spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / infiniband / hw / cxgb4 / t4.h
blobc0221eec8817b67884a831583b4c8035eba10135
1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
31 #ifndef __T4_H__
32 #define __T4_H__
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_msg.h"
37 #include "t4fw_ri_api.h"
39 #define T4_MAX_NUM_QP (1<<16)
40 #define T4_MAX_NUM_CQ (1<<15)
41 #define T4_MAX_NUM_PD (1<<15)
42 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
43 #define T4_MAX_EQ_SIZE (65520 - T4_EQ_STATUS_ENTRIES)
44 #define T4_MAX_IQ_SIZE (65520 - 1)
45 #define T4_MAX_RQ_SIZE (8192 - T4_EQ_STATUS_ENTRIES)
46 #define T4_MAX_SQ_SIZE (T4_MAX_EQ_SIZE - 1)
47 #define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE - 1)
48 #define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 1)
49 #define T4_MAX_NUM_STAG (1<<15)
50 #define T4_MAX_MR_SIZE (~0ULL - 1)
51 #define T4_PAGESIZE_MASK 0xffff000 /* 4KB-128MB */
52 #define T4_STAG_UNSET 0xffffffff
53 #define T4_FW_MAJ 0
54 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
55 #define A_PCIE_MA_SYNC 0x30b4
57 struct t4_status_page {
58 __be32 rsvd1; /* flit 0 - hw owns */
59 __be16 rsvd2;
60 __be16 qid;
61 __be16 cidx;
62 __be16 pidx;
63 u8 qp_err; /* flit 1 - sw owns */
64 u8 db_off;
67 #define T4_EQ_ENTRY_SIZE 64
69 #define T4_SQ_NUM_SLOTS 5
70 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
71 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
72 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
73 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
74 sizeof(struct fw_ri_immd)))
75 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
76 sizeof(struct fw_ri_rdma_write_wr) - \
77 sizeof(struct fw_ri_immd)))
78 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
79 sizeof(struct fw_ri_rdma_write_wr) - \
80 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
81 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
82 sizeof(struct fw_ri_immd)) & ~31UL)
83 #define T4_MAX_FR_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
85 #define T4_RQ_NUM_SLOTS 2
86 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
87 #define T4_MAX_RECV_SGE 4
89 union t4_wr {
90 struct fw_ri_res_wr res;
91 struct fw_ri_wr ri;
92 struct fw_ri_rdma_write_wr write;
93 struct fw_ri_send_wr send;
94 struct fw_ri_rdma_read_wr read;
95 struct fw_ri_bind_mw_wr bind;
96 struct fw_ri_fr_nsmr_wr fr;
97 struct fw_ri_inv_lstag_wr inv;
98 struct t4_status_page status;
99 __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
102 union t4_recv_wr {
103 struct fw_ri_recv_wr recv;
104 struct t4_status_page status;
105 __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
108 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
109 enum fw_wr_opcodes opcode, u8 flags, u8 len16)
111 wqe->send.opcode = (u8)opcode;
112 wqe->send.flags = flags;
113 wqe->send.wrid = wrid;
114 wqe->send.r1[0] = 0;
115 wqe->send.r1[1] = 0;
116 wqe->send.r1[2] = 0;
117 wqe->send.len16 = len16;
120 /* CQE/AE status codes */
121 #define T4_ERR_SUCCESS 0x0
122 #define T4_ERR_STAG 0x1 /* STAG invalid: either the */
123 /* STAG is offlimt, being 0, */
124 /* or STAG_key mismatch */
125 #define T4_ERR_PDID 0x2 /* PDID mismatch */
126 #define T4_ERR_QPID 0x3 /* QPID mismatch */
127 #define T4_ERR_ACCESS 0x4 /* Invalid access right */
128 #define T4_ERR_WRAP 0x5 /* Wrap error */
129 #define T4_ERR_BOUND 0x6 /* base and bounds voilation */
130 #define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
131 /* shared memory region */
132 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
133 /* shared memory region */
134 #define T4_ERR_ECC 0x9 /* ECC error detected */
