
852 static void __init clocksource_init(void)
854 struct clocksource *clock;
856 if (__USE_RTC())
857 clock = &clocksource_rtc;
858 else
859 clock = &clocksource_timebase;
861 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
862 printk(KERN_ERR "clocksource: %s is already registered\n",
863 clock->name);
864 return;
867 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
868 clock->name, clock->mult, clock->shift);
871 static int decrementer_set_next_event(unsigned long evt,
872 struct clock_event_device *dev)
874 __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
875 set_dec(evt);
876 return 0;
879 static void decrementer_set_mode(enum clock_event_mode mode,
880 struct clock_event_device *dev)
882 if (mode != CLOCK_EVT_MODE_ONESHOT)
883 decrementer_set_next_event(DECREMENTER_MAX, dev);
886 static void register_decrementer_clockevent(int cpu)
888 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
890 *dec = decrementer_clockevent;
891 dec->cpumask = cpumask_of(cpu);
893 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
894 dec->name, dec->mult, dec->shift, cpu);
896 clockevents_register_device(dec);
899 static void __init init_decrementer_clockevent(void)
901 int cpu = smp_processor_id();
903 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
905 decrementer_clockevent.max_delta_ns =
906 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
907 decrementer_clockevent.min_delta_ns =
908 clockevent_delta2ns(2, &decrementer_clockevent);
910 register_decrementer_clockevent(cpu);
913 void secondary_cpu_time_init(void)
915 /* Start the decrementer on CPUs that have manual control
916 * such as BookE
918 start_cpu_decrementer();
920 /* FIME: Should make unrelatred change to move snapshot_timebase
921 * call here ! */
922 register_decrementer_clockevent(smp_processor_id());
925 /* This function is only called on the boot processor */
926 void __init time_init(void)
928 struct div_result res;
929 u64 scale;
930 unsigned shift;
932 if (__USE_RTC()) {
933 /* 601 processor: dec counts down by 128 every 128ns */
934 ppc_tb_freq = 1000000000;
935 } else {
936 /* Normal PowerPC with timebase register */
937 ppc_md.calibrate_decr();
938 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
939 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
940 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
941 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
944 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
945 tb_ticks_per_sec = ppc_tb_freq;
946 tb_ticks_per_usec = ppc_tb_freq / 1000000;
947 calc_cputime_factors();
948 setup_cputime_one_jiffy();
951 * Compute scale factor for sched_clock.
952 * The calibrate_decr() function has set tb_ticks_per_sec,
953 * which is the timebase frequency.
954 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
955 * the 128-bit result as a 64.64 fixed-point number.
956 * We then shift that number right until it is less than 1.0,
957 * giving us the scale factor and shift count to use in
958 * sched_clock().
960 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
961 scale = res.result_low;
962 for (shift = 0; res.result_high != 0; ++shift) {
963 scale = (scale >> 1) | (res.result_high << 63);
964 res.result_high >>= 1;
966 tb_to_ns_scale = scale;
967 tb_to_ns_shift = shift;
968 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
969 boot_tb = get_tb_or_rtc();
971 /* If platform provided a timezone (pmac), we correct the time */
972 if (timezone_offset) {
973 sys_tz.tz_minuteswest = -timezone_offset / 60;
974 sys_tz.tz_dsttime = 0;
977 vdso_data->tb_update_count = 0;
978 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
980 /* Start the decrementer on CPUs that have manual control
981 * such as BookE
983 start_cpu_decrementer();
985 /* Register the clocksource, if we're not running on iSeries */
986 if (!firmware_has_feature(FW_FEATURE_ISERIES))
987 clocksource_init();
989 init_decrementer_clockevent();
993 #define FEBRUARY 2
994 #define STARTOFTIME 1970
995 #define SECDAY 86400L
996 #define SECYR (SECDAY * 365)
997 #define leapyear(year) ((year) % 4 == 0 && \
998 ((year) % 100 != 0 || (year) % 400 == 0))
999 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1000 #define days_in_month(a) (month_days[(a) - 1])
1002 static int month_days[12] = {
1003 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1007 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1009 void GregorianDay(struct rtc_time * tm)
1011 int leapsToDate;
1012 int lastYear;
1013 int day;
1014 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1016 lastYear = tm->tm_year - 1;
1019 * Number of leap corrections to apply up to end of last year
1021 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1024 * This year is a leap year if it is divisible by 4 except when it is
1025 * divisible by 100 unless it is divisible by 400
1027 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1029 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1031 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1032 tm->tm_mday;
1034 tm->tm_wday = day % 7;
1037 void to_tm(int tim, struct rtc_time * tm)
1039 register int i;
1040 register long hms, day;
1042 day = tim / SECDAY;
1043 hms = tim % SECDAY;
1045 /* Hours, minutes, seconds are easy */
1046 tm->tm_hour = hms / 3600;
1047 tm->tm_min = (hms % 3600) / 60;
1048 tm->tm_sec = (hms % 3600) % 60;
1050 /* Number of years in days */
1051 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1052 day -= days_in_year(i);
1053 tm->tm_year = i;
1055 /* Number of months in days left */
1056 if (leapyear(tm->tm_year))
1057 days_in_month(FEBRUARY) = 29;
1058 for (i = 1; day >= days_in_month(i); i++)
1059 day -= days_in_month(i);
1060 days_in_month(FEBRUARY) = 28;
1061 tm->tm_mon = i;
1063 /* Days are what is left over (+1) from all that. */
1064 tm->tm_mday = day + 1;
1067 * Determine the day of week
1069 GregorianDay(tm);
1073 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1074 * result.
1076 void div128_by_32(u64 dividend_high, u64 dividend_low,
1077 unsigned divisor, struct div_result *dr)
1079 unsigned long a, b, c, d;
1080 unsigned long w, x, y, z;
1081 u64 ra, rb, rc;
1083 a = dividend_high >> 32;
1084 b = dividend_high & 0xffffffff;
1085 c = dividend_low >> 32;
1086 d = dividend_low & 0xffffffff;
1088 w = a / divisor;
1089 ra = ((u64)(a - (w * divisor)) << 32) + b;
1091 rb = ((u64) do_div(ra, divisor) << 32) + c;
1092 x = ra;
1094 rc = ((u64) do_div(rb, divisor) << 32) + d;
1095 y = rb;
1097 do_div(rc, divisor);
1098 z = rc;
1100 dr->result_high = ((u64)w << 32) + x;
1101 dr->result_low = ((u64)y << 32) + z;
1105 /* We don't need to calibrate delay, we use the CPU timebase for that */
1106 void calibrate_delay(void)
1108 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1109 * as the number of __delay(1) in a jiffy, so make it so
1111 loops_per_jiffy = tb_ticks_per_jiffy;
1114 static int __init rtc_init(void)
1116 struct platform_device *pdev;
1118 if (!ppc_md.get_rtc_time)
1119 return -ENODEV;
1121 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1122 if (IS_ERR(pdev))
1123 return PTR_ERR(pdev);
1125 return 0;
1128 module_init(rtc_init);