spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / char / ipmi / ipmi_msghandler.c
blob58c0e6387cf73ddfd016baeb38384e08f5a6f794
1 /*
2 * ipmi_msghandler.c
4 * Incoming and outgoing message routing for an IPMI interface.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
8 * source@mvista.com
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/sched.h>
39 #include <linux/seq_file.h>
40 #include <linux/spinlock.h>
41 #include <linux/mutex.h>
42 #include <linux/slab.h>
43 #include <linux/ipmi.h>
44 #include <linux/ipmi_smi.h>
45 #include <linux/notifier.h>
46 #include <linux/init.h>
47 #include <linux/proc_fs.h>
48 #include <linux/rcupdate.h>
50 #define PFX "IPMI message handler: "
52 #define IPMI_DRIVER_VERSION "39.2"
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
57 static int initialized;
59 #ifdef CONFIG_PROC_FS
60 static struct proc_dir_entry *proc_ipmi_root;
61 #endif /* CONFIG_PROC_FS */
63 /* Remain in auto-maintenance mode for this amount of time (in ms). */
64 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
66 #define MAX_EVENTS_IN_QUEUE 25
69 * Don't let a message sit in a queue forever, always time it with at lest
70 * the max message timer. This is in milliseconds.
72 #define MAX_MSG_TIMEOUT 60000
75 * The main "user" data structure.
77 struct ipmi_user {
78 struct list_head link;
80 /* Set to "0" when the user is destroyed. */
81 int valid;
83 struct kref refcount;
85 /* The upper layer that handles receive messages. */
86 struct ipmi_user_hndl *handler;
87 void *handler_data;
89 /* The interface this user is bound to. */
90 ipmi_smi_t intf;
92 /* Does this interface receive IPMI events? */
93 int gets_events;
96 struct cmd_rcvr {
97 struct list_head link;
99 ipmi_user_t user;
100 unsigned char netfn;
101 unsigned char cmd;
102 unsigned int chans;
105 * This is used to form a linked lised during mass deletion.
106 * Since this is in an RCU list, we cannot use the link above
107 * or change any data until the RCU period completes. So we
108 * use this next variable during mass deletion so we can have
109 * a list and don't have to wait and restart the search on
110 * every individual deletion of a command.
112 struct cmd_rcvr *next;
115 struct seq_table {
116 unsigned int inuse : 1;
117 unsigned int broadcast : 1;
119 unsigned long timeout;
120 unsigned long orig_timeout;
121 unsigned int retries_left;
124 * To verify on an incoming send message response that this is
125 * the message that the response is for, we keep a sequence id
126 * and increment it every time we send a message.
128 long seqid;
131 * This is held so we can properly respond to the message on a
132 * timeout, and it is used to hold the temporary data for
133 * retransmission, too.
135 struct ipmi_recv_msg *recv_msg;
139 * Store the information in a msgid (long) to allow us to find a
140 * sequence table entry from the msgid.
142 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
144 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
145 do { \
146 seq = ((msgid >> 26) & 0x3f); \
147 seqid = (msgid & 0x3fffff); \
148 } while (0)
150 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
152 struct ipmi_channel {
153 unsigned char medium;
154 unsigned char protocol;
157 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
158 * but may be changed by the user.
160 unsigned char address;
163 * My LUN. This should generally stay the SMS LUN, but just in
164 * case...
166 unsigned char lun;
169 #ifdef CONFIG_PROC_FS
170 struct ipmi_proc_entry {
171 char *name;
172 struct ipmi_proc_entry *next;
174 #endif
176 struct bmc_device {
177 struct platform_device *dev;
178 struct ipmi_device_id id;
179 unsigned char guid[16];
180 int guid_set;
182 struct kref refcount;
184 /* bmc device attributes */
185 struct device_attribute device_id_attr;
186 struct device_attribute provides_dev_sdrs_attr;
187 struct device_attribute revision_attr;
188 struct device_attribute firmware_rev_attr;
189 struct device_attribute version_attr;
190 struct device_attribute add_dev_support_attr;
191 struct device_attribute manufacturer_id_attr;
192 struct device_attribute product_id_attr;
193 struct device_attribute guid_attr;
194 struct device_attribute aux_firmware_rev_attr;
198 * Various statistics for IPMI, these index stats[] in the ipmi_smi
199 * structure.
201 enum ipmi_stat_indexes {
202 /* Commands we got from the user that were invalid. */
203 IPMI_STAT_sent_invalid_commands = 0,
205 /* Commands we sent to the MC. */
206 IPMI_STAT_sent_local_commands,
208 /* Responses from the MC that were delivered to a user. */
209 IPMI_STAT_handled_local_responses,
211 /* Responses from the MC that were not delivered to a user. */
212 IPMI_STAT_unhandled_local_responses,
214 /* Commands we sent out to the IPMB bus. */
215 IPMI_STAT_sent_ipmb_commands,
217 /* Commands sent on the IPMB that had errors on the SEND CMD */
218 IPMI_STAT_sent_ipmb_command_errs,
220 /* Each retransmit increments this count. */
221 IPMI_STAT_retransmitted_ipmb_commands,
224 * When a message times out (runs out of retransmits) this is
225 * incremented.
227 IPMI_STAT_timed_out_ipmb_commands,
230 * This is like above, but for broadcasts. Broadcasts are
231 * *not* included in the above count (they are expected to
232 * time out).
234 IPMI_STAT_timed_out_ipmb_broadcasts,
236 /* Responses I have sent to the IPMB bus. */
237 IPMI_STAT_sent_ipmb_responses,
239 /* The response was delivered to the user. */
240 IPMI_STAT_handled_ipmb_responses,
242 /* The response had invalid data in it. */
243 IPMI_STAT_invalid_ipmb_responses,
245 /* The response didn't have anyone waiting for it. */
246 IPMI_STAT_unhandled_ipmb_responses,
248 /* Commands we sent out to the IPMB bus. */
249 IPMI_STAT_sent_lan_commands,
251 /* Commands sent on the IPMB that had errors on the SEND CMD */
252 IPMI_STAT_sent_lan_command_errs,
254 /* Each retransmit increments this count. */
255 IPMI_STAT_retransmitted_lan_commands,
258 * When a message times out (runs out of retransmits) this is
259 * incremented.
261 IPMI_STAT_timed_out_lan_commands,
263 /* Responses I have sent to the IPMB bus. */
264 IPMI_STAT_sent_lan_responses,
266 /* The response was delivered to the user. */
267 IPMI_STAT_handled_lan_responses,
269 /* The response had invalid data in it. */
270 IPMI_STAT_invalid_lan_responses,
272 /* The response didn't have anyone waiting for it. */
273 IPMI_STAT_unhandled_lan_responses,
275 /* The command was delivered to the user. */
276 IPMI_STAT_handled_commands,
278 /* The command had invalid data in it. */
279 IPMI_STAT_invalid_commands,
281 /* The command didn't have anyone waiting for it. */
282 IPMI_STAT_unhandled_commands,
284 /* Invalid data in an event. */
285 IPMI_STAT_invalid_events,
287 /* Events that were received with the proper format. */
288 IPMI_STAT_events,
290 /* Retransmissions on IPMB that failed. */
291 IPMI_STAT_dropped_rexmit_ipmb_commands,
293 /* Retransmissions on LAN that failed. */
294 IPMI_STAT_dropped_rexmit_lan_commands,
296 /* This *must* remain last, add new values above this. */
297 IPMI_NUM_STATS
301 #define IPMI_IPMB_NUM_SEQ 64
302 #define IPMI_MAX_CHANNELS 16
303 struct ipmi_smi {
304 /* What interface number are we? */
305 int intf_num;
307 struct kref refcount;
309 /* Used for a list of interfaces. */
310 struct list_head link;
313 * The list of upper layers that are using me. seq_lock
314 * protects this.
316 struct list_head users;
318 /* Information to supply to users. */
319 unsigned char ipmi_version_major;
320 unsigned char ipmi_version_minor;
322 /* Used for wake ups at startup. */
323 wait_queue_head_t waitq;
325 struct bmc_device *bmc;
326 char *my_dev_name;
327 char *sysfs_name;
330 * This is the lower-layer's sender routine. Note that you
331 * must either be holding the ipmi_interfaces_mutex or be in
332 * an umpreemptible region to use this. You must fetch the
333 * value into a local variable and make sure it is not NULL.
335 struct ipmi_smi_handlers *handlers;
336 void *send_info;
338 #ifdef CONFIG_PROC_FS
339 /* A list of proc entries for this interface. */
340 struct mutex proc_entry_lock;
341 struct ipmi_proc_entry *proc_entries;
342 #endif
344 /* Driver-model device for the system interface. */
345 struct device *si_dev;
348 * A table of sequence numbers for this interface. We use the
349 * sequence numbers for IPMB messages that go out of the
350 * interface to match them up with their responses. A routine
351 * is called periodically to time the items in this list.
353 spinlock_t seq_lock;
354 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
355 int curr_seq;
358 * Messages that were delayed for some reason (out of memory,
359 * for instance), will go in here to be processed later in a
360 * periodic timer interrupt.
362 spinlock_t waiting_msgs_lock;
363 struct list_head waiting_msgs;
366 * The list of command receivers that are registered for commands
367 * on this interface.
369 struct mutex cmd_rcvrs_mutex;
370 struct list_head cmd_rcvrs;
373 * Events that were queues because no one was there to receive
374 * them.
376 spinlock_t events_lock; /* For dealing with event stuff. */
377 struct list_head waiting_events;
378 unsigned int waiting_events_count; /* How many events in queue? */
379 char delivering_events;
380 char event_msg_printed;
383 * The event receiver for my BMC, only really used at panic
384 * shutdown as a place to store this.
386 unsigned char event_receiver;
387 unsigned char event_receiver_lun;
388 unsigned char local_sel_device;
389 unsigned char local_event_generator;
391 /* For handling of maintenance mode. */
392 int maintenance_mode;
393 int maintenance_mode_enable;
394 int auto_maintenance_timeout;
395 spinlock_t maintenance_mode_lock; /* Used in a timer... */
398 * A cheap hack, if this is non-null and a message to an
399 * interface comes in with a NULL user, call this routine with
400 * it. Note that the message will still be freed by the
401 * caller. This only works on the system interface.
403 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
406 * When we are scanning the channels for an SMI, this will
407 * tell which channel we are scanning.
409 int curr_channel;
411 /* Channel information */
412 struct ipmi_channel channels[IPMI_MAX_CHANNELS];
414 /* Proc FS stuff. */
415 struct proc_dir_entry *proc_dir;
416 char proc_dir_name[10];
418 atomic_t stats[IPMI_NUM_STATS];
421 * run_to_completion duplicate of smb_info, smi_info
422 * and ipmi_serial_info structures. Used to decrease numbers of
423 * parameters passed by "low" level IPMI code.
425 int run_to_completion;
427 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
430 * The driver model view of the IPMI messaging driver.
432 static struct platform_driver ipmidriver = {
433 .driver = {
434 .name = "ipmi",
435 .bus = &platform_bus_type
438 static DEFINE_MUTEX(ipmidriver_mutex);
440 static LIST_HEAD(ipmi_interfaces);
441 static DEFINE_MUTEX(ipmi_interfaces_mutex);
444 * List of watchers that want to know when smi's are added and deleted.
446 static LIST_HEAD(smi_watchers);
447 static DEFINE_MUTEX(smi_watchers_mutex);
450 #define ipmi_inc_stat(intf, stat) \
451 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
452 #define ipmi_get_stat(intf, stat) \
453 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
455 static int is_lan_addr(struct ipmi_addr *addr)
457 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
460 static int is_ipmb_addr(struct ipmi_addr *addr)
462 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
465 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
467 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
470 static void free_recv_msg_list(struct list_head *q)
472 struct ipmi_recv_msg *msg, *msg2;
474 list_for_each_entry_safe(msg, msg2, q, link) {
475 list_del(&msg->link);
476 ipmi_free_recv_msg(msg);
480 static void free_smi_msg_list(struct list_head *q)
482 struct ipmi_smi_msg *msg, *msg2;
484 list_for_each_entry_safe(msg, msg2, q, link) {
485 list_del(&msg->link);
486 ipmi_free_smi_msg(msg);
490 static void clean_up_interface_data(ipmi_smi_t intf)
492 int i;
493 struct cmd_rcvr *rcvr, *rcvr2;
494 struct list_head list;
496 free_smi_msg_list(&intf->waiting_msgs);
497 free_recv_msg_list(&intf->waiting_events);
500 * Wholesale remove all the entries from the list in the
501 * interface and wait for RCU to know that none are in use.
503 mutex_lock(&intf->cmd_rcvrs_mutex);
504 INIT_LIST_HEAD(&list);
505 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
506 mutex_unlock(&intf->cmd_rcvrs_mutex);
508 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
509 kfree(rcvr);
511 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
512 if ((intf->seq_table[i].inuse)
513 && (intf->seq_table[i].recv_msg))
514 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
518 static void intf_free(struct kref *ref)
520 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
522 clean_up_interface_data(intf);
523 kfree(intf);
526 struct watcher_entry {
527 int intf_num;
528 ipmi_smi_t intf;
529 struct list_head link;
532 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
534 ipmi_smi_t intf;
535 LIST_HEAD(to_deliver);
536 struct watcher_entry *e, *e2;
538 mutex_lock(&smi_watchers_mutex);
540 mutex_lock(&ipmi_interfaces_mutex);
542 /* Build a list of things to deliver. */
543 list_for_each_entry(intf, &ipmi_interfaces, link) {
544 if (intf->intf_num == -1)
545 continue;
546 e = kmalloc(sizeof(*e), GFP_KERNEL);
547 if (!e)
548 goto out_err;
549 kref_get(&intf->refcount);
550 e->intf = intf;
551 e->intf_num = intf->intf_num;
552 list_add_tail(&e->link, &to_deliver);
555 /* We will succeed, so add it to the list. */
556 list_add(&watcher->link, &smi_watchers);
558 mutex_unlock(&ipmi_interfaces_mutex);
560 list_for_each_entry_safe(e, e2, &to_deliver, link) {
561 list_del(&e->link);
562 watcher->new_smi(e->intf_num, e->intf->si_dev);
563 kref_put(&e->intf->refcount, intf_free);
564 kfree(e);
567 mutex_unlock(&smi_watchers_mutex);
569 return 0;
571 out_err:
572 mutex_unlock(&ipmi_interfaces_mutex);
573 mutex_unlock(&smi_watchers_mutex);
574 list_for_each_entry_safe(e, e2, &to_deliver, link) {
575 list_del(&e->link);
576 kref_put(&e->intf->refcount, intf_free);
577 kfree(e);
579 return -ENOMEM;
581 EXPORT_SYMBOL(ipmi_smi_watcher_register);
583 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
585 mutex_lock(&smi_watchers_mutex);
586 list_del(&(watcher->link));
587 mutex_unlock(&smi_watchers_mutex);
588 return 0;
590 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
593 * Must be called with smi_watchers_mutex held.
