spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / arch / x86 / xen / enlighten.c
blob4e517d4b183ab889ff50381c2954cf89baa289a6
1 /*
2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/pci.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/fixmap.h>
53 #include <asm/processor.h>
54 #include <asm/proto.h>
55 #include <asm/msr-index.h>
56 #include <asm/traps.h>
57 #include <asm/setup.h>
58 #include <asm/desc.h>
59 #include <asm/pgalloc.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/reboot.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65 #include <asm/pci_x86.h>
67 #include "xen-ops.h"
68 #include "mmu.h"
69 #include "multicalls.h"
71 EXPORT_SYMBOL_GPL(hypercall_page);
73 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
74 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
76 enum xen_domain_type xen_domain_type = XEN_NATIVE;
77 EXPORT_SYMBOL_GPL(xen_domain_type);
79 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
80 EXPORT_SYMBOL(machine_to_phys_mapping);
81 unsigned long machine_to_phys_nr;
82 EXPORT_SYMBOL(machine_to_phys_nr);
84 struct start_info *xen_start_info;
85 EXPORT_SYMBOL_GPL(xen_start_info);
87 struct shared_info xen_dummy_shared_info;
89 void *xen_initial_gdt;
91 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
92 __read_mostly int xen_have_vector_callback;
93 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
96 * Point at some empty memory to start with. We map the real shared_info
97 * page as soon as fixmap is up and running.
99 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
102 * Flag to determine whether vcpu info placement is available on all
103 * VCPUs. We assume it is to start with, and then set it to zero on
104 * the first failure. This is because it can succeed on some VCPUs
105 * and not others, since it can involve hypervisor memory allocation,
106 * or because the guest failed to guarantee all the appropriate
107 * constraints on all VCPUs (ie buffer can't cross a page boundary).
109 * Note that any particular CPU may be using a placed vcpu structure,
110 * but we can only optimise if the all are.
112 * 0: not available, 1: available
114 static int have_vcpu_info_placement = 1;
116 static void clamp_max_cpus(void)
118 #ifdef CONFIG_SMP
119 if (setup_max_cpus > MAX_VIRT_CPUS)
120 setup_max_cpus = MAX_VIRT_CPUS;
121 #endif
124 static void xen_vcpu_setup(int cpu)
126 struct vcpu_register_vcpu_info info;
127 int err;
128 struct vcpu_info *vcpup;
130 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
132 if (cpu < MAX_VIRT_CPUS)
133 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
135 if (!have_vcpu_info_placement) {
136 if (cpu >= MAX_VIRT_CPUS)
137 clamp_max_cpus();
138 return;
141 vcpup = &per_cpu(xen_vcpu_info, cpu);
142 info.mfn = arbitrary_virt_to_mfn(vcpup);
143 info.offset = offset_in_page(vcpup);
145 /* Check to see if the hypervisor will put the vcpu_info
146 structure where we want it, which allows direct access via
147 a percpu-variable. */
148 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
150 if (err) {
151 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
152 have_vcpu_info_placement = 0;
153 clamp_max_cpus();
154 } else {
155 /* This cpu is using the registered vcpu info, even if
156 later ones fail to. */
157 per_cpu(xen_vcpu, cpu) = vcpup;
162 * On restore, set the vcpu placement up again.
163 * If it fails, then we're in a bad state, since
164 * we can't back out from using it...
166 void xen_vcpu_restore(void)
168 int cpu;
170 for_each_online_cpu(cpu) {
171 bool other_cpu = (cpu != smp_processor_id());
173 if (other_cpu &&
174 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
175 BUG();
177 xen_setup_runstate_info(cpu);
179 if (have_vcpu_info_placement)
180 xen_vcpu_setup(cpu);
182 if (other_cpu &&
183 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
184 BUG();
188 static void __init xen_banner(void)
190 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
191 struct xen_extraversion extra;
192 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
194 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
195 pv_info.name);
196 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
197 version >> 16, version & 0xffff, extra.extraversion,
198 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
201 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
202 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
204 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
205 unsigned int *cx, unsigned int *dx)
207 unsigned maskebx = ~0;
208 unsigned maskecx = ~0;
209 unsigned maskedx = ~0;
212 * Mask out inconvenient features, to try and disable as many
213 * unsupported kernel subsystems as possible.
