spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / dma / ste_dma40_ll.c
blobcad9e1daedff4ec30aa6e304c2527073674fe020
1 /*
2 * Copyright (C) ST-Ericsson SA 2007-2010
3 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
4 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
5 * License terms: GNU General Public License (GPL) version 2
6 */
8 #include <linux/kernel.h>
9 #include <plat/ste_dma40.h>
11 #include "ste_dma40_ll.h"
13 /* Sets up proper LCSP1 and LCSP3 register for a logical channel */
14 void d40_log_cfg(struct stedma40_chan_cfg *cfg,
15 u32 *lcsp1, u32 *lcsp3)
17 u32 l3 = 0; /* dst */
18 u32 l1 = 0; /* src */
20 /* src is mem? -> increase address pos */
21 if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
22 cfg->dir == STEDMA40_MEM_TO_MEM)
23 l1 |= 1 << D40_MEM_LCSP1_SCFG_INCR_POS;
25 /* dst is mem? -> increase address pos */
26 if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
27 cfg->dir == STEDMA40_MEM_TO_MEM)
28 l3 |= 1 << D40_MEM_LCSP3_DCFG_INCR_POS;
30 /* src is hw? -> master port 1 */
31 if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
32 cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
33 l1 |= 1 << D40_MEM_LCSP1_SCFG_MST_POS;
35 /* dst is hw? -> master port 1 */
36 if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
37 cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
38 l3 |= 1 << D40_MEM_LCSP3_DCFG_MST_POS;
40 l3 |= 1 << D40_MEM_LCSP3_DCFG_EIM_POS;
41 l3 |= cfg->dst_info.psize << D40_MEM_LCSP3_DCFG_PSIZE_POS;
42 l3 |= cfg->dst_info.data_width << D40_MEM_LCSP3_DCFG_ESIZE_POS;
44 l1 |= 1 << D40_MEM_LCSP1_SCFG_EIM_POS;
45 l1 |= cfg->src_info.psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
46 l1 |= cfg->src_info.data_width << D40_MEM_LCSP1_SCFG_ESIZE_POS;
48 *lcsp1 = l1;
49 *lcsp3 = l3;
53 /* Sets up SRC and DST CFG register for both logical and physical channels */
54 void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
55 u32 *src_cfg, u32 *dst_cfg, bool is_log)
57 u32 src = 0;
58 u32 dst = 0;
60 if (!is_log) {
61 /* Physical channel */
62 if ((cfg->dir == STEDMA40_PERIPH_TO_MEM) ||
63 (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
64 /* Set master port to 1 */
65 src |= 1 << D40_SREG_CFG_MST_POS;
66 src |= D40_TYPE_TO_EVENT(cfg->src_dev_type);
68 if (cfg->src_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
69 src |= 1 << D40_SREG_CFG_PHY_TM_POS;
70 else
71 src |= 3 << D40_SREG_CFG_PHY_TM_POS;
73 if ((cfg->dir == STEDMA40_MEM_TO_PERIPH) ||
74 (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
75 /* Set master port to 1 */
76 dst |= 1 << D40_SREG_CFG_MST_POS;
77 dst |= D40_TYPE_TO_EVENT(cfg->dst_dev_type);
79 if (cfg->dst_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
80 dst |= 1 << D40_SREG_CFG_PHY_TM_POS;
81 else
82 dst |= 3 << D40_SREG_CFG_PHY_TM_POS;
84 /* Interrupt on end of transfer for destination */
85 dst |= 1 << D40_SREG_CFG_TIM_POS;
87 /* Generate interrupt on error */
88 src |= 1 << D40_SREG_CFG_EIM_POS;
89 dst |= 1 << D40_SREG_CFG_EIM_POS;
91 /* PSIZE */
92 if (cfg->src_info.psize != STEDMA40_PSIZE_PHY_1) {
93 src |= 1 << D40_SREG_CFG_PHY_PEN_POS;
94 src |= cfg->src_info.psize << D40_SREG_CFG_PSIZE_POS;
96 if (cfg->dst_info.psize != STEDMA40_PSIZE_PHY_1) {
97 dst |= 1 << D40_SREG_CFG_PHY_PEN_POS;
