spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / infiniband / hw / qib / qib_sd7220.c
blobac065dd6b693b91360da99a65cef1571eb1ea679
1 /*
2 * Copyright (c) 2006, 2007, 2008, 2009, 2010 QLogic Corporation.
3 * All rights reserved.
4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
35 * This file contains all of the code that is specific to the SerDes
36 * on the QLogic_IB 7220 chip.
39 #include <linux/pci.h>
40 #include <linux/delay.h>
41 #include <linux/module.h>
42 #include <linux/firmware.h>
44 #include "qib.h"
45 #include "qib_7220.h"
47 #define SD7220_FW_NAME "qlogic/sd7220.fw"
48 MODULE_FIRMWARE(SD7220_FW_NAME);
51 * Same as in qib_iba7220.c, but just the registers needed here.
52 * Could move whole set to qib_7220.h, but decided better to keep
53 * local.
55 #define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64))
56 #define kr_hwerrclear KREG_IDX(HwErrClear)
57 #define kr_hwerrmask KREG_IDX(HwErrMask)
58 #define kr_hwerrstatus KREG_IDX(HwErrStatus)
59 #define kr_ibcstatus KREG_IDX(IBCStatus)
60 #define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl)
61 #define kr_scratch KREG_IDX(Scratch)
62 #define kr_xgxs_cfg KREG_IDX(XGXSCfg)
63 /* these are used only here, not in qib_iba7220.c */
64 #define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl)
65 #define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg)
66 #define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg)
67 #define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl)
68 #define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0)
71 * The IBSerDesMappTable is a memory that holds values to be stored in
72 * various SerDes registers by IBC.
74 #define kr_serdes_maptable KREG_IDX(IBSerDesMappTable)
77 * Below used for sdnum parameter, selecting one of the two sections
78 * used for PCIe, or the single SerDes used for IB.
80 #define PCIE_SERDES0 0
81 #define PCIE_SERDES1 1
84 * The EPB requires addressing in a particular form. EPB_LOC() is intended
85 * to make #definitions a little more readable.
87 #define EPB_ADDR_SHF 8
88 #define EPB_LOC(chn, elt, reg) \
89 (((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
90 EPB_ADDR_SHF)
91 #define EPB_IB_QUAD0_CS_SHF (25)
92 #define EPB_IB_QUAD0_CS (1U << EPB_IB_QUAD0_CS_SHF)
93 #define EPB_IB_UC_CS_SHF (26)
94 #define EPB_PCIE_UC_CS_SHF (27)
95 #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
97 /* Forward declarations. */
98 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
99 u32 data, u32 mask);
100 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
101 int mask);
102 static int qib_sd_trimdone_poll(struct qib_devdata *dd);
103 static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where);
104 static int qib_sd_setvals(struct qib_devdata *dd);
105 static int qib_sd_early(struct qib_devdata *dd);
106 static int qib_sd_dactrim(struct qib_devdata *dd);
107 static int qib_internal_presets(struct qib_devdata *dd);
108 /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
109 static int qib_sd_trimself(struct qib_devdata *dd, int val);
110 static int epb_access(struct qib_devdata *dd, int sdnum, int claim);
111 static int qib_sd7220_ib_load(struct qib_devdata *dd,
112 const struct firmware *fw);
113 static int qib_sd7220_ib_vfy(struct qib_devdata *dd,
114 const struct firmware *fw);
117 * Below keeps track of whether the "once per power-on" initialization has
118 * been done, because uC code Version 1.32.17 or higher allows the uC to
119 * be reset at will, and Automatic Equalization may require it. So the
120 * state of the reset "pin", is no longer valid. Instead, we check for the
121 * actual uC code having been loaded.