215 switch (*ax) {
216 case 1:
217 maskecx = cpuid_leaf1_ecx_mask;
218 maskedx = cpuid_leaf1_edx_mask;
219 break;
221 case 0xb:
222 /* Suppress extended topology stuff */
223 maskebx = 0;
224 break;
227 asm(XEN_EMULATE_PREFIX "cpuid"
228 : "=a" (*ax),
229 "=b" (*bx),
230 "=c" (*cx),
231 "=d" (*dx)
232 : "0" (*ax), "2" (*cx));
234 *bx &= maskebx;
235 *cx &= maskecx;
236 *dx &= maskedx;
239 static void __init xen_init_cpuid_mask(void)
241 unsigned int ax, bx, cx, dx;
242 unsigned int xsave_mask;
244 cpuid_leaf1_edx_mask =
245 ~((1 << X86_FEATURE_MCE) | /* disable MCE */
246 (1 << X86_FEATURE_MCA) | /* disable MCA */
247 (1 << X86_FEATURE_MTRR) | /* disable MTRR */
248 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
250 if (!xen_initial_domain())
251 cpuid_leaf1_edx_mask &=
252 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
253 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
254 ax = 1;
255 cx = 0;
256 xen_cpuid(&ax, &bx, &cx, &dx);
258 xsave_mask =
259 (1 << (X86_FEATURE_XSAVE % 32)) |
260 (1 << (X86_FEATURE_OSXSAVE % 32));
262 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
263 if ((cx & xsave_mask) != xsave_mask)
264 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
267 static void xen_set_debugreg(int reg, unsigned long val)
269 HYPERVISOR_set_debugreg(reg, val);
272 static unsigned long xen_get_debugreg(int reg)
274 return HYPERVISOR_get_debugreg(reg);
277 static void xen_end_context_switch(struct task_struct *next)
279 xen_mc_flush();
280 paravirt_end_context_switch(next);
283 static unsigned long xen_store_tr(void)
285 return 0;
289 * Set the page permissions for a particular virtual address. If the
290 * address is a vmalloc mapping (or other non-linear mapping), then
291 * find the linear mapping of the page and also set its protections to
292 * match.
294 static void set_aliased_prot(void *v, pgprot_t prot)
296 int level;
297 pte_t *ptep;
298 pte_t pte;
299 unsigned long pfn;
300 struct page *page;
302 ptep = lookup_address((unsigned long)v, &level);
303 BUG_ON(ptep == NULL);
305 pfn = pte_pfn(*ptep);
306 page = pfn_to_page(pfn);
308 pte = pfn_pte(pfn, prot);
310 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
311 BUG();
313 if (!PageHighMem(page)) {
314 void *av = __va(PFN_PHYS(pfn));
316 if (av != v)
317 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
318 BUG();
319 } else
320 kmap_flush_unused();
323 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
325 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
326 int i;
328 for(i = 0; i < entries; i += entries_per_page)
329 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
332 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
334 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
335 int i;
337 for(i = 0; i < entries; i += entries_per_page)
338 set_aliased_prot(ldt + i, PAGE_KERNEL);
341 static void xen_set_ldt(const void *addr, unsigned entries)
343 struct mmuext_op *op;
344 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
346 trace_xen_cpu_set_ldt(addr, entries);
348 op = mcs.args;
349 op->cmd = MMUEXT_SET_LDT;
350 op->arg1.linear_addr = (unsigned long)addr;
351 op->arg2.nr_ents = entries;
353 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
355 xen_mc_issue(PARAVIRT_LAZY_CPU);
358 static void xen_load_gdt(const struct desc_ptr *dtr)
360 unsigned long va = dtr->address;
361 unsigned int size = dtr->size + 1;
362 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
363 unsigned long frames[pages];
364 int f;
367 * A GDT can be up to 64k in size, which corresponds to 8192
368 * 8-byte entries, or 16 4k pages..
371 BUG_ON(size > 65536);
372 BUG_ON(va & ~PAGE_MASK);
374 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
375 int level;
376 pte_t *ptep;
377 unsigned long pfn, mfn;
378 void *virt;
381 * The GDT is per-cpu and is in the percpu data area.
382 * That can be virtually mapped, so we need to do a
383 * page-walk to get the underlying MFN for the
384 * hypercall. The page can also be in the kernel's
385 * linear range, so we need to RO that mapping too.