98 dst |= cfg->dst_info.psize << D40_SREG_CFG_PSIZE_POS;
101 /* Element size */
102 src |= cfg->src_info.data_width << D40_SREG_CFG_ESIZE_POS;
103 dst |= cfg->dst_info.data_width << D40_SREG_CFG_ESIZE_POS;
105 } else {
106 /* Logical channel */
107 dst |= 1 << D40_SREG_CFG_LOG_GIM_POS;
108 src |= 1 << D40_SREG_CFG_LOG_GIM_POS;
111 if (cfg->high_priority) {
112 src |= 1 << D40_SREG_CFG_PRI_POS;
113 dst |= 1 << D40_SREG_CFG_PRI_POS;
116 if (cfg->src_info.big_endian)
117 src |= 1 << D40_SREG_CFG_LBE_POS;
118 if (cfg->dst_info.big_endian)
119 dst |= 1 << D40_SREG_CFG_LBE_POS;
121 *src_cfg = src;
122 *dst_cfg = dst;
125 static int d40_phy_fill_lli(struct d40_phy_lli *lli,
126 dma_addr_t data,
127 u32 data_size,
128 dma_addr_t next_lli,
129 u32 reg_cfg,
130 struct stedma40_half_channel_info *info,
131 unsigned int flags)
133 bool addr_inc = flags & LLI_ADDR_INC;
134 bool term_int = flags & LLI_TERM_INT;
135 unsigned int data_width = info->data_width;
136 int psize = info->psize;
137 int num_elems;
139 if (psize == STEDMA40_PSIZE_PHY_1)
140 num_elems = 1;
141 else
142 num_elems = 2 << psize;
144 /* Must be aligned */
145 if (!IS_ALIGNED(data, 0x1 << data_width))
146 return -EINVAL;
148 /* Transfer size can't be smaller than (num_elms * elem_size) */
149 if (data_size < num_elems * (0x1 << data_width))
150 return -EINVAL;
152 /* The number of elements. IE now many chunks */
153 lli->reg_elt = (data_size >> data_width) << D40_SREG_ELEM_PHY_ECNT_POS;
156 * Distance to next element sized entry.
157 * Usually the size of the element unless you want gaps.
159 if (addr_inc)
160 lli->reg_elt |= (0x1 << data_width) <<
161 D40_SREG_ELEM_PHY_EIDX_POS;
163 /* Where the data is */
164 lli->reg_ptr = data;
165 lli->reg_cfg = reg_cfg;
167 /* If this scatter list entry is the last one, no next link */
168 if (next_lli == 0)
169 lli->reg_lnk = 0x1 << D40_SREG_LNK_PHY_TCP_POS;
170 else
171 lli->reg_lnk = next_lli;
173 /* Set/clear interrupt generation on this link item.*/
174 if (term_int)
175 lli->reg_cfg |= 0x1 << D40_SREG_CFG_TIM_POS;
176 else
177 lli->reg_cfg &= ~(0x1 << D40_SREG_CFG_TIM_POS);
179 /* Post link */
180 lli->reg_lnk |= 0 << D40_SREG_LNK_PHY_PRE_POS;
182 return 0;
185 static int d40_seg_size(int size, int data_width1, int data_width2)
187 u32 max_w = max(data_width1, data_width2);
188 u32 min_w = min(data_width1, data_width2);
189 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
191 if (seg_max > STEDMA40_MAX_SEG_SIZE)
192 seg_max -= (1 << max_w);
194 if (size <= seg_max)
195 return size;
197 if (size <= 2 * seg_max)
198 return ALIGN(size / 2, 1 << max_w);
200 return seg_max;
203 static struct d40_phy_lli *
204 d40_phy_buf_to_lli(struct d40_phy_lli *lli, dma_addr_t addr, u32 size,
205 dma_addr_t lli_phys, dma_addr_t first_phys, u32 reg_cfg,
206 struct stedma40_half_channel_info *info,
207 struct stedma40_half_channel_info *otherinfo,
208 unsigned long flags)
210 bool lastlink = flags & LLI_LAST_LINK;
211 bool addr_inc = flags & LLI_ADDR_INC;
212 bool term_int = flags & LLI_TERM_INT;
213 bool cyclic = flags & LLI_CYCLIC;
214 int err;
215 dma_addr_t next = lli_phys;
216 int size_rest = size;
217 int size_seg = 0;
220 * This piece may be split up based on d40_seg_size(); we only want the
221 * term int on the last part.
