4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
15 #include <linux/mmzone.h>
16 #include <linux/export.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
22 #include <linux/pfn.h>
23 #include <linux/cpuset.h>
24 #include <linux/node.h>
25 #include <asm/sparsemem.h>
27 #include <asm/system.h>
29 #include <asm/firmware.h>
31 #include <asm/hvcall.h>
33 static int numa_enabled
= 1;
35 static char *cmdline __initdata
;
37 static int numa_debug
;
38 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
40 int numa_cpu_lookup_table
[NR_CPUS
];
41 cpumask_var_t node_to_cpumask_map
[MAX_NUMNODES
];
42 struct pglist_data
*node_data
[MAX_NUMNODES
];
44 EXPORT_SYMBOL(numa_cpu_lookup_table
);
45 EXPORT_SYMBOL(node_to_cpumask_map
);
46 EXPORT_SYMBOL(node_data
);
48 static int min_common_depth
;
49 static int n_mem_addr_cells
, n_mem_size_cells
;
50 static int form1_affinity
;
52 #define MAX_DISTANCE_REF_POINTS 4
53 static int distance_ref_points_depth
;
54 static const unsigned int *distance_ref_points
;
55 static int distance_lookup_table
[MAX_NUMNODES
][MAX_DISTANCE_REF_POINTS
];
58 * Allocate node_to_cpumask_map based on number of available nodes
59 * Requires node_possible_map to be valid.
61 * Note: cpumask_of_node() is not valid until after this is done.
63 static void __init
setup_node_to_cpumask_map(void)
65 unsigned int node
, num
= 0;
67 /* setup nr_node_ids if not done yet */
68 if (nr_node_ids
== MAX_NUMNODES
) {
69 for_each_node_mask(node
, node_possible_map
)
71 nr_node_ids
= num
+ 1;
74 /* allocate the map */
75 for (node
= 0; node
< nr_node_ids
; node
++)
76 alloc_bootmem_cpumask_var(&node_to_cpumask_map
[node
]);
78 /* cpumask_of_node() will now work */
79 dbg("Node to cpumask map for %d nodes\n", nr_node_ids
);
82 static int __cpuinit
fake_numa_create_new_node(unsigned long end_pfn
,
85 unsigned long long mem
;
87 static unsigned int fake_nid
;
88 static unsigned long long curr_boundary
;
91 * Modify node id, iff we started creating NUMA nodes
92 * We want to continue from where we left of the last time
97 * In case there are no more arguments to parse, the
98 * node_id should be the same as the last fake node id
99 * (we've handled this above).
104 mem
= memparse(p
, &p
);
108 if (mem
< curr_boundary
)
113 if ((end_pfn
<< PAGE_SHIFT
) > mem
) {
115 * Skip commas and spaces
117 while (*p
== ',' || *p
== ' ' || *p
== '\t')
123 dbg("created new fake_node with id %d\n", fake_nid
);
130 * get_node_active_region - Return active region containing pfn
131 * Active range returned is empty if none found.
132 * @pfn: The page to return the region for
133 * @node_ar: Returned set to the active region containing @pfn
135 static void __init
get_node_active_region(unsigned long pfn
,
136 struct node_active_region
*node_ar
)
138 unsigned long start_pfn
, end_pfn
;
141 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
142 if (pfn
>= start_pfn
&& pfn
< end_pfn
) {
144 node_ar
->start_pfn
= start_pfn
;
145 node_ar
->end_pfn
= end_pfn
;
151 static void map_cpu_to_node(int cpu
, int node
)
153 numa_cpu_lookup_table
[cpu
] = node
;
155 dbg("adding cpu %d to node %d\n", cpu
, node
);
157 if (!(cpumask_test_cpu(cpu
, node_to_cpumask_map
[node
])))
158 cpumask_set_cpu(cpu
, node_to_cpumask_map
[node
]);
161 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
162 static void unmap_cpu_from_node(unsigned long cpu
)
164 int node
= numa_cpu_lookup_table
[cpu
];
166 dbg("removing cpu %lu from node %d\n", cpu
, node
);
168 if (cpumask_test_cpu(cpu
, node_to_cpumask_map
[node
])) {
169 cpumask_clear_cpu(cpu
, node_to_cpumask_map
[node
]);
171 printk(KERN_ERR
"WARNING: cpu %lu not found in node %d\n",
175 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
177 /* must hold reference to node during call */
178 static const int *of_get_associativity(struct device_node
*dev
)
180 return of_get_property(dev
, "ibm,associativity", NULL
);
184 * Returns the property linux,drconf-usable-memory if
185 * it exists (the property exists only in kexec/kdump kernels,
186 * added by kexec-tools)
188 static const u32
*of_get_usable_memory(struct device_node
*memory
)
192 prop
= of_get_property(memory
, "linux,drconf-usable-memory", &len
);
193 if (!prop
|| len
< sizeof(unsigned int))
198 int __node_distance(int a
, int b
)
201 int distance
= LOCAL_DISTANCE
;
206 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
207 if (distance_lookup_table
[a
][i
] == distance_lookup_table
[b
][i
])
210 /* Double the distance for each NUMA level */
217 static void initialize_distance_lookup_table(int nid
,
218 const unsigned int *associativity
)
225 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
226 distance_lookup_table
[nid
][i
] =
227 associativity
[distance_ref_points
[i
]];
231 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
234 static int associativity_to_nid(const unsigned int *associativity
)
238 if (min_common_depth
== -1)
241 if (associativity
[0] >= min_common_depth
)
242 nid
= associativity
[min_common_depth
];
244 /* POWER4 LPAR uses 0xffff as invalid node */
245 if (nid
== 0xffff || nid
>= MAX_NUMNODES
)
248 if (nid
> 0 && associativity
[0] >= distance_ref_points_depth
)
249 initialize_distance_lookup_table(nid
, associativity
);
255 /* Returns the nid associated with the given device tree node,
256 * or -1 if not found.