595 static void
596 call_smi_watchers(int i, struct device *dev)
598 struct ipmi_smi_watcher *w;
600 list_for_each_entry(w, &smi_watchers, link) {
601 if (try_module_get(w->owner)) {
602 w->new_smi(i, dev);
603 module_put(w->owner);
608 static int
609 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
611 if (addr1->addr_type != addr2->addr_type)
612 return 0;
614 if (addr1->channel != addr2->channel)
615 return 0;
617 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
618 struct ipmi_system_interface_addr *smi_addr1
619 = (struct ipmi_system_interface_addr *) addr1;
620 struct ipmi_system_interface_addr *smi_addr2
621 = (struct ipmi_system_interface_addr *) addr2;
622 return (smi_addr1->lun == smi_addr2->lun);
625 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
626 struct ipmi_ipmb_addr *ipmb_addr1
627 = (struct ipmi_ipmb_addr *) addr1;
628 struct ipmi_ipmb_addr *ipmb_addr2
629 = (struct ipmi_ipmb_addr *) addr2;
631 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
632 && (ipmb_addr1->lun == ipmb_addr2->lun));
635 if (is_lan_addr(addr1)) {
636 struct ipmi_lan_addr *lan_addr1
637 = (struct ipmi_lan_addr *) addr1;
638 struct ipmi_lan_addr *lan_addr2
639 = (struct ipmi_lan_addr *) addr2;
641 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
642 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
643 && (lan_addr1->session_handle
644 == lan_addr2->session_handle)
645 && (lan_addr1->lun == lan_addr2->lun));
648 return 1;
651 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
653 if (len < sizeof(struct ipmi_system_interface_addr))
654 return -EINVAL;
656 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
657 if (addr->channel != IPMI_BMC_CHANNEL)
658 return -EINVAL;
659 return 0;
662 if ((addr->channel == IPMI_BMC_CHANNEL)
663 || (addr->channel >= IPMI_MAX_CHANNELS)
664 || (addr->channel < 0))
665 return -EINVAL;
667 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
668 if (len < sizeof(struct ipmi_ipmb_addr))
669 return -EINVAL;
670 return 0;
673 if (is_lan_addr(addr)) {
674 if (len < sizeof(struct ipmi_lan_addr))
675 return -EINVAL;
676 return 0;
679 return -EINVAL;
681 EXPORT_SYMBOL(ipmi_validate_addr);
683 unsigned int ipmi_addr_length(int addr_type)
685 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
686 return sizeof(struct ipmi_system_interface_addr);
688 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
689 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
690 return sizeof(struct ipmi_ipmb_addr);
692 if (addr_type == IPMI_LAN_ADDR_TYPE)
693 return sizeof(struct ipmi_lan_addr);
695 return 0;
697 EXPORT_SYMBOL(ipmi_addr_length);
699 static void deliver_response(struct ipmi_recv_msg *msg)
701 if (!msg->user) {
702 ipmi_smi_t intf = msg->user_msg_data;
704 /* Special handling for NULL users. */
705 if (intf->null_user_handler) {
706 intf->null_user_handler(intf, msg);
707 ipmi_inc_stat(intf, handled_local_responses);
708 } else {
709 /* No handler, so give up. */
710 ipmi_inc_stat(intf, unhandled_local_responses);
712 ipmi_free_recv_msg(msg);
713 } else {
714 ipmi_user_t user = msg->user;
715 user->handler->ipmi_recv_hndl(msg, user->handler_data);
719 static void
720 deliver_err_response(struct ipmi_recv_msg *msg, int err)
722 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
723 msg->msg_data[0] = err;
724 msg->msg.netfn |= 1; /* Convert to a response. */
725 msg->msg.data_len = 1;
726 msg->msg.data = msg->msg_data;
727 deliver_response(msg);
731 * Find the next sequence number not being used and add the given
732 * message with the given timeout to the sequence table. This must be
733 * called with the interface's seq_lock held.
735 static int intf_next_seq(ipmi_smi_t intf,
736 struct ipmi_recv_msg *recv_msg,
737 unsigned long timeout,
738 int retries,
739 int broadcast,
740 unsigned char *seq,
741 long *seqid)
743 int rv = 0;
744 unsigned int i;
746 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
747 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
748 if (!intf->seq_table[i].inuse)
749 break;
752 if (!intf->seq_table[i].inuse) {
753 intf->seq_table[i].recv_msg = recv_msg;
756 * Start with the maximum timeout, when the send response
757 * comes in we will start the real timer.
759 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
760 intf->seq_table[i].orig_timeout = timeout;
761 intf->seq_table[i].retries_left = retries;
762 intf->seq_table[i].broadcast = broadcast;
763 intf->seq_table[i].inuse = 1;
764 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
765 *seq = i;
766 *seqid = intf->seq_table[i].seqid;
767 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
768 } else {
769 rv = -EAGAIN;
772 return rv;
776 * Return the receive message for the given sequence number and
777 * release the sequence number so it can be reused. Some other data
778 * is passed in to be sure the message matches up correctly (to help
779 * guard against message coming in after their timeout and the
780 * sequence number being reused).
782 static int intf_find_seq(ipmi_smi_t intf,
783 unsigned char seq,
784 short channel,
785 unsigned char cmd,
786 unsigned char netfn,
787 struct ipmi_addr *addr,
788 struct ipmi_recv_msg **recv_msg)
790 int rv = -ENODEV;
791 unsigned long flags;
793 if (seq >= IPMI_IPMB_NUM_SEQ)
794 return -EINVAL;
796 spin_lock_irqsave(&(intf->seq_lock), flags);
797 if (intf->seq_table[seq].inuse) {
798 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
800 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
801 && (msg->msg.netfn == netfn)
802 && (ipmi_addr_equal(addr, &(msg->addr)))) {
803 *recv_msg = msg;
804 intf->seq_table[seq].inuse = 0;
805 rv = 0;
808 spin_unlock_irqrestore(&(intf->seq_lock), flags);
810 return rv;
814 /* Start the timer for a specific sequence table entry. */
815 static int intf_start_seq_timer(ipmi_smi_t intf,
816 long msgid)
818 int rv = -ENODEV;
819 unsigned long flags;
820 unsigned char seq;
821 unsigned long seqid;
824 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
826 spin_lock_irqsave(&(intf->seq_lock), flags);
828 * We do this verification because the user can be deleted
829 * while a message is outstanding.
831 if ((intf->seq_table[seq].inuse)
832 && (intf->seq_table[seq].seqid == seqid)) {
833 struct seq_table *ent = &(intf->seq_table[seq]);
834 ent->timeout = ent->orig_timeout;
835 rv = 0;
837 spin_unlock_irqrestore(&(intf->seq_lock), flags);
839 return rv;
842 /* Got an error for the send message for a specific sequence number. */
843 static int intf_err_seq(ipmi_smi_t intf,
844 long msgid,
845 unsigned int err)
847 int rv = -ENODEV;
848 unsigned long flags;
849 unsigned char seq;
850 unsigned long seqid;
851 struct ipmi_recv_msg *msg = NULL;
854 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
856 spin_lock_irqsave(&(intf->seq_lock), flags);
858 * We do this verification because the user can be deleted
859 * while a message is outstanding.
861 if ((intf->seq_table[seq].inuse)
862 && (intf->seq_table[seq].seqid == seqid)) {
863 struct seq_table *ent = &(intf->seq_table[seq]);
865 ent->inuse = 0;
866 msg = ent->recv_msg;
867 rv = 0;
869 spin_unlock_irqrestore(&(intf->seq_lock), flags);
871 if (msg)
872 deliver_err_response(msg, err);
874 return rv;
878 int ipmi_create_user(unsigned int if_num,
879 struct ipmi_user_hndl *handler,
880 void *handler_data,
881 ipmi_user_t *user)
883 unsigned long flags;
884 ipmi_user_t new_user;
885 int rv = 0;
886 ipmi_smi_t intf;
889 * There is no module usecount here, because it's not
890 * required. Since this can only be used by and called from
891 * other modules, they will implicitly use this module, and
892 * thus this can't be removed unless the other modules are
893 * removed.
896 if (handler == NULL)
897 return -EINVAL;
900 * Make sure the driver is actually initialized, this handles
901 * problems with initialization order.
903 if (!initialized) {
904 rv = ipmi_init_msghandler();
905 if (rv)
906 return rv;
909 * The init code doesn't return an error if it was turned
910 * off, but it won't initialize. Check that.
912 if (!initialized)
913 return -ENODEV;
916 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
917 if (!new_user)
918 return -ENOMEM;
920 mutex_lock(&ipmi_interfaces_mutex);
921 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
922 if (intf->intf_num == if_num)
923 goto found;
925 /* Not found, return an error */
926 rv = -EINVAL;
927 goto out_kfree;
929 found:
930 /* Note that each existing user holds a refcount to the interface. */
931 kref_get(&intf->refcount);
933 kref_init(&new_user->refcount);
934 new_user->handler = handler;
935 new_user->handler_data = handler_data;
936 new_user->intf = intf;
937 new_user->gets_events = 0;
939 if (!try_module_get(intf->handlers->owner)) {
940 rv = -ENODEV;
941 goto out_kref;
944 if (intf->handlers->inc_usecount) {
945 rv = intf->handlers->inc_usecount(intf->send_info);
946 if (rv) {
947 module_put(intf->handlers->owner);
948 goto out_kref;
953 * Hold the lock so intf->handlers is guaranteed to be good
954 * until now
956 mutex_unlock(&ipmi_interfaces_mutex);
958 new_user->valid = 1;
959 spin_lock_irqsave(&intf->seq_lock, flags);
960 list_add_rcu(&new_user->link, &intf->users);
961 spin_unlock_irqrestore(&intf->seq_lock, flags);
962 *user = new_user;
963 return 0;
965 out_kref:
966 kref_put(&intf->refcount, intf_free);
967 out_kfree:
968 mutex_unlock(&ipmi_interfaces_mutex);
969 kfree(new_user);
970 return rv;
972 EXPORT_SYMBOL(ipmi_create_user);
974 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
976 int rv = 0;
977 ipmi_smi_t intf;
978 struct ipmi_smi_handlers *handlers;
980 mutex_lock(&ipmi_interfaces_mutex);
981 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
982 if (intf->intf_num == if_num)
983 goto found;
985 /* Not found, return an error */
986 rv = -EINVAL;
987 mutex_unlock(&ipmi_interfaces_mutex);
988 return rv;
990 found:
991 handlers = intf->handlers;
992 rv = -ENOSYS;
993 if (handlers->get_smi_info)
994 rv = handlers->get_smi_info(intf->send_info, data);
995 mutex_unlock(&ipmi_interfaces_mutex);
997 return rv;
999 EXPORT_SYMBOL(ipmi_get_smi_info);
1001 static void free_user(struct kref *ref)
1003 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1004 kfree(user);
1007 int ipmi_destroy_user(ipmi_user_t user)
1009 ipmi_smi_t intf = user->intf;
1010 int i;
1011 unsigned long flags;
1012 struct cmd_rcvr *rcvr;
1013 struct cmd_rcvr *rcvrs = NULL;
1015 user->valid = 0;
1017 /* Remove the user from the interface's sequence table. */
1018 spin_lock_irqsave(&intf->seq_lock, flags);
1019 list_del_rcu(&user->link);
1021 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1022 if (intf->seq_table[i].inuse
1023 && (intf->seq_table[i].recv_msg->user == user)) {
1024 intf->seq_table[i].inuse = 0;
1025 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1028 spin_unlock_irqrestore(&intf->seq_lock, flags);
1031 * Remove the user from the command receiver's table. First
1032 * we build a list of everything (not using the standard link,
1033 * since other things may be using it till we do
1034 * synchronize_rcu()) then free everything in that list.
1036 mutex_lock(&intf->cmd_rcvrs_mutex);
1037 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1038 if (rcvr->user == user) {
1039 list_del_rcu(&rcvr->link);
1040 rcvr->next = rcvrs;
1041 rcvrs = rcvr;
1044 mutex_unlock(&intf->cmd_rcvrs_mutex);
1045 synchronize_rcu();
1046 while (rcvrs) {
1047 rcvr = rcvrs;
1048 rcvrs = rcvr->next;
1049 kfree(rcvr);
1052 mutex_lock(&ipmi_interfaces_mutex);
1053 if (intf->handlers) {
1054 module_put(intf->handlers->owner);
1055 if (intf->handlers->dec_usecount)
1056 intf->handlers->dec_usecount(intf->send_info);
1058 mutex_unlock(&ipmi_interfaces_mutex);
1060 kref_put(&intf->refcount, intf_free);
1062 kref_put(&user->refcount, free_user);
1064 return 0;
1066 EXPORT_SYMBOL(ipmi_destroy_user);
1068 void ipmi_get_version(ipmi_user_t user,
1069 unsigned char *major,
1070 unsigned char *minor)
1072 *major = user->intf->ipmi_version_major;
1073 *minor = user->intf->ipmi_version_minor;
1075 EXPORT_SYMBOL(ipmi_get_version);
1077 int ipmi_set_my_address(ipmi_user_t user,
1078 unsigned int channel,
1079 unsigned char address)
1081 if (channel >= IPMI_MAX_CHANNELS)
1082 return -EINVAL;
1083 user->intf->channels[channel].address = address;
1084 return 0;
1086 EXPORT_SYMBOL(ipmi_set_my_address);
1088 int ipmi_get_my_address(ipmi_user_t user,
1089 unsigned int channel,
1090 unsigned char *address)
1092 if (channel >= IPMI_MAX_CHANNELS)
1093 return -EINVAL;
1094 *address = user->intf->channels[channel].address;
1095 return 0;
1097 EXPORT_SYMBOL(ipmi_get_my_address);
1099 int ipmi_set_my_LUN(ipmi_user_t user,
1100 unsigned int channel,
1101 unsigned char LUN)
1103 if (channel >= IPMI_MAX_CHANNELS)
1104 return -EINVAL;
1105 user->intf->channels[channel].lun = LUN & 0x3;
1106 return 0;
1108 EXPORT_SYMBOL(ipmi_set_my_LUN);
1110 int ipmi_get_my_LUN(ipmi_user_t user,
1111 unsigned int channel,
1112 unsigned char *address)
1114 if (channel >= IPMI_MAX_CHANNELS)
1115 return -EINVAL;
1116 *address = user->intf->channels[channel].lun;
1117 return 0;
1119 EXPORT_SYMBOL(ipmi_get_my_LUN);
1121 int ipmi_get_maintenance_mode(ipmi_user_t user)
1123 int mode;
1124 unsigned long flags;
1126 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1127 mode = user->intf->maintenance_mode;
1128 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1130 return mode;
1132 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1134 static void maintenance_mode_update(ipmi_smi_t intf)
1136 if (intf->handlers->set_maintenance_mode)
1137 intf->handlers->set_maintenance_mode(
1138 intf->send_info, intf->maintenance_mode_enable);
1141 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1143 int rv = 0;
1144 unsigned long flags;
1145 ipmi_smi_t intf = user->intf;
1147 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1148 if (intf->maintenance_mode != mode) {
1149 switch (mode) {
1150 case IPMI_MAINTENANCE_MODE_AUTO:
1151 intf->maintenance_mode = mode;
1152 intf->maintenance_mode_enable
1153 = (intf->auto_maintenance_timeout > 0);
1154 break;
1156 case IPMI_MAINTENANCE_MODE_OFF:
1157 intf->maintenance_mode = mode;
1158 intf->maintenance_mode_enable = 0;
1159 break;
1161 case IPMI_MAINTENANCE_MODE_ON:
1162 intf->maintenance_mode = mode;
1163 intf->maintenance_mode_enable = 1;
1164 break;
1166 default:
1167 rv = -EINVAL;
1168 goto out_unlock;
1171 maintenance_mode_update(intf);
1173 out_unlock:
1174 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1176 return rv;
1178 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1180 int ipmi_set_gets_events(ipmi_user_t user, int val)
1182 unsigned long flags;
1183 ipmi_smi_t intf = user->intf;
1184 struct ipmi_recv_msg *msg, *msg2;
1185 struct list_head msgs;
1187 INIT_LIST_HEAD(&msgs);
1189 spin_lock_irqsave(&intf->events_lock, flags);
1190 user->gets_events = val;
1192 if (intf->delivering_events)
1194 * Another thread is delivering events for this, so
1195 * let it handle any new events.
