spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / arch / sh / mm / cache-sh4.c
blob92eb98633ab05655fcdc3c4073f071798302e632
1 /*
2 * arch/sh/mm/cache-sh4.c
4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5 * Copyright (C) 2001 - 2009 Paul Mundt
6 * Copyright (C) 2003 Richard Curnow
7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/fs.h>
18 #include <linux/highmem.h>
19 #include <asm/pgtable.h>
20 #include <asm/mmu_context.h>
21 #include <asm/cacheflush.h>
24 * The maximum number of pages we support up to when doing ranged dcache
25 * flushing. Anything exceeding this will simply flush the dcache in its
26 * entirety.
28 #define MAX_ICACHE_PAGES 32
30 static void __flush_cache_one(unsigned long addr, unsigned long phys,
31 unsigned long exec_offset);
34 * Write back the range of D-cache, and purge the I-cache.
36 * Called from kernel/module.c:sys_init_module and routine for a.out format,
37 * signal handler code and kprobes code
39 static void sh4_flush_icache_range(void *args)
41 struct flusher_data *data = args;
42 unsigned long start, end;
43 unsigned long flags, v;
44 int i;
46 start = data->addr1;
47 end = data->addr2;
49 /* If there are too many pages then just blow away the caches */
50 if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
51 local_flush_cache_all(NULL);
52 return;
56 * Selectively flush d-cache then invalidate the i-cache.
57 * This is inefficient, so only use this for small ranges.
59 start &= ~(L1_CACHE_BYTES-1);
60 end += L1_CACHE_BYTES-1;
61 end &= ~(L1_CACHE_BYTES-1);
63 local_irq_save(flags);
64 jump_to_uncached();
66 for (v = start; v < end; v += L1_CACHE_BYTES) {
67 unsigned long icacheaddr;
68 int j, n;
70 __ocbwb(v);
72 icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
73 cpu_data->icache.entry_mask);
75 /* Clear i-cache line valid-bit */
76 n = boot_cpu_data.icache.n_aliases;
77 for (i = 0; i < cpu_data->icache.ways; i++) {
78 for (j = 0; j < n; j++)
79 __raw_writel(0, icacheaddr + (j * PAGE_SIZE));
80 icacheaddr += cpu_data->icache.way_incr;
84 back_to_cached();
85 local_irq_restore(flags);
88 static inline void flush_cache_one(unsigned long start, unsigned long phys)
90 unsigned long flags, exec_offset = 0;
93 * All types of SH-4 require PC to be uncached to operate on the I-cache.
94 * Some types of SH-4 require PC to be uncached to operate on the D-cache.
96 if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
97 (start < CACHE_OC_ADDRESS_ARRAY))
98 exec_offset = cached_to_uncached;
100 local_irq_save(flags);
101 __flush_cache_one(start, phys, exec_offset);
102 local_irq_restore(flags);
106 * Write back & invalidate the D-cache of the page.
107 * (To avoid "alias" issues)
109 static void sh4_flush_dcache_page(void *arg)
111 struct page *page = arg;
112 unsigned long addr = (unsigned long)page_address(page);
113 #ifndef CONFIG_SMP
114 struct address_space *mapping = page_mapping(page);
116 if (mapping && !mapping_mapped(mapping))
117 clear_bit(PG_dcache_clean, &page->flags);
118 else
119 #endif
120 flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
121 (addr & shm_align_mask), page_to_phys(page));
123 wmb();
126 /* TODO: Selective icache invalidation through IC address array.. */
127 static void flush_icache_all(void)
129 unsigned long flags, ccr;
131 local_irq_save(flags);
132 jump_to_uncached();
134 /* Flush I-cache */
135 ccr = __raw_readl(CCR);
136 ccr |= CCR_CACHE_ICI;
137 __raw_writel(ccr, CCR);
140 * back_to_cached() will take care of the barrier for us, don't add
141 * another one!
144 back_to_cached();
145 local_irq_restore(flags);
148 static void flush_dcache_all(void)
150 unsigned long addr, end_addr, entry_offset;
152 end_addr = CACHE_OC_ADDRESS_ARRAY +
153 (current_cpu_data.dcache.sets <<
154 current_cpu_data.dcache.entry_shift) *
155 current_cpu_data.dcache.ways;
157 entry_offset = 1 << current_cpu_data.dcache.entry_shift;
159 for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
160 __raw_writel(0, addr); addr += entry_offset;
161 __raw_writel(0, addr); addr += entry_offset;
162 __raw_writel(0, addr); addr += entry_offset;
163 __raw_writel(0, addr); addr += entry_offset;
164 __raw_writel(0, addr); addr += entry_offset;
165 __raw_writel(0, addr); addr += entry_offset;
166 __raw_writel(0, addr); addr += entry_offset;
167 __raw_writel(0, addr); addr += entry_offset;
171 static void sh4_flush_cache_all(void *unused)
173 flush_dcache_all();
174 flush_icache_all();
178 * Note : (RPC) since the caches are physically tagged, the only point
179 * of flush_cache_mm for SH-4 is to get rid of aliases from the
180 * D-cache. The assumption elsewhere, e.g. flush_cache_range, is that
181 * lines can stay resident so long as the virtual address they were
182 * accessed with (hence cache set) is in accord with the physical
183 * address (i.e. tag). It's no different here.
185 * Caller takes mm->mmap_sem.
187 static void sh4_flush_cache_mm(void *arg)
189 struct mm_struct *mm = arg;
191 if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
192 return;
194 flush_dcache_all();
198 * Write back and invalidate I/D-caches for the page.