387 ptep = lookup_address(va, &level);
388 BUG_ON(ptep == NULL);
390 pfn = pte_pfn(*ptep);
391 mfn = pfn_to_mfn(pfn);
392 virt = __va(PFN_PHYS(pfn));
394 frames[f] = mfn;
396 make_lowmem_page_readonly((void *)va);
397 make_lowmem_page_readonly(virt);
400 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
401 BUG();
405 * load_gdt for early boot, when the gdt is only mapped once
407 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
409 unsigned long va = dtr->address;
410 unsigned int size = dtr->size + 1;
411 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
412 unsigned long frames[pages];
413 int f;
416 * A GDT can be up to 64k in size, which corresponds to 8192
417 * 8-byte entries, or 16 4k pages..
420 BUG_ON(size > 65536);
421 BUG_ON(va & ~PAGE_MASK);
423 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
424 pte_t pte;
425 unsigned long pfn, mfn;
427 pfn = virt_to_pfn(va);
428 mfn = pfn_to_mfn(pfn);
430 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
432 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
433 BUG();
435 frames[f] = mfn;
438 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
439 BUG();
442 static void load_TLS_descriptor(struct thread_struct *t,
443 unsigned int cpu, unsigned int i)
445 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
446 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
447 struct multicall_space mc = __xen_mc_entry(0);
449 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
452 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
455 * XXX sleazy hack: If we're being called in a lazy-cpu zone
456 * and lazy gs handling is enabled, it means we're in a
457 * context switch, and %gs has just been saved. This means we
458 * can zero it out to prevent faults on exit from the
459 * hypervisor if the next process has no %gs. Either way, it
460 * has been saved, and the new value will get loaded properly.
461 * This will go away as soon as Xen has been modified to not
462 * save/restore %gs for normal hypercalls.
464 * On x86_64, this hack is not used for %gs, because gs points
465 * to KERNEL_GS_BASE (and uses it for PDA references), so we
466 * must not zero %gs on x86_64
468 * For x86_64, we need to zero %fs, otherwise we may get an
469 * exception between the new %fs descriptor being loaded and
470 * %fs being effectively cleared at __switch_to().
472 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
473 #ifdef CONFIG_X86_32
474 lazy_load_gs(0);
475 #else
476 loadsegment(fs, 0);
477 #endif
480 xen_mc_batch();
482 load_TLS_descriptor(t, cpu, 0);
483 load_TLS_descriptor(t, cpu, 1);
484 load_TLS_descriptor(t, cpu, 2);
486 xen_mc_issue(PARAVIRT_LAZY_CPU);
489 #ifdef CONFIG_X86_64
490 static void xen_load_gs_index(unsigned int idx)
492 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
493 BUG();
495 #endif
497 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
498 const void *ptr)
500 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
501 u64 entry = *(u64 *)ptr;
503 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
505 preempt_disable();
507 xen_mc_flush();
508 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
509 BUG();
511 preempt_enable();
514 static int cvt_gate_to_trap(int vector, const gate_desc *val,
515 struct trap_info *info)
517 unsigned long addr;
519 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
520 return 0;
522 info->vector = vector;
524 addr = gate_offset(*val);
525 #ifdef CONFIG_X86_64
527 * Look for known traps using IST, and substitute them
528 * appropriately. The debugger ones are the only ones we care
529 * about. Xen will handle faults like double_fault and
530 * machine_check, so we should never see them. Warn if
531 * there's an unexpected IST-using fault handler.