1197 goto out;
1199 /* Deliver any queued events. */
1200 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1201 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1202 list_move_tail(&msg->link, &msgs);
1203 intf->waiting_events_count = 0;
1204 if (intf->event_msg_printed) {
1205 printk(KERN_WARNING PFX "Event queue no longer"
1206 " full\n");
1207 intf->event_msg_printed = 0;
1210 intf->delivering_events = 1;
1211 spin_unlock_irqrestore(&intf->events_lock, flags);
1213 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1214 msg->user = user;
1215 kref_get(&user->refcount);
1216 deliver_response(msg);
1219 spin_lock_irqsave(&intf->events_lock, flags);
1220 intf->delivering_events = 0;
1223 out:
1224 spin_unlock_irqrestore(&intf->events_lock, flags);
1226 return 0;
1228 EXPORT_SYMBOL(ipmi_set_gets_events);
1230 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf,
1231 unsigned char netfn,
1232 unsigned char cmd,
1233 unsigned char chan)
1235 struct cmd_rcvr *rcvr;
1237 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1238 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1239 && (rcvr->chans & (1 << chan)))
1240 return rcvr;
1242 return NULL;
1245 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf,
1246 unsigned char netfn,
1247 unsigned char cmd,
1248 unsigned int chans)
1250 struct cmd_rcvr *rcvr;
1252 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1253 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1254 && (rcvr->chans & chans))
1255 return 0;
1257 return 1;
1260 int ipmi_register_for_cmd(ipmi_user_t user,
1261 unsigned char netfn,
1262 unsigned char cmd,
1263 unsigned int chans)
1265 ipmi_smi_t intf = user->intf;
1266 struct cmd_rcvr *rcvr;
1267 int rv = 0;
1270 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1271 if (!rcvr)
1272 return -ENOMEM;
1273 rcvr->cmd = cmd;
1274 rcvr->netfn = netfn;
1275 rcvr->chans = chans;
1276 rcvr->user = user;
1278 mutex_lock(&intf->cmd_rcvrs_mutex);
1279 /* Make sure the command/netfn is not already registered. */
1280 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1281 rv = -EBUSY;
1282 goto out_unlock;
1285 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1287 out_unlock:
1288 mutex_unlock(&intf->cmd_rcvrs_mutex);
1289 if (rv)
1290 kfree(rcvr);
1292 return rv;
1294 EXPORT_SYMBOL(ipmi_register_for_cmd);
1296 int ipmi_unregister_for_cmd(ipmi_user_t user,
1297 unsigned char netfn,
1298 unsigned char cmd,
1299 unsigned int chans)
1301 ipmi_smi_t intf = user->intf;
1302 struct cmd_rcvr *rcvr;
1303 struct cmd_rcvr *rcvrs = NULL;
1304 int i, rv = -ENOENT;
1306 mutex_lock(&intf->cmd_rcvrs_mutex);
1307 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1308 if (((1 << i) & chans) == 0)
1309 continue;
1310 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1311 if (rcvr == NULL)
1312 continue;
1313 if (rcvr->user == user) {
1314 rv = 0;
1315 rcvr->chans &= ~chans;
1316 if (rcvr->chans == 0) {
1317 list_del_rcu(&rcvr->link);
1318 rcvr->next = rcvrs;
1319 rcvrs = rcvr;
1323 mutex_unlock(&intf->cmd_rcvrs_mutex);
1324 synchronize_rcu();
1325 while (rcvrs) {
1326 rcvr = rcvrs;
1327 rcvrs = rcvr->next;
1328 kfree(rcvr);
1330 return rv;
1332 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1334 static unsigned char
1335 ipmb_checksum(unsigned char *data, int size)
1337 unsigned char csum = 0;
1339 for (; size > 0; size--, data++)
1340 csum += *data;
1342 return -csum;
1345 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1346 struct kernel_ipmi_msg *msg,
1347 struct ipmi_ipmb_addr *ipmb_addr,
1348 long msgid,
1349 unsigned char ipmb_seq,
1350 int broadcast,
1351 unsigned char source_address,
1352 unsigned char source_lun)
1354 int i = broadcast;
1356 /* Format the IPMB header data. */
1357 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1358 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1359 smi_msg->data[2] = ipmb_addr->channel;
1360 if (broadcast)
1361 smi_msg->data[3] = 0;
1362 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1363 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1364 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1365 smi_msg->data[i+6] = source_address;
1366 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1367 smi_msg->data[i+8] = msg->cmd;
1369 /* Now tack on the data to the message. */
1370 if (msg->data_len > 0)
1371 memcpy(&(smi_msg->data[i+9]), msg->data,
1372 msg->data_len);
1373 smi_msg->data_size = msg->data_len + 9;
1375 /* Now calculate the checksum and tack it on. */
1376 smi_msg->data[i+smi_msg->data_size]
1377 = ipmb_checksum(&(smi_msg->data[i+6]),
1378 smi_msg->data_size-6);
1381 * Add on the checksum size and the offset from the
1382 * broadcast.
1384 smi_msg->data_size += 1 + i;
1386 smi_msg->msgid = msgid;
1389 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1390 struct kernel_ipmi_msg *msg,
1391 struct ipmi_lan_addr *lan_addr,
1392 long msgid,
1393 unsigned char ipmb_seq,
1394 unsigned char source_lun)
1396 /* Format the IPMB header data. */
1397 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1398 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1399 smi_msg->data[2] = lan_addr->channel;
1400 smi_msg->data[3] = lan_addr->session_handle;
1401 smi_msg->data[4] = lan_addr->remote_SWID;
1402 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1403 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1404 smi_msg->data[7] = lan_addr->local_SWID;
1405 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1406 smi_msg->data[9] = msg->cmd;
1408 /* Now tack on the data to the message. */
1409 if (msg->data_len > 0)
1410 memcpy(&(smi_msg->data[10]), msg->data,
1411 msg->data_len);
1412 smi_msg->data_size = msg->data_len + 10;
1414 /* Now calculate the checksum and tack it on. */
1415 smi_msg->data[smi_msg->data_size]
1416 = ipmb_checksum(&(smi_msg->data[7]),
1417 smi_msg->data_size-7);
1420 * Add on the checksum size and the offset from the
1421 * broadcast.
1423 smi_msg->data_size += 1;
1425 smi_msg->msgid = msgid;
1429 * Separate from ipmi_request so that the user does not have to be
1430 * supplied in certain circumstances (mainly at panic time). If
1431 * messages are supplied, they will be freed, even if an error
1432 * occurs.
1434 static int i_ipmi_request(ipmi_user_t user,
1435 ipmi_smi_t intf,
1436 struct ipmi_addr *addr,
1437 long msgid,
1438 struct kernel_ipmi_msg *msg,
1439 void *user_msg_data,
1440 void *supplied_smi,
1441 struct ipmi_recv_msg *supplied_recv,
1442 int priority,
1443 unsigned char source_address,
1444 unsigned char source_lun,
1445 int retries,
1446 unsigned int retry_time_ms)
1448 int rv = 0;
1449 struct ipmi_smi_msg *smi_msg;
1450 struct ipmi_recv_msg *recv_msg;
1451 unsigned long flags;
1452 struct ipmi_smi_handlers *handlers;
1455 if (supplied_recv)
1456 recv_msg = supplied_recv;
1457 else {
1458 recv_msg = ipmi_alloc_recv_msg();
1459 if (recv_msg == NULL)
1460 return -ENOMEM;
1462 recv_msg->user_msg_data = user_msg_data;
1464 if (supplied_smi)
1465 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1466 else {
1467 smi_msg = ipmi_alloc_smi_msg();
1468 if (smi_msg == NULL) {
1469 ipmi_free_recv_msg(recv_msg);
1470 return -ENOMEM;
1474 rcu_read_lock();
1475 handlers = intf->handlers;
1476 if (!handlers) {
1477 rv = -ENODEV;
1478 goto out_err;
1481 recv_msg->user = user;
1482 if (user)
1483 kref_get(&user->refcount);
1484 recv_msg->msgid = msgid;
1486 * Store the message to send in the receive message so timeout
1487 * responses can get the proper response data.
1489 recv_msg->msg = *msg;
1491 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1492 struct ipmi_system_interface_addr *smi_addr;
1494 if (msg->netfn & 1) {
1495 /* Responses are not allowed to the SMI. */
1496 rv = -EINVAL;
1497 goto out_err;
1500 smi_addr = (struct ipmi_system_interface_addr *) addr;
1501 if (smi_addr->lun > 3) {
1502 ipmi_inc_stat(intf, sent_invalid_commands);
1503 rv = -EINVAL;
1504 goto out_err;
1507 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1509 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1510 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1511 || (msg->cmd == IPMI_GET_MSG_CMD)
1512 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1514 * We don't let the user do these, since we manage
1515 * the sequence numbers.
1517 ipmi_inc_stat(intf, sent_invalid_commands);
1518 rv = -EINVAL;
1519 goto out_err;
1522 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1523 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1524 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1525 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1526 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1527 intf->auto_maintenance_timeout
1528 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1529 if (!intf->maintenance_mode
1530 && !intf->maintenance_mode_enable) {
1531 intf->maintenance_mode_enable = 1;
1532 maintenance_mode_update(intf);
1534 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1535 flags);
1538 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1539 ipmi_inc_stat(intf, sent_invalid_commands);
1540 rv = -EMSGSIZE;
1541 goto out_err;
1544 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1545 smi_msg->data[1] = msg->cmd;
1546 smi_msg->msgid = msgid;
1547 smi_msg->user_data = recv_msg;
1548 if (msg->data_len > 0)
1549 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1550 smi_msg->data_size = msg->data_len + 2;
1551 ipmi_inc_stat(intf, sent_local_commands);
1552 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1553 struct ipmi_ipmb_addr *ipmb_addr;
1554 unsigned char ipmb_seq;
1555 long seqid;
1556 int broadcast = 0;
1558 if (addr->channel >= IPMI_MAX_CHANNELS) {
1559 ipmi_inc_stat(intf, sent_invalid_commands);
1560 rv = -EINVAL;
1561 goto out_err;
1564 if (intf->channels[addr->channel].medium
1565 != IPMI_CHANNEL_MEDIUM_IPMB) {
1566 ipmi_inc_stat(intf, sent_invalid_commands);
1567 rv = -EINVAL;
1568 goto out_err;
1571 if (retries < 0) {
1572 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1573 retries = 0; /* Don't retry broadcasts. */
1574 else
1575 retries = 4;
1577 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1579 * Broadcasts add a zero at the beginning of the
1580 * message, but otherwise is the same as an IPMB
1581 * address.
1583 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1584 broadcast = 1;
1588 /* Default to 1 second retries. */
1589 if (retry_time_ms == 0)
1590 retry_time_ms = 1000;
1593 * 9 for the header and 1 for the checksum, plus
1594 * possibly one for the broadcast.
1596 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1597 ipmi_inc_stat(intf, sent_invalid_commands);
1598 rv = -EMSGSIZE;
1599 goto out_err;
1602 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1603 if (ipmb_addr->lun > 3) {
1604 ipmi_inc_stat(intf, sent_invalid_commands);
1605 rv = -EINVAL;
1606 goto out_err;
1609 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1611 if (recv_msg->msg.netfn & 0x1) {
1613 * It's a response, so use the user's sequence
1614 * from msgid.
1616 ipmi_inc_stat(intf, sent_ipmb_responses);
1617 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1618 msgid, broadcast,
1619 source_address, source_lun);
1622 * Save the receive message so we can use it
1623 * to deliver the response.
1625 smi_msg->user_data = recv_msg;
1626 } else {
1627 /* It's a command, so get a sequence for it. */
1629 spin_lock_irqsave(&(intf->seq_lock), flags);
1632 * Create a sequence number with a 1 second
1633 * timeout and 4 retries.
1635 rv = intf_next_seq(intf,
1636 recv_msg,
1637 retry_time_ms,
1638 retries,
1639 broadcast,
1640 &ipmb_seq,
1641 &seqid);
1642 if (rv) {
1644 * We have used up all the sequence numbers,
1645 * probably, so abort.
1647 spin_unlock_irqrestore(&(intf->seq_lock),
1648 flags);
1649 goto out_err;
1652 ipmi_inc_stat(intf, sent_ipmb_commands);
1655 * Store the sequence number in the message,
1656 * so that when the send message response
1657 * comes back we can start the timer.
1659 format_ipmb_msg(smi_msg, msg, ipmb_addr,
1660 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1661 ipmb_seq, broadcast,
1662 source_address, source_lun);
1665 * Copy the message into the recv message data, so we
1666 * can retransmit it later if necessary.
1668 memcpy(recv_msg->msg_data, smi_msg->data,
1669 smi_msg->data_size);
1670 recv_msg->msg.data = recv_msg->msg_data;
1671 recv_msg->msg.data_len = smi_msg->data_size;
1674 * We don't unlock until here, because we need
1675 * to copy the completed message into the
1676 * recv_msg before we release the lock.
1677 * Otherwise, race conditions may bite us. I
1678 * know that's pretty paranoid, but I prefer
1679 * to be correct.
1681 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1683 } else if (is_lan_addr(addr)) {
1684 struct ipmi_lan_addr *lan_addr;
1685 unsigned char ipmb_seq;
1686 long seqid;
1688 if (addr->channel >= IPMI_MAX_CHANNELS) {
1689 ipmi_inc_stat(intf, sent_invalid_commands);
1690 rv = -EINVAL;
1691 goto out_err;
1694 if ((intf->channels[addr->channel].medium
1695 != IPMI_CHANNEL_MEDIUM_8023LAN)
1696 && (intf->channels[addr->channel].medium
1697 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1698 ipmi_inc_stat(intf, sent_invalid_commands);
1699 rv = -EINVAL;
1700 goto out_err;
1703 retries = 4;
1705 /* Default to 1 second retries. */
1706 if (retry_time_ms == 0)
1707 retry_time_ms = 1000;
1709 /* 11 for the header and 1 for the checksum. */
1710 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1711 ipmi_inc_stat(intf, sent_invalid_commands);
1712 rv = -EMSGSIZE;
1713 goto out_err;
1716 lan_addr = (struct ipmi_lan_addr *) addr;
1717 if (lan_addr->lun > 3) {
1718 ipmi_inc_stat(intf, sent_invalid_commands);
1719 rv = -EINVAL;
1720 goto out_err;
1723 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1725 if (recv_msg->msg.netfn & 0x1) {
1727 * It's a response, so use the user's sequence
1728 * from msgid.
1730 ipmi_inc_stat(intf, sent_lan_responses);
1731 format_lan_msg(smi_msg, msg, lan_addr, msgid,
1732 msgid, source_lun);
1735 * Save the receive message so we can use it
1736 * to deliver the response.
1738 smi_msg->user_data = recv_msg;
1739 } else {
1740 /* It's a command, so get a sequence for it. */
1742 spin_lock_irqsave(&(intf->seq_lock), flags);
1745 * Create a sequence number with a 1 second
1746 * timeout and 4 retries.
1748 rv = intf_next_seq(intf,
1749 recv_msg,
1750 retry_time_ms,
1751 retries,
1753 &ipmb_seq,
1754 &seqid);
1755 if (rv) {
1757 * We have used up all the sequence numbers,
1758 * probably, so abort.
1760 spin_unlock_irqrestore(&(intf->seq_lock),
1761 flags);
1762 goto out_err;
1765 ipmi_inc_stat(intf, sent_lan_commands);
1768 * Store the sequence number in the message,
1769 * so that when the send message response
1770 * comes back we can start the timer.
1772 format_lan_msg(smi_msg, msg, lan_addr,
1773 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1774 ipmb_seq, source_lun);
1777 * Copy the message into the recv message data, so we
1778 * can retransmit it later if necessary.
1780 memcpy(recv_msg->msg_data, smi_msg->data,
1781 smi_msg->data_size);
1782 recv_msg->msg.data = recv_msg->msg_data;
1783 recv_msg->msg.data_len = smi_msg->data_size;
1786 * We don't unlock until here, because we need
1787 * to copy the completed message into the
1788 * recv_msg before we release the lock.
1789 * Otherwise, race conditions may bite us. I
1790 * know that's pretty paranoid, but I prefer
1791 * to be correct.
