spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / arch / x86 / xen / time.c
blob0296a95225017912cec06b9794683e62b20a5382
1 /*
2 * Xen time implementation.
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/math64.h>
16 #include <linux/gfp.h>
18 #include <asm/pvclock.h>
19 #include <asm/xen/hypervisor.h>
20 #include <asm/xen/hypercall.h>
22 #include <xen/events.h>
23 #include <xen/features.h>
24 #include <xen/interface/xen.h>
25 #include <xen/interface/vcpu.h>
27 #include "xen-ops.h"
29 /* Xen may fire a timer up to this many ns early */
30 #define TIMER_SLOP 100000
31 #define NS_PER_TICK (1000000000LL / HZ)
33 /* runstate info updated by Xen */
34 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
36 /* snapshots of runstate info */
37 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
39 /* unused ns of stolen and blocked time */
40 static DEFINE_PER_CPU(u64, xen_residual_stolen);
41 static DEFINE_PER_CPU(u64, xen_residual_blocked);
43 /* return an consistent snapshot of 64-bit time/counter value */
44 static u64 get64(const u64 *p)
46 u64 ret;
48 if (BITS_PER_LONG < 64) {
49 u32 *p32 = (u32 *)p;
50 u32 h, l;
53 * Read high then low, and then make sure high is
54 * still the same; this will only loop if low wraps
55 * and carries into high.
56 * XXX some clean way to make this endian-proof?
58 do {
59 h = p32[1];
60 barrier();
61 l = p32[0];
62 barrier();
63 } while (p32[1] != h);
65 ret = (((u64)h) << 32) | l;
66 } else
67 ret = *p;
69 return ret;
73 * Runstate accounting
75 static void get_runstate_snapshot(struct vcpu_runstate_info *res)
77 u64 state_time;
78 struct vcpu_runstate_info *state;
80 BUG_ON(preemptible());
82 state = &__get_cpu_var(xen_runstate);
85 * The runstate info is always updated by the hypervisor on
86 * the current CPU, so there's no need to use anything
87 * stronger than a compiler barrier when fetching it.
89 do {
90 state_time = get64(&state->state_entry_time);
91 barrier();
92 *res = *state;
93 barrier();
94 } while (get64(&state->state_entry_time) != state_time);
97 /* return true when a vcpu could run but has no real cpu to run on */
98 bool xen_vcpu_stolen(int vcpu)
100 return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
103 void xen_setup_runstate_info(int cpu)
105 struct vcpu_register_runstate_memory_area area;
107 area.addr.v = &per_cpu(xen_runstate, cpu);
109 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
110 cpu, &area))
111 BUG();
114 static void do_stolen_accounting(void)
116 struct vcpu_runstate_info state;
117 struct vcpu_runstate_info *snap;
118 s64 blocked, runnable, offline, stolen;
119 cputime_t ticks;
121 get_runstate_snapshot(&state);
123 WARN_ON(state.state != RUNSTATE_running);
125 snap = &__get_cpu_var(xen_runstate_snapshot);
127 /* work out how much time the VCPU has not been runn*ing* */
128 blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked];
129 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
130 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
132 *snap = state;
134 /* Add the appropriate number of ticks of stolen time,
135 including any left-overs from last time. */
136 stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
138 if (stolen < 0)
139 stolen = 0;
141 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
142 __this_cpu_write(xen_residual_stolen, stolen);
143 account_steal_ticks(ticks);
145 /* Add the appropriate number of ticks of blocked time,
146 including any left-overs from last time. */
147 blocked += __this_cpu_read(xen_residual_blocked);
149 if (blocked < 0)
150 blocked = 0;
152 ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked);
153 __this_cpu_write(xen_residual_blocked, blocked);
154 account_idle_ticks(ticks);
157 /* Get the TSC speed from Xen */
158 static unsigned long xen_tsc_khz(void)
160 struct pvclock_vcpu_time_info *info =
161 &HYPERVISOR_shared_info->vcpu_info[0].time;
163 return pvclock_tsc_khz(info);
166 cycle_t xen_clocksource_read(void)
168 struct pvclock_vcpu_time_info *src;
169 cycle_t ret;
171 preempt_disable_notrace();
172 src = &__get_cpu_var(xen_vcpu)->time;
173 ret = pvclock_clocksource_read(src);
174 preempt_enable_notrace();
175 return ret;
178 static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
180 return xen_clocksource_read();
183 static void xen_read_wallclock(struct timespec *ts)