533 if (addr == (unsigned long)debug)
534 addr = (unsigned long)xen_debug;
535 else if (addr == (unsigned long)int3)
536 addr = (unsigned long)xen_int3;
537 else if (addr == (unsigned long)stack_segment)
538 addr = (unsigned long)xen_stack_segment;
539 else if (addr == (unsigned long)double_fault ||
540 addr == (unsigned long)nmi) {
541 /* Don't need to handle these */
542 return 0;
543 #ifdef CONFIG_X86_MCE
544 } else if (addr == (unsigned long)machine_check) {
545 return 0;
546 #endif
547 } else {
548 /* Some other trap using IST? */
549 if (WARN_ON(val->ist != 0))
550 return 0;
552 #endif /* CONFIG_X86_64 */
553 info->address = addr;
555 info->cs = gate_segment(*val);
556 info->flags = val->dpl;
557 /* interrupt gates clear IF */
558 if (val->type == GATE_INTERRUPT)
559 info->flags |= 1 << 2;
561 return 1;
564 /* Locations of each CPU's IDT */
565 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
567 /* Set an IDT entry. If the entry is part of the current IDT, then
568 also update Xen. */
569 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
571 unsigned long p = (unsigned long)&dt[entrynum];
572 unsigned long start, end;
574 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
576 preempt_disable();
578 start = __this_cpu_read(idt_desc.address);
579 end = start + __this_cpu_read(idt_desc.size) + 1;
581 xen_mc_flush();
583 native_write_idt_entry(dt, entrynum, g);
585 if (p >= start && (p + 8) <= end) {
586 struct trap_info info[2];
588 info[1].address = 0;
590 if (cvt_gate_to_trap(entrynum, g, &info[0]))
591 if (HYPERVISOR_set_trap_table(info))
592 BUG();
595 preempt_enable();
598 static void xen_convert_trap_info(const struct desc_ptr *desc,
599 struct trap_info *traps)
601 unsigned in, out, count;
603 count = (desc->size+1) / sizeof(gate_desc);
604 BUG_ON(count > 256);
606 for (in = out = 0; in < count; in++) {
607 gate_desc *entry = (gate_desc*)(desc->address) + in;
609 if (cvt_gate_to_trap(in, entry, &traps[out]))
610 out++;
612 traps[out].address = 0;
615 void xen_copy_trap_info(struct trap_info *traps)
617 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
619 xen_convert_trap_info(desc, traps);
622 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
623 hold a spinlock to protect the static traps[] array (static because
624 it avoids allocation, and saves stack space). */
625 static void xen_load_idt(const struct desc_ptr *desc)
627 static DEFINE_SPINLOCK(lock);
628 static struct trap_info traps[257];
630 trace_xen_cpu_load_idt(desc);
632 spin_lock(&lock);
634 __get_cpu_var(idt_desc) = *desc;
636 xen_convert_trap_info(desc, traps);
638 xen_mc_flush();
639 if (HYPERVISOR_set_trap_table(traps))
640 BUG();
642 spin_unlock(&lock);
645 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
646 they're handled differently. */
647 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
648 const void *desc, int type)
650 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
652 preempt_disable();
654 switch (type) {
655 case DESC_LDT:
656 case DESC_TSS:
657 /* ignore */
658 break;
660 default: {
661 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
663 xen_mc_flush();
664 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
665 BUG();
670 preempt_enable();
674 * Version of write_gdt_entry for use at early boot-time needed to
675 * update an entry as simply as possible.
677 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
678 const void *desc, int type)
680 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
682 switch (type) {
683 case DESC_LDT:
684 case DESC_TSS:
685 /* ignore */
686 break;
688 default: {
689 xmaddr_t maddr = virt_to_machine(&dt[entry]);
691 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
692 dt[entry] = *(struct desc_struct *)desc;
698 static void xen_load_sp0(struct tss_struct *tss,
699 struct thread_struct *thread)
701 struct multicall_space mcs;
703 mcs = xen_mc_entry(0);
704 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
705 xen_mc_issue(PARAVIRT_LAZY_CPU);
708 static void xen_set_iopl_mask(unsigned mask)
710 struct physdev_set_iopl set_iopl;
712 /* Force the change at ring 0. */
713 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
714 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
