spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / arch / x86 / xen / mmu.c
blobdc193478d91934140c1e870e5b1e5f775d6db2a4
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
51 #include <trace/events/xen.h>
53 #include <asm/pgtable.h>
54 #include <asm/tlbflush.h>
55 #include <asm/fixmap.h>
56 #include <asm/mmu_context.h>
57 #include <asm/setup.h>
58 #include <asm/paravirt.h>
59 #include <asm/e820.h>
60 #include <asm/linkage.h>
61 #include <asm/page.h>
62 #include <asm/init.h>
63 #include <asm/pat.h>
64 #include <asm/smp.h>
66 #include <asm/xen/hypercall.h>
67 #include <asm/xen/hypervisor.h>
69 #include <xen/xen.h>
70 #include <xen/page.h>
71 #include <xen/interface/xen.h>
72 #include <xen/interface/hvm/hvm_op.h>
73 #include <xen/interface/version.h>
74 #include <xen/interface/memory.h>
75 #include <xen/hvc-console.h>
77 #include "multicalls.h"
78 #include "mmu.h"
79 #include "debugfs.h"
82 * Protects atomic reservation decrease/increase against concurrent increases.
83 * Also protects non-atomic updates of current_pages and balloon lists.
85 DEFINE_SPINLOCK(xen_reservation_lock);
88 * Identity map, in addition to plain kernel map. This needs to be
89 * large enough to allocate page table pages to allocate the rest.
90 * Each page can map 2MB.
92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
95 #ifdef CONFIG_X86_64
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98 #endif /* CONFIG_X86_64 */
101 * Note about cr3 (pagetable base) values:
103 * xen_cr3 contains the current logical cr3 value; it contains the
104 * last set cr3. This may not be the current effective cr3, because
105 * its update may be being lazily deferred. However, a vcpu looking
106 * at its own cr3 can use this value knowing that it everything will
107 * be self-consistent.
109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110 * hypercall to set the vcpu cr3 is complete (so it may be a little
111 * out of date, but it will never be set early). If one vcpu is
112 * looking at another vcpu's cr3 value, it should use this variable.
114 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
119 * Just beyond the highest usermode address. STACK_TOP_MAX has a
120 * redzone above it, so round it up to a PGD boundary.
122 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
124 unsigned long arbitrary_virt_to_mfn(void *vaddr)
126 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
128 return PFN_DOWN(maddr.maddr);
131 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
133 unsigned long address = (unsigned long)vaddr;
134 unsigned int level;
135 pte_t *pte;
136 unsigned offset;
139 * if the PFN is in the linear mapped vaddr range, we can just use
140 * the (quick) virt_to_machine() p2m lookup
142 if (virt_addr_valid(vaddr))
143 return virt_to_machine(vaddr);
145 /* otherwise we have to do a (slower) full page-table walk */
147 pte = lookup_address(address, &level);
148 BUG_ON(pte == NULL);
149 offset = address & ~PAGE_MASK;
150 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
152 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
154 void make_lowmem_page_readonly(void *vaddr)
156 pte_t *pte, ptev;
157 unsigned long address = (unsigned long)vaddr;
158 unsigned int level;
160 pte = lookup_address(address, &level);
161 if (pte == NULL)
162 return; /* vaddr missing */
164 ptev = pte_wrprotect(*pte);
166 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
167 BUG();
170 void make_lowmem_page_readwrite(void *vaddr)
172 pte_t *pte, ptev;
173 unsigned long address = (unsigned long)vaddr;
174 unsigned int level;
176 pte = lookup_address(address, &level);
177 if (pte == NULL)
178 return; /* vaddr missing */
180 ptev = pte_mkwrite(*pte);
182 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
183 BUG();
187 static bool xen_page_pinned(void *ptr)
189 struct page *page = virt_to_page(ptr);
191 return PagePinned(page);
194 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
196 struct multicall_space mcs;
197 struct mmu_update *u;
199 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
201 mcs = xen_mc_entry(sizeof(*u));
202 u = mcs.args;
204 /* ptep might be kmapped when using 32-bit HIGHPTE */
205 u->ptr = virt_to_machine(ptep).maddr;
206 u->val = pte_val_ma(pteval);
208 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
210 xen_mc_issue(PARAVIRT_LAZY_MMU);
212 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
214 static void xen_extend_mmu_update(const struct mmu_update *update)
216 struct multicall_space mcs;
217 struct mmu_update *u;
219 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
221 if (mcs.mc != NULL) {
222 mcs.mc->args[1]++;
223 } else {
224 mcs = __xen_mc_entry(sizeof(*u));
225 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
228 u = mcs.args;
229 *u = *update;
232 static void xen_extend_mmuext_op(const struct mmuext_op *op)
234 struct multicall_space mcs;
235 struct mmuext_op *u;
237 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
239 if (mcs.mc != NULL) {
240 mcs.mc->args[1]++;
241 } else {
242 mcs = __xen_mc_entry(sizeof(*u));
243 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
246 u = mcs.args;
247 *u = *op;
250 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
252 struct mmu_update u;
254 preempt_disable();
256 xen_mc_batch();
258 /* ptr may be ioremapped for 64-bit pagetable setup */
259 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
260 u.val = pmd_val_ma(val);
261 xen_extend_mmu_update(&u);
263 xen_mc_issue(PARAVIRT_LAZY_MMU);
265 preempt_enable();
268 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
270 trace_xen_mmu_set_pmd(ptr, val);
272 /* If page is not pinned, we can just update the entry
273 directly */
274 if (!xen_page_pinned(ptr)) {
275 *ptr = val;
276 return;
279 xen_set_pmd_hyper(ptr, val);
283 * Associate a virtual page frame with a given physical page frame
284 * and protection flags for that frame.
286 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
288 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
291 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
293 struct mmu_update u;
295 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
296 return false;
298 xen_mc_batch();
300 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
301 u.val = pte_val_ma(pteval);
302 xen_extend_mmu_update(&u);
304 xen_mc_issue(PARAVIRT_LAZY_MMU);
306 return true;
309 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
311 if (!xen_batched_set_pte(ptep, pteval))
312 native_set_pte(ptep, pteval);
315 static void xen_set_pte(pte_t *ptep, pte_t pteval)
317 trace_xen_mmu_set_pte(ptep, pteval);
318 __xen_set_pte(ptep, pteval);
321 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
322 pte_t *ptep, pte_t pteval)
324 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
325 __xen_set_pte(ptep, pteval);
328 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
329 unsigned long addr, pte_t *ptep)
331 /* Just return the pte as-is. We preserve the bits on commit */
332 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
333 return *ptep;
336 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
337 pte_t *ptep, pte_t pte)
339 struct mmu_update u;
341 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
342 xen_mc_batch();
344 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
345 u.val = pte_val_ma(pte);
346 xen_extend_mmu_update(&u);
348 xen_mc_issue(PARAVIRT_LAZY_MMU);
351 /* Assume pteval_t is equivalent to all the other *val_t types. */
352 static pteval_t pte_mfn_to_pfn(pteval_t val)
354 if (val & _PAGE_PRESENT) {
355 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
356 unsigned long pfn = mfn_to_pfn(mfn);
358 pteval_t flags = val & PTE_FLAGS_MASK;
359 if (unlikely(pfn == ~0))
360 val = flags & ~_PAGE_PRESENT;
361 else
362 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
365 return val;
368 static pteval_t pte_pfn_to_mfn(pteval_t val)
370 if (val & _PAGE_PRESENT) {
371 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
372 pteval_t flags = val & PTE_FLAGS_MASK;
373 unsigned long mfn;
375 if (!xen_feature(XENFEAT_auto_translated_physmap))
376 mfn = get_phys_to_machine(pfn);
377 else
378 mfn = pfn;
380 * If there's no mfn for the pfn, then just create an
381 * empty non-present pte. Unfortunately this loses
382 * information about the original pfn, so
383 * pte_mfn_to_pfn is asymmetric.