123 static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd,
124 const struct firmware *fw)
126 struct qib_devdata *dd = ppd->dd;
128 if (!dd->cspec->serdes_first_init_done &&
129 qib_sd7220_ib_vfy(dd, fw) > 0)
130 dd->cspec->serdes_first_init_done = 1;
131 return dd->cspec->serdes_first_init_done;
134 /* repeat #define for local use. "Real" #define is in qib_iba7220.c */
135 #define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR 0x0000004000000000ULL
136 #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
137 #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
138 #define UC_PAR_CLR_D 8
139 #define UC_PAR_CLR_M 0xC
140 #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
141 #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
143 void qib_sd7220_clr_ibpar(struct qib_devdata *dd)
145 int ret;
147 /* clear, then re-enable parity errs */
148 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
149 UC_PAR_CLR_D, UC_PAR_CLR_M);
150 if (ret < 0) {
151 qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
152 goto bail;
154 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
155 UC_PAR_CLR_M);
157 qib_read_kreg32(dd, kr_scratch);
158 udelay(4);
159 qib_write_kreg(dd, kr_hwerrclear,
160 QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
161 qib_read_kreg32(dd, kr_scratch);
162 bail:
163 return;
167 * After a reset or other unusual event, the epb interface may need
168 * to be re-synchronized, between the host and the uC.
169 * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
171 #define IBSD_RESYNC_TRIES 3
172 #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
173 #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
175 static int qib_resync_ibepb(struct qib_devdata *dd)
177 int ret, pat, tries, chn;
178 u32 loc;
180 ret = -1;
181 chn = 0;
182 for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
183 loc = IB_PGUDP(chn);
184 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
185 if (ret < 0) {
186 qib_dev_err(dd, "Failed read in resync\n");
187 continue;
189 if (ret != 0xF0 && ret != 0x55 && tries == 0)
190 qib_dev_err(dd, "unexpected pattern in resync\n");
191 pat = ret ^ 0xA5; /* alternate F0 and 55 */
192 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
193 if (ret < 0) {
194 qib_dev_err(dd, "Failed write in resync\n");
195 continue;
197 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
198 if (ret < 0) {
199 qib_dev_err(dd, "Failed re-read in resync\n");
200 continue;
202 if (ret != pat) {
203 qib_dev_err(dd, "Failed compare1 in resync\n");
204 continue;
206 loc = IB_CMUDONE(chn);
207 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
208 if (ret < 0) {
209 qib_dev_err(dd, "Failed CMUDONE rd in resync\n");
210 continue;
212 if ((ret & 0x70) != ((chn << 4) | 0x40)) {
213 qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
214 ret, chn);
215 continue;
217 if (++chn == 4)
218 break; /* Success */
220 return (ret > 0) ? 0 : ret;
224 * Localize the stuff that should be done to change IB uC reset
225 * returns <0 for errors.
227 static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst)
229 u64 rst_val;
230 int ret = 0;
231 unsigned long flags;
233 rst_val = qib_read_kreg64(dd, kr_ibserdesctrl);
234 if (assert_rst) {
236 * Vendor recommends "interrupting" uC before reset, to
237 * minimize possible glitches.
239 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
240 epb_access(dd, IB_7220_SERDES, 1);
241 rst_val |= 1ULL;
242 /* Squelch possible parity error from _asserting_ reset */
243 qib_write_kreg(dd, kr_hwerrmask,
244 dd->cspec->hwerrmask &
245 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
246 qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
247 /* flush write, delay to ensure it took effect */
248 qib_read_kreg32(dd, kr_scratch);
249 udelay(2);
250 /* once it's reset, can remove interrupt */
251 epb_access(dd, IB_7220_SERDES, -1);
252 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
253 } else {
255 * Before we de-assert reset, we need to deal with
256 * possible glitch on the Parity-error line.
257 * Suppress it around the reset, both in chip-level
258 * hwerrmask and in IB uC control reg. uC will allow
259 * it again during startup.
