spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / clocksource / sh_tmu.c
blob97f54b634be43234d820beb1661b0493bd79637f
1 /*
2 * SuperH Timer Support - TMU
4 * Copyright (C) 2009 Magnus Damm
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/clk.h>
28 #include <linux/irq.h>
29 #include <linux/err.h>
30 #include <linux/clocksource.h>
31 #include <linux/clockchips.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
34 #include <linux/module.h>
35 #include <linux/pm_domain.h>
37 struct sh_tmu_priv {
38 void __iomem *mapbase;
39 struct clk *clk;
40 struct irqaction irqaction;
41 struct platform_device *pdev;
42 unsigned long rate;
43 unsigned long periodic;
44 struct clock_event_device ced;
45 struct clocksource cs;
48 static DEFINE_SPINLOCK(sh_tmu_lock);
50 #define TSTR -1 /* shared register */
51 #define TCOR 0 /* channel register */
52 #define TCNT 1 /* channel register */
53 #define TCR 2 /* channel register */
55 static inline unsigned long sh_tmu_read(struct sh_tmu_priv *p, int reg_nr)
57 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
58 void __iomem *base = p->mapbase;
59 unsigned long offs;
61 if (reg_nr == TSTR)
62 return ioread8(base - cfg->channel_offset);
64 offs = reg_nr << 2;
66 if (reg_nr == TCR)
67 return ioread16(base + offs);
68 else
69 return ioread32(base + offs);
72 static inline void sh_tmu_write(struct sh_tmu_priv *p, int reg_nr,
73 unsigned long value)
75 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
76 void __iomem *base = p->mapbase;
77 unsigned long offs;
79 if (reg_nr == TSTR) {
80 iowrite8(value, base - cfg->channel_offset);
81 return;
84 offs = reg_nr << 2;
86 if (reg_nr == TCR)
87 iowrite16(value, base + offs);
88 else
89 iowrite32(value, base + offs);
92 static void sh_tmu_start_stop_ch(struct sh_tmu_priv *p, int start)
94 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
95 unsigned long flags, value;
97 /* start stop register shared by multiple timer channels */
98 spin_lock_irqsave(&sh_tmu_lock, flags);
99 value = sh_tmu_read(p, TSTR);
101 if (start)
102 value |= 1 << cfg->timer_bit;
103 else
104 value &= ~(1 << cfg->timer_bit);
106 sh_tmu_write(p, TSTR, value);
107 spin_unlock_irqrestore(&sh_tmu_lock, flags);
110 static int sh_tmu_enable(struct sh_tmu_priv *p)
112 int ret;
114 /* enable clock */
115 ret = clk_enable(p->clk);
116 if (ret) {
117 dev_err(&p->pdev->dev, "cannot enable clock\n");
118 return ret;
121 /* make sure channel is disabled */
122 sh_tmu_start_stop_ch(p, 0);
124 /* maximum timeout */
125 sh_tmu_write(p, TCOR, 0xffffffff);
126 sh_tmu_write(p, TCNT, 0xffffffff);
128 /* configure channel to parent clock / 4, irq off */
129 p->rate = clk_get_rate(p->clk) / 4;
130 sh_tmu_write(p, TCR, 0x0000);
132 /* enable channel */
133 sh_tmu_start_stop_ch(p, 1);
135 return 0;
138 static void sh_tmu_disable(struct sh_tmu_priv *p)
140 /* disable channel */
141 sh_tmu_start_stop_ch(p, 0);
143 /* disable interrupts in TMU block */
144 sh_tmu_write(p, TCR, 0x0000);
146 /* stop clock */
147 clk_disable(p->clk);
150 static void sh_tmu_set_next(struct sh_tmu_priv *p, unsigned long delta,
151 int periodic)
153 /* stop timer */
154 sh_tmu_start_stop_ch(p, 0);
156 /* acknowledge interrupt */
157 sh_tmu_read(p, TCR);
159 /* enable interrupt */
160 sh_tmu_write(p, TCR, 0x0020);
162 /* reload delta value in case of periodic timer */
163 if (periodic)
164 sh_tmu_write(p, TCOR, delta);
165 else
166 sh_tmu_write(p, TCOR, 0xffffffff);
168 sh_tmu_write(p, TCNT, delta);
170 /* start timer */
171 sh_tmu_start_stop_ch(p, 1);
174 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
176 struct sh_tmu_priv *p = dev_id;