385 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
386 mfn = 0;
387 flags = 0;
388 } else {
390 * Paramount to do this test _after_ the
391 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
392 * IDENTITY_FRAME_BIT resolves to true.
394 mfn &= ~FOREIGN_FRAME_BIT;
395 if (mfn & IDENTITY_FRAME_BIT) {
396 mfn &= ~IDENTITY_FRAME_BIT;
397 flags |= _PAGE_IOMAP;
400 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
403 return val;
406 static pteval_t iomap_pte(pteval_t val)
408 if (val & _PAGE_PRESENT) {
409 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
410 pteval_t flags = val & PTE_FLAGS_MASK;
412 /* We assume the pte frame number is a MFN, so
413 just use it as-is. */
414 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
417 return val;
420 static pteval_t xen_pte_val(pte_t pte)
422 pteval_t pteval = pte.pte;
423 #if 0
424 /* If this is a WC pte, convert back from Xen WC to Linux WC */
425 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
426 WARN_ON(!pat_enabled);
427 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
429 #endif
430 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
431 return pteval;
433 return pte_mfn_to_pfn(pteval);
435 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
437 static pgdval_t xen_pgd_val(pgd_t pgd)
439 return pte_mfn_to_pfn(pgd.pgd);
441 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
444 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
445 * are reserved for now, to correspond to the Intel-reserved PAT
446 * types.
448 * We expect Linux's PAT set as follows:
450 * Idx PTE flags Linux Xen Default
451 * 0 WB WB WB
452 * 1 PWT WC WT WT
453 * 2 PCD UC- UC- UC-
454 * 3 PCD PWT UC UC UC
455 * 4 PAT WB WC WB
456 * 5 PAT PWT WC WP WT
457 * 6 PAT PCD UC- UC UC-
458 * 7 PAT PCD PWT UC UC UC
461 void xen_set_pat(u64 pat)
463 /* We expect Linux to use a PAT setting of
464 * UC UC- WC WB (ignoring the PAT flag) */
465 WARN_ON(pat != 0x0007010600070106ull);
468 static pte_t xen_make_pte(pteval_t pte)
470 phys_addr_t addr = (pte & PTE_PFN_MASK);
471 #if 0
472 /* If Linux is trying to set a WC pte, then map to the Xen WC.
473 * If _PAGE_PAT is set, then it probably means it is really
474 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
475 * things work out OK...
477 * (We should never see kernel mappings with _PAGE_PSE set,
478 * but we could see hugetlbfs mappings, I think.).
480 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
481 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
482 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
484 #endif
486 * Unprivileged domains are allowed to do IOMAPpings for
487 * PCI passthrough, but not map ISA space. The ISA
488 * mappings are just dummy local mappings to keep other
489 * parts of the kernel happy.
491 if (unlikely(pte & _PAGE_IOMAP) &&
492 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
493 pte = iomap_pte(pte);
494 } else {
495 pte &= ~_PAGE_IOMAP;
496 pte = pte_pfn_to_mfn(pte);
499 return native_make_pte(pte);
501 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
503 static pgd_t xen_make_pgd(pgdval_t pgd)
505 pgd = pte_pfn_to_mfn(pgd);
506 return native_make_pgd(pgd);
508 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
510 static pmdval_t xen_pmd_val(pmd_t pmd)
512 return pte_mfn_to_pfn(pmd.pmd);
514 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
516 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
518 struct mmu_update u;
520 preempt_disable();
522 xen_mc_batch();
524 /* ptr may be ioremapped for 64-bit pagetable setup */
525 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
526 u.val = pud_val_ma(val);
527 xen_extend_mmu_update(&u);
529 xen_mc_issue(PARAVIRT_LAZY_MMU);
531 preempt_enable();
534 static void xen_set_pud(pud_t *ptr, pud_t val)
536 trace_xen_mmu_set_pud(ptr, val);
538 /* If page is not pinned, we can just update the entry
539 directly */
540 if (!xen_page_pinned(ptr)) {
541 *ptr = val;
542 return;
545 xen_set_pud_hyper(ptr, val);
548 #ifdef CONFIG_X86_PAE
549 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
551 trace_xen_mmu_set_pte_atomic(ptep, pte);
552 set_64bit((u64 *)ptep, native_pte_val(pte));
555 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
557 trace_xen_mmu_pte_clear(mm, addr, ptep);
558 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
559 native_pte_clear(mm, addr, ptep);
562 static void xen_pmd_clear(pmd_t *pmdp)
564 trace_xen_mmu_pmd_clear(pmdp);
565 set_pmd(pmdp, __pmd(0));
567 #endif /* CONFIG_X86_PAE */
569 static pmd_t xen_make_pmd(pmdval_t pmd)
571 pmd = pte_pfn_to_mfn(pmd);
572 return native_make_pmd(pmd);
574 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
576 #if PAGETABLE_LEVELS == 4
577 static pudval_t xen_pud_val(pud_t pud)
579 return pte_mfn_to_pfn(pud.pud);
581 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
583 static pud_t xen_make_pud(pudval_t pud)
585 pud = pte_pfn_to_mfn(pud);
587 return native_make_pud(pud);
589 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
591 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
593 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
594 unsigned offset = pgd - pgd_page;
595 pgd_t *user_ptr = NULL;
597 if (offset < pgd_index(USER_LIMIT)) {
598 struct page *page = virt_to_page(pgd_page);
599 user_ptr = (pgd_t *)page->private;
600 if (user_ptr)
601 user_ptr += offset;
604 return user_ptr;
607 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
609 struct mmu_update u;
611 u.ptr = virt_to_machine(ptr).maddr;
612 u.val = pgd_val_ma(val);
613 xen_extend_mmu_update(&u);
617 * Raw hypercall-based set_pgd, intended for in early boot before
618 * there's a page structure. This implies:
619 * 1. The only existing pagetable is the kernel's
620 * 2. It is always pinned
621 * 3. It has no user pagetable attached to it
623 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
625 preempt_disable();
627 xen_mc_batch();
629 __xen_set_pgd_hyper(ptr, val);
631 xen_mc_issue(PARAVIRT_LAZY_MMU);
633 preempt_enable();
636 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
638 pgd_t *user_ptr = xen_get_user_pgd(ptr);
640 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
642 /* If page is not pinned, we can just update the entry
643 directly */
644 if (!xen_page_pinned(ptr)) {
645 *ptr = val;
646 if (user_ptr) {
647 WARN_ON(xen_page_pinned(user_ptr));
648 *user_ptr = val;
650 return;
653 /* If it's pinned, then we can at least batch the kernel and
654 user updates together. */
655 xen_mc_batch();
657 __xen_set_pgd_hyper(ptr, val);
658 if (user_ptr)
659 __xen_set_pgd_hyper(user_ptr, val);
661 xen_mc_issue(PARAVIRT_LAZY_MMU);
663 #endif /* PAGETABLE_LEVELS == 4 */
666 * (Yet another) pagetable walker. This one is intended for pinning a
667 * pagetable. This means that it walks a pagetable and calls the
668 * callback function on each page it finds making up the page table,
669 * at every level. It walks the entire pagetable, but it only bothers
670 * pinning pte pages which are below limit. In the normal case this
671 * will be STACK_TOP_MAX, but at boot we need to pin up to
672 * FIXADDR_TOP.