261 u64 val;
262 rst_val &= ~(1ULL);
263 qib_write_kreg(dd, kr_hwerrmask,
264 dd->cspec->hwerrmask &
265 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
267 ret = qib_resync_ibepb(dd);
268 if (ret < 0)
269 qib_dev_err(dd, "unable to re-sync IB EPB\n");
271 /* set uC control regs to suppress parity errs */
272 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
273 if (ret < 0)
274 goto bail;
275 /* IB uC code past Version 1.32.17 allow suppression of wdog */
276 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
277 0x80);
278 if (ret < 0) {
279 qib_dev_err(dd, "Failed to set WDOG disable\n");
280 goto bail;
282 qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
283 /* flush write, delay for startup */
284 qib_read_kreg32(dd, kr_scratch);
285 udelay(1);
286 /* clear, then re-enable parity errs */
287 qib_sd7220_clr_ibpar(dd);
288 val = qib_read_kreg64(dd, kr_hwerrstatus);
289 if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) {
290 qib_dev_err(dd, "IBUC Parity still set after RST\n");
291 dd->cspec->hwerrmask &=
292 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR;
294 qib_write_kreg(dd, kr_hwerrmask,
295 dd->cspec->hwerrmask);
298 bail:
299 return ret;
302 static void qib_sd_trimdone_monitor(struct qib_devdata *dd,
303 const char *where)
305 int ret, chn, baduns;
306 u64 val;
308 if (!where)
309 where = "?";
311 /* give time for reset to settle out in EPB */
312 udelay(2);
314 ret = qib_resync_ibepb(dd);
315 if (ret < 0)
316 qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
318 /* Do "sacrificial read" to get EPB in sane state after reset */
319 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
320 if (ret < 0)
321 qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
323 /* Check/show "summary" Trim-done bit in IBCStatus */
324 val = qib_read_kreg64(dd, kr_ibcstatus);
325 if (!(val & (1ULL << 11)))
326 qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
328 * Do "dummy read/mod/wr" to get EPB in sane state after reset
329 * The default value for MPREG6 is 0.
331 udelay(2);
333 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
334 if (ret < 0)
335 qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
336 udelay(10);
338 baduns = 0;
340 for (chn = 3; chn >= 0; --chn) {
341 /* Read CTRL reg for each channel to check TRIMDONE */
342 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
343 IB_CTRL2(chn), 0, 0);
344 if (ret < 0)
345 qib_dev_err(dd, "Failed checking TRIMDONE, chn %d"
346 " (%s)\n", chn, where);
348 if (!(ret & 0x10)) {
349 int probe;
351 baduns |= (1 << chn);
352 qib_dev_err(dd, "TRIMDONE cleared on chn %d (%02X)."
353 " (%s)\n", chn, ret, where);
354 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
355 IB_PGUDP(0), 0, 0);
356 qib_dev_err(dd, "probe is %d (%02X)\n",
357 probe, probe);
358 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
359 IB_CTRL2(chn), 0, 0);
360 qib_dev_err(dd, "re-read: %d (%02X)\n",
361 probe, probe);
362 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
363 IB_CTRL2(chn), 0x10, 0x10);
364 if (ret < 0)
365 qib_dev_err(dd,
366 "Err on TRIMDONE rewrite1\n");
369 for (chn = 3; chn >= 0; --chn) {
370 /* Read CTRL reg for each channel to check TRIMDONE */
371 if (baduns & (1 << chn)) {
372 qib_dev_err(dd,
373 "Reseting TRIMDONE on chn %d (%s)\n",
374 chn, where);
375 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
376 IB_CTRL2(chn), 0x10, 0x10);
377 if (ret < 0)
378 qib_dev_err(dd, "Failed re-setting "
379 "TRIMDONE, chn %d (%s)\n",
380 chn, where);
386 * Below is portion of IBA7220-specific bringup_serdes() that actually
387 * deals with registers and memory within the SerDes itself.
388 * Post IB uC code version 1.32.17, was_reset being 1 is not really
389 * informative, so we double-check.
391 int qib_sd7220_init(struct qib_devdata *dd)
393 const struct firmware *fw;
394 int ret = 1; /* default to failure */
395 int first_reset, was_reset;
397 /* SERDES MPU reset recorded in D0 */
398 was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1);
399 if (!was_reset) {
400 /* entered with reset not asserted, we need to do it */
401 qib_ibsd_reset(dd, 1);
402 qib_sd_trimdone_monitor(dd, "Driver-reload");
405 ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev);
406 if (ret) {
407 qib_dev_err(dd, "Failed to load IB SERDES image\n");
408 goto done;
411 /* Substitute our deduced value for was_reset */
412 ret = qib_ibsd_ucode_loaded(dd->pport, fw);
413 if (ret < 0)
414 goto bail;
416 first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
418 * Alter some regs per vendor latest doc, reset-defaults
419 * are not right for IB.
421 ret = qib_sd_early(dd);
422 if (ret < 0) {
423 qib_dev_err(dd, "Failed to set IB SERDES early defaults\n");
424 goto bail;
427 * Set DAC manual trim IB.
428 * We only do this once after chip has been reset (usually
429 * same as once per system boot).