178 /* disable or acknowledge interrupt */
179 if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT)
180 sh_tmu_write(p, TCR, 0x0000);
181 else
182 sh_tmu_write(p, TCR, 0x0020);
184 /* notify clockevent layer */
185 p->ced.event_handler(&p->ced);
186 return IRQ_HANDLED;
189 static struct sh_tmu_priv *cs_to_sh_tmu(struct clocksource *cs)
191 return container_of(cs, struct sh_tmu_priv, cs);
194 static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
196 struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
198 return sh_tmu_read(p, TCNT) ^ 0xffffffff;
201 static int sh_tmu_clocksource_enable(struct clocksource *cs)
203 struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
204 int ret;
206 ret = sh_tmu_enable(p);
207 if (!ret)
208 __clocksource_updatefreq_hz(cs, p->rate);
209 return ret;
212 static void sh_tmu_clocksource_disable(struct clocksource *cs)
214 sh_tmu_disable(cs_to_sh_tmu(cs));
217 static int sh_tmu_register_clocksource(struct sh_tmu_priv *p,
218 char *name, unsigned long rating)
220 struct clocksource *cs = &p->cs;
222 cs->name = name;
223 cs->rating = rating;
224 cs->read = sh_tmu_clocksource_read;
225 cs->enable = sh_tmu_clocksource_enable;
226 cs->disable = sh_tmu_clocksource_disable;
227 cs->mask = CLOCKSOURCE_MASK(32);
228 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
230 dev_info(&p->pdev->dev, "used as clock source\n");
232 /* Register with dummy 1 Hz value, gets updated in ->enable() */
233 clocksource_register_hz(cs, 1);
234 return 0;
237 static struct sh_tmu_priv *ced_to_sh_tmu(struct clock_event_device *ced)
239 return container_of(ced, struct sh_tmu_priv, ced);
242 static void sh_tmu_clock_event_start(struct sh_tmu_priv *p, int periodic)
244 struct clock_event_device *ced = &p->ced;
246 sh_tmu_enable(p);
248 /* TODO: calculate good shift from rate and counter bit width */
250 ced->shift = 32;
251 ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
252 ced->max_delta_ns = clockevent_delta2ns(0xffffffff, ced);
253 ced->min_delta_ns = 5000;
255 if (periodic) {
256 p->periodic = (p->rate + HZ/2) / HZ;
257 sh_tmu_set_next(p, p->periodic, 1);
261 static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
262 struct clock_event_device *ced)
264 struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
265 int disabled = 0;
267 /* deal with old setting first */
268 switch (ced->mode) {
269 case CLOCK_EVT_MODE_PERIODIC:
270 case CLOCK_EVT_MODE_ONESHOT:
271 sh_tmu_disable(p);
272 disabled = 1;
273 break;
274 default:
275 break;
278 switch (mode) {
279 case CLOCK_EVT_MODE_PERIODIC:
280 dev_info(&p->pdev->dev, "used for periodic clock events\n");
281 sh_tmu_clock_event_start(p, 1);
282 break;
283 case CLOCK_EVT_MODE_ONESHOT:
284 dev_info(&p->pdev->dev, "used for oneshot clock events\n");
285 sh_tmu_clock_event_start(p, 0);
286 break;
287 case CLOCK_EVT_MODE_UNUSED:
288 if (!disabled)
289 sh_tmu_disable(p);
290 break;
291 case CLOCK_EVT_MODE_SHUTDOWN:
292 default:
293 break;
297 static int sh_tmu_clock_event_next(unsigned long delta,
298 struct clock_event_device *ced)
300 struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
302 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
304 /* program new delta value */
305 sh_tmu_set_next(p, delta, 0);
306 return 0;
309 static void sh_tmu_register_clockevent(struct sh_tmu_priv *p,
310 char *name, unsigned long rating)
312 struct clock_event_device *ced = &p->ced;
313 int ret;
315 memset(ced, 0, sizeof(*ced));
317 ced->name = name;
318 ced->features = CLOCK_EVT_FEAT_PERIODIC;
319 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