674 * For 32-bit the important bit is that we don't pin beyond there,
675 * because then we start getting into Xen's ptes.
677 * For 64-bit, we must skip the Xen hole in the middle of the address
678 * space, just after the big x86-64 virtual hole.
680 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
681 int (*func)(struct mm_struct *mm, struct page *,
682 enum pt_level),
683 unsigned long limit)
685 int flush = 0;
686 unsigned hole_low, hole_high;
687 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
688 unsigned pgdidx, pudidx, pmdidx;
690 /* The limit is the last byte to be touched */
691 limit--;
692 BUG_ON(limit >= FIXADDR_TOP);
694 if (xen_feature(XENFEAT_auto_translated_physmap))
695 return 0;
698 * 64-bit has a great big hole in the middle of the address
699 * space, which contains the Xen mappings. On 32-bit these
700 * will end up making a zero-sized hole and so is a no-op.
702 hole_low = pgd_index(USER_LIMIT);
703 hole_high = pgd_index(PAGE_OFFSET);
705 pgdidx_limit = pgd_index(limit);
706 #if PTRS_PER_PUD > 1
707 pudidx_limit = pud_index(limit);
708 #else
709 pudidx_limit = 0;
710 #endif
711 #if PTRS_PER_PMD > 1
712 pmdidx_limit = pmd_index(limit);
713 #else
714 pmdidx_limit = 0;
715 #endif
717 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
718 pud_t *pud;
720 if (pgdidx >= hole_low && pgdidx < hole_high)
721 continue;
723 if (!pgd_val(pgd[pgdidx]))
724 continue;
726 pud = pud_offset(&pgd[pgdidx], 0);
728 if (PTRS_PER_PUD > 1) /* not folded */
729 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
731 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
732 pmd_t *pmd;
734 if (pgdidx == pgdidx_limit &&
735 pudidx > pudidx_limit)
736 goto out;
738 if (pud_none(pud[pudidx]))
739 continue;
741 pmd = pmd_offset(&pud[pudidx], 0);
743 if (PTRS_PER_PMD > 1) /* not folded */
744 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
746 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
747 struct page *pte;
749 if (pgdidx == pgdidx_limit &&
750 pudidx == pudidx_limit &&
751 pmdidx > pmdidx_limit)
752 goto out;
754 if (pmd_none(pmd[pmdidx]))
755 continue;
757 pte = pmd_page(pmd[pmdidx]);
758 flush |= (*func)(mm, pte, PT_PTE);
763 out:
764 /* Do the top level last, so that the callbacks can use it as
765 a cue to do final things like tlb flushes. */
766 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
768 return flush;
771 static int xen_pgd_walk(struct mm_struct *mm,
772 int (*func)(struct mm_struct *mm, struct page *,
773 enum pt_level),
774 unsigned long limit)
776 return __xen_pgd_walk(mm, mm->pgd, func, limit);
779 /* If we're using split pte locks, then take the page's lock and
780 return a pointer to it. Otherwise return NULL. */
781 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
783 spinlock_t *ptl = NULL;
785 #if USE_SPLIT_PTLOCKS
786 ptl = __pte_lockptr(page);
787 spin_lock_nest_lock(ptl, &mm->page_table_lock);
788 #endif
790 return ptl;
793 static void xen_pte_unlock(void *v)
795 spinlock_t *ptl = v;
796 spin_unlock(ptl);
799 static void xen_do_pin(unsigned level, unsigned long pfn)
801 struct mmuext_op op;
803 op.cmd = level;
804 op.arg1.mfn = pfn_to_mfn(pfn);
806 xen_extend_mmuext_op(&op);
809 static int xen_pin_page(struct mm_struct *mm, struct page *page,
810 enum pt_level level)
812 unsigned pgfl = TestSetPagePinned(page);
813 int flush;
815 if (pgfl)
816 flush = 0; /* already pinned */
817 else if (PageHighMem(page))
818 /* kmaps need flushing if we found an unpinned
819 highpage */
820 flush = 1;
821 else {
822 void *pt = lowmem_page_address(page);
823 unsigned long pfn = page_to_pfn(page);
824 struct multicall_space mcs = __xen_mc_entry(0);
825 spinlock_t *ptl;
827 flush = 0;
830 * We need to hold the pagetable lock between the time
831 * we make the pagetable RO and when we actually pin
832 * it. If we don't, then other users may come in and
833 * attempt to update the pagetable by writing it,
834 * which will fail because the memory is RO but not
835 * pinned, so Xen won't do the trap'n'emulate.
837 * If we're using split pte locks, we can't hold the
838 * entire pagetable's worth of locks during the
839 * traverse, because we may wrap the preempt count (8
840 * bits). The solution is to mark RO and pin each PTE
841 * page while holding the lock. This means the number
842 * of locks we end up holding is never more than a
843 * batch size (~32 entries, at present).
845 * If we're not using split pte locks, we needn't pin
846 * the PTE pages independently, because we're
847 * protected by the overall pagetable lock.
849 ptl = NULL;
850 if (level == PT_PTE)
851 ptl = xen_pte_lock(page, mm);
853 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
854 pfn_pte(pfn, PAGE_KERNEL_RO),
855 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
857 if (ptl) {
858 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
860 /* Queue a deferred unlock for when this batch
861 is completed. */
862 xen_mc_callback(xen_pte_unlock, ptl);
866 return flush;
869 /* This is called just after a mm has been created, but it has not
870 been used yet. We need to make sure that its pagetable is all
871 read-only, and can be pinned. */
872 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
874 trace_xen_mmu_pgd_pin(mm, pgd);
876 xen_mc_batch();
878 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
879 /* re-enable interrupts for flushing */
880 xen_mc_issue(0);
882 kmap_flush_unused();
884 xen_mc_batch();
887 #ifdef CONFIG_X86_64
889 pgd_t *user_pgd = xen_get_user_pgd(pgd);
891 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
893 if (user_pgd) {
894 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
895 xen_do_pin(MMUEXT_PIN_L4_TABLE,
896 PFN_DOWN(__pa(user_pgd)));
899 #else /* CONFIG_X86_32 */
900 #ifdef CONFIG_X86_PAE
901 /* Need to make sure unshared kernel PMD is pinnable */
902 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
903 PT_PMD);
904 #endif
905 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
906 #endif /* CONFIG_X86_64 */
907 xen_mc_issue(0);
910 static void xen_pgd_pin(struct mm_struct *mm)
912 __xen_pgd_pin(mm, mm->pgd);
916 * On save, we need to pin all pagetables to make sure they get their
917 * mfns turned into pfns. Search the list for any unpinned pgds and pin
918 * them (unpinned pgds are not currently in use, probably because the
919 * process is under construction or destruction).