431 if (first_reset) {
432 ret = qib_sd_dactrim(dd);
433 if (ret < 0) {
434 qib_dev_err(dd, "Failed IB SERDES DAC trim\n");
435 goto bail;
439 * Set various registers (DDS and RXEQ) that will be
440 * controlled by IBC (in 1.2 mode) to reasonable preset values
441 * Calling the "internal" version avoids the "check for needed"
442 * and "trimdone monitor" that might be counter-productive.
444 ret = qib_internal_presets(dd);
445 if (ret < 0) {
446 qib_dev_err(dd, "Failed to set IB SERDES presets\n");
447 goto bail;
449 ret = qib_sd_trimself(dd, 0x80);
450 if (ret < 0) {
451 qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
452 goto bail;
455 /* Load image, then try to verify */
456 ret = 0; /* Assume success */
457 if (first_reset) {
458 int vfy;
459 int trim_done;
461 ret = qib_sd7220_ib_load(dd, fw);
462 if (ret < 0) {
463 qib_dev_err(dd, "Failed to load IB SERDES image\n");
464 goto bail;
465 } else {
466 /* Loaded image, try to verify */
467 vfy = qib_sd7220_ib_vfy(dd, fw);
468 if (vfy != ret) {
469 qib_dev_err(dd, "SERDES PRAM VFY failed\n");
470 goto bail;
471 } /* end if verified */
472 } /* end if loaded */
475 * Loaded and verified. Almost good...
476 * hold "success" in ret
478 ret = 0;
480 * Prev steps all worked, continue bringup
481 * De-assert RESET to uC, only in first reset, to allow
482 * trimming.
484 * Since our default setup sets START_EQ1 to
485 * PRESET, we need to clear that for this very first run.
487 ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
488 if (ret < 0) {
489 qib_dev_err(dd, "Failed clearing START_EQ1\n");
490 goto bail;
493 qib_ibsd_reset(dd, 0);
495 * If this is not the first reset, trimdone should be set
496 * already. We may need to check about this.
498 trim_done = qib_sd_trimdone_poll(dd);
500 * Whether or not trimdone succeeded, we need to put the
501 * uC back into reset to avoid a possible fight with the
502 * IBC state-machine.
504 qib_ibsd_reset(dd, 1);
506 if (!trim_done) {
507 qib_dev_err(dd, "No TRIMDONE seen\n");
508 goto bail;
511 * DEBUG: check each time we reset if trimdone bits have
512 * gotten cleared, and re-set them.
514 qib_sd_trimdone_monitor(dd, "First-reset");
515 /* Remember so we do not re-do the load, dactrim, etc. */
516 dd->cspec->serdes_first_init_done = 1;
519 * setup for channel training and load values for
520 * RxEq and DDS in tables used by IBC in IB1.2 mode
522 ret = 0;
523 if (qib_sd_setvals(dd) >= 0)
524 goto done;
525 bail:
526 ret = 1;
527 done:
528 /* start relock timer regardless, but start at 1 second */
529 set_7220_relock_poll(dd, -1);
531 release_firmware(fw);
532 return ret;
535 #define EPB_ACC_REQ 1
536 #define EPB_ACC_GNT 0x100
537 #define EPB_DATA_MASK 0xFF
538 #define EPB_RD (1ULL << 24)
539 #define EPB_TRANS_RDY (1ULL << 31)
540 #define EPB_TRANS_ERR (1ULL << 30)
541 #define EPB_TRANS_TRIES 5
544 * query, claim, release ownership of the EPB (External Parallel Bus)
545 * for a specified SERDES.
546 * the "claim" parameter is >0 to claim, <0 to release, 0 to query.
547 * Returns <0 for errors, >0 if we had ownership, else 0.
549 static int epb_access(struct qib_devdata *dd, int sdnum, int claim)
551 u16 acc;
552 u64 accval;
553 int owned = 0;
554 u64 oct_sel = 0;
556 switch (sdnum) {
557 case IB_7220_SERDES:
559 * The IB SERDES "ownership" is fairly simple. A single each
560 * request/grant.