717 static void xen_io_delay(void)
721 #ifdef CONFIG_X86_LOCAL_APIC
722 static u32 xen_apic_read(u32 reg)
724 return 0;
727 static void xen_apic_write(u32 reg, u32 val)
729 /* Warn to see if there's any stray references */
730 WARN_ON(1);
733 static u64 xen_apic_icr_read(void)
735 return 0;
738 static void xen_apic_icr_write(u32 low, u32 id)
740 /* Warn to see if there's any stray references */
741 WARN_ON(1);
744 static void xen_apic_wait_icr_idle(void)
746 return;
749 static u32 xen_safe_apic_wait_icr_idle(void)
751 return 0;
754 static void set_xen_basic_apic_ops(void)
756 apic->read = xen_apic_read;
757 apic->write = xen_apic_write;
758 apic->icr_read = xen_apic_icr_read;
759 apic->icr_write = xen_apic_icr_write;
760 apic->wait_icr_idle = xen_apic_wait_icr_idle;
761 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
764 #endif
766 static void xen_clts(void)
768 struct multicall_space mcs;
770 mcs = xen_mc_entry(0);
772 MULTI_fpu_taskswitch(mcs.mc, 0);
774 xen_mc_issue(PARAVIRT_LAZY_CPU);
777 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
779 static unsigned long xen_read_cr0(void)
781 unsigned long cr0 = percpu_read(xen_cr0_value);
783 if (unlikely(cr0 == 0)) {
784 cr0 = native_read_cr0();
785 percpu_write(xen_cr0_value, cr0);
788 return cr0;
791 static void xen_write_cr0(unsigned long cr0)
793 struct multicall_space mcs;
795 percpu_write(xen_cr0_value, cr0);
797 /* Only pay attention to cr0.TS; everything else is
798 ignored. */
799 mcs = xen_mc_entry(0);
801 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
803 xen_mc_issue(PARAVIRT_LAZY_CPU);
806 static void xen_write_cr4(unsigned long cr4)
808 cr4 &= ~X86_CR4_PGE;
809 cr4 &= ~X86_CR4_PSE;
811 native_write_cr4(cr4);
814 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
816 int ret;
818 ret = 0;
820 switch (msr) {
821 #ifdef CONFIG_X86_64
822 unsigned which;
823 u64 base;
825 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
826 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
827 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
829 set:
830 base = ((u64)high << 32) | low;
831 if (HYPERVISOR_set_segment_base(which, base) != 0)
832 ret = -EIO;
833 break;
834 #endif
836 case MSR_STAR:
837 case MSR_CSTAR:
838 case MSR_LSTAR:
839 case MSR_SYSCALL_MASK:
840 case MSR_IA32_SYSENTER_CS:
841 case MSR_IA32_SYSENTER_ESP:
842 case MSR_IA32_SYSENTER_EIP:
843 /* Fast syscall setup is all done in hypercalls, so
844 these are all ignored. Stub them out here to stop
845 Xen console noise. */
846 break;
848 case MSR_IA32_CR_PAT:
849 if (smp_processor_id() == 0)
850 xen_set_pat(((u64)high << 32) | low);
851 break;
853 default:
854 ret = native_write_msr_safe(msr, low, high);
857 return ret;
860 void xen_setup_shared_info(void)
862 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
863 set_fixmap(FIX_PARAVIRT_BOOTMAP,
864 xen_start_info->shared_info);
866 HYPERVISOR_shared_info =
867 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
868 } else
869 HYPERVISOR_shared_info =
870 (struct shared_info *)__va(xen_start_info->shared_info);
872 #ifndef CONFIG_SMP
873 /* In UP this is as good a place as any to set up shared info */
874 xen_setup_vcpu_info_placement();
875 #endif
877 xen_setup_mfn_list_list();
880 /* This is called once we have the cpu_possible_map */
881 void xen_setup_vcpu_info_placement(void)
883 int cpu;
885 for_each_possible_cpu(cpu)
886 xen_vcpu_setup(cpu);
888 /* xen_vcpu_setup managed to place the vcpu_info within the
889 percpu area for all cpus, so make use of it */
890 if (have_vcpu_info_placement) {
891 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
892 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
893 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
894 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
895 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
899 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
900 unsigned long addr, unsigned len)
902 char *start, *end, *reloc;
903 unsigned ret;
905 start = end = reloc = NULL;
907 #define SITE(op, x) \
908 case PARAVIRT_PATCH(op.x): \
909 if (have_vcpu_info_placement) { \
910 start = (char *)xen_##x##_direct; \
911 end = xen_##x##_direct_end; \
912 reloc = xen_##x##_direct_reloc; \
914 goto patch_site