135 #define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */
136 /* reading PSTAG for a MW */
137 /* Invalidate */
138 #define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
139 /* software error */
140 #define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */
141 #define T4_ERR_CRC 0x10 /* CRC error */
142 #define T4_ERR_MARKER 0x11 /* Marker error */
143 #define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
144 #define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */
145 #define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */
146 #define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
147 #define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */
148 #define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
149 #define T4_ERR_MSN 0x18 /* MSN error */
150 #define T4_ERR_TBIT 0x19 /* tag bit not set correctly */
151 #define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */
152 /* or READ_REQ */
153 #define T4_ERR_MSN_GAP 0x1B
154 #define T4_ERR_MSN_RANGE 0x1C
155 #define T4_ERR_IRD_OVERFLOW 0x1D
156 #define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
157 /* software error */
158 #define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
159 /* mismatch) */
161 * CQE defs
163 struct t4_cqe {
164 __be32 header;
165 __be32 len;
166 union {
167 struct {
168 __be32 stag;
169 __be32 msn;
170 } rcqe;
171 struct {
172 u32 nada1;
173 u16 nada2;
174 u16 cidx;
175 } scqe;
176 struct {
177 __be32 wrid_hi;
178 __be32 wrid_low;
179 } gen;
180 } u;
181 __be64 reserved;
182 __be64 bits_type_ts;
185 /* macros for flit 0 of the cqe */
187 #define S_CQE_QPID 12
188 #define M_CQE_QPID 0xFFFFF
189 #define G_CQE_QPID(x) ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
190 #define V_CQE_QPID(x) ((x)<<S_CQE_QPID)
192 #define S_CQE_SWCQE 11
193 #define M_CQE_SWCQE 0x1
194 #define G_CQE_SWCQE(x) ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
195 #define V_CQE_SWCQE(x) ((x)<<S_CQE_SWCQE)
197 #define S_CQE_STATUS 5
198 #define M_CQE_STATUS 0x1F
199 #define G_CQE_STATUS(x) ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
200 #define V_CQE_STATUS(x) ((x)<<S_CQE_STATUS)
202 #define S_CQE_TYPE 4
203 #define M_CQE_TYPE 0x1
204 #define G_CQE_TYPE(x) ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
205 #define V_CQE_TYPE(x) ((x)<<S_CQE_TYPE)
207 #define S_CQE_OPCODE 0
208 #define M_CQE_OPCODE 0xF
209 #define G_CQE_OPCODE(x) ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
210 #define V_CQE_OPCODE(x) ((x)<<S_CQE_OPCODE)
212 #define SW_CQE(x) (G_CQE_SWCQE(be32_to_cpu((x)->header)))
213 #define CQE_QPID(x) (G_CQE_QPID(be32_to_cpu((x)->header)))
214 #define CQE_TYPE(x) (G_CQE_TYPE(be32_to_cpu((x)->header)))
215 #define SQ_TYPE(x) (CQE_TYPE((x)))
216 #define RQ_TYPE(x) (!CQE_TYPE((x)))
217 #define CQE_STATUS(x) (G_CQE_STATUS(be32_to_cpu((x)->header)))
218 #define CQE_OPCODE(x) (G_CQE_OPCODE(be32_to_cpu((x)->header)))
220 #define CQE_SEND_OPCODE(x)( \
221 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
222 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
223 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
224 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
226 #define CQE_LEN(x) (be32_to_cpu((x)->len))
228 /* used for RQ completion processing */
229 #define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag))
230 #define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn))
232 /* used for SQ completion processing */
233 #define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx)
235 /* generic accessor macros */
236 #define CQE_WRID_HI(x) ((x)->u.gen.wrid_hi)
237 #define CQE_WRID_LOW(x) ((x)->u.gen.wrid_low)