562 acc = kr_ibsd_epb_access_ctrl;
563 break;
565 case PCIE_SERDES0:
566 case PCIE_SERDES1:
567 /* PCIe SERDES has two "octants", need to select which */
568 acc = kr_pciesd_epb_access_ctrl;
569 oct_sel = (2 << (sdnum - PCIE_SERDES0));
570 break;
572 default:
573 return 0;
576 /* Make sure any outstanding transaction was seen */
577 qib_read_kreg32(dd, kr_scratch);
578 udelay(15);
580 accval = qib_read_kreg32(dd, acc);
582 owned = !!(accval & EPB_ACC_GNT);
583 if (claim < 0) {
584 /* Need to release */
585 u64 pollval;
587 * The only writeable bits are the request and CS.
588 * Both should be clear
590 u64 newval = 0;
591 qib_write_kreg(dd, acc, newval);
592 /* First read after write is not trustworthy */
593 pollval = qib_read_kreg32(dd, acc);
594 udelay(5);
595 pollval = qib_read_kreg32(dd, acc);
596 if (pollval & EPB_ACC_GNT)
597 owned = -1;
598 } else if (claim > 0) {
599 /* Need to claim */
600 u64 pollval;
601 u64 newval = EPB_ACC_REQ | oct_sel;
602 qib_write_kreg(dd, acc, newval);
603 /* First read after write is not trustworthy */
604 pollval = qib_read_kreg32(dd, acc);
605 udelay(5);
606 pollval = qib_read_kreg32(dd, acc);
607 if (!(pollval & EPB_ACC_GNT))
608 owned = -1;
610 return owned;
614 * Lemma to deal with race condition of write..read to epb regs
616 static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
618 int tries;
619 u64 transval;
621 qib_write_kreg(dd, reg, i_val);
622 /* Throw away first read, as RDY bit may be stale */
623 transval = qib_read_kreg64(dd, reg);
625 for (tries = EPB_TRANS_TRIES; tries; --tries) {
626 transval = qib_read_kreg32(dd, reg);
627 if (transval & EPB_TRANS_RDY)
628 break;
629 udelay(5);
631 if (transval & EPB_TRANS_ERR)
632 return -1;
633 if (tries > 0 && o_vp)
634 *o_vp = transval;
635 return tries;
639 * qib_sd7220_reg_mod - modify SERDES register
640 * @dd: the qlogic_ib device
641 * @sdnum: which SERDES to access
642 * @loc: location - channel, element, register, as packed by EPB_LOC() macro.
643 * @wd: Write Data - value to set in register
644 * @mask: ones where data should be spliced into reg.
646 * Basic register read/modify/write, with un-needed acesses elided. That is,
647 * a mask of zero will prevent write, while a mask of 0xFF will prevent read.
648 * returns current (presumed, if a write was done) contents of selected
649 * register, or <0 if errors.
651 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
652 u32 wd, u32 mask)
654 u16 trans;
655 u64 transval;
656 int owned;
657 int tries, ret;
658 unsigned long flags;
660 switch (sdnum) {
661 case IB_7220_SERDES:
662 trans = kr_ibsd_epb_transaction_reg;
663 break;
665 case PCIE_SERDES0:
666 case PCIE_SERDES1:
667 trans = kr_pciesd_epb_transaction_reg;
668 break;
670 default:
671 return -1;
675 * All access is locked in software (vs other host threads) and
676 * hardware (vs uC access).
678 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
680 owned = epb_access(dd, sdnum, 1);
681 if (owned < 0) {
682 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
683 return -1;
685 ret = 0;
686 for (tries = EPB_TRANS_TRIES; tries; --tries) {
687 transval = qib_read_kreg32(dd, trans);
688 if (transval & EPB_TRANS_RDY)
689 break;
690 udelay(5);
693 if (tries > 0) {
694 tries = 1; /* to make read-skip work */
695 if (mask != 0xFF) {
697 * Not a pure write, so need to read.
698 * loc encodes chip-select as well as address
700 transval = loc | EPB_RD;
701 tries = epb_trans(dd, trans, transval, &transval);
703 if (tries > 0 && mask != 0) {
705 * Not a pure read, so need to write.
707 wd = (wd & mask) | (transval & ~mask);
708 transval = loc | (wd & EPB_DATA_MASK);
709 tries = epb_trans(dd, trans, transval, &transval);
712 /* else, failed to see ready, what error-handling? */
715 * Release bus. Failure is an error.