258 static int of_node_to_nid_single(struct device_node
*device
)
261 const unsigned int *tmp
;
263 tmp
= of_get_associativity(device
);
265 nid
= associativity_to_nid(tmp
);
269 /* Walk the device tree upwards, looking for an associativity id */
270 int of_node_to_nid(struct device_node
*device
)
272 struct device_node
*tmp
;
277 nid
= of_node_to_nid_single(device
);
282 device
= of_get_parent(tmp
);
289 EXPORT_SYMBOL_GPL(of_node_to_nid
);
291 static int __init
find_min_common_depth(void)
294 struct device_node
*chosen
;
295 struct device_node
*root
;
298 if (firmware_has_feature(FW_FEATURE_OPAL
))
299 root
= of_find_node_by_path("/ibm,opal");
301 root
= of_find_node_by_path("/rtas");
303 root
= of_find_node_by_path("/");
306 * This property is a set of 32-bit integers, each representing
307 * an index into the ibm,associativity nodes.
309 * With form 0 affinity the first integer is for an SMP configuration
310 * (should be all 0's) and the second is for a normal NUMA
311 * configuration. We have only one level of NUMA.
313 * With form 1 affinity the first integer is the most significant
314 * NUMA boundary and the following are progressively less significant
315 * boundaries. There can be more than one level of NUMA.
317 distance_ref_points
= of_get_property(root
,
318 "ibm,associativity-reference-points",
319 &distance_ref_points_depth
);
321 if (!distance_ref_points
) {
322 dbg("NUMA: ibm,associativity-reference-points not found.\n");
326 distance_ref_points_depth
/= sizeof(int);
328 #define VEC5_AFFINITY_BYTE 5
329 #define VEC5_AFFINITY 0x80
331 if (firmware_has_feature(FW_FEATURE_OPAL
))
334 chosen
= of_find_node_by_path("/chosen");
336 vec5
= of_get_property(chosen
,
337 "ibm,architecture-vec-5", NULL
);
338 if (vec5
&& (vec5
[VEC5_AFFINITY_BYTE
] &
340 dbg("Using form 1 affinity\n");
346 if (form1_affinity
) {
347 depth
= distance_ref_points
[0];
349 if (distance_ref_points_depth
< 2) {
350 printk(KERN_WARNING
"NUMA: "
351 "short ibm,associativity-reference-points\n");
355 depth
= distance_ref_points
[1];
359 * Warn and cap if the hardware supports more than
360 * MAX_DISTANCE_REF_POINTS domains.
362 if (distance_ref_points_depth
> MAX_DISTANCE_REF_POINTS
) {
363 printk(KERN_WARNING
"NUMA: distance array capped at "
364 "%d entries\n", MAX_DISTANCE_REF_POINTS
);
365 distance_ref_points_depth
= MAX_DISTANCE_REF_POINTS
;
376 static void __init
get_n_mem_cells(int *n_addr_cells
, int *n_size_cells
)
378 struct device_node
*memory
= NULL
;
380 memory
= of_find_node_by_type(memory
, "memory");
382 panic("numa.c: No memory nodes found!");
384 *n_addr_cells
= of_n_addr_cells(memory
);
385 *n_size_cells
= of_n_size_cells(memory
);
389 static unsigned long read_n_cells(int n
, const unsigned int **buf
)
391 unsigned long result
= 0;
394 result
= (result
<< 32) | **buf
;
400 struct of_drconf_cell
{
408 #define DRCONF_MEM_ASSIGNED 0x00000008
409 #define DRCONF_MEM_AI_INVALID 0x00000040
410 #define DRCONF_MEM_RESERVED 0x00000080
413 * Read the next memblock list entry from the ibm,dynamic-memory property
414 * and return the information in the provided of_drconf_cell structure.