239 /* macros for flit 3 of the cqe */
240 #define S_CQE_GENBIT 63
241 #define M_CQE_GENBIT 0x1
242 #define G_CQE_GENBIT(x) (((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
243 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
245 #define S_CQE_OVFBIT 62
246 #define M_CQE_OVFBIT 0x1
247 #define G_CQE_OVFBIT(x) ((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
249 #define S_CQE_IQTYPE 60
250 #define M_CQE_IQTYPE 0x3
251 #define G_CQE_IQTYPE(x) ((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
253 #define M_CQE_TS 0x0fffffffffffffffULL
254 #define G_CQE_TS(x) ((x) & M_CQE_TS)
256 #define CQE_OVFBIT(x) ((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
257 #define CQE_GENBIT(x) ((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
258 #define CQE_TS(x) (G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
260 struct t4_swsqe {
261 u64 wr_id;
262 struct t4_cqe cqe;
263 int read_len;
264 int opcode;
265 int complete;
266 int signaled;
267 u16 idx;
270 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
272 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
273 return pgprot_writecombine(prot);
274 #else
275 return pgprot_noncached(prot);
276 #endif
279 static inline int t4_ocqp_supported(void)
281 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
282 return 1;
283 #else
284 return 0;
285 #endif
288 enum {
289 T4_SQ_ONCHIP = (1<<0),
292 struct t4_sq {
293 union t4_wr *queue;
294 dma_addr_t dma_addr;
295 DEFINE_DMA_UNMAP_ADDR(mapping);
296 unsigned long phys_addr;
297 struct t4_swsqe *sw_sq;
298 struct t4_swsqe *oldest_read;
299 u64 udb;
300 size_t memsize;
301 u32 qid;
302 u16 in_use;
303 u16 size;
304 u16 cidx;
305 u16 pidx;
306 u16 wq_pidx;
307 u16 flags;
310 struct t4_swrqe {
311 u64 wr_id;
314 struct t4_rq {
315 union t4_recv_wr *queue;
316 dma_addr_t dma_addr;
317 DEFINE_DMA_UNMAP_ADDR(mapping);
318 struct t4_swrqe *sw_rq;
319 u64 udb;
320 size_t memsize;
321 u32 qid;
322 u32 msn;
323 u32 rqt_hwaddr;
324 u16 rqt_size;
325 u16 in_use;
326 u16 size;
327 u16 cidx;
328 u16 pidx;
329 u16 wq_pidx;
332 struct t4_wq {
333 struct t4_sq sq;
334 struct t4_rq rq;
335 void __iomem *db;
336 void __iomem *gts;
337 struct c4iw_rdev *rdev;
340 static inline int t4_rqes_posted(struct t4_wq *wq)
342 return wq->rq.in_use;
345 static inline int t4_rq_empty(struct t4_wq *wq)
347 return wq->rq.in_use == 0;
350 static inline int t4_rq_full(struct t4_wq *wq)
352 return wq->rq.in_use == (wq->rq.size - 1);
355 static inline u32 t4_rq_avail(struct t4_wq *wq)
357 return wq->rq.size - 1 - wq->rq.in_use;
360 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
362 wq->rq.in_use++;
363 if (++wq->rq.pidx == wq->rq.size)
364 wq->rq.pidx = 0;
365 wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
366 if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
367 wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
370 static inline void t4_rq_consume(struct t4_wq *wq)
372 wq->rq.in_use--;
373 wq->rq.msn++;
374 if (++wq->rq.cidx == wq->rq.size)
375 wq->rq.cidx = 0;
378 static inline int t4_sq_onchip(struct t4_sq *sq)
380 return sq->flags & T4_SQ_ONCHIP;
383 static inline int t4_sq_empty(struct t4_wq *wq)
385 return wq->sq.in_use == 0;
388 static inline int t4_sq_full(struct t4_wq *wq)
390 return wq->sq.in_use == (wq->sq.size - 1);
393 static inline u32 t4_sq_avail(struct t4_wq *wq)
395 return wq->sq.size - 1 - wq->sq.in_use;
398 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
400 wq->sq.in_use++;
401 if (++wq->sq.pidx == wq->sq.size)
402 wq->sq.pidx = 0;
403 wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
404 if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