1793 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1795 } else {
1796 /* Unknown address type. */
1797 ipmi_inc_stat(intf, sent_invalid_commands);
1798 rv = -EINVAL;
1799 goto out_err;
1802 #ifdef DEBUG_MSGING
1804 int m;
1805 for (m = 0; m < smi_msg->data_size; m++)
1806 printk(" %2.2x", smi_msg->data[m]);
1807 printk("\n");
1809 #endif
1811 handlers->sender(intf->send_info, smi_msg, priority);
1812 rcu_read_unlock();
1814 return 0;
1816 out_err:
1817 rcu_read_unlock();
1818 ipmi_free_smi_msg(smi_msg);
1819 ipmi_free_recv_msg(recv_msg);
1820 return rv;
1823 static int check_addr(ipmi_smi_t intf,
1824 struct ipmi_addr *addr,
1825 unsigned char *saddr,
1826 unsigned char *lun)
1828 if (addr->channel >= IPMI_MAX_CHANNELS)
1829 return -EINVAL;
1830 *lun = intf->channels[addr->channel].lun;
1831 *saddr = intf->channels[addr->channel].address;
1832 return 0;
1835 int ipmi_request_settime(ipmi_user_t user,
1836 struct ipmi_addr *addr,
1837 long msgid,
1838 struct kernel_ipmi_msg *msg,
1839 void *user_msg_data,
1840 int priority,
1841 int retries,
1842 unsigned int retry_time_ms)
1844 unsigned char saddr, lun;
1845 int rv;
1847 if (!user)
1848 return -EINVAL;
1849 rv = check_addr(user->intf, addr, &saddr, &lun);
1850 if (rv)
1851 return rv;
1852 return i_ipmi_request(user,
1853 user->intf,
1854 addr,
1855 msgid,
1856 msg,
1857 user_msg_data,
1858 NULL, NULL,
1859 priority,
1860 saddr,
1861 lun,
1862 retries,
1863 retry_time_ms);
1865 EXPORT_SYMBOL(ipmi_request_settime);
1867 int ipmi_request_supply_msgs(ipmi_user_t user,
1868 struct ipmi_addr *addr,
1869 long msgid,
1870 struct kernel_ipmi_msg *msg,
1871 void *user_msg_data,
1872 void *supplied_smi,
1873 struct ipmi_recv_msg *supplied_recv,
1874 int priority)
1876 unsigned char saddr, lun;
1877 int rv;
1879 if (!user)
1880 return -EINVAL;
1881 rv = check_addr(user->intf, addr, &saddr, &lun);
1882 if (rv)
1883 return rv;
1884 return i_ipmi_request(user,
1885 user->intf,
1886 addr,
1887 msgid,
1888 msg,
1889 user_msg_data,
1890 supplied_smi,
1891 supplied_recv,
1892 priority,
1893 saddr,
1894 lun,
1895 -1, 0);
1897 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1899 #ifdef CONFIG_PROC_FS
1900 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
1902 ipmi_smi_t intf = m->private;
1903 int i;
1905 seq_printf(m, "%x", intf->channels[0].address);
1906 for (i = 1; i < IPMI_MAX_CHANNELS; i++)
1907 seq_printf(m, " %x", intf->channels[i].address);
1908 return seq_putc(m, '\n');
1911 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
1913 return single_open(file, smi_ipmb_proc_show, PDE(inode)->data);
1916 static const struct file_operations smi_ipmb_proc_ops = {
1917 .open = smi_ipmb_proc_open,
1918 .read = seq_read,
1919 .llseek = seq_lseek,
1920 .release = single_release,
1923 static int smi_version_proc_show(struct seq_file *m, void *v)
1925 ipmi_smi_t intf = m->private;
1927 return seq_printf(m, "%u.%u\n",
1928 ipmi_version_major(&intf->bmc->id),
1929 ipmi_version_minor(&intf->bmc->id));
1932 static int smi_version_proc_open(struct inode *inode, struct file *file)
1934 return single_open(file, smi_version_proc_show, PDE(inode)->data);
1937 static const struct file_operations smi_version_proc_ops = {
1938 .open = smi_version_proc_open,
1939 .read = seq_read,
1940 .llseek = seq_lseek,
1941 .release = single_release,
1944 static int smi_stats_proc_show(struct seq_file *m, void *v)
1946 ipmi_smi_t intf = m->private;
1948 seq_printf(m, "sent_invalid_commands: %u\n",
1949 ipmi_get_stat(intf, sent_invalid_commands));
1950 seq_printf(m, "sent_local_commands: %u\n",
1951 ipmi_get_stat(intf, sent_local_commands));
1952 seq_printf(m, "handled_local_responses: %u\n",
1953 ipmi_get_stat(intf, handled_local_responses));
1954 seq_printf(m, "unhandled_local_responses: %u\n",
1955 ipmi_get_stat(intf, unhandled_local_responses));
1956 seq_printf(m, "sent_ipmb_commands: %u\n",
1957 ipmi_get_stat(intf, sent_ipmb_commands));
1958 seq_printf(m, "sent_ipmb_command_errs: %u\n",
1959 ipmi_get_stat(intf, sent_ipmb_command_errs));
1960 seq_printf(m, "retransmitted_ipmb_commands: %u\n",
1961 ipmi_get_stat(intf, retransmitted_ipmb_commands));
1962 seq_printf(m, "timed_out_ipmb_commands: %u\n",
1963 ipmi_get_stat(intf, timed_out_ipmb_commands));
1964 seq_printf(m, "timed_out_ipmb_broadcasts: %u\n",
1965 ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1966 seq_printf(m, "sent_ipmb_responses: %u\n",
1967 ipmi_get_stat(intf, sent_ipmb_responses));
1968 seq_printf(m, "handled_ipmb_responses: %u\n",
1969 ipmi_get_stat(intf, handled_ipmb_responses));
1970 seq_printf(m, "invalid_ipmb_responses: %u\n",
1971 ipmi_get_stat(intf, invalid_ipmb_responses));
1972 seq_printf(m, "unhandled_ipmb_responses: %u\n",
1973 ipmi_get_stat(intf, unhandled_ipmb_responses));
1974 seq_printf(m, "sent_lan_commands: %u\n",
1975 ipmi_get_stat(intf, sent_lan_commands));
1976 seq_printf(m, "sent_lan_command_errs: %u\n",
1977 ipmi_get_stat(intf, sent_lan_command_errs));
1978 seq_printf(m, "retransmitted_lan_commands: %u\n",
1979 ipmi_get_stat(intf, retransmitted_lan_commands));
1980 seq_printf(m, "timed_out_lan_commands: %u\n",
1981 ipmi_get_stat(intf, timed_out_lan_commands));
1982 seq_printf(m, "sent_lan_responses: %u\n",
1983 ipmi_get_stat(intf, sent_lan_responses));
1984 seq_printf(m, "handled_lan_responses: %u\n",
1985 ipmi_get_stat(intf, handled_lan_responses));
1986 seq_printf(m, "invalid_lan_responses: %u\n",
1987 ipmi_get_stat(intf, invalid_lan_responses));
1988 seq_printf(m, "unhandled_lan_responses: %u\n",
1989 ipmi_get_stat(intf, unhandled_lan_responses));
1990 seq_printf(m, "handled_commands: %u\n",
1991 ipmi_get_stat(intf, handled_commands));
1992 seq_printf(m, "invalid_commands: %u\n",
1993 ipmi_get_stat(intf, invalid_commands));
1994 seq_printf(m, "unhandled_commands: %u\n",
1995 ipmi_get_stat(intf, unhandled_commands));
1996 seq_printf(m, "invalid_events: %u\n",
1997 ipmi_get_stat(intf, invalid_events));
1998 seq_printf(m, "events: %u\n",
1999 ipmi_get_stat(intf, events));
2000 seq_printf(m, "failed rexmit LAN msgs: %u\n",
2001 ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2002 seq_printf(m, "failed rexmit IPMB msgs: %u\n",
2003 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2004 return 0;
2007 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2009 return single_open(file, smi_stats_proc_show, PDE(inode)->data);
2012 static const struct file_operations smi_stats_proc_ops = {
2013 .open = smi_stats_proc_open,
2014 .read = seq_read,
2015 .llseek = seq_lseek,
2016 .release = single_release,
2018 #endif /* CONFIG_PROC_FS */
2020 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2021 const struct file_operations *proc_ops,
2022 void *data)
2024 int rv = 0;
2025 #ifdef CONFIG_PROC_FS
2026 struct proc_dir_entry *file;
2027 struct ipmi_proc_entry *entry;
2029 /* Create a list element. */
2030 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2031 if (!entry)
2032 return -ENOMEM;
2033 entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
2034 if (!entry->name) {
2035 kfree(entry);
2036 return -ENOMEM;
2038 strcpy(entry->name, name);
2040 file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2041 if (!file) {
2042 kfree(entry->name);
2043 kfree(entry);
2044 rv = -ENOMEM;
2045 } else {
2046 mutex_lock(&smi->proc_entry_lock);
2047 /* Stick it on the list. */
2048 entry->next = smi->proc_entries;
2049 smi->proc_entries = entry;
2050 mutex_unlock(&smi->proc_entry_lock);
2052 #endif /* CONFIG_PROC_FS */
2054 return rv;
2056 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2058 static int add_proc_entries(ipmi_smi_t smi, int num)
2060 int rv = 0;
2062 #ifdef CONFIG_PROC_FS
2063 sprintf(smi->proc_dir_name, "%d", num);
2064 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2065 if (!smi->proc_dir)
2066 rv = -ENOMEM;
2068 if (rv == 0)
2069 rv = ipmi_smi_add_proc_entry(smi, "stats",
2070 &smi_stats_proc_ops,
2071 smi);
2073 if (rv == 0)
2074 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2075 &smi_ipmb_proc_ops,
2076 smi);
2078 if (rv == 0)
2079 rv = ipmi_smi_add_proc_entry(smi, "version",
2080 &smi_version_proc_ops,
2081 smi);
2082 #endif /* CONFIG_PROC_FS */
2084 return rv;
2087 static void remove_proc_entries(ipmi_smi_t smi)
2089 #ifdef CONFIG_PROC_FS
2090 struct ipmi_proc_entry *entry;
2092 mutex_lock(&smi->proc_entry_lock);
2093 while (smi->proc_entries) {
2094 entry = smi->proc_entries;
2095 smi->proc_entries = entry->next;
2097 remove_proc_entry(entry->name, smi->proc_dir);
2098 kfree(entry->name);
2099 kfree(entry);
2101 mutex_unlock(&smi->proc_entry_lock);
2102 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2103 #endif /* CONFIG_PROC_FS */
2106 static int __find_bmc_guid(struct device *dev, void *data)
2108 unsigned char *id = data;
2109 struct bmc_device *bmc = dev_get_drvdata(dev);
2110 return memcmp(bmc->guid, id, 16) == 0;
2113 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2114 unsigned char *guid)
2116 struct device *dev;
2118 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2119 if (dev)
2120 return dev_get_drvdata(dev);
2121 else
2122 return NULL;
2125 struct prod_dev_id {
2126 unsigned int product_id;
2127 unsigned char device_id;
2130 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2132 struct prod_dev_id *id = data;
2133 struct bmc_device *bmc = dev_get_drvdata(dev);
2135 return (bmc->id.product_id == id->product_id
2136 && bmc->id.device_id == id->device_id);
2139 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2140 struct device_driver *drv,
2141 unsigned int product_id, unsigned char device_id)
2143 struct prod_dev_id id = {
2144 .product_id = product_id,
2145 .device_id = device_id,
2147 struct device *dev;
2149 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2150 if (dev)
2151 return dev_get_drvdata(dev);
2152 else
2153 return NULL;
2156 static ssize_t device_id_show(struct device *dev,
2157 struct device_attribute *attr,
2158 char *buf)
2160 struct bmc_device *bmc = dev_get_drvdata(dev);
2162 return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2165 static ssize_t provides_dev_sdrs_show(struct device *dev,
2166 struct device_attribute *attr,
2167 char *buf)
2169 struct bmc_device *bmc = dev_get_drvdata(dev);
2171 return snprintf(buf, 10, "%u\n",
2172 (bmc->id.device_revision & 0x80) >> 7);
2175 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2176 char *buf)
2178 struct bmc_device *bmc = dev_get_drvdata(dev);
2180 return snprintf(buf, 20, "%u\n",
2181 bmc->id.device_revision & 0x0F);
2184 static ssize_t firmware_rev_show(struct device *dev,
2185 struct device_attribute *attr,
2186 char *buf)
2188 struct bmc_device *bmc = dev_get_drvdata(dev);
2190 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2191 bmc->id.firmware_revision_2);
2194 static ssize_t ipmi_version_show(struct device *dev,
2195 struct device_attribute *attr,
2196 char *buf)
2198 struct bmc_device *bmc = dev_get_drvdata(dev);
2200 return snprintf(buf, 20, "%u.%u\n",
2201 ipmi_version_major(&bmc->id),
2202 ipmi_version_minor(&bmc->id));
2205 static ssize_t add_dev_support_show(struct device *dev,
2206 struct device_attribute *attr,
2207 char *buf)
2209 struct bmc_device *bmc = dev_get_drvdata(dev);
2211 return snprintf(buf, 10, "0x%02x\n",
2212 bmc->id.additional_device_support);
2215 static ssize_t manufacturer_id_show(struct device *dev,
2216 struct device_attribute *attr,
2217 char *buf)
2219 struct bmc_device *bmc = dev_get_drvdata(dev);
2221 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2224 static ssize_t product_id_show(struct device *dev,
2225 struct device_attribute *attr,
2226 char *buf)
2228 struct bmc_device *bmc = dev_get_drvdata(dev);
2230 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2233 static ssize_t aux_firmware_rev_show(struct device *dev,
2234 struct device_attribute *attr,
2235 char *buf)
2237 struct bmc_device *bmc = dev_get_drvdata(dev);
2239 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2240 bmc->id.aux_firmware_revision[3],
2241 bmc->id.aux_firmware_revision[2],
2242 bmc->id.aux_firmware_revision[1],
2243 bmc->id.aux_firmware_revision[0]);
2246 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2247 char *buf)
2249 struct bmc_device *bmc = dev_get_drvdata(dev);
2251 return snprintf(buf, 100, "%Lx%Lx\n",
2252 (long long) bmc->guid[0],
2253 (long long) bmc->guid[8]);
2256 static void remove_files(struct bmc_device *bmc)
2258 if (!bmc->dev)
2259 return;
2261 device_remove_file(&bmc->dev->dev,
2262 &bmc->device_id_attr);
2263 device_remove_file(&bmc->dev->dev,
2264 &bmc->provides_dev_sdrs_attr);
2265 device_remove_file(&bmc->dev->dev,
2266 &bmc->revision_attr);
2267 device_remove_file(&bmc->dev->dev,
2268 &bmc->firmware_rev_attr);
2269 device_remove_file(&bmc->dev->dev,
2270 &bmc->version_attr);
2271 device_remove_file(&bmc->dev->dev,
2272 &bmc->add_dev_support_attr);
2273 device_remove_file(&bmc->dev->dev,
2274 &bmc->manufacturer_id_attr);
2275 device_remove_file(&bmc->dev->dev,
2276 &bmc->product_id_attr);
2278 if (bmc->id.aux_firmware_revision_set)
2279 device_remove_file(&bmc->dev->dev,
2280 &bmc->aux_firmware_rev_attr);
2281 if (bmc->guid_set)
2282 device_remove_file(&bmc->dev->dev,
2283 &bmc->guid_attr);
2286 static void
2287 cleanup_bmc_device(struct kref *ref)
2289 struct bmc_device *bmc;
2291 bmc = container_of(ref, struct bmc_device, refcount);
2293 remove_files(bmc);
2294 platform_device_unregister(bmc->dev);
2295 kfree(bmc);
2298 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2300 struct bmc_device *bmc = intf->bmc;
2302 if (intf->sysfs_name) {
2303 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2304 kfree(intf->sysfs_name);
2305 intf->sysfs_name = NULL;