416 static void read_drconf_cell(struct of_drconf_cell
*drmem
, const u32
**cellp
)
420 drmem
->base_addr
= read_n_cells(n_mem_addr_cells
, cellp
);
423 drmem
->drc_index
= cp
[0];
424 drmem
->reserved
= cp
[1];
425 drmem
->aa_index
= cp
[2];
426 drmem
->flags
= cp
[3];
432 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
434 * The layout of the ibm,dynamic-memory property is a number N of memblock
435 * list entries followed by N memblock list entries. Each memblock list entry
436 * contains information as laid out in the of_drconf_cell struct above.
438 static int of_get_drconf_memory(struct device_node
*memory
, const u32
**dm
)
443 prop
= of_get_property(memory
, "ibm,dynamic-memory", &len
);
444 if (!prop
|| len
< sizeof(unsigned int))
449 /* Now that we know the number of entries, revalidate the size
450 * of the property read in to ensure we have everything
452 if (len
< (entries
* (n_mem_addr_cells
+ 4) + 1) * sizeof(unsigned int))
460 * Retrieve and validate the ibm,lmb-size property for drconf memory
461 * from the device tree.
463 static u64
of_get_lmb_size(struct device_node
*memory
)
468 prop
= of_get_property(memory
, "ibm,lmb-size", &len
);
469 if (!prop
|| len
< sizeof(unsigned int))
472 return read_n_cells(n_mem_size_cells
, &prop
);
475 struct assoc_arrays
{
482 * Retrieve and validate the list of associativity arrays for drconf
483 * memory from the ibm,associativity-lookup-arrays property of the
486 * The layout of the ibm,associativity-lookup-arrays property is a number N
487 * indicating the number of associativity arrays, followed by a number M
488 * indicating the size of each associativity array, followed by a list
489 * of N associativity arrays.
491 static int of_get_assoc_arrays(struct device_node
*memory
,
492 struct assoc_arrays
*aa
)
497 prop
= of_get_property(memory
, "ibm,associativity-lookup-arrays", &len
);
498 if (!prop
|| len
< 2 * sizeof(unsigned int))
501 aa
->n_arrays
= *prop
++;
502 aa
->array_sz
= *prop
++;
504 /* Now that we know the number of arrays and size of each array,
505 * revalidate the size of the property read in.
507 if (len
< (aa
->n_arrays
* aa
->array_sz
+ 2) * sizeof(unsigned int))
515 * This is like of_node_to_nid_single() for memory represented in the
516 * ibm,dynamic-reconfiguration-memory node.
518 static int of_drconf_to_nid_single(struct of_drconf_cell
*drmem
,
519 struct assoc_arrays
*aa
)
522 int nid
= default_nid
;
525 if (min_common_depth
> 0 && min_common_depth
<= aa
->array_sz
&&
526 !(drmem
->flags
& DRCONF_MEM_AI_INVALID
) &&
527 drmem
->aa_index
< aa
->n_arrays
) {
528 index
= drmem
->aa_index
* aa
->array_sz
+ min_common_depth
- 1;
529 nid
= aa
->arrays
[index
];
531 if (nid
== 0xffff || nid
>= MAX_NUMNODES
)
539 * Figure out to which domain a cpu belongs and stick it there.
540 * Return the id of the domain used.
542 static int __cpuinit
numa_setup_cpu(unsigned long lcpu
)
545 struct device_node
*cpu
= of_get_cpu_node(lcpu
, NULL
);
552 nid
= of_node_to_nid_single(cpu
);
554 if (nid
< 0 || !node_online(nid
))
555 nid
= first_online_node
;
557 map_cpu_to_node(lcpu
, nid
);
564 static int __cpuinit
cpu_numa_callback(struct notifier_block
*nfb
,
565 unsigned long action
,
568 unsigned long lcpu
= (unsigned long)hcpu
;
569 int ret
= NOTIFY_DONE
;
573 case CPU_UP_PREPARE_FROZEN
:
574 numa_setup_cpu(lcpu
);
577 #ifdef CONFIG_HOTPLUG_CPU
579 case CPU_DEAD_FROZEN
:
580 case CPU_UP_CANCELED
:
581 case CPU_UP_CANCELED_FROZEN
:
582 unmap_cpu_from_node(lcpu
);
591 * Check and possibly modify a memory region to enforce the memory limit.
593 * Returns the size the region should have to enforce the memory limit.
594 * This will either be the original value of size, a truncated value,
595 * or zero. If the returned value of size is 0 the region should be
596 * discarded as it lies wholly above the memory limit.
598 static unsigned long __init
numa_enforce_memory_limit(unsigned long start
,
602 * We use memblock_end_of_DRAM() in here instead of memory_limit because
603 * we've already adjusted it for the limit and it takes care of
604 * having memory holes below the limit. Also, in the case of
605 * iommu_is_off, memory_limit is not set but is implicitly enforced.