223 if (term_int)
224 flags &= ~LLI_TERM_INT;
226 do {
227 size_seg = d40_seg_size(size_rest, info->data_width,
228 otherinfo->data_width);
229 size_rest -= size_seg;
231 if (size_rest == 0 && term_int)
232 flags |= LLI_TERM_INT;
234 if (size_rest == 0 && lastlink)
235 next = cyclic ? first_phys : 0;
236 else
237 next = ALIGN(next + sizeof(struct d40_phy_lli),
238 D40_LLI_ALIGN);
240 err = d40_phy_fill_lli(lli, addr, size_seg, next,
241 reg_cfg, info, flags);
243 if (err)
244 goto err;
246 lli++;
247 if (addr_inc)
248 addr += size_seg;
249 } while (size_rest);
251 return lli;
253 err:
254 return NULL;
257 int d40_phy_sg_to_lli(struct scatterlist *sg,
258 int sg_len,
259 dma_addr_t target,
260 struct d40_phy_lli *lli_sg,
261 dma_addr_t lli_phys,
262 u32 reg_cfg,
263 struct stedma40_half_channel_info *info,
264 struct stedma40_half_channel_info *otherinfo,
265 unsigned long flags)
267 int total_size = 0;
268 int i;
269 struct scatterlist *current_sg = sg;
270 struct d40_phy_lli *lli = lli_sg;
271 dma_addr_t l_phys = lli_phys;
273 if (!target)
274 flags |= LLI_ADDR_INC;
276 for_each_sg(sg, current_sg, sg_len, i) {
277 dma_addr_t sg_addr = sg_dma_address(current_sg);
278 unsigned int len = sg_dma_len(current_sg);
279 dma_addr_t dst = target ?: sg_addr;
281 total_size += sg_dma_len(current_sg);
283 if (i == sg_len - 1)
284 flags |= LLI_TERM_INT | LLI_LAST_LINK;
286 l_phys = ALIGN(lli_phys + (lli - lli_sg) *
287 sizeof(struct d40_phy_lli), D40_LLI_ALIGN);
289 lli = d40_phy_buf_to_lli(lli, dst, len, l_phys, lli_phys,
290 reg_cfg, info, otherinfo, flags);
292 if (lli == NULL)
293 return -EINVAL;
296 return total_size;
300 /* DMA logical lli operations */
302 static void d40_log_lli_link(struct d40_log_lli *lli_dst,
303 struct d40_log_lli *lli_src,
304 int next, unsigned int flags)
306 bool interrupt = flags & LLI_TERM_INT;
307 u32 slos = 0;
308 u32 dlos = 0;
310 if (next != -EINVAL) {
311 slos = next * 2;
312 dlos = next * 2 + 1;
315 if (interrupt) {
316 lli_dst->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK;
317 lli_dst->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK;
320 lli_src->lcsp13 = (lli_src->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) |
321 (slos << D40_MEM_LCSP1_SLOS_POS);
323 lli_dst->lcsp13 = (lli_dst->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) |
324 (dlos << D40_MEM_LCSP1_SLOS_POS);
327 void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa,
328 struct d40_log_lli *lli_dst,
329 struct d40_log_lli *lli_src,
330 int next, unsigned int flags)
332 d40_log_lli_link(lli_dst, lli_src, next, flags);
334 writel(lli_src->lcsp02, &lcpa[0].lcsp0);