717 if (epb_access(dd, sdnum, -1) < 0)
718 ret = -1;
719 else
720 ret = transval & EPB_DATA_MASK;
722 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
723 if (tries <= 0)
724 ret = -1;
725 return ret;
728 #define EPB_ROM_R (2)
729 #define EPB_ROM_W (1)
731 * Below, all uC-related, use appropriate UC_CS, depending
732 * on which SerDes is used.
734 #define EPB_UC_CTL EPB_LOC(6, 0, 0)
735 #define EPB_MADDRL EPB_LOC(6, 0, 2)
736 #define EPB_MADDRH EPB_LOC(6, 0, 3)
737 #define EPB_ROMDATA EPB_LOC(6, 0, 4)
738 #define EPB_RAMDATA EPB_LOC(6, 0, 5)
740 /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
741 static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc,
742 u8 *buf, int cnt, int rd_notwr)
744 u16 trans;
745 u64 transval;
746 u64 csbit;
747 int owned;
748 int tries;
749 int sofar;
750 int addr;
751 int ret;
752 unsigned long flags;
753 const char *op;
755 /* Pick appropriate transaction reg and "Chip select" for this serdes */
756 switch (sdnum) {
757 case IB_7220_SERDES:
758 csbit = 1ULL << EPB_IB_UC_CS_SHF;
759 trans = kr_ibsd_epb_transaction_reg;
760 break;
762 case PCIE_SERDES0:
763 case PCIE_SERDES1:
764 /* PCIe SERDES has uC "chip select" in different bit, too */
765 csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
766 trans = kr_pciesd_epb_transaction_reg;
767 break;
769 default:
770 return -1;
773 op = rd_notwr ? "Rd" : "Wr";
774 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
776 owned = epb_access(dd, sdnum, 1);
777 if (owned < 0) {
778 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
779 return -1;
783 * In future code, we may need to distinguish several address ranges,
784 * and select various memories based on this. For now, just trim
785 * "loc" (location including address and memory select) to
786 * "addr" (address within memory). we will only support PRAM
787 * The memory is 8KB.
789 addr = loc & 0x1FFF;
790 for (tries = EPB_TRANS_TRIES; tries; --tries) {
791 transval = qib_read_kreg32(dd, trans);
792 if (transval & EPB_TRANS_RDY)
793 break;
794 udelay(5);
797 sofar = 0;
798 if (tries > 0) {
800 * Every "memory" access is doubly-indirect.
801 * We set two bytes of address, then read/write
802 * one or mores bytes of data.
805 /* First, we set control to "Read" or "Write" */
806 transval = csbit | EPB_UC_CTL |
807 (rd_notwr ? EPB_ROM_R : EPB_ROM_W);
808 tries = epb_trans(dd, trans, transval, &transval);
809 while (tries > 0 && sofar < cnt) {
810 if (!sofar) {
811 /* Only set address at start of chunk */
812 int addrbyte = (addr + sofar) >> 8;
813 transval = csbit | EPB_MADDRH | addrbyte;
814 tries = epb_trans(dd, trans, transval,
815 &transval);
816 if (tries <= 0)
817 break;
818 addrbyte = (addr + sofar) & 0xFF;
819 transval = csbit | EPB_MADDRL | addrbyte;
820 tries = epb_trans(dd, trans, transval,
821 &transval);
822 if (tries <= 0)
823 break;
826 if (rd_notwr)
827 transval = csbit | EPB_ROMDATA | EPB_RD;
828 else
829 transval = csbit | EPB_ROMDATA | buf[sofar];
830 tries = epb_trans(dd, trans, transval, &transval);
831 if (tries <= 0)
832 break;
833 if (rd_notwr)
834 buf[sofar] = transval & EPB_DATA_MASK;
835 ++sofar;
837 /* Finally, clear control-bit for Read or Write */
838 transval = csbit | EPB_UC_CTL;
839 tries = epb_trans(dd, trans, transval, &transval);
842 ret = sofar;
843 /* Release bus. Failure is an error */
844 if (epb_access(dd, sdnum, -1) < 0)
845 ret = -1;
847 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
848 if (tries <= 0)
849 ret = -1;
850 return ret;
853 #define PROG_CHUNK 64
855 static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum,
856 const u8 *img, int len, int offset)
858 int cnt, sofar, req;
860 sofar = 0;
861 while (sofar < len) {
862 req = len - sofar;
863 if (req > PROG_CHUNK)
864 req = PROG_CHUNK;
865 cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar,
866 (u8 *)img + sofar, req, 0);
867 if (cnt < req) {
868 sofar = -1;
869 break;
871 sofar += req;
873 return sofar;
876 #define VFY_CHUNK 64
877 #define SD_PRAM_ERROR_LIMIT 42
879 static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum,
880 const u8 *img, int len, int offset)
882 int cnt, sofar, req, idx, errors;
883 unsigned char readback[VFY_CHUNK];
885 errors = 0;
886 sofar = 0;
887 while (sofar < len) {
888 req = len - sofar;
889 if (req > VFY_CHUNK)
890 req = VFY_CHUNK;
891 cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset,
892 readback, req, 1);
893 if (cnt < req) {
894 /* failed in read itself */
895 sofar = -1;
896 break;
898 for (idx = 0; idx < cnt; ++idx) {
899 if (readback[idx] != img[idx+sofar])
900 ++errors;
902 sofar += cnt;
904 return errors ? -errors : sofar;
907 static int
908 qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw)
910 return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0);
913 static int
914 qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw)
916 return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0);
920 * IRQ not set up at this point in init, so we poll.