916 switch (type) {
917 SITE(pv_irq_ops, irq_enable);
918 SITE(pv_irq_ops, irq_disable);
919 SITE(pv_irq_ops, save_fl);
920 SITE(pv_irq_ops, restore_fl);
921 #undef SITE
923 patch_site:
924 if (start == NULL || (end-start) > len)
925 goto default_patch;
927 ret = paravirt_patch_insns(insnbuf, len, start, end);
929 /* Note: because reloc is assigned from something that
930 appears to be an array, gcc assumes it's non-null,
931 but doesn't know its relationship with start and
932 end. */
933 if (reloc > start && reloc < end) {
934 int reloc_off = reloc - start;
935 long *relocp = (long *)(insnbuf + reloc_off);
936 long delta = start - (char *)addr;
938 *relocp += delta;
940 break;
942 default_patch:
943 default:
944 ret = paravirt_patch_default(type, clobbers, insnbuf,
945 addr, len);
946 break;
949 return ret;
952 static const struct pv_info xen_info __initconst = {
953 .paravirt_enabled = 1,
954 .shared_kernel_pmd = 0,
956 #ifdef CONFIG_X86_64
957 .extra_user_64bit_cs = FLAT_USER_CS64,
958 #endif
960 .name = "Xen",
963 static const struct pv_init_ops xen_init_ops __initconst = {
964 .patch = xen_patch,
967 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
968 .cpuid = xen_cpuid,
970 .set_debugreg = xen_set_debugreg,
971 .get_debugreg = xen_get_debugreg,
973 .clts = xen_clts,
975 .read_cr0 = xen_read_cr0,
976 .write_cr0 = xen_write_cr0,
978 .read_cr4 = native_read_cr4,
979 .read_cr4_safe = native_read_cr4_safe,
980 .write_cr4 = xen_write_cr4,
982 .wbinvd = native_wbinvd,
984 .read_msr = native_read_msr_safe,
985 .write_msr = xen_write_msr_safe,
986 .read_tsc = native_read_tsc,
987 .read_pmc = native_read_pmc,
989 .iret = xen_iret,
990 .irq_enable_sysexit = xen_sysexit,
991 #ifdef CONFIG_X86_64
992 .usergs_sysret32 = xen_sysret32,
993 .usergs_sysret64 = xen_sysret64,
994 #endif
996 .load_tr_desc = paravirt_nop,
997 .set_ldt = xen_set_ldt,
998 .load_gdt = xen_load_gdt,
999 .load_idt = xen_load_idt,
1000 .load_tls = xen_load_tls,
1001 #ifdef CONFIG_X86_64
1002 .load_gs_index = xen_load_gs_index,
1003 #endif
1005 .alloc_ldt = xen_alloc_ldt,
1006 .free_ldt = xen_free_ldt,
1008 .store_gdt = native_store_gdt,
1009 .store_idt = native_store_idt,
1010 .store_tr = xen_store_tr,
1012 .write_ldt_entry = xen_write_ldt_entry,
1013 .write_gdt_entry = xen_write_gdt_entry,
1014 .write_idt_entry = xen_write_idt_entry,
1015 .load_sp0 = xen_load_sp0,
1017 .set_iopl_mask = xen_set_iopl_mask,
1018 .io_delay = xen_io_delay,
1020 /* Xen takes care of %gs when switching to usermode for us */
1021 .swapgs = paravirt_nop,
1023 .start_context_switch = paravirt_start_context_switch,
1024 .end_context_switch = xen_end_context_switch,
1027 static const struct pv_apic_ops xen_apic_ops __initconst = {
1028 #ifdef CONFIG_X86_LOCAL_APIC
1029 .startup_ipi_hook = paravirt_nop,
1030 #endif
1033 static void xen_reboot(int reason)
1035 struct sched_shutdown r = { .reason = reason };
1037 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1038 BUG();
1041 static void xen_restart(char *msg)
1043 xen_reboot(SHUTDOWN_reboot);
1046 static void xen_emergency_restart(void)
1048 xen_reboot(SHUTDOWN_reboot);
1051 static void xen_machine_halt(void)
1053 xen_reboot(SHUTDOWN_poweroff);
1056 static void xen_machine_power_off(void)
1058 if (pm_power_off)
1059 pm_power_off();
1060 xen_reboot(SHUTDOWN_poweroff);
1063 static void xen_crash_shutdown(struct pt_regs *regs)
1065 xen_reboot(SHUTDOWN_crash);
1068 static int
1069 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1071 xen_reboot(SHUTDOWN_crash);
1072 return NOTIFY_DONE;
1075 static struct notifier_block xen_panic_block = {
1076 .notifier_call= xen_panic_event,
1079 int xen_panic_handler_init(void)
1081 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1082 return 0;
1085 static const struct machine_ops xen_machine_ops __initconst = {
1086 .restart = xen_restart,
1087 .halt = xen_machine_halt,
1088 .power_off = xen_machine_power_off,
1089 .shutdown = xen_machine_halt,
1090 .crash_shutdown = xen_crash_shutdown,
1091 .emergency_restart = xen_emergency_restart,
1095 * Set up the GDT and segment registers for -fstack-protector. Until
1096 * we do this, we have to be careful not to call any stack-protected
1097 * function, which is most of the kernel.