2307 if (intf->my_dev_name) {
2308 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2309 kfree(intf->my_dev_name);
2310 intf->my_dev_name = NULL;
2313 mutex_lock(&ipmidriver_mutex);
2314 kref_put(&bmc->refcount, cleanup_bmc_device);
2315 intf->bmc = NULL;
2316 mutex_unlock(&ipmidriver_mutex);
2319 static int create_files(struct bmc_device *bmc)
2321 int err;
2323 bmc->device_id_attr.attr.name = "device_id";
2324 bmc->device_id_attr.attr.mode = S_IRUGO;
2325 bmc->device_id_attr.show = device_id_show;
2326 sysfs_attr_init(&bmc->device_id_attr.attr);
2328 bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2329 bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2330 bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2331 sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr);
2333 bmc->revision_attr.attr.name = "revision";
2334 bmc->revision_attr.attr.mode = S_IRUGO;
2335 bmc->revision_attr.show = revision_show;
2336 sysfs_attr_init(&bmc->revision_attr.attr);
2338 bmc->firmware_rev_attr.attr.name = "firmware_revision";
2339 bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2340 bmc->firmware_rev_attr.show = firmware_rev_show;
2341 sysfs_attr_init(&bmc->firmware_rev_attr.attr);
2343 bmc->version_attr.attr.name = "ipmi_version";
2344 bmc->version_attr.attr.mode = S_IRUGO;
2345 bmc->version_attr.show = ipmi_version_show;
2346 sysfs_attr_init(&bmc->version_attr.attr);
2348 bmc->add_dev_support_attr.attr.name = "additional_device_support";
2349 bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2350 bmc->add_dev_support_attr.show = add_dev_support_show;
2351 sysfs_attr_init(&bmc->add_dev_support_attr.attr);
2353 bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2354 bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2355 bmc->manufacturer_id_attr.show = manufacturer_id_show;
2356 sysfs_attr_init(&bmc->manufacturer_id_attr.attr);
2358 bmc->product_id_attr.attr.name = "product_id";
2359 bmc->product_id_attr.attr.mode = S_IRUGO;
2360 bmc->product_id_attr.show = product_id_show;
2361 sysfs_attr_init(&bmc->product_id_attr.attr);
2363 bmc->guid_attr.attr.name = "guid";
2364 bmc->guid_attr.attr.mode = S_IRUGO;
2365 bmc->guid_attr.show = guid_show;
2366 sysfs_attr_init(&bmc->guid_attr.attr);
2368 bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2369 bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2370 bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2371 sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr);
2373 err = device_create_file(&bmc->dev->dev,
2374 &bmc->device_id_attr);
2375 if (err)
2376 goto out;
2377 err = device_create_file(&bmc->dev->dev,
2378 &bmc->provides_dev_sdrs_attr);
2379 if (err)
2380 goto out_devid;
2381 err = device_create_file(&bmc->dev->dev,
2382 &bmc->revision_attr);
2383 if (err)
2384 goto out_sdrs;
2385 err = device_create_file(&bmc->dev->dev,
2386 &bmc->firmware_rev_attr);
2387 if (err)
2388 goto out_rev;
2389 err = device_create_file(&bmc->dev->dev,
2390 &bmc->version_attr);
2391 if (err)
2392 goto out_firm;
2393 err = device_create_file(&bmc->dev->dev,
2394 &bmc->add_dev_support_attr);
2395 if (err)
2396 goto out_version;
2397 err = device_create_file(&bmc->dev->dev,
2398 &bmc->manufacturer_id_attr);
2399 if (err)
2400 goto out_add_dev;
2401 err = device_create_file(&bmc->dev->dev,
2402 &bmc->product_id_attr);
2403 if (err)
2404 goto out_manu;
2405 if (bmc->id.aux_firmware_revision_set) {
2406 err = device_create_file(&bmc->dev->dev,
2407 &bmc->aux_firmware_rev_attr);
2408 if (err)
2409 goto out_prod_id;
2411 if (bmc->guid_set) {
2412 err = device_create_file(&bmc->dev->dev,
2413 &bmc->guid_attr);
2414 if (err)
2415 goto out_aux_firm;
2418 return 0;
2420 out_aux_firm:
2421 if (bmc->id.aux_firmware_revision_set)
2422 device_remove_file(&bmc->dev->dev,
2423 &bmc->aux_firmware_rev_attr);
2424 out_prod_id:
2425 device_remove_file(&bmc->dev->dev,
2426 &bmc->product_id_attr);
2427 out_manu:
2428 device_remove_file(&bmc->dev->dev,
2429 &bmc->manufacturer_id_attr);
2430 out_add_dev:
2431 device_remove_file(&bmc->dev->dev,
2432 &bmc->add_dev_support_attr);
2433 out_version:
2434 device_remove_file(&bmc->dev->dev,
2435 &bmc->version_attr);
2436 out_firm:
2437 device_remove_file(&bmc->dev->dev,
2438 &bmc->firmware_rev_attr);
2439 out_rev:
2440 device_remove_file(&bmc->dev->dev,
2441 &bmc->revision_attr);
2442 out_sdrs:
2443 device_remove_file(&bmc->dev->dev,
2444 &bmc->provides_dev_sdrs_attr);
2445 out_devid:
2446 device_remove_file(&bmc->dev->dev,
2447 &bmc->device_id_attr);
2448 out:
2449 return err;
2452 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2453 const char *sysfs_name)
2455 int rv;
2456 struct bmc_device *bmc = intf->bmc;
2457 struct bmc_device *old_bmc;
2458 int size;
2459 char dummy[1];
2461 mutex_lock(&ipmidriver_mutex);
2464 * Try to find if there is an bmc_device struct
2465 * representing the interfaced BMC already
2467 if (bmc->guid_set)
2468 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2469 else
2470 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2471 bmc->id.product_id,
2472 bmc->id.device_id);
2475 * If there is already an bmc_device, free the new one,
2476 * otherwise register the new BMC device
2478 if (old_bmc) {
2479 kfree(bmc);
2480 intf->bmc = old_bmc;
2481 bmc = old_bmc;
2483 kref_get(&bmc->refcount);
2484 mutex_unlock(&ipmidriver_mutex);
2486 printk(KERN_INFO
2487 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2488 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2489 bmc->id.manufacturer_id,
2490 bmc->id.product_id,
2491 bmc->id.device_id);
2492 } else {
2493 char name[14];
2494 unsigned char orig_dev_id = bmc->id.device_id;
2495 int warn_printed = 0;
2497 snprintf(name, sizeof(name),
2498 "ipmi_bmc.%4.4x", bmc->id.product_id);
2500 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2501 bmc->id.product_id,
2502 bmc->id.device_id)) {
2503 if (!warn_printed) {
2504 printk(KERN_WARNING PFX
2505 "This machine has two different BMCs"
2506 " with the same product id and device"
2507 " id. This is an error in the"
2508 " firmware, but incrementing the"
2509 " device id to work around the problem."
2510 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2511 bmc->id.product_id, bmc->id.device_id);
2512 warn_printed = 1;
2514 bmc->id.device_id++; /* Wraps at 255 */
2515 if (bmc->id.device_id == orig_dev_id) {
2516 printk(KERN_ERR PFX
2517 "Out of device ids!\n");
2518 break;
2522 bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2523 if (!bmc->dev) {
2524 mutex_unlock(&ipmidriver_mutex);
2525 printk(KERN_ERR
2526 "ipmi_msghandler:"
2527 " Unable to allocate platform device\n");
2528 return -ENOMEM;
2530 bmc->dev->dev.driver = &ipmidriver.driver;
2531 dev_set_drvdata(&bmc->dev->dev, bmc);
2532 kref_init(&bmc->refcount);
2534 rv = platform_device_add(bmc->dev);
2535 mutex_unlock(&ipmidriver_mutex);
2536 if (rv) {
2537 platform_device_put(bmc->dev);
2538 bmc->dev = NULL;
2539 printk(KERN_ERR
2540 "ipmi_msghandler:"
2541 " Unable to register bmc device: %d\n",
2542 rv);
2544 * Don't go to out_err, you can only do that if
2545 * the device is registered already.
2547 return rv;
2550 rv = create_files(bmc);
2551 if (rv) {
2552 mutex_lock(&ipmidriver_mutex);
2553 platform_device_unregister(bmc->dev);
2554 mutex_unlock(&ipmidriver_mutex);
2556 return rv;
2559 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2560 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2561 bmc->id.manufacturer_id,
2562 bmc->id.product_id,
2563 bmc->id.device_id);
2567 * create symlink from system interface device to bmc device
2568 * and back.
2570 intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2571 if (!intf->sysfs_name) {
2572 rv = -ENOMEM;
2573 printk(KERN_ERR
2574 "ipmi_msghandler: allocate link to BMC: %d\n",
2575 rv);
2576 goto out_err;
2579 rv = sysfs_create_link(&intf->si_dev->kobj,
2580 &bmc->dev->dev.kobj, intf->sysfs_name);
2581 if (rv) {
2582 kfree(intf->sysfs_name);
2583 intf->sysfs_name = NULL;
2584 printk(KERN_ERR
2585 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2586 rv);
2587 goto out_err;
2590 size = snprintf(dummy, 0, "ipmi%d", ifnum);
2591 intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2592 if (!intf->my_dev_name) {
2593 kfree(intf->sysfs_name);
2594 intf->sysfs_name = NULL;
2595 rv = -ENOMEM;
2596 printk(KERN_ERR
2597 "ipmi_msghandler: allocate link from BMC: %d\n",
2598 rv);
2599 goto out_err;
2601 snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2603 rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2604 intf->my_dev_name);
2605 if (rv) {
2606 kfree(intf->sysfs_name);
2607 intf->sysfs_name = NULL;
2608 kfree(intf->my_dev_name);
2609 intf->my_dev_name = NULL;
2610 printk(KERN_ERR
2611 "ipmi_msghandler:"
2612 " Unable to create symlink to bmc: %d\n",
2613 rv);
2614 goto out_err;
2617 return 0;
2619 out_err:
2620 ipmi_bmc_unregister(intf);
2621 return rv;
2624 static int
2625 send_guid_cmd(ipmi_smi_t intf, int chan)
2627 struct kernel_ipmi_msg msg;
2628 struct ipmi_system_interface_addr si;
2630 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2631 si.channel = IPMI_BMC_CHANNEL;
2632 si.lun = 0;
2634 msg.netfn = IPMI_NETFN_APP_REQUEST;
2635 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2636 msg.data = NULL;
2637 msg.data_len = 0;
2638 return i_ipmi_request(NULL,
2639 intf,
2640 (struct ipmi_addr *) &si,
2642 &msg,
2643 intf,
2644 NULL,
2645 NULL,
2647 intf->channels[0].address,
2648 intf->channels[0].lun,
2649 -1, 0);
2652 static void
2653 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2655 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2656 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2657 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2658 /* Not for me */
2659 return;
2661 if (msg->msg.data[0] != 0) {
2662 /* Error from getting the GUID, the BMC doesn't have one. */
2663 intf->bmc->guid_set = 0;
2664 goto out;
2667 if (msg->msg.data_len < 17) {
2668 intf->bmc->guid_set = 0;
2669 printk(KERN_WARNING PFX
2670 "guid_handler: The GUID response from the BMC was too"
2671 " short, it was %d but should have been 17. Assuming"
2672 " GUID is not available.\n",
2673 msg->msg.data_len);
2674 goto out;
2677 memcpy(intf->bmc->guid, msg->msg.data, 16);
2678 intf->bmc->guid_set = 1;
2679 out:
2680 wake_up(&intf->waitq);
2683 static void
2684 get_guid(ipmi_smi_t intf)
2686 int rv;
2688 intf->bmc->guid_set = 0x2;
2689 intf->null_user_handler = guid_handler;
2690 rv = send_guid_cmd(intf, 0);
2691 if (rv)
2692 /* Send failed, no GUID available. */
2693 intf->bmc->guid_set = 0;
2694 wait_event(intf->waitq, intf->bmc->guid_set != 2);
2695 intf->null_user_handler = NULL;
2698 static int
2699 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2701 struct kernel_ipmi_msg msg;
2702 unsigned char data[1];
2703 struct ipmi_system_interface_addr si;
2705 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2706 si.channel = IPMI_BMC_CHANNEL;
2707 si.lun = 0;
2709 msg.netfn = IPMI_NETFN_APP_REQUEST;
2710 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2711 msg.data = data;
2712 msg.data_len = 1;
2713 data[0] = chan;
2714 return i_ipmi_request(NULL,
2715 intf,
2716 (struct ipmi_addr *) &si,
2718 &msg,
2719 intf,
2720 NULL,
2721 NULL,
2723 intf->channels[0].address,
2724 intf->channels[0].lun,
2725 -1, 0);
2728 static void
2729 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2731 int rv = 0;
2732 int chan;
2734 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2735 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2736 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2737 /* It's the one we want */
2738 if (msg->msg.data[0] != 0) {
2739 /* Got an error from the channel, just go on. */
2741 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2743 * If the MC does not support this
2744 * command, that is legal. We just
2745 * assume it has one IPMB at channel
2746 * zero.
2748 intf->channels[0].medium
2749 = IPMI_CHANNEL_MEDIUM_IPMB;
2750 intf->channels[0].protocol
2751 = IPMI_CHANNEL_PROTOCOL_IPMB;
2752 rv = -ENOSYS;
2754 intf->curr_channel = IPMI_MAX_CHANNELS;
2755 wake_up(&intf->waitq);
2756 goto out;
2758 goto next_channel;
2760 if (msg->msg.data_len < 4) {
2761 /* Message not big enough, just go on. */
2762 goto next_channel;
2764 chan = intf->curr_channel;
2765 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2766 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2768 next_channel:
2769 intf->curr_channel++;
2770 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2771 wake_up(&intf->waitq);
2772 else
2773 rv = send_channel_info_cmd(intf, intf->curr_channel);
2775 if (rv) {
2776 /* Got an error somehow, just give up. */
2777 intf->curr_channel = IPMI_MAX_CHANNELS;
2778 wake_up(&intf->waitq);
2780 printk(KERN_WARNING PFX
2781 "Error sending channel information: %d\n",
2782 rv);
2785 out:
2786 return;
2789 void ipmi_poll_interface(ipmi_user_t user)
2791 ipmi_smi_t intf = user->intf;
2793 if (intf->handlers->poll)
2794 intf->handlers->poll(intf->send_info);
2796 EXPORT_SYMBOL(ipmi_poll_interface);
2798 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2799 void *send_info,
2800 struct ipmi_device_id *device_id,
2801 struct device *si_dev,
2802 const char *sysfs_name,
2803 unsigned char slave_addr)
2805 int i, j;
2806 int rv;
2807 ipmi_smi_t intf;
2808 ipmi_smi_t tintf;
2809 struct list_head *link;
2812 * Make sure the driver is actually initialized, this handles
2813 * problems with initialization order.
2815 if (!initialized) {
2816 rv = ipmi_init_msghandler();
2817 if (rv)
2818 return rv;
2820 * The init code doesn't return an error if it was turned
2821 * off, but it won't initialize. Check that.