921 * Expected to be called in stop_machine() ("equivalent to taking
922 * every spinlock in the system"), so the locking doesn't really
923 * matter all that much.
925 void xen_mm_pin_all(void)
927 struct page *page;
929 spin_lock(&pgd_lock);
931 list_for_each_entry(page, &pgd_list, lru) {
932 if (!PagePinned(page)) {
933 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
934 SetPageSavePinned(page);
938 spin_unlock(&pgd_lock);
942 * The init_mm pagetable is really pinned as soon as its created, but
943 * that's before we have page structures to store the bits. So do all
944 * the book-keeping now.
946 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
947 enum pt_level level)
949 SetPagePinned(page);
950 return 0;
953 static void __init xen_mark_init_mm_pinned(void)
955 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
958 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
959 enum pt_level level)
961 unsigned pgfl = TestClearPagePinned(page);
963 if (pgfl && !PageHighMem(page)) {
964 void *pt = lowmem_page_address(page);
965 unsigned long pfn = page_to_pfn(page);
966 spinlock_t *ptl = NULL;
967 struct multicall_space mcs;
970 * Do the converse to pin_page. If we're using split
971 * pte locks, we must be holding the lock for while
972 * the pte page is unpinned but still RO to prevent
973 * concurrent updates from seeing it in this
974 * partially-pinned state.
976 if (level == PT_PTE) {
977 ptl = xen_pte_lock(page, mm);
979 if (ptl)
980 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
983 mcs = __xen_mc_entry(0);
985 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
986 pfn_pte(pfn, PAGE_KERNEL),
987 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
989 if (ptl) {
990 /* unlock when batch completed */
991 xen_mc_callback(xen_pte_unlock, ptl);
995 return 0; /* never need to flush on unpin */
998 /* Release a pagetables pages back as normal RW */
999 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1001 trace_xen_mmu_pgd_unpin(mm, pgd);
1003 xen_mc_batch();
1005 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1007 #ifdef CONFIG_X86_64
1009 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1011 if (user_pgd) {
1012 xen_do_pin(MMUEXT_UNPIN_TABLE,
1013 PFN_DOWN(__pa(user_pgd)));
1014 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1017 #endif
1019 #ifdef CONFIG_X86_PAE
1020 /* Need to make sure unshared kernel PMD is unpinned */
1021 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1022 PT_PMD);
1023 #endif
1025 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1027 xen_mc_issue(0);
1030 static void xen_pgd_unpin(struct mm_struct *mm)
1032 __xen_pgd_unpin(mm, mm->pgd);
1036 * On resume, undo any pinning done at save, so that the rest of the
1037 * kernel doesn't see any unexpected pinned pagetables.
1039 void xen_mm_unpin_all(void)
1041 struct page *page;
1043 spin_lock(&pgd_lock);
1045 list_for_each_entry(page, &pgd_list, lru) {
1046 if (PageSavePinned(page)) {
1047 BUG_ON(!PagePinned(page));
1048 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1049 ClearPageSavePinned(page);
1053 spin_unlock(&pgd_lock);
1056 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1058 spin_lock(&next->page_table_lock);
1059 xen_pgd_pin(next);
1060 spin_unlock(&next->page_table_lock);
1063 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1065 spin_lock(&mm->page_table_lock);
1066 xen_pgd_pin(mm);
1067 spin_unlock(&mm->page_table_lock);
1071 #ifdef CONFIG_SMP
1072 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1073 we need to repoint it somewhere else before we can unpin it. */
1074 static void drop_other_mm_ref(void *info)
1076 struct mm_struct *mm = info;
1077 struct mm_struct *active_mm;
1079 active_mm = percpu_read(cpu_tlbstate.active_mm);
1081 if (active_mm == mm && percpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1082 leave_mm(smp_processor_id());
1084 /* If this cpu still has a stale cr3 reference, then make sure
1085 it has been flushed. */
1086 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1087 load_cr3(swapper_pg_dir);
1090 static void xen_drop_mm_ref(struct mm_struct *mm)
1092 cpumask_var_t mask;
1093 unsigned cpu;
1095 if (current->active_mm == mm) {
1096 if (current->mm == mm)
1097 load_cr3(swapper_pg_dir);
1098 else
1099 leave_mm(smp_processor_id());
1102 /* Get the "official" set of cpus referring to our pagetable. */
1103 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1104 for_each_online_cpu(cpu) {
1105 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1106 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1107 continue;
1108 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1110 return;
1112 cpumask_copy(mask, mm_cpumask(mm));
1114 /* It's possible that a vcpu may have a stale reference to our
1115 cr3, because its in lazy mode, and it hasn't yet flushed
1116 its set of pending hypercalls yet. In this case, we can
1117 look at its actual current cr3 value, and force it to flush
1118 if needed. */
1119 for_each_online_cpu(cpu) {
1120 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1121 cpumask_set_cpu(cpu, mask);
1124 if (!cpumask_empty(mask))
1125 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1126 free_cpumask_var(mask);
1128 #else
1129 static void xen_drop_mm_ref(struct mm_struct *mm)
1131 if (current->active_mm == mm)
1132 load_cr3(swapper_pg_dir);
1134 #endif
1137 * While a process runs, Xen pins its pagetables, which means that the
1138 * hypervisor forces it to be read-only, and it controls all updates
1139 * to it. This means that all pagetable updates have to go via the
1140 * hypervisor, which is moderately expensive.
1142 * Since we're pulling the pagetable down, we switch to use init_mm,
1143 * unpin old process pagetable and mark it all read-write, which
1144 * allows further operations on it to be simple memory accesses.
1146 * The only subtle point is that another CPU may be still using the
1147 * pagetable because of lazy tlb flushing. This means we need need to
1148 * switch all CPUs off this pagetable before we can unpin it.