922 #define IB_SERDES_TRIM_DONE (1ULL << 11)
923 #define TRIM_TMO (30)
925 static int qib_sd_trimdone_poll(struct qib_devdata *dd)
927 int trim_tmo, ret;
928 uint64_t val;
931 * Default to failure, so IBC will not start
932 * without IB_SERDES_TRIM_DONE.
934 ret = 0;
935 for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
936 val = qib_read_kreg64(dd, kr_ibcstatus);
937 if (val & IB_SERDES_TRIM_DONE) {
938 ret = 1;
939 break;
941 msleep(10);
943 if (trim_tmo >= TRIM_TMO) {
944 qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
945 ret = 0;
947 return ret;
950 #define TX_FAST_ELT (9)
953 * Set the "negotiation" values for SERDES. These are used by the IB1.2
954 * link negotiation. Macros below are attempt to keep the values a
955 * little more human-editable.
956 * First, values related to Drive De-emphasis Settings.
959 #define NUM_DDS_REGS 6
960 #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
962 #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
963 { { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
964 (main_d << 3) | 4 | (ipre_d >> 2), \
965 (main_s << 3) | 4 | (ipre_s >> 2), \
966 ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
967 ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
969 static struct dds_init {
970 uint8_t reg_vals[NUM_DDS_REGS];
971 } dds_init_vals[] = {
972 /* DDR(FDR) SDR(HDR) */
973 /* Vendor recommends below for 3m cable */
974 #define DDS_3M 0
975 DDS_VAL(31, 19, 12, 0, 29, 22, 9, 0),
976 DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
977 DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
978 DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
979 DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
980 DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
981 DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
982 DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
983 DDS_VAL(31, 20, 11, 0, 28, 23, 8, 0),
984 DDS_VAL(31, 21, 10, 0, 27, 24, 7, 0),
985 DDS_VAL(31, 22, 9, 0, 26, 25, 6, 0),
986 DDS_VAL(30, 23, 8, 0, 25, 26, 5, 0),
987 DDS_VAL(29, 24, 7, 0, 23, 27, 4, 0),
988 /* Vendor recommends below for 1m cable */
989 #define DDS_1M 13
990 DDS_VAL(28, 25, 6, 0, 21, 28, 3, 0),
991 DDS_VAL(27, 26, 5, 0, 19, 29, 2, 0),
992 DDS_VAL(25, 27, 4, 0, 17, 30, 1, 0)
996 * Now the RXEQ section of the table.