1099 static void __init xen_setup_stackprotector(void)
1101 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1102 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1104 setup_stack_canary_segment(0);
1105 switch_to_new_gdt(0);
1107 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1108 pv_cpu_ops.load_gdt = xen_load_gdt;
1111 /* First C function to be called on Xen boot */
1112 asmlinkage void __init xen_start_kernel(void)
1114 struct physdev_set_iopl set_iopl;
1115 int rc;
1116 pgd_t *pgd;
1118 if (!xen_start_info)
1119 return;
1121 xen_domain_type = XEN_PV_DOMAIN;
1123 xen_setup_machphys_mapping();
1125 /* Install Xen paravirt ops */
1126 pv_info = xen_info;
1127 pv_init_ops = xen_init_ops;
1128 pv_cpu_ops = xen_cpu_ops;
1129 pv_apic_ops = xen_apic_ops;
1131 x86_init.resources.memory_setup = xen_memory_setup;
1132 x86_init.oem.arch_setup = xen_arch_setup;
1133 x86_init.oem.banner = xen_banner;
1135 xen_init_time_ops();
1138 * Set up some pagetable state before starting to set any ptes.
1141 xen_init_mmu_ops();
1143 /* Prevent unwanted bits from being set in PTEs. */
1144 __supported_pte_mask &= ~_PAGE_GLOBAL;
1145 #if 0
1146 if (!xen_initial_domain())
1147 #endif
1148 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1150 __supported_pte_mask |= _PAGE_IOMAP;
1153 * Prevent page tables from being allocated in highmem, even
1154 * if CONFIG_HIGHPTE is enabled.
1156 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1158 /* Work out if we support NX */
1159 x86_configure_nx();
1161 xen_setup_features();
1163 /* Get mfn list */
1164 if (!xen_feature(XENFEAT_auto_translated_physmap))
1165 xen_build_dynamic_phys_to_machine();
1168 * Set up kernel GDT and segment registers, mainly so that
1169 * -fstack-protector code can be executed.
1171 xen_setup_stackprotector();
1173 xen_init_irq_ops();
1174 xen_init_cpuid_mask();
1176 #ifdef CONFIG_X86_LOCAL_APIC
1178 * set up the basic apic ops.
1180 set_xen_basic_apic_ops();
1181 #endif
1183 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1184 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1185 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1188 machine_ops = xen_machine_ops;
1191 * The only reliable way to retain the initial address of the
1192 * percpu gdt_page is to remember it here, so we can go and
1193 * mark it RW later, when the initial percpu area is freed.
1195 xen_initial_gdt = &per_cpu(gdt_page, 0);
1197 xen_smp_init();
1199 #ifdef CONFIG_ACPI_NUMA
1201 * The pages we from Xen are not related to machine pages, so
1202 * any NUMA information the kernel tries to get from ACPI will
1203 * be meaningless. Prevent it from trying.
1205 acpi_numa = -1;
1206 #endif
1208 pgd = (pgd_t *)xen_start_info->pt_base;
1210 /* Don't do the full vcpu_info placement stuff until we have a
1211 possible map and a non-dummy shared_info. */
1212 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1214 local_irq_disable();
1215 early_boot_irqs_disabled = true;
1217 xen_raw_console_write("mapping kernel into physical memory\n");
1218 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1219 xen_ident_map_ISA();
1221 /* Allocate and initialize top and mid mfn levels for p2m structure */
1222 xen_build_mfn_list_list();
1224 /* keep using Xen gdt for now; no urgent need to change it */
1226 #ifdef CONFIG_X86_32
1227 pv_info.kernel_rpl = 1;
1228 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1229 pv_info.kernel_rpl = 0;
1230 #else
1231 pv_info.kernel_rpl = 0;
1232 #endif
1233 /* set the limit of our address space */
1234 xen_reserve_top();
1236 /* We used to do this in xen_arch_setup, but that is too late on AMD
1237 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1238 * which pokes 0xcf8 port.