185 struct shared_info *s = HYPERVISOR_shared_info;
186 struct pvclock_wall_clock *wall_clock = &(s->wc);
187 struct pvclock_vcpu_time_info *vcpu_time;
189 vcpu_time = &get_cpu_var(xen_vcpu)->time;
190 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
191 put_cpu_var(xen_vcpu);
194 static unsigned long xen_get_wallclock(void)
196 struct timespec ts;
198 xen_read_wallclock(&ts);
199 return ts.tv_sec;
202 static int xen_set_wallclock(unsigned long now)
204 struct xen_platform_op op;
205 int rc;
207 /* do nothing for domU */
208 if (!xen_initial_domain())
209 return -1;
211 op.cmd = XENPF_settime;
212 op.u.settime.secs = now;
213 op.u.settime.nsecs = 0;
214 op.u.settime.system_time = xen_clocksource_read();
216 rc = HYPERVISOR_dom0_op(&op);
217 WARN(rc != 0, "XENPF_settime failed: now=%ld\n", now);
219 return rc;
222 static struct clocksource xen_clocksource __read_mostly = {
223 .name = "xen",
224 .rating = 400,
225 .read = xen_clocksource_get_cycles,
226 .mask = ~0,
227 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
231 Xen clockevent implementation
233 Xen has two clockevent implementations:
235 The old timer_op one works with all released versions of Xen prior
236 to version 3.0.4. This version of the hypervisor provides a
237 single-shot timer with nanosecond resolution. However, sharing the
238 same event channel is a 100Hz tick which is delivered while the
239 vcpu is running. We don't care about or use this tick, but it will
240 cause the core time code to think the timer fired too soon, and
241 will end up resetting it each time. It could be filtered, but
242 doing so has complications when the ktime clocksource is not yet
243 the xen clocksource (ie, at boot time).
245 The new vcpu_op-based timer interface allows the tick timer period
246 to be changed or turned off. The tick timer is not useful as a
247 periodic timer because events are only delivered to running vcpus.
248 The one-shot timer can report when a timeout is in the past, so
249 set_next_event is capable of returning -ETIME when appropriate.
250 This interface is used when available.
255 Get a hypervisor absolute time. In theory we could maintain an
256 offset between the kernel's time and the hypervisor's time, and
257 apply that to a kernel's absolute timeout. Unfortunately the
258 hypervisor and kernel times can drift even if the kernel is using
259 the Xen clocksource, because ntp can warp the kernel's clocksource.
261 static s64 get_abs_timeout(unsigned long delta)
263 return xen_clocksource_read() + delta;
266 static void xen_timerop_set_mode(enum clock_event_mode mode,
267 struct clock_event_device *evt)
269 switch (mode) {
270 case CLOCK_EVT_MODE_PERIODIC:
271 /* unsupported */
272 WARN_ON(1);
273 break;
275 case CLOCK_EVT_MODE_ONESHOT:
276 case CLOCK_EVT_MODE_RESUME:
277 break;
279 case CLOCK_EVT_MODE_UNUSED:
280 case CLOCK_EVT_MODE_SHUTDOWN:
281 HYPERVISOR_set_timer_op(0); /* cancel timeout */
282 break;
286 static int xen_timerop_set_next_event(unsigned long delta,
287 struct clock_event_device *evt)
289 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
291 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
292 BUG();
294 /* We may have missed the deadline, but there's no real way of
295 knowing for sure. If the event was in the past, then we'll
296 get an immediate interrupt. */
298 return 0;
301 static const struct clock_event_device xen_timerop_clockevent = {
302 .name = "xen",
303 .features = CLOCK_EVT_FEAT_ONESHOT,
305 .max_delta_ns = 0xffffffff,
306 .min_delta_ns = TIMER_SLOP,
308 .mult = 1,
309 .shift = 0,
310 .rating = 500,
312 .set_mode = xen_timerop_set_mode,
313 .set_next_event = xen_timerop_set_next_event,
318 static void xen_vcpuop_set_mode(enum clock_event_mode mode,
319 struct clock_event_device *evt)
321 int cpu = smp_processor_id();
323 switch (mode) {
324 case CLOCK_EVT_MODE_PERIODIC:
325 WARN_ON(1); /* unsupported */
326 break;
328 case CLOCK_EVT_MODE_ONESHOT:
329 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
330 BUG();
331 break;
333 case CLOCK_EVT_MODE_UNUSED:
334 case CLOCK_EVT_MODE_SHUTDOWN:
335 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
336 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
337 BUG();
338 break;
339 case CLOCK_EVT_MODE_RESUME:
340 break;
344 static int xen_vcpuop_set_next_event(unsigned long delta,