1150 static void xen_exit_mmap(struct mm_struct *mm)
1152 get_cpu(); /* make sure we don't move around */
1153 xen_drop_mm_ref(mm);
1154 put_cpu();
1156 spin_lock(&mm->page_table_lock);
1158 /* pgd may not be pinned in the error exit path of execve */
1159 if (xen_page_pinned(mm->pgd))
1160 xen_pgd_unpin(mm);
1162 spin_unlock(&mm->page_table_lock);
1165 static void __init xen_pagetable_setup_start(pgd_t *base)
1169 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1171 /* reserve the range used */
1172 native_pagetable_reserve(start, end);
1174 /* set as RW the rest */
1175 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1176 PFN_PHYS(pgt_buf_top));
1177 while (end < PFN_PHYS(pgt_buf_top)) {
1178 make_lowmem_page_readwrite(__va(end));
1179 end += PAGE_SIZE;
1183 static void xen_post_allocator_init(void);
1185 static void __init xen_pagetable_setup_done(pgd_t *base)
1187 xen_setup_shared_info();
1188 xen_post_allocator_init();
1191 static void xen_write_cr2(unsigned long cr2)
1193 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1196 static unsigned long xen_read_cr2(void)
1198 return percpu_read(xen_vcpu)->arch.cr2;
1201 unsigned long xen_read_cr2_direct(void)
1203 return percpu_read(xen_vcpu_info.arch.cr2);
1206 static void xen_flush_tlb(void)
1208 struct mmuext_op *op;
1209 struct multicall_space mcs;
1211 trace_xen_mmu_flush_tlb(0);
1213 preempt_disable();
1215 mcs = xen_mc_entry(sizeof(*op));
1217 op = mcs.args;
1218 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1219 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1221 xen_mc_issue(PARAVIRT_LAZY_MMU);
1223 preempt_enable();
1226 static void xen_flush_tlb_single(unsigned long addr)
1228 struct mmuext_op *op;
1229 struct multicall_space mcs;
1231 trace_xen_mmu_flush_tlb_single(addr);
1233 preempt_disable();
1235 mcs = xen_mc_entry(sizeof(*op));
1236 op = mcs.args;
1237 op->cmd = MMUEXT_INVLPG_LOCAL;
1238 op->arg1.linear_addr = addr & PAGE_MASK;
1239 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1241 xen_mc_issue(PARAVIRT_LAZY_MMU);
1243 preempt_enable();
1246 static void xen_flush_tlb_others(const struct cpumask *cpus,
1247 struct mm_struct *mm, unsigned long va)
1249 struct {
1250 struct mmuext_op op;
1251 #ifdef CONFIG_SMP
1252 DECLARE_BITMAP(mask, num_processors);
1253 #else
1254 DECLARE_BITMAP(mask, NR_CPUS);
1255 #endif
1256 } *args;
1257 struct multicall_space mcs;
1259 trace_xen_mmu_flush_tlb_others(cpus, mm, va);
1261 if (cpumask_empty(cpus))
1262 return; /* nothing to do */
1264 mcs = xen_mc_entry(sizeof(*args));
1265 args = mcs.args;
1266 args->op.arg2.vcpumask = to_cpumask(args->mask);
1268 /* Remove us, and any offline CPUS. */
1269 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1270 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1272 if (va == TLB_FLUSH_ALL) {
1273 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1274 } else {
1275 args->op.cmd = MMUEXT_INVLPG_MULTI;
1276 args->op.arg1.linear_addr = va;
1279 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1281 xen_mc_issue(PARAVIRT_LAZY_MMU);
1284 static unsigned long xen_read_cr3(void)
1286 return percpu_read(xen_cr3);
1289 static void set_current_cr3(void *v)
1291 percpu_write(xen_current_cr3, (unsigned long)v);
1294 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1296 struct mmuext_op op;
1297 unsigned long mfn;
1299 trace_xen_mmu_write_cr3(kernel, cr3);
1301 if (cr3)
1302 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1303 else
1304 mfn = 0;
1306 WARN_ON(mfn == 0 && kernel);
1308 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1309 op.arg1.mfn = mfn;
1311 xen_extend_mmuext_op(&op);
1313 if (kernel) {
1314 percpu_write(xen_cr3, cr3);
1316 /* Update xen_current_cr3 once the batch has actually
1317 been submitted. */
1318 xen_mc_callback(set_current_cr3, (void *)cr3);
1322 static void xen_write_cr3(unsigned long cr3)
1324 BUG_ON(preemptible());
1326 xen_mc_batch(); /* disables interrupts */
1328 /* Update while interrupts are disabled, so its atomic with
1329 respect to ipis */
1330 percpu_write(xen_cr3, cr3);
1332 __xen_write_cr3(true, cr3);
1334 #ifdef CONFIG_X86_64
1336 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1337 if (user_pgd)
1338 __xen_write_cr3(false, __pa(user_pgd));
1339 else
1340 __xen_write_cr3(false, 0);
1342 #endif
1344 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1347 static int xen_pgd_alloc(struct mm_struct *mm)
1349 pgd_t *pgd = mm->pgd;
1350 int ret = 0;
1352 BUG_ON(PagePinned(virt_to_page(pgd)));
1354 #ifdef CONFIG_X86_64
1356 struct page *page = virt_to_page(pgd);
1357 pgd_t *user_pgd;
1359 BUG_ON(page->private != 0);
1361 ret = -ENOMEM;
1363 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1364 page->private = (unsigned long)user_pgd;
1366 if (user_pgd != NULL) {
1367 user_pgd[pgd_index(VSYSCALL_START)] =
1368 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1369 ret = 0;
1372 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1374 #endif
1376 return ret;
1379 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1381 #ifdef CONFIG_X86_64
1382 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1384 if (user_pgd)
1385 free_page((unsigned long)user_pgd);
1386 #endif
1389 #ifdef CONFIG_X86_32
1390 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1392 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1393 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1394 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1395 pte_val_ma(pte));
1397 return pte;
1399 #else /* CONFIG_X86_64 */
1400 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1402 unsigned long pfn = pte_pfn(pte);
1405 * If the new pfn is within the range of the newly allocated
1406 * kernel pagetable, and it isn't being mapped into an
1407 * early_ioremap fixmap slot as a freshly allocated page, make sure
1408 * it is RO.