608 if (start
+ size
<= memblock_end_of_DRAM())
611 if (start
>= memblock_end_of_DRAM())
614 return memblock_end_of_DRAM() - start
;
618 * Reads the counter for a given entry in
619 * linux,drconf-usable-memory property
621 static inline int __init
read_usm_ranges(const u32
**usm
)
624 * For each lmb in ibm,dynamic-memory a corresponding
625 * entry in linux,drconf-usable-memory property contains
626 * a counter followed by that many (base, size) duple.
627 * read the counter from linux,drconf-usable-memory
629 return read_n_cells(n_mem_size_cells
, usm
);
633 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
634 * node. This assumes n_mem_{addr,size}_cells have been set.
636 static void __init
parse_drconf_memory(struct device_node
*memory
)
639 unsigned int n
, rc
, ranges
, is_kexec_kdump
= 0;
640 unsigned long lmb_size
, base
, size
, sz
;
642 struct assoc_arrays aa
;
644 n
= of_get_drconf_memory(memory
, &dm
);
648 lmb_size
= of_get_lmb_size(memory
);
652 rc
= of_get_assoc_arrays(memory
, &aa
);
656 /* check if this is a kexec/kdump kernel */
657 usm
= of_get_usable_memory(memory
);
661 for (; n
!= 0; --n
) {
662 struct of_drconf_cell drmem
;
664 read_drconf_cell(&drmem
, &dm
);
666 /* skip this block if the reserved bit is set in flags (0x80)
667 or if the block is not assigned to this partition (0x8) */
668 if ((drmem
.flags
& DRCONF_MEM_RESERVED
)
669 || !(drmem
.flags
& DRCONF_MEM_ASSIGNED
))
672 base
= drmem
.base_addr
;
676 if (is_kexec_kdump
) {
677 ranges
= read_usm_ranges(&usm
);
678 if (!ranges
) /* there are no (base, size) duple */
682 if (is_kexec_kdump
) {
683 base
= read_n_cells(n_mem_addr_cells
, &usm
);
684 size
= read_n_cells(n_mem_size_cells
, &usm
);
686 nid
= of_drconf_to_nid_single(&drmem
, &aa
);
687 fake_numa_create_new_node(
688 ((base
+ size
) >> PAGE_SHIFT
),
690 node_set_online(nid
);
691 sz
= numa_enforce_memory_limit(base
, size
);
693 memblock_set_node(base
, sz
, nid
);
698 static int __init
parse_numa_properties(void)
700 struct device_node
*memory
;
704 if (numa_enabled
== 0) {
705 printk(KERN_WARNING
"NUMA disabled by user\n");
709 min_common_depth
= find_min_common_depth();
711 if (min_common_depth
< 0)
712 return min_common_depth
;
714 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth
);
717 * Even though we connect cpus to numa domains later in SMP
718 * init, we need to know the node ids now. This is because
719 * each node to be onlined must have NODE_DATA etc backing it.
721 for_each_present_cpu(i
) {
722 struct device_node
*cpu
;
725 cpu
= of_get_cpu_node(i
, NULL
);
727 nid
= of_node_to_nid_single(cpu
);
731 * Don't fall back to default_nid yet -- we will plug
732 * cpus into nodes once the memory scan has discovered
737 node_set_online(nid
);
740 get_n_mem_cells(&n_mem_addr_cells
, &n_mem_size_cells
);
742 for_each_node_by_type(memory
, "memory") {
747 const unsigned int *memcell_buf
;
750 memcell_buf
= of_get_property(memory
,
751 "linux,usable-memory", &len
);
752 if (!memcell_buf
|| len
<= 0)
753 memcell_buf
= of_get_property(memory
, "reg", &len
);
754 if (!memcell_buf
|| len
<= 0)
758 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
760 /* these are order-sensitive, and modify the buffer pointer */
761 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
762 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
765 * Assumption: either all memory nodes or none will
766 * have associativity properties. If none, then
767 * everything goes to default_nid.
769 nid
= of_node_to_nid_single(memory
);
773 fake_numa_create_new_node(((start
+ size
) >> PAGE_SHIFT
), &nid
);
774 node_set_online(nid
);
776 if (!(size
= numa_enforce_memory_limit(start
, size
))) {
783 memblock_set_node(start
, size
, nid
);
790 * Now do the same thing for each MEMBLOCK listed in the
791 * ibm,dynamic-memory property in the
792 * ibm,dynamic-reconfiguration-memory node.