2823 if (!initialized)
2824 return -ENODEV;
2827 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2828 if (!intf)
2829 return -ENOMEM;
2831 intf->ipmi_version_major = ipmi_version_major(device_id);
2832 intf->ipmi_version_minor = ipmi_version_minor(device_id);
2834 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2835 if (!intf->bmc) {
2836 kfree(intf);
2837 return -ENOMEM;
2839 intf->intf_num = -1; /* Mark it invalid for now. */
2840 kref_init(&intf->refcount);
2841 intf->bmc->id = *device_id;
2842 intf->si_dev = si_dev;
2843 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2844 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2845 intf->channels[j].lun = 2;
2847 if (slave_addr != 0)
2848 intf->channels[0].address = slave_addr;
2849 INIT_LIST_HEAD(&intf->users);
2850 intf->handlers = handlers;
2851 intf->send_info = send_info;
2852 spin_lock_init(&intf->seq_lock);
2853 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2854 intf->seq_table[j].inuse = 0;
2855 intf->seq_table[j].seqid = 0;
2857 intf->curr_seq = 0;
2858 #ifdef CONFIG_PROC_FS
2859 mutex_init(&intf->proc_entry_lock);
2860 #endif
2861 spin_lock_init(&intf->waiting_msgs_lock);
2862 INIT_LIST_HEAD(&intf->waiting_msgs);
2863 spin_lock_init(&intf->events_lock);
2864 INIT_LIST_HEAD(&intf->waiting_events);
2865 intf->waiting_events_count = 0;
2866 mutex_init(&intf->cmd_rcvrs_mutex);
2867 spin_lock_init(&intf->maintenance_mode_lock);
2868 INIT_LIST_HEAD(&intf->cmd_rcvrs);
2869 init_waitqueue_head(&intf->waitq);
2870 for (i = 0; i < IPMI_NUM_STATS; i++)
2871 atomic_set(&intf->stats[i], 0);
2873 intf->proc_dir = NULL;
2875 mutex_lock(&smi_watchers_mutex);
2876 mutex_lock(&ipmi_interfaces_mutex);
2877 /* Look for a hole in the numbers. */
2878 i = 0;
2879 link = &ipmi_interfaces;
2880 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2881 if (tintf->intf_num != i) {
2882 link = &tintf->link;
2883 break;
2885 i++;
2887 /* Add the new interface in numeric order. */
2888 if (i == 0)
2889 list_add_rcu(&intf->link, &ipmi_interfaces);
2890 else
2891 list_add_tail_rcu(&intf->link, link);
2893 rv = handlers->start_processing(send_info, intf);
2894 if (rv)
2895 goto out;
2897 get_guid(intf);
2899 if ((intf->ipmi_version_major > 1)
2900 || ((intf->ipmi_version_major == 1)
2901 && (intf->ipmi_version_minor >= 5))) {
2903 * Start scanning the channels to see what is
2904 * available.
2906 intf->null_user_handler = channel_handler;
2907 intf->curr_channel = 0;
2908 rv = send_channel_info_cmd(intf, 0);
2909 if (rv)
2910 goto out;
2912 /* Wait for the channel info to be read. */
2913 wait_event(intf->waitq,
2914 intf->curr_channel >= IPMI_MAX_CHANNELS);
2915 intf->null_user_handler = NULL;
2916 } else {
2917 /* Assume a single IPMB channel at zero. */
2918 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2919 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2920 intf->curr_channel = IPMI_MAX_CHANNELS;
2923 if (rv == 0)
2924 rv = add_proc_entries(intf, i);
2926 rv = ipmi_bmc_register(intf, i, sysfs_name);
2928 out:
2929 if (rv) {
2930 if (intf->proc_dir)
2931 remove_proc_entries(intf);
2932 intf->handlers = NULL;
2933 list_del_rcu(&intf->link);
2934 mutex_unlock(&ipmi_interfaces_mutex);
2935 mutex_unlock(&smi_watchers_mutex);
2936 synchronize_rcu();
2937 kref_put(&intf->refcount, intf_free);
2938 } else {
2940 * Keep memory order straight for RCU readers. Make
2941 * sure everything else is committed to memory before
2942 * setting intf_num to mark the interface valid.
2944 smp_wmb();
2945 intf->intf_num = i;
2946 mutex_unlock(&ipmi_interfaces_mutex);
2947 /* After this point the interface is legal to use. */
2948 call_smi_watchers(i, intf->si_dev);
2949 mutex_unlock(&smi_watchers_mutex);
2952 return rv;
2954 EXPORT_SYMBOL(ipmi_register_smi);
2956 static void cleanup_smi_msgs(ipmi_smi_t intf)
2958 int i;
2959 struct seq_table *ent;
2961 /* No need for locks, the interface is down. */
2962 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2963 ent = &(intf->seq_table[i]);
2964 if (!ent->inuse)
2965 continue;
2966 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2970 int ipmi_unregister_smi(ipmi_smi_t intf)
2972 struct ipmi_smi_watcher *w;
2973 int intf_num = intf->intf_num;
2975 ipmi_bmc_unregister(intf);
2977 mutex_lock(&smi_watchers_mutex);
2978 mutex_lock(&ipmi_interfaces_mutex);
2979 intf->intf_num = -1;
2980 intf->handlers = NULL;
2981 list_del_rcu(&intf->link);
2982 mutex_unlock(&ipmi_interfaces_mutex);
2983 synchronize_rcu();
2985 cleanup_smi_msgs(intf);
2987 remove_proc_entries(intf);
2990 * Call all the watcher interfaces to tell them that
2991 * an interface is gone.
2993 list_for_each_entry(w, &smi_watchers, link)
2994 w->smi_gone(intf_num);
2995 mutex_unlock(&smi_watchers_mutex);
2997 kref_put(&intf->refcount, intf_free);
2998 return 0;
3000 EXPORT_SYMBOL(ipmi_unregister_smi);
3002 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf,
3003 struct ipmi_smi_msg *msg)
3005 struct ipmi_ipmb_addr ipmb_addr;
3006 struct ipmi_recv_msg *recv_msg;
3009 * This is 11, not 10, because the response must contain a
3010 * completion code.
3012 if (msg->rsp_size < 11) {
3013 /* Message not big enough, just ignore it. */
3014 ipmi_inc_stat(intf, invalid_ipmb_responses);
3015 return 0;
3018 if (msg->rsp[2] != 0) {
3019 /* An error getting the response, just ignore it. */
3020 return 0;
3023 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3024 ipmb_addr.slave_addr = msg->rsp[6];
3025 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3026 ipmb_addr.lun = msg->rsp[7] & 3;
3029 * It's a response from a remote entity. Look up the sequence
3030 * number and handle the response.
3032 if (intf_find_seq(intf,
3033 msg->rsp[7] >> 2,
3034 msg->rsp[3] & 0x0f,
3035 msg->rsp[8],
3036 (msg->rsp[4] >> 2) & (~1),
3037 (struct ipmi_addr *) &(ipmb_addr),
3038 &recv_msg)) {
3040 * We were unable to find the sequence number,
3041 * so just nuke the message.
3043 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3044 return 0;
3047 memcpy(recv_msg->msg_data,
3048 &(msg->rsp[9]),
3049 msg->rsp_size - 9);
3051 * The other fields matched, so no need to set them, except
3052 * for netfn, which needs to be the response that was
3053 * returned, not the request value.
3055 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3056 recv_msg->msg.data = recv_msg->msg_data;
3057 recv_msg->msg.data_len = msg->rsp_size - 10;
3058 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3059 ipmi_inc_stat(intf, handled_ipmb_responses);
3060 deliver_response(recv_msg);
3062 return 0;
3065 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf,
3066 struct ipmi_smi_msg *msg)
3068 struct cmd_rcvr *rcvr;
3069 int rv = 0;
3070 unsigned char netfn;
3071 unsigned char cmd;
3072 unsigned char chan;
3073 ipmi_user_t user = NULL;
3074 struct ipmi_ipmb_addr *ipmb_addr;
3075 struct ipmi_recv_msg *recv_msg;
3076 struct ipmi_smi_handlers *handlers;
3078 if (msg->rsp_size < 10) {
3079 /* Message not big enough, just ignore it. */
3080 ipmi_inc_stat(intf, invalid_commands);
3081 return 0;
3084 if (msg->rsp[2] != 0) {
3085 /* An error getting the response, just ignore it. */
3086 return 0;
3089 netfn = msg->rsp[4] >> 2;
3090 cmd = msg->rsp[8];
3091 chan = msg->rsp[3] & 0xf;
3093 rcu_read_lock();
3094 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3095 if (rcvr) {
3096 user = rcvr->user;
3097 kref_get(&user->refcount);
3098 } else
3099 user = NULL;
3100 rcu_read_unlock();
3102 if (user == NULL) {
3103 /* We didn't find a user, deliver an error response. */
3104 ipmi_inc_stat(intf, unhandled_commands);
3106 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3107 msg->data[1] = IPMI_SEND_MSG_CMD;
3108 msg->data[2] = msg->rsp[3];
3109 msg->data[3] = msg->rsp[6];
3110 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3111 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3112 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3113 /* rqseq/lun */
3114 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3115 msg->data[8] = msg->rsp[8]; /* cmd */
3116 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3117 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3118 msg->data_size = 11;
3120 #ifdef DEBUG_MSGING
3122 int m;
3123 printk("Invalid command:");
3124 for (m = 0; m < msg->data_size; m++)
3125 printk(" %2.2x", msg->data[m]);
3126 printk("\n");
3128 #endif
3129 rcu_read_lock();
3130 handlers = intf->handlers;
3131 if (handlers) {
3132 handlers->sender(intf->send_info, msg, 0);
3134 * We used the message, so return the value
3135 * that causes it to not be freed or
3136 * queued.
3138 rv = -1;
3140 rcu_read_unlock();
3141 } else {
3142 /* Deliver the message to the user. */
3143 ipmi_inc_stat(intf, handled_commands);
3145 recv_msg = ipmi_alloc_recv_msg();
3146 if (!recv_msg) {
3148 * We couldn't allocate memory for the
3149 * message, so requeue it for handling
3150 * later.
3152 rv = 1;
3153 kref_put(&user->refcount, free_user);
3154 } else {
3155 /* Extract the source address from the data. */
3156 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3157 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3158 ipmb_addr->slave_addr = msg->rsp[6];
3159 ipmb_addr->lun = msg->rsp[7] & 3;
3160 ipmb_addr->channel = msg->rsp[3] & 0xf;
3163 * Extract the rest of the message information
3164 * from the IPMB header.
3166 recv_msg->user = user;
3167 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3168 recv_msg->msgid = msg->rsp[7] >> 2;
3169 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3170 recv_msg->msg.cmd = msg->rsp[8];
3171 recv_msg->msg.data = recv_msg->msg_data;
3174 * We chop off 10, not 9 bytes because the checksum
3175 * at the end also needs to be removed.
3177 recv_msg->msg.data_len = msg->rsp_size - 10;
3178 memcpy(recv_msg->msg_data,
3179 &(msg->rsp[9]),
3180 msg->rsp_size - 10);
3181 deliver_response(recv_msg);
3185 return rv;
3188 static int handle_lan_get_msg_rsp(ipmi_smi_t intf,
3189 struct ipmi_smi_msg *msg)
3191 struct ipmi_lan_addr lan_addr;
3192 struct ipmi_recv_msg *recv_msg;
3196 * This is 13, not 12, because the response must contain a
3197 * completion code.
3199 if (msg->rsp_size < 13) {
3200 /* Message not big enough, just ignore it. */
3201 ipmi_inc_stat(intf, invalid_lan_responses);
3202 return 0;
3205 if (msg->rsp[2] != 0) {
3206 /* An error getting the response, just ignore it. */
3207 return 0;
3210 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3211 lan_addr.session_handle = msg->rsp[4];
3212 lan_addr.remote_SWID = msg->rsp[8];
3213 lan_addr.local_SWID = msg->rsp[5];
3214 lan_addr.channel = msg->rsp[3] & 0x0f;
3215 lan_addr.privilege = msg->rsp[3] >> 4;
3216 lan_addr.lun = msg->rsp[9] & 3;
3219 * It's a response from a remote entity. Look up the sequence
3220 * number and handle the response.
3222 if (intf_find_seq(intf,
3223 msg->rsp[9] >> 2,
3224 msg->rsp[3] & 0x0f,
3225 msg->rsp[10],
3226 (msg->rsp[6] >> 2) & (~1),
3227 (struct ipmi_addr *) &(lan_addr),
3228 &recv_msg)) {
3230 * We were unable to find the sequence number,
3231 * so just nuke the message.
3233 ipmi_inc_stat(intf, unhandled_lan_responses);
3234 return 0;
3237 memcpy(recv_msg->msg_data,
3238 &(msg->rsp[11]),
3239 msg->rsp_size - 11);
3241 * The other fields matched, so no need to set them, except
3242 * for netfn, which needs to be the response that was
3243 * returned, not the request value.
3245 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3246 recv_msg->msg.data = recv_msg->msg_data;
3247 recv_msg->msg.data_len = msg->rsp_size - 12;
3248 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3249 ipmi_inc_stat(intf, handled_lan_responses);
3250 deliver_response(recv_msg);
3252 return 0;
3255 static int handle_lan_get_msg_cmd(ipmi_smi_t intf,
3256 struct ipmi_smi_msg *msg)
3258 struct cmd_rcvr *rcvr;
3259 int rv = 0;
3260 unsigned char netfn;
3261 unsigned char cmd;
3262 unsigned char chan;
3263 ipmi_user_t user = NULL;
3264 struct ipmi_lan_addr *lan_addr;
3265 struct ipmi_recv_msg *recv_msg;
3267 if (msg->rsp_size < 12) {
3268 /* Message not big enough, just ignore it. */
3269 ipmi_inc_stat(intf, invalid_commands);
3270 return 0;
3273 if (msg->rsp[2] != 0) {
3274 /* An error getting the response, just ignore it. */
3275 return 0;
3278 netfn = msg->rsp[6] >> 2;
3279 cmd = msg->rsp[10];
3280 chan = msg->rsp[3] & 0xf;
3282 rcu_read_lock();
3283 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3284 if (rcvr) {
3285 user = rcvr->user;
3286 kref_get(&user->refcount);
3287 } else
3288 user = NULL;
3289 rcu_read_unlock();
3291 if (user == NULL) {
3292 /* We didn't find a user, just give up. */
3293 ipmi_inc_stat(intf, unhandled_commands);
3296 * Don't do anything with these messages, just allow
3297 * them to be freed.
3299 rv = 0;
3300 } else {
3301 /* Deliver the message to the user. */
3302 ipmi_inc_stat(intf, handled_commands);
3304 recv_msg = ipmi_alloc_recv_msg();
3305 if (!recv_msg) {
3307 * We couldn't allocate memory for the
3308 * message, so requeue it for handling later.
3310 rv = 1;
3311 kref_put(&user->refcount, free_user);
3312 } else {
3313 /* Extract the source address from the data. */
3314 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3315 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3316 lan_addr->session_handle = msg->rsp[4];
3317 lan_addr->remote_SWID = msg->rsp[8];
3318 lan_addr->local_SWID = msg->rsp[5];
3319 lan_addr->lun = msg->rsp[9] & 3;
3320 lan_addr->channel = msg->rsp[3] & 0xf;
3321 lan_addr->privilege = msg->rsp[3] >> 4;
3324 * Extract the rest of the message information
3325 * from the IPMB header.
3327 recv_msg->user = user;
3328 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3329 recv_msg->msgid = msg->rsp[9] >> 2;
3330 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3331 recv_msg->msg.cmd = msg->rsp[10];
3332 recv_msg->msg.data = recv_msg->msg_data;
3335 * We chop off 12, not 11 bytes because the checksum
3336 * at the end also needs to be removed.
3338 recv_msg->msg.data_len = msg->rsp_size - 12;
3339 memcpy(recv_msg->msg_data,
3340 &(msg->rsp[11]),
3341 msg->rsp_size - 12);
3342 deliver_response(recv_msg);
3346 return rv;
3350 * This routine will handle "Get Message" command responses with
3351 * channels that use an OEM Medium. The message format belongs to
3352 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3353 * Chapter 22, sections 22.6 and 22.24 for more details.