345 struct clock_event_device *evt)
347 int cpu = smp_processor_id();
348 struct vcpu_set_singleshot_timer single;
349 int ret;
351 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
353 single.timeout_abs_ns = get_abs_timeout(delta);
354 single.flags = VCPU_SSHOTTMR_future;
356 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
358 BUG_ON(ret != 0 && ret != -ETIME);
360 return ret;
363 static const struct clock_event_device xen_vcpuop_clockevent = {
364 .name = "xen",
365 .features = CLOCK_EVT_FEAT_ONESHOT,
367 .max_delta_ns = 0xffffffff,
368 .min_delta_ns = TIMER_SLOP,
370 .mult = 1,
371 .shift = 0,
372 .rating = 500,
374 .set_mode = xen_vcpuop_set_mode,
375 .set_next_event = xen_vcpuop_set_next_event,
378 static const struct clock_event_device *xen_clockevent =
379 &xen_timerop_clockevent;
380 static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
382 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
384 struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
385 irqreturn_t ret;
387 ret = IRQ_NONE;
388 if (evt->event_handler) {
389 evt->event_handler(evt);
390 ret = IRQ_HANDLED;
393 do_stolen_accounting();
395 return ret;
398 void xen_setup_timer(int cpu)
400 const char *name;
401 struct clock_event_device *evt;
402 int irq;
404 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
406 name = kasprintf(GFP_KERNEL, "timer%d", cpu);
407 if (!name)
408 name = "<timer kasprintf failed>";
410 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
411 IRQF_DISABLED|IRQF_PERCPU|
412 IRQF_NOBALANCING|IRQF_TIMER|
413 IRQF_FORCE_RESUME,
414 name, NULL);
416 evt = &per_cpu(xen_clock_events, cpu);
417 memcpy(evt, xen_clockevent, sizeof(*evt));
419 evt->cpumask = cpumask_of(cpu);
420 evt->irq = irq;
423 void xen_teardown_timer(int cpu)
425 struct clock_event_device *evt;
426 BUG_ON(cpu == 0);
427 evt = &per_cpu(xen_clock_events, cpu);
428 unbind_from_irqhandler(evt->irq, NULL);
431 void xen_setup_cpu_clockevents(void)
433 BUG_ON(preemptible());
435 clockevents_register_device(&__get_cpu_var(xen_clock_events));
438 void xen_timer_resume(void)
440 int cpu;
442 pvclock_resume();
444 if (xen_clockevent != &xen_vcpuop_clockevent)
445 return;
447 for_each_online_cpu(cpu) {
448 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
449 BUG();
453 static const struct pv_time_ops xen_time_ops __initconst = {
454 .sched_clock = xen_clocksource_read,
457 static void __init xen_time_init(void)
459 int cpu = smp_processor_id();
460 struct timespec tp;
462 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
464 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
465 /* Successfully turned off 100Hz tick, so we have the
466 vcpuop-based timer interface */
467 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
468 xen_clockevent = &xen_vcpuop_clockevent;
471 /* Set initial system time with full resolution */
472 xen_read_wallclock(&tp);
473 do_settimeofday(&tp);
475 setup_force_cpu_cap(X86_FEATURE_TSC);
477 xen_setup_runstate_info(cpu);
478 xen_setup_timer(cpu);
479 xen_setup_cpu_clockevents();
482 void __init xen_init_time_ops(void)
484 pv_time_ops = xen_time_ops;
486 x86_init.timers.timer_init = xen_time_init;
487 x86_init.timers.setup_percpu_clockev = x86_init_noop;
488 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
490 x86_platform.calibrate_tsc = xen_tsc_khz;
491 x86_platform.get_wallclock = xen_get_wallclock;
492 x86_platform.set_wallclock = xen_set_wallclock;
495 #ifdef CONFIG_XEN_PVHVM
496 static void xen_hvm_setup_cpu_clockevents(void)
498 int cpu = smp_processor_id();
499 xen_setup_runstate_info(cpu);
500 xen_setup_timer(cpu);
501 xen_setup_cpu_clockevents();
504 void __init xen_hvm_init_time_ops(void)
506 /* vector callback is needed otherwise we cannot receive interrupts
507 * on cpu > 0 and at this point we don't know how many cpus are
508 * available */
509 if (!xen_have_vector_callback)
510 return;
511 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
512 printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
513 "disable pv timer\n");
514 return;
517 pv_time_ops = xen_time_ops;
518 x86_init.timers.setup_percpu_clockev = xen_time_init;
519 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
521 x86_platform.calibrate_tsc = xen_tsc_khz;
522 x86_platform.get_wallclock = xen_get_wallclock;
523 x86_platform.set_wallclock = xen_set_wallclock;
525 #endif