794 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
796 parse_drconf_memory(memory
);
801 static void __init
setup_nonnuma(void)
803 unsigned long top_of_ram
= memblock_end_of_DRAM();
804 unsigned long total_ram
= memblock_phys_mem_size();
805 unsigned long start_pfn
, end_pfn
;
806 unsigned int nid
= 0;
807 struct memblock_region
*reg
;
809 printk(KERN_DEBUG
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
810 top_of_ram
, total_ram
);
811 printk(KERN_DEBUG
"Memory hole size: %ldMB\n",
812 (top_of_ram
- total_ram
) >> 20);
814 for_each_memblock(memory
, reg
) {
815 start_pfn
= memblock_region_memory_base_pfn(reg
);
816 end_pfn
= memblock_region_memory_end_pfn(reg
);
818 fake_numa_create_new_node(end_pfn
, &nid
);
819 memblock_set_node(PFN_PHYS(start_pfn
),
820 PFN_PHYS(end_pfn
- start_pfn
), nid
);
821 node_set_online(nid
);
825 void __init
dump_numa_cpu_topology(void)
828 unsigned int cpu
, count
;
830 if (min_common_depth
== -1 || !numa_enabled
)
833 for_each_online_node(node
) {
834 printk(KERN_DEBUG
"Node %d CPUs:", node
);
838 * If we used a CPU iterator here we would miss printing
839 * the holes in the cpumap.
841 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++) {
842 if (cpumask_test_cpu(cpu
,
843 node_to_cpumask_map
[node
])) {
849 printk("-%u", cpu
- 1);
855 printk("-%u", nr_cpu_ids
- 1);
860 static void __init
dump_numa_memory_topology(void)
865 if (min_common_depth
== -1 || !numa_enabled
)
868 for_each_online_node(node
) {
871 printk(KERN_DEBUG
"Node %d Memory:", node
);
875 for (i
= 0; i
< memblock_end_of_DRAM();
876 i
+= (1 << SECTION_SIZE_BITS
)) {
877 if (early_pfn_to_nid(i
>> PAGE_SHIFT
) == node
) {
895 * Allocate some memory, satisfying the memblock or bootmem allocator where
896 * required. nid is the preferred node and end is the physical address of
897 * the highest address in the node.
899 * Returns the virtual address of the memory.
901 static void __init
*careful_zallocation(int nid
, unsigned long size
,
903 unsigned long end_pfn
)
907 unsigned long ret_paddr
;
909 ret_paddr
= __memblock_alloc_base(size
, align
, end_pfn
<< PAGE_SHIFT
);
911 /* retry over all memory */
913 ret_paddr
= __memblock_alloc_base(size
, align
, memblock_end_of_DRAM());
916 panic("numa.c: cannot allocate %lu bytes for node %d",
919 ret
= __va(ret_paddr
);
922 * We initialize the nodes in numeric order: 0, 1, 2...
923 * and hand over control from the MEMBLOCK allocator to the
924 * bootmem allocator. If this function is called for
925 * node 5, then we know that all nodes <5 are using the
926 * bootmem allocator instead of the MEMBLOCK allocator.
928 * So, check the nid from which this allocation came
929 * and double check to see if we need to use bootmem
930 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
931 * since it would be useless.
933 new_nid
= early_pfn_to_nid(ret_paddr
>> PAGE_SHIFT
);
935 ret
= __alloc_bootmem_node(NODE_DATA(new_nid
),
938 dbg("alloc_bootmem %p %lx\n", ret
, size
);
941 memset(ret
, 0, size
);
945 static struct notifier_block __cpuinitdata ppc64_numa_nb
= {
946 .notifier_call
= cpu_numa_callback
,
947 .priority
= 1 /* Must run before sched domains notifier. */
950 static void __init
mark_reserved_regions_for_nid(int nid
)
952 struct pglist_data
*node
= NODE_DATA(nid
);
953 struct memblock_region
*reg
;
955 for_each_memblock(reserved
, reg
) {
956 unsigned long physbase
= reg
->base
;
957 unsigned long size
= reg
->size
;
958 unsigned long start_pfn
= physbase
>> PAGE_SHIFT
;
959 unsigned long end_pfn
= PFN_UP(physbase
+ size
);
960 struct node_active_region node_ar
;
961 unsigned long node_end_pfn
= node
->node_start_pfn
+
962 node
->node_spanned_pages
;
965 * Check to make sure that this memblock.reserved area is
966 * within the bounds of the node that we care about.
967 * Checking the nid of the start and end points is not
968 * sufficient because the reserved area could span the
971 if (end_pfn
<= node
->node_start_pfn
||
972 start_pfn
>= node_end_pfn
)
975 get_node_active_region(start_pfn
, &node_ar
);
976 while (start_pfn
< end_pfn
&&
977 node_ar
.start_pfn
< node_ar
.end_pfn
) {
978 unsigned long reserve_size
= size
;
980 * if reserved region extends past active region
981 * then trim size to active region
983 if (end_pfn
> node_ar
.end_pfn
)
984 reserve_size
= (node_ar
.end_pfn
<< PAGE_SHIFT
)
987 * Only worry about *this* node, others may not
988 * yet have valid NODE_DATA().