1410 if (((!is_early_ioremap_ptep(ptep) &&
1411 pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1412 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1413 pte = pte_wrprotect(pte);
1415 return pte;
1417 #endif /* CONFIG_X86_64 */
1419 /* Init-time set_pte while constructing initial pagetables, which
1420 doesn't allow RO pagetable pages to be remapped RW */
1421 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1423 pte = mask_rw_pte(ptep, pte);
1425 xen_set_pte(ptep, pte);
1428 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1430 struct mmuext_op op;
1431 op.cmd = cmd;
1432 op.arg1.mfn = pfn_to_mfn(pfn);
1433 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1434 BUG();
1437 /* Early in boot, while setting up the initial pagetable, assume
1438 everything is pinned. */
1439 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1441 #ifdef CONFIG_FLATMEM
1442 BUG_ON(mem_map); /* should only be used early */
1443 #endif
1444 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1445 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1448 /* Used for pmd and pud */
1449 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1451 #ifdef CONFIG_FLATMEM
1452 BUG_ON(mem_map); /* should only be used early */
1453 #endif
1454 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1457 /* Early release_pte assumes that all pts are pinned, since there's
1458 only init_mm and anything attached to that is pinned. */
1459 static void __init xen_release_pte_init(unsigned long pfn)
1461 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1462 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1465 static void __init xen_release_pmd_init(unsigned long pfn)
1467 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1470 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1472 struct multicall_space mcs;
1473 struct mmuext_op *op;
1475 mcs = __xen_mc_entry(sizeof(*op));
1476 op = mcs.args;
1477 op->cmd = cmd;
1478 op->arg1.mfn = pfn_to_mfn(pfn);
1480 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1483 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1485 struct multicall_space mcs;
1486 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1488 mcs = __xen_mc_entry(0);
1489 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1490 pfn_pte(pfn, prot), 0);
1493 /* This needs to make sure the new pte page is pinned iff its being
1494 attached to a pinned pagetable. */
1495 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1496 unsigned level)
1498 bool pinned = PagePinned(virt_to_page(mm->pgd));
1500 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1502 if (pinned) {
1503 struct page *page = pfn_to_page(pfn);
1505 SetPagePinned(page);
1507 if (!PageHighMem(page)) {
1508 xen_mc_batch();
1510 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1512 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1513 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1515 xen_mc_issue(PARAVIRT_LAZY_MMU);
1516 } else {
1517 /* make sure there are no stray mappings of
1518 this page */
1519 kmap_flush_unused();
1524 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1526 xen_alloc_ptpage(mm, pfn, PT_PTE);
1529 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1531 xen_alloc_ptpage(mm, pfn, PT_PMD);
1534 /* This should never happen until we're OK to use struct page */
1535 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1537 struct page *page = pfn_to_page(pfn);
1538 bool pinned = PagePinned(page);
1540 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1542 if (pinned) {
1543 if (!PageHighMem(page)) {
1544 xen_mc_batch();
1546 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1547 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1549 __set_pfn_prot(pfn, PAGE_KERNEL);
1551 xen_mc_issue(PARAVIRT_LAZY_MMU);
1553 ClearPagePinned(page);
1557 static void xen_release_pte(unsigned long pfn)
1559 xen_release_ptpage(pfn, PT_PTE);
1562 static void xen_release_pmd(unsigned long pfn)
1564 xen_release_ptpage(pfn, PT_PMD);
1567 #if PAGETABLE_LEVELS == 4
1568 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1570 xen_alloc_ptpage(mm, pfn, PT_PUD);
1573 static void xen_release_pud(unsigned long pfn)
1575 xen_release_ptpage(pfn, PT_PUD);
1577 #endif
1579 void __init xen_reserve_top(void)
1581 #ifdef CONFIG_X86_32
1582 unsigned long top = HYPERVISOR_VIRT_START;
1583 struct xen_platform_parameters pp;
1585 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1586 top = pp.virt_start;
1588 reserve_top_address(-top);
1589 #endif /* CONFIG_X86_32 */
1593 * Like __va(), but returns address in the kernel mapping (which is
1594 * all we have until the physical memory mapping has been set up.
1596 static void *__ka(phys_addr_t paddr)
1598 #ifdef CONFIG_X86_64
1599 return (void *)(paddr + __START_KERNEL_map);
1600 #else
1601 return __va(paddr);
1602 #endif
1605 /* Convert a machine address to physical address */
1606 static unsigned long m2p(phys_addr_t maddr)
1608 phys_addr_t paddr;
1610 maddr &= PTE_PFN_MASK;
1611 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1613 return paddr;
1616 /* Convert a machine address to kernel virtual */
1617 static void *m2v(phys_addr_t maddr)
1619 return __ka(m2p(maddr));
1622 /* Set the page permissions on an identity-mapped pages */
1623 static void set_page_prot(void *addr, pgprot_t prot)
1625 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1626 pte_t pte = pfn_pte(pfn, prot);
1628 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1629 BUG();
1632 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1634 unsigned pmdidx, pteidx;
1635 unsigned ident_pte;
1636 unsigned long pfn;
1638 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1639 PAGE_SIZE);
1641 ident_pte = 0;
1642 pfn = 0;
1643 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1644 pte_t *pte_page;
1646 /* Reuse or allocate a page of ptes */
1647 if (pmd_present(pmd[pmdidx]))
1648 pte_page = m2v(pmd[pmdidx].pmd);
1649 else {
1650 /* Check for free pte pages */
1651 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1652 break;
1654 pte_page = &level1_ident_pgt[ident_pte];
1655 ident_pte += PTRS_PER_PTE;
1657 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1660 /* Install mappings */
1661 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1662 pte_t pte;
1664 #ifdef CONFIG_X86_32
1665 if (pfn > max_pfn_mapped)
1666 max_pfn_mapped = pfn;
1667 #endif
1669 if (!pte_none(pte_page[pteidx]))
1670 continue;
1672 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1673 pte_page[pteidx] = pte;
1677 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1678 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1680 set_page_prot(pmd, PAGE_KERNEL_RO);
1683 void __init xen_setup_machphys_mapping(void)
1685 struct xen_machphys_mapping mapping;
1687 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1688 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1689 machine_to_phys_nr = mapping.max_mfn + 1;
1690 } else {
1691 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1693 #ifdef CONFIG_X86_32
1694 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1695 < machine_to_phys_mapping);
1696 #endif
1699 #ifdef CONFIG_X86_64
1700 static void convert_pfn_mfn(void *v)
1702 pte_t *pte = v;
1703 int i;
1705 /* All levels are converted the same way, so just treat them
1706 as ptes. */
1707 for (i = 0; i < PTRS_PER_PTE; i++)
1708 pte[i] = xen_make_pte(pte[i].pte);
1712 * Set up the initial kernel pagetable.
1714 * We can construct this by grafting the Xen provided pagetable into
1715 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1716 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1717 * means that only the kernel has a physical mapping to start with -
1718 * but that's enough to get __va working. We need to fill in the rest
1719 * of the physical mapping once some sort of allocator has been set
1720 * up.
1722 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1723 unsigned long max_pfn)
1725 pud_t *l3;
1726 pmd_t *l2;
1728 /* max_pfn_mapped is the last pfn mapped in the initial memory
1729 * mappings. Considering that on Xen after the kernel mappings we
1730 * have the mappings of some pages that don't exist in pfn space, we
1731 * set max_pfn_mapped to the last real pfn mapped. */
1732 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1734 /* Zap identity mapping */
1735 init_level4_pgt[0] = __pgd(0);
1737 /* Pre-constructed entries are in pfn, so convert to mfn */
1738 convert_pfn_mfn(init_level4_pgt);
1739 convert_pfn_mfn(level3_ident_pgt);
1740 convert_pfn_mfn(level3_kernel_pgt);
1742 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1743 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1745 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1746 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1748 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1749 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1750 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1752 /* Set up identity map */
1753 xen_map_identity_early(level2_ident_pgt, max_pfn);
1755 /* Make pagetable pieces RO */
1756 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1757 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1758 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1759 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1760 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1761 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1763 /* Pin down new L4 */
1764 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1765 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1767 /* Unpin Xen-provided one */
1768 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1770 /* Switch over */
1771 pgd = init_level4_pgt;
1774 * At this stage there can be no user pgd, and no page
1775 * structure to attach it to, so make sure we just set kernel
1776 * pgd.
1778 xen_mc_batch();
1779 __xen_write_cr3(true, __pa(pgd));
1780 xen_mc_issue(PARAVIRT_LAZY_CPU);
1782 memblock_reserve(__pa(xen_start_info->pt_base),
1783 xen_start_info->nr_pt_frames * PAGE_SIZE);
1785 return pgd;
1787 #else /* !CONFIG_X86_64 */
1788 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1789 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1791 static void __init xen_write_cr3_init(unsigned long cr3)
1793 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1795 BUG_ON(read_cr3() != __pa(initial_page_table));
1796 BUG_ON(cr3 != __pa(swapper_pg_dir));
1799 * We are switching to swapper_pg_dir for the first time (from
1800 * initial_page_table) and therefore need to mark that page
1801 * read-only and then pin it.