320 ced->rating = rating;
321 ced->cpumask = cpumask_of(0);
322 ced->set_next_event = sh_tmu_clock_event_next;
323 ced->set_mode = sh_tmu_clock_event_mode;
325 dev_info(&p->pdev->dev, "used for clock events\n");
326 clockevents_register_device(ced);
328 ret = setup_irq(p->irqaction.irq, &p->irqaction);
329 if (ret) {
330 dev_err(&p->pdev->dev, "failed to request irq %d\n",
331 p->irqaction.irq);
332 return;
336 static int sh_tmu_register(struct sh_tmu_priv *p, char *name,
337 unsigned long clockevent_rating,
338 unsigned long clocksource_rating)
340 if (clockevent_rating)
341 sh_tmu_register_clockevent(p, name, clockevent_rating);
342 else if (clocksource_rating)
343 sh_tmu_register_clocksource(p, name, clocksource_rating);
345 return 0;
348 static int sh_tmu_setup(struct sh_tmu_priv *p, struct platform_device *pdev)
350 struct sh_timer_config *cfg = pdev->dev.platform_data;
351 struct resource *res;
352 int irq, ret;
353 ret = -ENXIO;
355 memset(p, 0, sizeof(*p));
356 p->pdev = pdev;
358 if (!cfg) {
359 dev_err(&p->pdev->dev, "missing platform data\n");
360 goto err0;
363 platform_set_drvdata(pdev, p);
365 res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
366 if (!res) {
367 dev_err(&p->pdev->dev, "failed to get I/O memory\n");
368 goto err0;
371 irq = platform_get_irq(p->pdev, 0);
372 if (irq < 0) {
373 dev_err(&p->pdev->dev, "failed to get irq\n");
374 goto err0;
377 /* map memory, let mapbase point to our channel */
378 p->mapbase = ioremap_nocache(res->start, resource_size(res));
379 if (p->mapbase == NULL) {
380 dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
381 goto err0;
384 /* setup data for setup_irq() (too early for request_irq()) */
385 p->irqaction.name = dev_name(&p->pdev->dev);
386 p->irqaction.handler = sh_tmu_interrupt;
387 p->irqaction.dev_id = p;
388 p->irqaction.irq = irq;
389 p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
390 IRQF_IRQPOLL | IRQF_NOBALANCING;
392 /* get hold of clock */
393 p->clk = clk_get(&p->pdev->dev, "tmu_fck");
394 if (IS_ERR(p->clk)) {
395 dev_err(&p->pdev->dev, "cannot get clock\n");
396 ret = PTR_ERR(p->clk);
397 goto err1;
400 return sh_tmu_register(p, (char *)dev_name(&p->pdev->dev),
401 cfg->clockevent_rating,
402 cfg->clocksource_rating);
403 err1:
404 iounmap(p->mapbase);
405 err0:
406 return ret;
409 static int __devinit sh_tmu_probe(struct platform_device *pdev)
411 struct sh_tmu_priv *p = platform_get_drvdata(pdev);
412 int ret;
414 if (!is_early_platform_device(pdev))
415 pm_genpd_dev_always_on(&pdev->dev, true);
417 if (p) {
418 dev_info(&pdev->dev, "kept as earlytimer\n");
419 return 0;
422 p = kmalloc(sizeof(*p), GFP_KERNEL);
423 if (p == NULL) {
424 dev_err(&pdev->dev, "failed to allocate driver data\n");
425 return -ENOMEM;
428 ret = sh_tmu_setup(p, pdev);
429 if (ret) {
430 kfree(p);
431 platform_set_drvdata(pdev, NULL);
433 return ret;
436 static int __devexit sh_tmu_remove(struct platform_device *pdev)
438 return -EBUSY; /* cannot unregister clockevent and clocksource */
441 static struct platform_driver sh_tmu_device_driver = {
442 .probe = sh_tmu_probe,
443 .remove = __devexit_p(sh_tmu_remove),
444 .driver = {
445 .name = "sh_tmu",
449 static int __init sh_tmu_init(void)
451 return platform_driver_register(&sh_tmu_device_driver);
454 static void __exit sh_tmu_exit(void)
456 platform_driver_unregister(&sh_tmu_device_driver);
459 early_platform_init("earlytimer", &sh_tmu_device_driver);
460 module_init(sh_tmu_init);
461 module_exit(sh_tmu_exit);
463 MODULE_AUTHOR("Magnus Damm");
464 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
465 MODULE_LICENSE("GPL v2");