990 if (node_ar
.nid
== nid
) {
991 dbg("reserve_bootmem %lx %lx nid=%d\n",
992 physbase
, reserve_size
, node_ar
.nid
);
993 reserve_bootmem_node(NODE_DATA(node_ar
.nid
),
994 physbase
, reserve_size
,
998 * if reserved region is contained in the active region
1001 if (end_pfn
<= node_ar
.end_pfn
)
1005 * reserved region extends past the active region
1006 * get next active region that contains this
1009 start_pfn
= node_ar
.end_pfn
;
1010 physbase
= start_pfn
<< PAGE_SHIFT
;
1011 size
= size
- reserve_size
;
1012 get_node_active_region(start_pfn
, &node_ar
);
1018 void __init
do_init_bootmem(void)
1023 max_low_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1024 max_pfn
= max_low_pfn
;
1026 if (parse_numa_properties())
1029 dump_numa_memory_topology();
1031 for_each_online_node(nid
) {
1032 unsigned long start_pfn
, end_pfn
;
1033 void *bootmem_vaddr
;
1034 unsigned long bootmap_pages
;
1036 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
1039 * Allocate the node structure node local if possible
1041 * Be careful moving this around, as it relies on all
1042 * previous nodes' bootmem to be initialized and have
1043 * all reserved areas marked.
1045 NODE_DATA(nid
) = careful_zallocation(nid
,
1046 sizeof(struct pglist_data
),
1047 SMP_CACHE_BYTES
, end_pfn
);
1049 dbg("node %d\n", nid
);
1050 dbg("NODE_DATA() = %p\n", NODE_DATA(nid
));
1052 NODE_DATA(nid
)->bdata
= &bootmem_node_data
[nid
];
1053 NODE_DATA(nid
)->node_start_pfn
= start_pfn
;
1054 NODE_DATA(nid
)->node_spanned_pages
= end_pfn
- start_pfn
;
1056 if (NODE_DATA(nid
)->node_spanned_pages
== 0)
1059 dbg("start_paddr = %lx\n", start_pfn
<< PAGE_SHIFT
);
1060 dbg("end_paddr = %lx\n", end_pfn
<< PAGE_SHIFT
);
1062 bootmap_pages
= bootmem_bootmap_pages(end_pfn
- start_pfn
);
1063 bootmem_vaddr
= careful_zallocation(nid
,
1064 bootmap_pages
<< PAGE_SHIFT
,
1065 PAGE_SIZE
, end_pfn
);
1067 dbg("bootmap_vaddr = %p\n", bootmem_vaddr
);
1069 init_bootmem_node(NODE_DATA(nid
),
1070 __pa(bootmem_vaddr
) >> PAGE_SHIFT
,
1071 start_pfn
, end_pfn
);
1073 free_bootmem_with_active_regions(nid
, end_pfn
);
1075 * Be very careful about moving this around. Future
1076 * calls to careful_zallocation() depend on this getting
1079 mark_reserved_regions_for_nid(nid
);
1080 sparse_memory_present_with_active_regions(nid
);
1083 init_bootmem_done
= 1;
1086 * Now bootmem is initialised we can create the node to cpumask
1087 * lookup tables and setup the cpu callback to populate them.
1089 setup_node_to_cpumask_map();
1091 register_cpu_notifier(&ppc64_numa_nb
);
1092 cpu_numa_callback(&ppc64_numa_nb
, CPU_UP_PREPARE
,
1093 (void *)(unsigned long)boot_cpuid
);
1096 void __init
paging_init(void)
1098 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
1099 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
1100 max_zone_pfns
[ZONE_DMA
] = memblock_end_of_DRAM() >> PAGE_SHIFT
;
1101 free_area_init_nodes(max_zone_pfns
);
1104 static int __init
early_numa(char *p
)
1109 if (strstr(p
, "off"))
1112 if (strstr(p
, "debug"))
1115 p
= strstr(p
, "fake=");
1117 cmdline
= p
+ strlen("fake=");
1121 early_param("numa", early_numa
);
1123 #ifdef CONFIG_MEMORY_HOTPLUG
1125 * Find the node associated with a hot added memory section for
1126 * memory represented in the device tree by the property
1127 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1129 static int hot_add_drconf_scn_to_nid(struct device_node
*memory
,
1130 unsigned long scn_addr
)
1133 unsigned int drconf_cell_cnt
, rc
;
1134 unsigned long lmb_size
;
1135 struct assoc_arrays aa
;
1138 drconf_cell_cnt
= of_get_drconf_memory(memory
, &dm
);
1139 if (!drconf_cell_cnt
)
1142 lmb_size
= of_get_lmb_size(memory
);
1146 rc
= of_get_assoc_arrays(memory
, &aa
);
1150 for (; drconf_cell_cnt
!= 0; --drconf_cell_cnt
) {
1151 struct of_drconf_cell drmem
;
1153 read_drconf_cell(&drmem
, &dm
);
1155 /* skip this block if it is reserved or not assigned to
1157 if ((drmem
.flags
& DRCONF_MEM_RESERVED
)
1158 || !(drmem
.flags
& DRCONF_MEM_ASSIGNED
))
1161 if ((scn_addr
< drmem
.base_addr
)
1162 || (scn_addr
>= (drmem
.base_addr
+ lmb_size
)))
1165 nid
= of_drconf_to_nid_single(&drmem
, &aa
);
1173 * Find the node associated with a hot added memory section for memory
1174 * represented in the device tree as a node (i.e. memory@XXXX) for
1177 int hot_add_node_scn_to_nid(unsigned long scn_addr
)
1179 struct device_node
*memory
;
1182 for_each_node_by_type(memory
, "memory") {
1183 unsigned long start
, size
;
1185 const unsigned int *memcell_buf
;
1188 memcell_buf
= of_get_property(memory
, "reg", &len
);
1189 if (!memcell_buf
|| len
<= 0)
1192 /* ranges in cell */
1193 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
1196 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
1197 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
1199 if ((scn_addr
< start
) || (scn_addr
>= (start
+ size
)))
1202 nid
= of_node_to_nid_single(memory
);
1210 of_node_put(memory
);
1216 * Find the node associated with a hot added memory section. Section
1217 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1218 * sections are fully contained within a single MEMBLOCK.