1803 * Xen disallows sharing of kernel PMDs for PAE
1804 * guests. Therefore we must copy the kernel PMD from
1805 * initial_page_table into a new kernel PMD to be used in
1806 * swapper_pg_dir.
1808 swapper_kernel_pmd =
1809 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1810 memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1811 sizeof(pmd_t) * PTRS_PER_PMD);
1812 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1813 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1814 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1816 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1817 xen_write_cr3(cr3);
1818 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1820 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1821 PFN_DOWN(__pa(initial_page_table)));
1822 set_page_prot(initial_page_table, PAGE_KERNEL);
1823 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1825 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1828 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1829 unsigned long max_pfn)
1831 pmd_t *kernel_pmd;
1833 initial_kernel_pmd =
1834 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1836 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1837 xen_start_info->nr_pt_frames * PAGE_SIZE +
1838 512*1024);
1840 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1841 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1843 xen_map_identity_early(initial_kernel_pmd, max_pfn);
1845 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1846 initial_page_table[KERNEL_PGD_BOUNDARY] =
1847 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1849 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1850 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1851 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1853 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1855 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1856 PFN_DOWN(__pa(initial_page_table)));
1857 xen_write_cr3(__pa(initial_page_table));
1859 memblock_reserve(__pa(xen_start_info->pt_base),
1860 xen_start_info->nr_pt_frames * PAGE_SIZE);
1862 return initial_page_table;
1864 #endif /* CONFIG_X86_64 */
1866 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1868 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1870 pte_t pte;
1872 phys >>= PAGE_SHIFT;
1874 switch (idx) {
1875 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1876 #ifdef CONFIG_X86_F00F_BUG
1877 case FIX_F00F_IDT:
1878 #endif
1879 #ifdef CONFIG_X86_32
1880 case FIX_WP_TEST:
1881 case FIX_VDSO:
1882 # ifdef CONFIG_HIGHMEM
1883 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1884 # endif
1885 #else
1886 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1887 case VVAR_PAGE:
1888 #endif
1889 case FIX_TEXT_POKE0:
1890 case FIX_TEXT_POKE1:
1891 /* All local page mappings */
1892 pte = pfn_pte(phys, prot);
1893 break;
1895 #ifdef CONFIG_X86_LOCAL_APIC
1896 case FIX_APIC_BASE: /* maps dummy local APIC */
1897 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1898 break;
1899 #endif
1901 #ifdef CONFIG_X86_IO_APIC
1902 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1904 * We just don't map the IO APIC - all access is via
1905 * hypercalls. Keep the address in the pte for reference.
1907 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1908 break;
1909 #endif
1911 case FIX_PARAVIRT_BOOTMAP:
1912 /* This is an MFN, but it isn't an IO mapping from the
1913 IO domain */
1914 pte = mfn_pte(phys, prot);
1915 break;
1917 default:
1918 /* By default, set_fixmap is used for hardware mappings */
1919 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1920 break;
1923 __native_set_fixmap(idx, pte);
1925 #ifdef CONFIG_X86_64
1926 /* Replicate changes to map the vsyscall page into the user
1927 pagetable vsyscall mapping. */
1928 if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
1929 idx == VVAR_PAGE) {
1930 unsigned long vaddr = __fix_to_virt(idx);
1931 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1933 #endif
1936 void __init xen_ident_map_ISA(void)
1938 unsigned long pa;
1941 * If we're dom0, then linear map the ISA machine addresses into
1942 * the kernel's address space.
1944 if (!xen_initial_domain())
1945 return;
1947 xen_raw_printk("Xen: setup ISA identity maps\n");
1949 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
1950 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
1952 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
1953 BUG();
1956 xen_flush_tlb();
1959 static void __init xen_post_allocator_init(void)
1961 pv_mmu_ops.set_pte = xen_set_pte;
1962 pv_mmu_ops.set_pmd = xen_set_pmd;
1963 pv_mmu_ops.set_pud = xen_set_pud;
1964 #if PAGETABLE_LEVELS == 4
1965 pv_mmu_ops.set_pgd = xen_set_pgd;
1966 #endif
1968 /* This will work as long as patching hasn't happened yet
1969 (which it hasn't) */
1970 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1971 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1972 pv_mmu_ops.release_pte = xen_release_pte;
1973 pv_mmu_ops.release_pmd = xen_release_pmd;
1974 #if PAGETABLE_LEVELS == 4
1975 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1976 pv_mmu_ops.release_pud = xen_release_pud;
1977 #endif
1979 #ifdef CONFIG_X86_64
1980 SetPagePinned(virt_to_page(level3_user_vsyscall));
1981 #endif
1982 xen_mark_init_mm_pinned();
1985 static void xen_leave_lazy_mmu(void)
1987 preempt_disable();
1988 xen_mc_flush();
1989 paravirt_leave_lazy_mmu();
1990 preempt_enable();
1993 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
1994 .read_cr2 = xen_read_cr2,
1995 .write_cr2 = xen_write_cr2,
1997 .read_cr3 = xen_read_cr3,
1998 #ifdef CONFIG_X86_32
1999 .write_cr3 = xen_write_cr3_init,
2000 #else
2001 .write_cr3 = xen_write_cr3,
2002 #endif
2004 .flush_tlb_user = xen_flush_tlb,
2005 .flush_tlb_kernel = xen_flush_tlb,
2006 .flush_tlb_single = xen_flush_tlb_single,
2007 .flush_tlb_others = xen_flush_tlb_others,
2009 .pte_update = paravirt_nop,
2010 .pte_update_defer = paravirt_nop,
2012 .pgd_alloc = xen_pgd_alloc,
2013 .pgd_free = xen_pgd_free,
2015 .alloc_pte = xen_alloc_pte_init,
2016 .release_pte = xen_release_pte_init,
2017 .alloc_pmd = xen_alloc_pmd_init,
2018 .release_pmd = xen_release_pmd_init,
2020 .set_pte = xen_set_pte_init,
2021 .set_pte_at = xen_set_pte_at,
2022 .set_pmd = xen_set_pmd_hyper,
2024 .ptep_modify_prot_start = __ptep_modify_prot_start,
2025 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2027 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2028 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2030 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2031 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2033 #ifdef CONFIG_X86_PAE
2034 .set_pte_atomic = xen_set_pte_atomic,
2035 .pte_clear = xen_pte_clear,
2036 .pmd_clear = xen_pmd_clear,
2037 #endif /* CONFIG_X86_PAE */
2038 .set_pud = xen_set_pud_hyper,
2040 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2041 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2043 #if PAGETABLE_LEVELS == 4
2044 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2045 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2046 .set_pgd = xen_set_pgd_hyper,
2048 .alloc_pud = xen_alloc_pmd_init,
2049 .release_pud = xen_release_pmd_init,
2050 #endif /* PAGETABLE_LEVELS == 4 */
2052 .activate_mm = xen_activate_mm,
2053 .dup_mmap = xen_dup_mmap,
2054 .exit_mmap = xen_exit_mmap,
2056 .lazy_mode = {
2057 .enter = paravirt_enter_lazy_mmu,
2058 .leave = xen_leave_lazy_mmu,
2061 .set_fixmap = xen_set_fixmap,
2064 void __init xen_init_mmu_ops(void)
2066 x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2067 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2068 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2069 pv_mmu_ops = xen_mmu_ops;
2071 memset(dummy_mapping, 0xff, PAGE_SIZE);
2074 /* Protected by xen_reservation_lock. */
2075 #define MAX_CONTIG_ORDER 9 /* 2MB */
2076 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2078 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2079 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2080 unsigned long *in_frames,
2081 unsigned long *out_frames)
2083 int i;
2084 struct multicall_space mcs;
2086 xen_mc_batch();
2087 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2088 mcs = __xen_mc_entry(0);
2090 if (in_frames)
2091 in_frames[i] = virt_to_mfn(vaddr);
2093 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2094 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2096 if (out_frames)
2097 out_frames[i] = virt_to_pfn(vaddr);
2099 xen_mc_issue(0);
2103 * Update the pfn-to-mfn mappings for a virtual address range, either to
2104 * point to an array of mfns, or contiguously from a single starting
2105 * mfn.