3355 static int handle_oem_get_msg_cmd(ipmi_smi_t intf,
3356 struct ipmi_smi_msg *msg)
3358 struct cmd_rcvr *rcvr;
3359 int rv = 0;
3360 unsigned char netfn;
3361 unsigned char cmd;
3362 unsigned char chan;
3363 ipmi_user_t user = NULL;
3364 struct ipmi_system_interface_addr *smi_addr;
3365 struct ipmi_recv_msg *recv_msg;
3368 * We expect the OEM SW to perform error checking
3369 * so we just do some basic sanity checks
3371 if (msg->rsp_size < 4) {
3372 /* Message not big enough, just ignore it. */
3373 ipmi_inc_stat(intf, invalid_commands);
3374 return 0;
3377 if (msg->rsp[2] != 0) {
3378 /* An error getting the response, just ignore it. */
3379 return 0;
3383 * This is an OEM Message so the OEM needs to know how
3384 * handle the message. We do no interpretation.
3386 netfn = msg->rsp[0] >> 2;
3387 cmd = msg->rsp[1];
3388 chan = msg->rsp[3] & 0xf;
3390 rcu_read_lock();
3391 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3392 if (rcvr) {
3393 user = rcvr->user;
3394 kref_get(&user->refcount);
3395 } else
3396 user = NULL;
3397 rcu_read_unlock();
3399 if (user == NULL) {
3400 /* We didn't find a user, just give up. */
3401 ipmi_inc_stat(intf, unhandled_commands);
3404 * Don't do anything with these messages, just allow
3405 * them to be freed.
3408 rv = 0;
3409 } else {
3410 /* Deliver the message to the user. */
3411 ipmi_inc_stat(intf, handled_commands);
3413 recv_msg = ipmi_alloc_recv_msg();
3414 if (!recv_msg) {
3416 * We couldn't allocate memory for the
3417 * message, so requeue it for handling
3418 * later.
3420 rv = 1;
3421 kref_put(&user->refcount, free_user);
3422 } else {
3424 * OEM Messages are expected to be delivered via
3425 * the system interface to SMS software. We might
3426 * need to visit this again depending on OEM
3427 * requirements
3429 smi_addr = ((struct ipmi_system_interface_addr *)
3430 &(recv_msg->addr));
3431 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3432 smi_addr->channel = IPMI_BMC_CHANNEL;
3433 smi_addr->lun = msg->rsp[0] & 3;
3435 recv_msg->user = user;
3436 recv_msg->user_msg_data = NULL;
3437 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3438 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3439 recv_msg->msg.cmd = msg->rsp[1];
3440 recv_msg->msg.data = recv_msg->msg_data;
3443 * The message starts at byte 4 which follows the
3444 * the Channel Byte in the "GET MESSAGE" command
3446 recv_msg->msg.data_len = msg->rsp_size - 4;
3447 memcpy(recv_msg->msg_data,
3448 &(msg->rsp[4]),
3449 msg->rsp_size - 4);
3450 deliver_response(recv_msg);
3454 return rv;
3457 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3458 struct ipmi_smi_msg *msg)
3460 struct ipmi_system_interface_addr *smi_addr;
3462 recv_msg->msgid = 0;
3463 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3464 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3465 smi_addr->channel = IPMI_BMC_CHANNEL;
3466 smi_addr->lun = msg->rsp[0] & 3;
3467 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3468 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3469 recv_msg->msg.cmd = msg->rsp[1];
3470 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3471 recv_msg->msg.data = recv_msg->msg_data;
3472 recv_msg->msg.data_len = msg->rsp_size - 3;
3475 static int handle_read_event_rsp(ipmi_smi_t intf,
3476 struct ipmi_smi_msg *msg)
3478 struct ipmi_recv_msg *recv_msg, *recv_msg2;
3479 struct list_head msgs;
3480 ipmi_user_t user;
3481 int rv = 0;
3482 int deliver_count = 0;
3483 unsigned long flags;
3485 if (msg->rsp_size < 19) {
3486 /* Message is too small to be an IPMB event. */
3487 ipmi_inc_stat(intf, invalid_events);
3488 return 0;
3491 if (msg->rsp[2] != 0) {
3492 /* An error getting the event, just ignore it. */
3493 return 0;
3496 INIT_LIST_HEAD(&msgs);
3498 spin_lock_irqsave(&intf->events_lock, flags);
3500 ipmi_inc_stat(intf, events);
3503 * Allocate and fill in one message for every user that is
3504 * getting events.
3506 rcu_read_lock();
3507 list_for_each_entry_rcu(user, &intf->users, link) {
3508 if (!user->gets_events)
3509 continue;
3511 recv_msg = ipmi_alloc_recv_msg();
3512 if (!recv_msg) {
3513 rcu_read_unlock();
3514 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3515 link) {
3516 list_del(&recv_msg->link);
3517 ipmi_free_recv_msg(recv_msg);
3520 * We couldn't allocate memory for the
3521 * message, so requeue it for handling
3522 * later.
3524 rv = 1;
3525 goto out;
3528 deliver_count++;
3530 copy_event_into_recv_msg(recv_msg, msg);
3531 recv_msg->user = user;
3532 kref_get(&user->refcount);
3533 list_add_tail(&(recv_msg->link), &msgs);
3535 rcu_read_unlock();
3537 if (deliver_count) {
3538 /* Now deliver all the messages. */
3539 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3540 list_del(&recv_msg->link);
3541 deliver_response(recv_msg);
3543 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3545 * No one to receive the message, put it in queue if there's
3546 * not already too many things in the queue.
3548 recv_msg = ipmi_alloc_recv_msg();
3549 if (!recv_msg) {
3551 * We couldn't allocate memory for the
3552 * message, so requeue it for handling
3553 * later.
3555 rv = 1;
3556 goto out;
3559 copy_event_into_recv_msg(recv_msg, msg);
3560 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3561 intf->waiting_events_count++;
3562 } else if (!intf->event_msg_printed) {
3564 * There's too many things in the queue, discard this
3565 * message.
3567 printk(KERN_WARNING PFX "Event queue full, discarding"
3568 " incoming events\n");
3569 intf->event_msg_printed = 1;
3572 out:
3573 spin_unlock_irqrestore(&(intf->events_lock), flags);
3575 return rv;
3578 static int handle_bmc_rsp(ipmi_smi_t intf,
3579 struct ipmi_smi_msg *msg)
3581 struct ipmi_recv_msg *recv_msg;
3582 struct ipmi_user *user;
3584 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3585 if (recv_msg == NULL) {
3586 printk(KERN_WARNING
3587 "IPMI message received with no owner. This\n"
3588 "could be because of a malformed message, or\n"
3589 "because of a hardware error. Contact your\n"
3590 "hardware vender for assistance\n");
3591 return 0;
3594 user = recv_msg->user;
3595 /* Make sure the user still exists. */
3596 if (user && !user->valid) {
3597 /* The user for the message went away, so give up. */
3598 ipmi_inc_stat(intf, unhandled_local_responses);
3599 ipmi_free_recv_msg(recv_msg);
3600 } else {
3601 struct ipmi_system_interface_addr *smi_addr;
3603 ipmi_inc_stat(intf, handled_local_responses);
3604 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3605 recv_msg->msgid = msg->msgid;
3606 smi_addr = ((struct ipmi_system_interface_addr *)
3607 &(recv_msg->addr));
3608 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3609 smi_addr->channel = IPMI_BMC_CHANNEL;
3610 smi_addr->lun = msg->rsp[0] & 3;
3611 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3612 recv_msg->msg.cmd = msg->rsp[1];
3613 memcpy(recv_msg->msg_data,
3614 &(msg->rsp[2]),
3615 msg->rsp_size - 2);
3616 recv_msg->msg.data = recv_msg->msg_data;
3617 recv_msg->msg.data_len = msg->rsp_size - 2;
3618 deliver_response(recv_msg);
3621 return 0;
3625 * Handle a new message. Return 1 if the message should be requeued,
3626 * 0 if the message should be freed, or -1 if the message should not
3627 * be freed or requeued.
3629 static int handle_new_recv_msg(ipmi_smi_t intf,
3630 struct ipmi_smi_msg *msg)
3632 int requeue;
3633 int chan;
3635 #ifdef DEBUG_MSGING
3636 int m;
3637 printk("Recv:");
3638 for (m = 0; m < msg->rsp_size; m++)
3639 printk(" %2.2x", msg->rsp[m]);
3640 printk("\n");
3641 #endif
3642 if (msg->rsp_size < 2) {
3643 /* Message is too small to be correct. */
3644 printk(KERN_WARNING PFX "BMC returned to small a message"
3645 " for netfn %x cmd %x, got %d bytes\n",
3646 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3648 /* Generate an error response for the message. */
3649 msg->rsp[0] = msg->data[0] | (1 << 2);
3650 msg->rsp[1] = msg->data[1];
3651 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3652 msg->rsp_size = 3;
3653 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3654 || (msg->rsp[1] != msg->data[1])) {
3656 * The NetFN and Command in the response is not even
3657 * marginally correct.
3659 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3660 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3661 (msg->data[0] >> 2) | 1, msg->data[1],
3662 msg->rsp[0] >> 2, msg->rsp[1]);
3664 /* Generate an error response for the message. */
3665 msg->rsp[0] = msg->data[0] | (1 << 2);
3666 msg->rsp[1] = msg->data[1];
3667 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3668 msg->rsp_size = 3;
3671 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3672 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3673 && (msg->user_data != NULL)) {
3675 * It's a response to a response we sent. For this we
3676 * deliver a send message response to the user.
3678 struct ipmi_recv_msg *recv_msg = msg->user_data;
3680 requeue = 0;
3681 if (msg->rsp_size < 2)
3682 /* Message is too small to be correct. */
3683 goto out;
3685 chan = msg->data[2] & 0x0f;
3686 if (chan >= IPMI_MAX_CHANNELS)
3687 /* Invalid channel number */
3688 goto out;
3690 if (!recv_msg)
3691 goto out;
3693 /* Make sure the user still exists. */
3694 if (!recv_msg->user || !recv_msg->user->valid)
3695 goto out;
3697 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3698 recv_msg->msg.data = recv_msg->msg_data;
3699 recv_msg->msg.data_len = 1;
3700 recv_msg->msg_data[0] = msg->rsp[2];
3701 deliver_response(recv_msg);
3702 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3703 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3704 /* It's from the receive queue. */
3705 chan = msg->rsp[3] & 0xf;
3706 if (chan >= IPMI_MAX_CHANNELS) {
3707 /* Invalid channel number */
3708 requeue = 0;
3709 goto out;
3713 * We need to make sure the channels have been initialized.
3714 * The channel_handler routine will set the "curr_channel"
3715 * equal to or greater than IPMI_MAX_CHANNELS when all the
3716 * channels for this interface have been initialized.
3718 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3719 requeue = 0; /* Throw the message away */
3720 goto out;
3723 switch (intf->channels[chan].medium) {
3724 case IPMI_CHANNEL_MEDIUM_IPMB:
3725 if (msg->rsp[4] & 0x04) {
3727 * It's a response, so find the
3728 * requesting message and send it up.
3730 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3731 } else {
3733 * It's a command to the SMS from some other
3734 * entity. Handle that.
3736 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3738 break;
3740 case IPMI_CHANNEL_MEDIUM_8023LAN:
3741 case IPMI_CHANNEL_MEDIUM_ASYNC:
3742 if (msg->rsp[6] & 0x04) {
3744 * It's a response, so find the
3745 * requesting message and send it up.
3747 requeue = handle_lan_get_msg_rsp(intf, msg);
3748 } else {
3750 * It's a command to the SMS from some other
3751 * entity. Handle that.
3753 requeue = handle_lan_get_msg_cmd(intf, msg);
3755 break;
3757 default:
3758 /* Check for OEM Channels. Clients had better
3759 register for these commands. */
3760 if ((intf->channels[chan].medium
3761 >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3762 && (intf->channels[chan].medium
3763 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3764 requeue = handle_oem_get_msg_cmd(intf, msg);
3765 } else {
3767 * We don't handle the channel type, so just
3768 * free the message.
3770 requeue = 0;
3774 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3775 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3776 /* It's an asyncronous event. */
3777 requeue = handle_read_event_rsp(intf, msg);
3778 } else {
3779 /* It's a response from the local BMC. */
3780 requeue = handle_bmc_rsp(intf, msg);
3783 out:
3784 return requeue;
3787 /* Handle a new message from the lower layer. */
3788 void ipmi_smi_msg_received(ipmi_smi_t intf,
3789 struct ipmi_smi_msg *msg)
3791 unsigned long flags = 0; /* keep us warning-free. */
3792 int rv;
3793 int run_to_completion;
3796 if ((msg->data_size >= 2)
3797 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3798 && (msg->data[1] == IPMI_SEND_MSG_CMD)
3799 && (msg->user_data == NULL)) {
3801 * This is the local response to a command send, start
3802 * the timer for these. The user_data will not be
3803 * NULL if this is a response send, and we will let
3804 * response sends just go through.
3808 * Check for errors, if we get certain errors (ones
3809 * that mean basically we can try again later), we
3810 * ignore them and start the timer. Otherwise we
3811 * report the error immediately.
3813 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3814 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3815 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3816 && (msg->rsp[2] != IPMI_BUS_ERR)
3817 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3818 int chan = msg->rsp[3] & 0xf;
3820 /* Got an error sending the message, handle it. */
3821 if (chan >= IPMI_MAX_CHANNELS)
3822 ; /* This shouldn't happen */
3823 else if ((intf->channels[chan].medium
3824 == IPMI_CHANNEL_MEDIUM_8023LAN)
3825 || (intf->channels[chan].medium
3826 == IPMI_CHANNEL_MEDIUM_ASYNC))
3827 ipmi_inc_stat(intf, sent_lan_command_errs);
3828 else
3829 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3830 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3831 } else
3832 /* The message was sent, start the timer. */
3833 intf_start_seq_timer(intf, msg->msgid);
3835 ipmi_free_smi_msg(msg);
3836 goto out;
3840 * To preserve message order, if the list is not empty, we
3841 * tack this message onto the end of the list.
3843 run_to_completion = intf->run_to_completion;
3844 if (!run_to_completion)
3845 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3846 if (!list_empty(&intf->waiting_msgs)) {
3847 list_add_tail(&msg->link, &intf->waiting_msgs);
3848 if (!run_to_completion)
3849 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3850 goto out;
3852 if (!run_to_completion)
3853 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3855 rv = handle_new_recv_msg(intf, msg);
3856 if (rv > 0) {
3858 * Could not handle the message now, just add it to a
3859 * list to handle later.
3861 run_to_completion = intf->run_to_completion;
3862 if (!run_to_completion)
3863 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3864 list_add_tail(&msg->link, &intf->waiting_msgs);
3865 if (!run_to_completion)
3866 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3867 } else if (rv == 0) {
3868 ipmi_free_smi_msg(msg);
3871 out:
3872 return;
3874 EXPORT_SYMBOL(ipmi_smi_msg_received);
3876 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3878 ipmi_user_t user;
3880 rcu_read_lock();
3881 list_for_each_entry_rcu(user, &intf->users, link) {
3882 if (!user->handler->ipmi_watchdog_pretimeout)
3883 continue;
3885 user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3887 rcu_read_unlock();
3889 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3891 static struct ipmi_smi_msg *
3892 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3893 unsigned char seq, long seqid)
3895 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3896 if (!smi_msg)
3898 * If we can't allocate the message, then just return, we
3899 * get 4 retries, so this should be ok.