1220 int hot_add_scn_to_nid(unsigned long scn_addr
)
1222 struct device_node
*memory
= NULL
;
1225 if (!numa_enabled
|| (min_common_depth
< 0))
1226 return first_online_node
;
1228 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1230 nid
= hot_add_drconf_scn_to_nid(memory
, scn_addr
);
1231 of_node_put(memory
);
1233 nid
= hot_add_node_scn_to_nid(scn_addr
);
1236 if (nid
< 0 || !node_online(nid
))
1237 nid
= first_online_node
;
1239 if (NODE_DATA(nid
)->node_spanned_pages
)
1242 for_each_online_node(nid
) {
1243 if (NODE_DATA(nid
)->node_spanned_pages
) {
1253 static u64
hot_add_drconf_memory_max(void)
1255 struct device_node
*memory
= NULL
;
1256 unsigned int drconf_cell_cnt
= 0;
1260 memory
= of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1262 drconf_cell_cnt
= of_get_drconf_memory(memory
, &dm
);
1263 lmb_size
= of_get_lmb_size(memory
);
1264 of_node_put(memory
);
1266 return lmb_size
* drconf_cell_cnt
;
1270 * memory_hotplug_max - return max address of memory that may be added
1272 * This is currently only used on systems that support drconfig memory
1275 u64
memory_hotplug_max(void)
1277 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1279 #endif /* CONFIG_MEMORY_HOTPLUG */
1281 /* Virtual Processor Home Node (VPHN) support */
1282 #ifdef CONFIG_PPC_SPLPAR
1283 static u8 vphn_cpu_change_counts
[NR_CPUS
][MAX_DISTANCE_REF_POINTS
];
1284 static cpumask_t cpu_associativity_changes_mask
;
1285 static int vphn_enabled
;
1286 static void set_topology_timer(void);
1289 * Store the current values of the associativity change counters in the
1292 static void setup_cpu_associativity_change_counters(void)
1296 /* The VPHN feature supports a maximum of 8 reference points */
1297 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS
> 8);
1299 for_each_possible_cpu(cpu
) {
1301 u8
*counts
= vphn_cpu_change_counts
[cpu
];
1302 volatile u8
*hypervisor_counts
= lppaca
[cpu
].vphn_assoc_counts
;
1304 for (i
= 0; i
< distance_ref_points_depth
; i
++)
1305 counts
[i
] = hypervisor_counts
[i
];
1310 * The hypervisor maintains a set of 8 associativity change counters in
1311 * the VPA of each cpu that correspond to the associativity levels in the
1312 * ibm,associativity-reference-points property. When an associativity
1313 * level changes, the corresponding counter is incremented.
1315 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1316 * node associativity levels have changed.
1318 * Returns the number of cpus with unhandled associativity changes.
1320 static int update_cpu_associativity_changes_mask(void)
1322 int cpu
, nr_cpus
= 0;
1323 cpumask_t
*changes
= &cpu_associativity_changes_mask
;
1325 cpumask_clear(changes
);
1327 for_each_possible_cpu(cpu
) {
1329 u8
*counts
= vphn_cpu_change_counts
[cpu
];
1330 volatile u8
*hypervisor_counts
= lppaca
[cpu
].vphn_assoc_counts
;
1332 for (i
= 0; i
< distance_ref_points_depth
; i
++) {
1333 if (hypervisor_counts
[i
] != counts
[i
]) {
1334 counts
[i
] = hypervisor_counts
[i
];
1339 cpumask_set_cpu(cpu
, changes
);
1348 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1349 * the complete property we have to add the length in the first cell.