405 wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
408 static inline void t4_sq_consume(struct t4_wq *wq)
410 wq->sq.in_use--;
411 if (++wq->sq.cidx == wq->sq.size)
412 wq->sq.cidx = 0;
415 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc)
417 wmb();
418 writel(QID(wq->sq.qid) | PIDX(inc), wq->db);
421 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc)
423 wmb();
424 writel(QID(wq->rq.qid) | PIDX(inc), wq->db);
427 static inline int t4_wq_in_error(struct t4_wq *wq)
429 return wq->rq.queue[wq->rq.size].status.qp_err;
432 static inline void t4_set_wq_in_error(struct t4_wq *wq)
434 wq->rq.queue[wq->rq.size].status.qp_err = 1;
437 static inline void t4_disable_wq_db(struct t4_wq *wq)
439 wq->rq.queue[wq->rq.size].status.db_off = 1;
442 static inline void t4_enable_wq_db(struct t4_wq *wq)
444 wq->rq.queue[wq->rq.size].status.db_off = 0;
447 static inline int t4_wq_db_enabled(struct t4_wq *wq)
449 return !wq->rq.queue[wq->rq.size].status.db_off;
452 struct t4_cq {
453 struct t4_cqe *queue;
454 dma_addr_t dma_addr;
455 DEFINE_DMA_UNMAP_ADDR(mapping);
456 struct t4_cqe *sw_queue;
457 void __iomem *gts;
458 struct c4iw_rdev *rdev;
459 u64 ugts;
460 size_t memsize;
461 __be64 bits_type_ts;
462 u32 cqid;
463 u16 size; /* including status page */
464 u16 cidx;
465 u16 sw_pidx;
466 u16 sw_cidx;
467 u16 sw_in_use;
468 u16 cidx_inc;
469 u8 gen;
470 u8 error;
473 static inline int t4_arm_cq(struct t4_cq *cq, int se)
475 u32 val;
477 while (cq->cidx_inc > CIDXINC_MASK) {
478 val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) |
479 INGRESSQID(cq->cqid);
480 writel(val, cq->gts);
481 cq->cidx_inc -= CIDXINC_MASK;
483 val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) |
484 INGRESSQID(cq->cqid);
485 writel(val, cq->gts);
486 cq->cidx_inc = 0;
487 return 0;
490 static inline void t4_swcq_produce(struct t4_cq *cq)
492 cq->sw_in_use++;
493 if (++cq->sw_pidx == cq->size)
494 cq->sw_pidx = 0;
497 static inline void t4_swcq_consume(struct t4_cq *cq)
499 cq->sw_in_use--;
500 if (++cq->sw_cidx == cq->size)
501 cq->sw_cidx = 0;
504 static inline void t4_hwcq_consume(struct t4_cq *cq)
506 cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
507 if (++cq->cidx_inc == (cq->size >> 4)) {
508 u32 val;
510 val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7) |
511 INGRESSQID(cq->cqid);
512 writel(val, cq->gts);
513 cq->cidx_inc = 0;
515 if (++cq->cidx == cq->size) {
516 cq->cidx = 0;
517 cq->gen ^= 1;
521 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
523 return (CQE_GENBIT(cqe) == cq->gen);
526 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
528 int ret;
529 u16 prev_cidx;
531 if (cq->cidx == 0)
532 prev_cidx = cq->size - 1;
533 else
534 prev_cidx = cq->cidx - 1;
536 if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
537 ret = -EOVERFLOW;
538 cq->error = 1;
539 printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
540 } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
541 *cqe = &cq->queue[cq->cidx];
542 ret = 0;
543 } else
544 ret = -ENODATA;
545 return ret;
548 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
550 if (cq->sw_in_use)
551 return &cq->sw_queue[cq->sw_cidx];
552 return NULL;
555 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
557 int ret = 0;
559 if (cq->error)
560 ret = -ENODATA;
561 else if (cq->sw_in_use)
562 *cqe = &cq->sw_queue[cq->sw_cidx];
563 else
564 ret = t4_next_hw_cqe(cq, cqe);
565 return ret;
568 static inline int t4_cq_in_error(struct t4_cq *cq)
570 return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
573 static inline void t4_set_cq_in_error(struct t4_cq *cq)
575 ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
577 #endif