335 writel(lli_src->lcsp13, &lcpa[0].lcsp1);
336 writel(lli_dst->lcsp02, &lcpa[0].lcsp2);
337 writel(lli_dst->lcsp13, &lcpa[0].lcsp3);
340 void d40_log_lli_lcla_write(struct d40_log_lli *lcla,
341 struct d40_log_lli *lli_dst,
342 struct d40_log_lli *lli_src,
343 int next, unsigned int flags)
345 d40_log_lli_link(lli_dst, lli_src, next, flags);
347 writel(lli_src->lcsp02, &lcla[0].lcsp02);
348 writel(lli_src->lcsp13, &lcla[0].lcsp13);
349 writel(lli_dst->lcsp02, &lcla[1].lcsp02);
350 writel(lli_dst->lcsp13, &lcla[1].lcsp13);
353 static void d40_log_fill_lli(struct d40_log_lli *lli,
354 dma_addr_t data, u32 data_size,
355 u32 reg_cfg,
356 u32 data_width,
357 unsigned int flags)
359 bool addr_inc = flags & LLI_ADDR_INC;
361 lli->lcsp13 = reg_cfg;
363 /* The number of elements to transfer */
364 lli->lcsp02 = ((data_size >> data_width) <<
365 D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK;
367 BUG_ON((data_size >> data_width) > STEDMA40_MAX_SEG_SIZE);
369 /* 16 LSBs address of the current element */
370 lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK;
371 /* 16 MSBs address of the current element */
372 lli->lcsp13 |= data & D40_MEM_LCSP1_SPTR_MASK;
374 if (addr_inc)
375 lli->lcsp13 |= D40_MEM_LCSP1_SCFG_INCR_MASK;
379 static struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg,
380 dma_addr_t addr,
381 int size,
382 u32 lcsp13, /* src or dst*/
383 u32 data_width1,
384 u32 data_width2,
385 unsigned int flags)
387 bool addr_inc = flags & LLI_ADDR_INC;
388 struct d40_log_lli *lli = lli_sg;
389 int size_rest = size;
390 int size_seg = 0;
392 do {
393 size_seg = d40_seg_size(size_rest, data_width1, data_width2);
394 size_rest -= size_seg;
396 d40_log_fill_lli(lli,
397 addr,
398 size_seg,
399 lcsp13, data_width1,
400 flags);
401 if (addr_inc)
402 addr += size_seg;
403 lli++;
404 } while (size_rest);
406 return lli;
409 int d40_log_sg_to_lli(struct scatterlist *sg,
410 int sg_len,
411 dma_addr_t dev_addr,
412 struct d40_log_lli *lli_sg,
413 u32 lcsp13, /* src or dst*/
414 u32 data_width1, u32 data_width2)
416 int total_size = 0;
417 struct scatterlist *current_sg = sg;
418 int i;
419 struct d40_log_lli *lli = lli_sg;
420 unsigned long flags = 0;
422 if (!dev_addr)
423 flags |= LLI_ADDR_INC;
425 for_each_sg(sg, current_sg, sg_len, i) {
426 dma_addr_t sg_addr = sg_dma_address(current_sg);
427 unsigned int len = sg_dma_len(current_sg);
428 dma_addr_t addr = dev_addr ?: sg_addr;
430 total_size += sg_dma_len(current_sg);
432 lli = d40_log_buf_to_lli(lli, addr, len,
433 lcsp13,
434 data_width1,
435 data_width2,
436 flags);
439 return total_size;