1351 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1354 * Convert the associativity domain numbers returned from the hypervisor
1355 * to the sequence they would appear in the ibm,associativity property.
1357 static int vphn_unpack_associativity(const long *packed
, unsigned int *unpacked
)
1359 int i
, nr_assoc_doms
= 0;
1360 const u16
*field
= (const u16
*) packed
;
1362 #define VPHN_FIELD_UNUSED (0xffff)
1363 #define VPHN_FIELD_MSB (0x8000)
1364 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1366 for (i
= 1; i
< VPHN_ASSOC_BUFSIZE
; i
++) {
1367 if (*field
== VPHN_FIELD_UNUSED
) {
1368 /* All significant fields processed, and remaining
1369 * fields contain the reserved value of all 1's.
1372 unpacked
[i
] = *((u32
*)field
);
1374 } else if (*field
& VPHN_FIELD_MSB
) {
1375 /* Data is in the lower 15 bits of this field */
1376 unpacked
[i
] = *field
& VPHN_FIELD_MASK
;
1380 /* Data is in the lower 15 bits of this field
1381 * concatenated with the next 16 bit field
1383 unpacked
[i
] = *((u32
*)field
);
1389 /* The first cell contains the length of the property */
1390 unpacked
[0] = nr_assoc_doms
;
1392 return nr_assoc_doms
;
1396 * Retrieve the new associativity information for a virtual processor's
1399 static long hcall_vphn(unsigned long cpu
, unsigned int *associativity
)
1402 long retbuf
[PLPAR_HCALL9_BUFSIZE
] = {0};
1404 int hwcpu
= get_hard_smp_processor_id(cpu
);
1406 rc
= plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY
, retbuf
, flags
, hwcpu
);
1407 vphn_unpack_associativity(retbuf
, associativity
);
1412 static long vphn_get_associativity(unsigned long cpu
,
1413 unsigned int *associativity
)
1417 rc
= hcall_vphn(cpu
, associativity
);
1422 "VPHN is not supported. Disabling polling...\n");
1423 stop_topology_update();
1427 "hcall_vphn() experienced a hardware fault "
1428 "preventing VPHN. Disabling polling...\n");
1429 stop_topology_update();
1436 * Update the node maps and sysfs entries for each cpu whose home node
1439 int arch_update_cpu_topology(void)
1441 int cpu
, nid
, old_nid
;
1442 unsigned int associativity
[VPHN_ASSOC_BUFSIZE
] = {0};
1445 for_each_cpu(cpu
,&cpu_associativity_changes_mask
) {
1446 vphn_get_associativity(cpu
, associativity
);
1447 nid
= associativity_to_nid(associativity
);
1449 if (nid
< 0 || !node_online(nid
))
1450 nid
= first_online_node
;
1452 old_nid
= numa_cpu_lookup_table
[cpu
];
1454 /* Disable hotplug while we update the cpu
1458 unregister_cpu_under_node(cpu
, old_nid
);
1459 unmap_cpu_from_node(cpu
);
1460 map_cpu_to_node(cpu
, nid
);
1461 register_cpu_under_node(cpu
, nid
);
1464 dev
= get_cpu_device(cpu
);
1466 kobject_uevent(&dev
->kobj
, KOBJ_CHANGE
);
1472 static void topology_work_fn(struct work_struct
*work
)
1474 rebuild_sched_domains();
1476 static DECLARE_WORK(topology_work
, topology_work_fn
);
1478 void topology_schedule_update(void)
1480 schedule_work(&topology_work
);
1483 static void topology_timer_fn(unsigned long ignored
)
1487 if (update_cpu_associativity_changes_mask() > 0)
1488 topology_schedule_update();
1489 set_topology_timer();
1491 static struct timer_list topology_timer
=
1492 TIMER_INITIALIZER(topology_timer_fn
, 0, 0);
1494 static void set_topology_timer(void)
1496 topology_timer
.data
= 0;
1497 topology_timer
.expires
= jiffies
+ 60 * HZ
;
1498 add_timer(&topology_timer
);
1502 * Start polling for VPHN associativity changes.
1504 int start_topology_update(void)
1508 /* Disabled until races with load balancing are fixed */
1509 if (0 && firmware_has_feature(FW_FEATURE_VPHN
) &&
1510 get_lppaca()->shared_proc
) {
1512 setup_cpu_associativity_change_counters();
1513 init_timer_deferrable(&topology_timer
);
1514 set_topology_timer();
1520 __initcall(start_topology_update
);
1523 * Disable polling for VPHN associativity changes.
1525 int stop_topology_update(void)
1528 return del_timer_sync(&topology_timer
);
1530 #endif /* CONFIG_PPC_SPLPAR */