2107 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2108 unsigned long *mfns,
2109 unsigned long first_mfn)
2111 unsigned i, limit;
2112 unsigned long mfn;
2114 xen_mc_batch();
2116 limit = 1u << order;
2117 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2118 struct multicall_space mcs;
2119 unsigned flags;
2121 mcs = __xen_mc_entry(0);
2122 if (mfns)
2123 mfn = mfns[i];
2124 else
2125 mfn = first_mfn + i;
2127 if (i < (limit - 1))
2128 flags = 0;
2129 else {
2130 if (order == 0)
2131 flags = UVMF_INVLPG | UVMF_ALL;
2132 else
2133 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2136 MULTI_update_va_mapping(mcs.mc, vaddr,
2137 mfn_pte(mfn, PAGE_KERNEL), flags);
2139 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2142 xen_mc_issue(0);
2146 * Perform the hypercall to exchange a region of our pfns to point to
2147 * memory with the required contiguous alignment. Takes the pfns as
2148 * input, and populates mfns as output.
2150 * Returns a success code indicating whether the hypervisor was able to
2151 * satisfy the request or not.
2153 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2154 unsigned long *pfns_in,
2155 unsigned long extents_out,
2156 unsigned int order_out,
2157 unsigned long *mfns_out,
2158 unsigned int address_bits)
2160 long rc;
2161 int success;
2163 struct xen_memory_exchange exchange = {
2164 .in = {
2165 .nr_extents = extents_in,
2166 .extent_order = order_in,
2167 .extent_start = pfns_in,
2168 .domid = DOMID_SELF
2170 .out = {
2171 .nr_extents = extents_out,
2172 .extent_order = order_out,
2173 .extent_start = mfns_out,
2174 .address_bits = address_bits,
2175 .domid = DOMID_SELF
2179 BUG_ON(extents_in << order_in != extents_out << order_out);
2181 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2182 success = (exchange.nr_exchanged == extents_in);
2184 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2185 BUG_ON(success && (rc != 0));
2187 return success;
2190 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2191 unsigned int address_bits)
2193 unsigned long *in_frames = discontig_frames, out_frame;
2194 unsigned long flags;
2195 int success;
2198 * Currently an auto-translated guest will not perform I/O, nor will
2199 * it require PAE page directories below 4GB. Therefore any calls to
2200 * this function are redundant and can be ignored.
2203 if (xen_feature(XENFEAT_auto_translated_physmap))
2204 return 0;
2206 if (unlikely(order > MAX_CONTIG_ORDER))
2207 return -ENOMEM;
2209 memset((void *) vstart, 0, PAGE_SIZE << order);
2211 spin_lock_irqsave(&xen_reservation_lock, flags);
2213 /* 1. Zap current PTEs, remembering MFNs. */
2214 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2216 /* 2. Get a new contiguous memory extent. */
2217 out_frame = virt_to_pfn(vstart);
2218 success = xen_exchange_memory(1UL << order, 0, in_frames,
2219 1, order, &out_frame,
2220 address_bits);
2222 /* 3. Map the new extent in place of old pages. */
2223 if (success)
2224 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2225 else
2226 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2228 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2230 return success ? 0 : -ENOMEM;
2232 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2234 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2236 unsigned long *out_frames = discontig_frames, in_frame;
2237 unsigned long flags;
2238 int success;
2240 if (xen_feature(XENFEAT_auto_translated_physmap))
2241 return;
2243 if (unlikely(order > MAX_CONTIG_ORDER))
2244 return;
2246 memset((void *) vstart, 0, PAGE_SIZE << order);
2248 spin_lock_irqsave(&xen_reservation_lock, flags);
2250 /* 1. Find start MFN of contiguous extent. */
2251 in_frame = virt_to_mfn(vstart);
2253 /* 2. Zap current PTEs. */
2254 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2256 /* 3. Do the exchange for non-contiguous MFNs. */
2257 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2258 0, out_frames, 0);
2260 /* 4. Map new pages in place of old pages. */
2261 if (success)
2262 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2263 else
2264 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2266 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2268 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2270 #ifdef CONFIG_XEN_PVHVM
2271 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2273 struct xen_hvm_pagetable_dying a;
2274 int rc;
2276 a.domid = DOMID_SELF;
2277 a.gpa = __pa(mm->pgd);
2278 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2279 WARN_ON_ONCE(rc < 0);
2282 static int is_pagetable_dying_supported(void)
2284 struct xen_hvm_pagetable_dying a;
2285 int rc = 0;
2287 a.domid = DOMID_SELF;
2288 a.gpa = 0x00;
2289 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2290 if (rc < 0) {
2291 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2292 return 0;
2294 return 1;
2297 void __init xen_hvm_init_mmu_ops(void)
2299 if (is_pagetable_dying_supported())
2300 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2302 #endif
2304 #define REMAP_BATCH_SIZE 16
2306 struct remap_data {
2307 unsigned long mfn;
2308 pgprot_t prot;
2309 struct mmu_update *mmu_update;
2312 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2313 unsigned long addr, void *data)
2315 struct remap_data *rmd = data;
2316 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2318 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2319 rmd->mmu_update->val = pte_val_ma(pte);
2320 rmd->mmu_update++;
2322 return 0;
2325 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2326 unsigned long addr,
2327 unsigned long mfn, int nr,
2328 pgprot_t prot, unsigned domid)
2330 struct remap_data rmd;
2331 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2332 int batch;
2333 unsigned long range;
2334 int err = 0;
2336 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2338 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2339 (VM_PFNMAP | VM_RESERVED | VM_IO)));
2341 rmd.mfn = mfn;
2342 rmd.prot = prot;
2344 while (nr) {
2345 batch = min(REMAP_BATCH_SIZE, nr);
2346 range = (unsigned long)batch << PAGE_SHIFT;
2348 rmd.mmu_update = mmu_update;
2349 err = apply_to_page_range(vma->vm_mm, addr, range,
2350 remap_area_mfn_pte_fn, &rmd);
2351 if (err)
2352 goto out;
2354 err = -EFAULT;
2355 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2356 goto out;
2358 nr -= batch;
2359 addr += range;
2362 err = 0;
2363 out:
2365 flush_tlb_all();
2367 return err;
2369 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);