1240 set_iopl.iopl = 1;
1241 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1242 if (rc != 0)
1243 xen_raw_printk("physdev_op failed %d\n", rc);
1245 #ifdef CONFIG_X86_32
1246 /* set up basic CPUID stuff */
1247 cpu_detect(&new_cpu_data);
1248 new_cpu_data.hard_math = 1;
1249 new_cpu_data.wp_works_ok = 1;
1250 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1251 #endif
1253 /* Poke various useful things into boot_params */
1254 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1255 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1256 ? __pa(xen_start_info->mod_start) : 0;
1257 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1258 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1260 if (!xen_initial_domain()) {
1261 add_preferred_console("xenboot", 0, NULL);
1262 add_preferred_console("tty", 0, NULL);
1263 add_preferred_console("hvc", 0, NULL);
1264 if (pci_xen)
1265 x86_init.pci.arch_init = pci_xen_init;
1266 } else {
1267 const struct dom0_vga_console_info *info =
1268 (void *)((char *)xen_start_info +
1269 xen_start_info->console.dom0.info_off);
1271 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1272 xen_start_info->console.domU.mfn = 0;
1273 xen_start_info->console.domU.evtchn = 0;
1275 /* Make sure ACS will be enabled */
1276 pci_request_acs();
1278 #ifdef CONFIG_PCI
1279 /* PCI BIOS service won't work from a PV guest. */
1280 pci_probe &= ~PCI_PROBE_BIOS;
1281 #endif
1282 xen_raw_console_write("about to get started...\n");
1284 xen_setup_runstate_info(0);
1286 /* Start the world */
1287 #ifdef CONFIG_X86_32
1288 i386_start_kernel();
1289 #else
1290 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1291 #endif
1294 static int init_hvm_pv_info(int *major, int *minor)
1296 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1297 u64 pfn;
1299 base = xen_cpuid_base();
1300 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1302 *major = eax >> 16;
1303 *minor = eax & 0xffff;
1304 printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1306 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1308 pfn = __pa(hypercall_page);
1309 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1311 xen_setup_features();
1313 pv_info.name = "Xen HVM";
1315 xen_domain_type = XEN_HVM_DOMAIN;
1317 return 0;
1320 void __ref xen_hvm_init_shared_info(void)
1322 int cpu;
1323 struct xen_add_to_physmap xatp;
1324 static struct shared_info *shared_info_page = 0;
1326 if (!shared_info_page)
1327 shared_info_page = (struct shared_info *)
1328 extend_brk(PAGE_SIZE, PAGE_SIZE);
1329 xatp.domid = DOMID_SELF;
1330 xatp.idx = 0;
1331 xatp.space = XENMAPSPACE_shared_info;
1332 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1333 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1334 BUG();
1336 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1338 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1339 * page, we use it in the event channel upcall and in some pvclock
1340 * related functions. We don't need the vcpu_info placement
1341 * optimizations because we don't use any pv_mmu or pv_irq op on
1342 * HVM.
1343 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1344 * online but xen_hvm_init_shared_info is run at resume time too and
1345 * in that case multiple vcpus might be online. */
1346 for_each_online_cpu(cpu) {
1347 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1351 #ifdef CONFIG_XEN_PVHVM
1352 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1353 unsigned long action, void *hcpu)
1355 int cpu = (long)hcpu;
1356 switch (action) {
1357 case CPU_UP_PREPARE:
1358 xen_vcpu_setup(cpu);
1359 if (xen_have_vector_callback)
1360 xen_init_lock_cpu(cpu);
1361 break;
1362 default:
1363 break;
1365 return NOTIFY_OK;
1368 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1369 .notifier_call = xen_hvm_cpu_notify,
1372 static void __init xen_hvm_guest_init(void)
1374 int r;
1375 int major, minor;
1377 r = init_hvm_pv_info(&major, &minor);
1378 if (r < 0)
1379 return;
1381 xen_hvm_init_shared_info();
1383 if (xen_feature(XENFEAT_hvm_callback_vector))
1384 xen_have_vector_callback = 1;
1385 xen_hvm_smp_init();
1386 register_cpu_notifier(&xen_hvm_cpu_notifier);
1387 xen_unplug_emulated_devices();
1388 x86_init.irqs.intr_init = xen_init_IRQ;
1389 xen_hvm_init_time_ops();
1390 xen_hvm_init_mmu_ops();
1393 static bool __init xen_hvm_platform(void)
1395 if (xen_pv_domain())
1396 return false;
1398 if (!xen_cpuid_base())
1399 return false;
1401 return true;
1404 bool xen_hvm_need_lapic(void)
1406 if (xen_pv_domain())
1407 return false;
1408 if (!xen_hvm_domain())
1409 return false;
1410 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1411 return false;
1412 return true;
1414 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1416 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1417 .name = "Xen HVM",
1418 .detect = xen_hvm_platform,
1419 .init_platform = xen_hvm_guest_init,
1421 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1422 #endif