3901 return NULL;
3903 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3904 smi_msg->data_size = recv_msg->msg.data_len;
3905 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3907 #ifdef DEBUG_MSGING
3909 int m;
3910 printk("Resend: ");
3911 for (m = 0; m < smi_msg->data_size; m++)
3912 printk(" %2.2x", smi_msg->data[m]);
3913 printk("\n");
3915 #endif
3916 return smi_msg;
3919 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3920 struct list_head *timeouts, long timeout_period,
3921 int slot, unsigned long *flags)
3923 struct ipmi_recv_msg *msg;
3924 struct ipmi_smi_handlers *handlers;
3926 if (intf->intf_num == -1)
3927 return;
3929 if (!ent->inuse)
3930 return;
3932 ent->timeout -= timeout_period;
3933 if (ent->timeout > 0)
3934 return;
3936 if (ent->retries_left == 0) {
3937 /* The message has used all its retries. */
3938 ent->inuse = 0;
3939 msg = ent->recv_msg;
3940 list_add_tail(&msg->link, timeouts);
3941 if (ent->broadcast)
3942 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3943 else if (is_lan_addr(&ent->recv_msg->addr))
3944 ipmi_inc_stat(intf, timed_out_lan_commands);
3945 else
3946 ipmi_inc_stat(intf, timed_out_ipmb_commands);
3947 } else {
3948 struct ipmi_smi_msg *smi_msg;
3949 /* More retries, send again. */
3952 * Start with the max timer, set to normal timer after
3953 * the message is sent.
3955 ent->timeout = MAX_MSG_TIMEOUT;
3956 ent->retries_left--;
3957 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3958 ent->seqid);
3959 if (!smi_msg) {
3960 if (is_lan_addr(&ent->recv_msg->addr))
3961 ipmi_inc_stat(intf,
3962 dropped_rexmit_lan_commands);
3963 else
3964 ipmi_inc_stat(intf,
3965 dropped_rexmit_ipmb_commands);
3966 return;
3969 spin_unlock_irqrestore(&intf->seq_lock, *flags);
3972 * Send the new message. We send with a zero
3973 * priority. It timed out, I doubt time is that
3974 * critical now, and high priority messages are really
3975 * only for messages to the local MC, which don't get
3976 * resent.
3978 handlers = intf->handlers;
3979 if (handlers) {
3980 if (is_lan_addr(&ent->recv_msg->addr))
3981 ipmi_inc_stat(intf,
3982 retransmitted_lan_commands);
3983 else
3984 ipmi_inc_stat(intf,
3985 retransmitted_ipmb_commands);
3987 intf->handlers->sender(intf->send_info,
3988 smi_msg, 0);
3989 } else
3990 ipmi_free_smi_msg(smi_msg);
3992 spin_lock_irqsave(&intf->seq_lock, *flags);
3996 static void ipmi_timeout_handler(long timeout_period)
3998 ipmi_smi_t intf;
3999 struct list_head timeouts;
4000 struct ipmi_recv_msg *msg, *msg2;
4001 struct ipmi_smi_msg *smi_msg, *smi_msg2;
4002 unsigned long flags;
4003 int i;
4005 rcu_read_lock();
4006 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4007 /* See if any waiting messages need to be processed. */
4008 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
4009 list_for_each_entry_safe(smi_msg, smi_msg2,
4010 &intf->waiting_msgs, link) {
4011 if (!handle_new_recv_msg(intf, smi_msg)) {
4012 list_del(&smi_msg->link);
4013 ipmi_free_smi_msg(smi_msg);
4014 } else {
4016 * To preserve message order, quit if we
4017 * can't handle a message.
4019 break;
4022 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
4025 * Go through the seq table and find any messages that
4026 * have timed out, putting them in the timeouts
4027 * list.
4029 INIT_LIST_HEAD(&timeouts);
4030 spin_lock_irqsave(&intf->seq_lock, flags);
4031 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4032 check_msg_timeout(intf, &(intf->seq_table[i]),
4033 &timeouts, timeout_period, i,
4034 &flags);
4035 spin_unlock_irqrestore(&intf->seq_lock, flags);
4037 list_for_each_entry_safe(msg, msg2, &timeouts, link)
4038 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4041 * Maintenance mode handling. Check the timeout
4042 * optimistically before we claim the lock. It may
4043 * mean a timeout gets missed occasionally, but that
4044 * only means the timeout gets extended by one period
4045 * in that case. No big deal, and it avoids the lock
4046 * most of the time.
4048 if (intf->auto_maintenance_timeout > 0) {
4049 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4050 if (intf->auto_maintenance_timeout > 0) {
4051 intf->auto_maintenance_timeout
4052 -= timeout_period;
4053 if (!intf->maintenance_mode
4054 && (intf->auto_maintenance_timeout <= 0)) {
4055 intf->maintenance_mode_enable = 0;
4056 maintenance_mode_update(intf);
4059 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4060 flags);
4063 rcu_read_unlock();
4066 static void ipmi_request_event(void)
4068 ipmi_smi_t intf;
4069 struct ipmi_smi_handlers *handlers;
4071 rcu_read_lock();
4073 * Called from the timer, no need to check if handlers is
4074 * valid.
4076 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4077 /* No event requests when in maintenance mode. */
4078 if (intf->maintenance_mode_enable)
4079 continue;
4081 handlers = intf->handlers;
4082 if (handlers)
4083 handlers->request_events(intf->send_info);
4085 rcu_read_unlock();
4088 static struct timer_list ipmi_timer;
4090 /* Call every ~1000 ms. */
4091 #define IPMI_TIMEOUT_TIME 1000
4093 /* How many jiffies does it take to get to the timeout time. */
4094 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
4097 * Request events from the queue every second (this is the number of
4098 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
4099 * future, IPMI will add a way to know immediately if an event is in
4100 * the queue and this silliness can go away.
4102 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
4104 static atomic_t stop_operation;
4105 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4107 static void ipmi_timeout(unsigned long data)
4109 if (atomic_read(&stop_operation))
4110 return;
4112 ticks_to_req_ev--;
4113 if (ticks_to_req_ev == 0) {
4114 ipmi_request_event();
4115 ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4118 ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
4120 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4124 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4125 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4127 /* FIXME - convert these to slabs. */
4128 static void free_smi_msg(struct ipmi_smi_msg *msg)
4130 atomic_dec(&smi_msg_inuse_count);
4131 kfree(msg);
4134 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4136 struct ipmi_smi_msg *rv;
4137 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4138 if (rv) {
4139 rv->done = free_smi_msg;
4140 rv->user_data = NULL;
4141 atomic_inc(&smi_msg_inuse_count);
4143 return rv;
4145 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4147 static void free_recv_msg(struct ipmi_recv_msg *msg)
4149 atomic_dec(&recv_msg_inuse_count);
4150 kfree(msg);
4153 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4155 struct ipmi_recv_msg *rv;
4157 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4158 if (rv) {
4159 rv->user = NULL;
4160 rv->done = free_recv_msg;
4161 atomic_inc(&recv_msg_inuse_count);
4163 return rv;
4166 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4168 if (msg->user)
4169 kref_put(&msg->user->refcount, free_user);
4170 msg->done(msg);
4172 EXPORT_SYMBOL(ipmi_free_recv_msg);
4174 #ifdef CONFIG_IPMI_PANIC_EVENT
4176 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4180 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4184 #ifdef CONFIG_IPMI_PANIC_STRING
4185 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4187 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4188 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4189 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4190 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4191 /* A get event receiver command, save it. */
4192 intf->event_receiver = msg->msg.data[1];
4193 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4197 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4199 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4200 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4201 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4202 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4204 * A get device id command, save if we are an event
4205 * receiver or generator.
4207 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4208 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4211 #endif
4213 static void send_panic_events(char *str)
4215 struct kernel_ipmi_msg msg;
4216 ipmi_smi_t intf;
4217 unsigned char data[16];
4218 struct ipmi_system_interface_addr *si;
4219 struct ipmi_addr addr;
4220 struct ipmi_smi_msg smi_msg;
4221 struct ipmi_recv_msg recv_msg;
4223 si = (struct ipmi_system_interface_addr *) &addr;
4224 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4225 si->channel = IPMI_BMC_CHANNEL;
4226 si->lun = 0;
4228 /* Fill in an event telling that we have failed. */
4229 msg.netfn = 0x04; /* Sensor or Event. */
4230 msg.cmd = 2; /* Platform event command. */
4231 msg.data = data;
4232 msg.data_len = 8;
4233 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4234 data[1] = 0x03; /* This is for IPMI 1.0. */
4235 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4236 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4237 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4240 * Put a few breadcrumbs in. Hopefully later we can add more things
4241 * to make the panic events more useful.
4243 if (str) {
4244 data[3] = str[0];
4245 data[6] = str[1];
4246 data[7] = str[2];
4249 smi_msg.done = dummy_smi_done_handler;
4250 recv_msg.done = dummy_recv_done_handler;
4252 /* For every registered interface, send the event. */
4253 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4254 if (!intf->handlers)
4255 /* Interface is not ready. */
4256 continue;
4258 intf->run_to_completion = 1;
4259 /* Send the event announcing the panic. */
4260 intf->handlers->set_run_to_completion(intf->send_info, 1);
4261 i_ipmi_request(NULL,
4262 intf,
4263 &addr,
4265 &msg,
4266 intf,
4267 &smi_msg,
4268 &recv_msg,
4270 intf->channels[0].address,
4271 intf->channels[0].lun,
4272 0, 1); /* Don't retry, and don't wait. */
4275 #ifdef CONFIG_IPMI_PANIC_STRING
4277 * On every interface, dump a bunch of OEM event holding the
4278 * string.
4280 if (!str)
4281 return;
4283 /* For every registered interface, send the event. */
4284 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4285 char *p = str;
4286 struct ipmi_ipmb_addr *ipmb;
4287 int j;
4289 if (intf->intf_num == -1)
4290 /* Interface was not ready yet. */
4291 continue;
4294 * intf_num is used as an marker to tell if the
4295 * interface is valid. Thus we need a read barrier to
4296 * make sure data fetched before checking intf_num
4297 * won't be used.
4299 smp_rmb();
4302 * First job here is to figure out where to send the
4303 * OEM events. There's no way in IPMI to send OEM
4304 * events using an event send command, so we have to
4305 * find the SEL to put them in and stick them in
4306 * there.
4309 /* Get capabilities from the get device id. */
4310 intf->local_sel_device = 0;
4311 intf->local_event_generator = 0;
4312 intf->event_receiver = 0;
4314 /* Request the device info from the local MC. */
4315 msg.netfn = IPMI_NETFN_APP_REQUEST;
4316 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4317 msg.data = NULL;
4318 msg.data_len = 0;
4319 intf->null_user_handler = device_id_fetcher;
4320 i_ipmi_request(NULL,
4321 intf,
4322 &addr,
4324 &msg,
4325 intf,
4326 &smi_msg,
4327 &recv_msg,
4329 intf->channels[0].address,
4330 intf->channels[0].lun,
4331 0, 1); /* Don't retry, and don't wait. */
4333 if (intf->local_event_generator) {
4334 /* Request the event receiver from the local MC. */
4335 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4336 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4337 msg.data = NULL;
4338 msg.data_len = 0;
4339 intf->null_user_handler = event_receiver_fetcher;
4340 i_ipmi_request(NULL,
4341 intf,
4342 &addr,
4344 &msg,
4345 intf,
4346 &smi_msg,
4347 &recv_msg,
4349 intf->channels[0].address,
4350 intf->channels[0].lun,
4351 0, 1); /* no retry, and no wait. */
4353 intf->null_user_handler = NULL;
4356 * Validate the event receiver. The low bit must not
4357 * be 1 (it must be a valid IPMB address), it cannot
4358 * be zero, and it must not be my address.
4360 if (((intf->event_receiver & 1) == 0)
4361 && (intf->event_receiver != 0)
4362 && (intf->event_receiver != intf->channels[0].address)) {
4364 * The event receiver is valid, send an IPMB
4365 * message.
4367 ipmb = (struct ipmi_ipmb_addr *) &addr;
4368 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4369 ipmb->channel = 0; /* FIXME - is this right? */
4370 ipmb->lun = intf->event_receiver_lun;
4371 ipmb->slave_addr = intf->event_receiver;
4372 } else if (intf->local_sel_device) {
4374 * The event receiver was not valid (or was
4375 * me), but I am an SEL device, just dump it
4376 * in my SEL.
4378 si = (struct ipmi_system_interface_addr *) &addr;
4379 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4380 si->channel = IPMI_BMC_CHANNEL;
4381 si->lun = 0;
4382 } else
4383 continue; /* No where to send the event. */
4385 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4386 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4387 msg.data = data;
4388 msg.data_len = 16;
4390 j = 0;
4391 while (*p) {
4392 int size = strlen(p);
4394 if (size > 11)
4395 size = 11;
4396 data[0] = 0;
4397 data[1] = 0;
4398 data[2] = 0xf0; /* OEM event without timestamp. */
4399 data[3] = intf->channels[0].address;
4400 data[4] = j++; /* sequence # */
4402 * Always give 11 bytes, so strncpy will fill
4403 * it with zeroes for me.
4405 strncpy(data+5, p, 11);
4406 p += size;
4408 i_ipmi_request(NULL,
4409 intf,
4410 &addr,
4412 &msg,
4413 intf,
4414 &smi_msg,
4415 &recv_msg,
4417 intf->channels[0].address,
4418 intf->channels[0].lun,
4419 0, 1); /* no retry, and no wait. */
4422 #endif /* CONFIG_IPMI_PANIC_STRING */
4424 #endif /* CONFIG_IPMI_PANIC_EVENT */
4426 static int has_panicked;
4428 static int panic_event(struct notifier_block *this,
4429 unsigned long event,
4430 void *ptr)
4432 ipmi_smi_t intf;
4434 if (has_panicked)
4435 return NOTIFY_DONE;
4436 has_panicked = 1;
4438 /* For every registered interface, set it to run to completion. */
4439 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4440 if (!intf->handlers)
4441 /* Interface is not ready. */
4442 continue;
4444 intf->run_to_completion = 1;
4445 intf->handlers->set_run_to_completion(intf->send_info, 1);
4448 #ifdef CONFIG_IPMI_PANIC_EVENT
4449 send_panic_events(ptr);
4450 #endif
4452 return NOTIFY_DONE;
4455 static struct notifier_block panic_block = {
4456 .notifier_call = panic_event,
4457 .next = NULL,
4458 .priority = 200 /* priority: INT_MAX >= x >= 0 */
4461 static int ipmi_init_msghandler(void)
4463 int rv;
4465 if (initialized)
4466 return 0;
4468 rv = driver_register(&ipmidriver.driver);
4469 if (rv) {
4470 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4471 return rv;
4474 printk(KERN_INFO "ipmi message handler version "
4475 IPMI_DRIVER_VERSION "\n");
4477 #ifdef CONFIG_PROC_FS
4478 proc_ipmi_root = proc_mkdir("ipmi", NULL);
4479 if (!proc_ipmi_root) {
4480 printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4481 return -ENOMEM;
4484 #endif /* CONFIG_PROC_FS */
4486 setup_timer(&ipmi_timer, ipmi_timeout, 0);
4487 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4489 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4491 initialized = 1;
4493 return 0;
4496 static int __init ipmi_init_msghandler_mod(void)
4498 ipmi_init_msghandler();
4499 return 0;
4502 static void __exit cleanup_ipmi(void)
4504 int count;
4506 if (!initialized)
4507 return;
4509 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4512 * This can't be called if any interfaces exist, so no worry
4513 * about shutting down the interfaces.
4517 * Tell the timer to stop, then wait for it to stop. This
4518 * avoids problems with race conditions removing the timer
4519 * here.
4521 atomic_inc(&stop_operation);
4522 del_timer_sync(&ipmi_timer);
4524 #ifdef CONFIG_PROC_FS
4525 remove_proc_entry(proc_ipmi_root->name, NULL);
4526 #endif /* CONFIG_PROC_FS */
4528 driver_unregister(&ipmidriver.driver);
4530 initialized = 0;
4532 /* Check for buffer leaks. */
4533 count = atomic_read(&smi_msg_inuse_count);
4534 if (count != 0)
4535 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4536 count);
4537 count = atomic_read(&recv_msg_inuse_count);
4538 if (count != 0)
4539 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4540 count);
4542 module_exit(cleanup_ipmi);
4544 module_init(ipmi_init_msghandler_mod);
4545 MODULE_LICENSE("GPL");
4546 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4547 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4548 " interface.");
4549 MODULE_VERSION(IPMI_DRIVER_VERSION);