200 * ADDR: Virtual Address (U0 address)
201 * PFN: Physical page number
203 static void sh4_flush_cache_page(void *args)
205 struct flusher_data *data = args;
206 struct vm_area_struct *vma;
207 struct page *page;
208 unsigned long address, pfn, phys;
209 int map_coherent = 0;
210 pgd_t *pgd;
211 pud_t *pud;
212 pmd_t *pmd;
213 pte_t *pte;
214 void *vaddr;
216 vma = data->vma;
217 address = data->addr1 & PAGE_MASK;
218 pfn = data->addr2;
219 phys = pfn << PAGE_SHIFT;
220 page = pfn_to_page(pfn);
222 if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
223 return;
225 pgd = pgd_offset(vma->vm_mm, address);
226 pud = pud_offset(pgd, address);
227 pmd = pmd_offset(pud, address);
228 pte = pte_offset_kernel(pmd, address);
230 /* If the page isn't present, there is nothing to do here. */
231 if (!(pte_val(*pte) & _PAGE_PRESENT))
232 return;
234 if ((vma->vm_mm == current->active_mm))
235 vaddr = NULL;
236 else {
238 * Use kmap_coherent or kmap_atomic to do flushes for
239 * another ASID than the current one.
241 map_coherent = (current_cpu_data.dcache.n_aliases &&
242 test_bit(PG_dcache_clean, &page->flags) &&
243 page_mapped(page));
244 if (map_coherent)
245 vaddr = kmap_coherent(page, address);
246 else
247 vaddr = kmap_atomic(page, KM_USER0);
249 address = (unsigned long)vaddr;
252 flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
253 (address & shm_align_mask), phys);
255 if (vma->vm_flags & VM_EXEC)
256 flush_icache_all();
258 if (vaddr) {
259 if (map_coherent)
260 kunmap_coherent(vaddr);
261 else
262 kunmap_atomic(vaddr, KM_USER0);
267 * Write back and invalidate D-caches.
269 * START, END: Virtual Address (U0 address)
271 * NOTE: We need to flush the _physical_ page entry.
272 * Flushing the cache lines for U0 only isn't enough.
273 * We need to flush for P1 too, which may contain aliases.
275 static void sh4_flush_cache_range(void *args)
277 struct flusher_data *data = args;
278 struct vm_area_struct *vma;
279 unsigned long start, end;
281 vma = data->vma;
282 start = data->addr1;
283 end = data->addr2;
285 if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
286 return;
289 * If cache is only 4k-per-way, there are never any 'aliases'. Since
290 * the cache is physically tagged, the data can just be left in there.
292 if (boot_cpu_data.dcache.n_aliases == 0)
293 return;
295 flush_dcache_all();
297 if (vma->vm_flags & VM_EXEC)
298 flush_icache_all();
302 * __flush_cache_one
304 * @addr: address in memory mapped cache array
305 * @phys: P1 address to flush (has to match tags if addr has 'A' bit
306 * set i.e. associative write)
307 * @exec_offset: set to 0x20000000 if flush has to be executed from P2
308 * region else 0x0
310 * The offset into the cache array implied by 'addr' selects the
311 * 'colour' of the virtual address range that will be flushed. The
312 * operation (purge/write-back) is selected by the lower 2 bits of
313 * 'phys'.
315 static void __flush_cache_one(unsigned long addr, unsigned long phys,
316 unsigned long exec_offset)
318 int way_count;
319 unsigned long base_addr = addr;
320 struct cache_info *dcache;
321 unsigned long way_incr;
322 unsigned long a, ea, p;
323 unsigned long temp_pc;
325 dcache = &boot_cpu_data.dcache;
326 /* Write this way for better assembly. */
327 way_count = dcache->ways;
328 way_incr = dcache->way_incr;
331 * Apply exec_offset (i.e. branch to P2 if required.).
333 * FIXME:
335 * If I write "=r" for the (temp_pc), it puts this in r6 hence
336 * trashing exec_offset before it's been added on - why? Hence
337 * "=&r" as a 'workaround'
339 asm volatile("mov.l 1f, %0\n\t"
340 "add %1, %0\n\t"
341 "jmp @%0\n\t"
342 "nop\n\t"
343 ".balign 4\n\t"
344 "1: .long 2f\n\t"
345 "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
348 * We know there will be >=1 iteration, so write as do-while to avoid
349 * pointless nead-of-loop check for 0 iterations.
351 do {
352 ea = base_addr + PAGE_SIZE;
353 a = base_addr;
354 p = phys;
356 do {
357 *(volatile unsigned long *)a = p;
359 * Next line: intentionally not p+32, saves an add, p
360 * will do since only the cache tag bits need to
361 * match.
363 *(volatile unsigned long *)(a+32) = p;
364 a += 64;
365 p += 64;
366 } while (a < ea);
368 base_addr += way_incr;
369 } while (--way_count != 0);
372 extern void __weak sh4__flush_region_init(void);
375 * SH-4 has virtually indexed and physically tagged cache.
377 void __init sh4_cache_init(void)
379 printk("PVR=%08x CVR=%08x PRR=%08x\n",
380 __raw_readl(CCN_PVR),
381 __raw_readl(CCN_CVR),
382 __raw_readl(CCN_PRR));
384 local_flush_icache_range = sh4_flush_icache_range;
385 local_flush_dcache_page = sh4_flush_dcache_page;
386 local_flush_cache_all = sh4_flush_cache_all;
387 local_flush_cache_mm = sh4_flush_cache_mm;
388 local_flush_cache_dup_mm = sh4_flush_cache_mm;
389 local_flush_cache_page = sh4_flush_cache_page;
390 local_flush_cache_range = sh4_flush_cache_range;
392 sh4__flush_region_init();