998 /* Hardware packs an element number and register address thus: */
999 #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
1000 #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
1001 {RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
1003 #define RXEQ_VAL_ALL(elt, adr, val) \
1004 {RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
1006 #define RXEQ_SDR_DFELTH 0
1007 #define RXEQ_SDR_TLTH 0
1008 #define RXEQ_SDR_G1CNT_Z1CNT 0x11
1009 #define RXEQ_SDR_ZCNT 23
1011 static struct rxeq_init {
1012 u16 rdesc; /* in form used in SerDesDDSRXEQ */
1013 u8 rdata[4];
1014 } rxeq_init_vals[] = {
1015 /* Set Rcv Eq. to Preset node */
1016 RXEQ_VAL_ALL(7, 0x27, 0x10),
1017 /* Set DFELTHFDR/HDR thresholds */
1018 RXEQ_VAL(7, 8, 0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */
1019 RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
1020 /* Set TLTHFDR/HDR theshold */
1021 RXEQ_VAL(7, 9, 2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */
1022 RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was 0, 1, 2, 3 */
1023 /* Set Preamp setting 2 (ZFR/ZCNT) */
1024 RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */
1025 RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */
1026 /* Set Preamp DC gain and Setting 1 (GFR/GHR) */
1027 RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */
1028 RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */
1029 /* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
1030 RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
1031 RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
1034 /* There are 17 values from vendor, but IBC only accesses the first 16 */
1035 #define DDS_ROWS (16)
1036 #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1038 static int qib_sd_setvals(struct qib_devdata *dd)
1040 int idx, midx;
1041 int min_idx; /* Minimum index for this portion of table */
1042 uint32_t dds_reg_map;
1043 u64 __iomem *taddr, *iaddr;
1044 uint64_t data;
1045 uint64_t sdctl;
1047 taddr = dd->kregbase + kr_serdes_maptable;
1048 iaddr = dd->kregbase + kr_serdes_ddsrxeq0;
1051 * Init the DDS section of the table.
1052 * Each "row" of the table provokes NUM_DDS_REG writes, to the
1053 * registers indicated in DDS_REG_MAP.
1055 sdctl = qib_read_kreg64(dd, kr_ibserdesctrl);
1056 sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
1057 sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
1058 qib_write_kreg(dd, kr_ibserdesctrl, sdctl);
1061 * Iterate down table within loop for each register to store.
1063 dds_reg_map = DDS_REG_MAP;
1064 for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1065 data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
1066 writeq(data, iaddr + idx);
1067 mmiowb();
1068 qib_read_kreg32(dd, kr_scratch);
1069 dds_reg_map >>= 4;
1070 for (midx = 0; midx < DDS_ROWS; ++midx) {
1071 u64 __iomem *daddr = taddr + ((midx << 4) + idx);
1072 data = dds_init_vals[midx].reg_vals[idx];
1073 writeq(data, daddr);
1074 mmiowb();
1075 qib_read_kreg32(dd, kr_scratch);
1076 } /* End inner for (vals for this reg, each row) */
1077 } /* end outer for (regs to be stored) */
1080 * Init the RXEQ section of the table.
1081 * This runs in a different order, as the pattern of
1082 * register references is more complex, but there are only
1083 * four "data" values per register.
1085 min_idx = idx; /* RXEQ indices pick up where DDS left off */
1086 taddr += 0x100; /* RXEQ data is in second half of table */
1087 /* Iterate through RXEQ register addresses */
1088 for (idx = 0; idx < RXEQ_ROWS; ++idx) {
1089 int didx; /* "destination" */
1090 int vidx;
1092 /* didx is offset by min_idx to address RXEQ range of regs */
1093 didx = idx + min_idx;
1094 /* Store the next RXEQ register address */
1095 writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
1096 mmiowb();
1097 qib_read_kreg32(dd, kr_scratch);
1098 /* Iterate through RXEQ values */
1099 for (vidx = 0; vidx < 4; vidx++) {
1100 data = rxeq_init_vals[idx].rdata[vidx];
1101 writeq(data, taddr + (vidx << 6) + idx);
1102 mmiowb();
1103 qib_read_kreg32(dd, kr_scratch);
1105 } /* end outer for (Reg-writes for RXEQ) */
1106 return 0;
1109 #define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1110 #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1111 #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1112 #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1113 #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1114 #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1117 * Repeat a "store" across all channels of the IB SerDes.
1118 * Although nominally it inherits the "read value" of the last
1119 * channel it modified, the only really useful return is <0 for
1120 * failure, >= 0 for success. The parameter 'loc' is assumed to
1121 * be the location in some channel of the register to be modified
1122 * The caller can specify use of the "gang write" option of EPB,
1123 * in which case we use the specified channel data for any fields
1124 * not explicitely written.
1126 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
1127 int mask)
1129 int ret = -1;
1130 int chnl;
1132 if (loc & EPB_GLOBAL_WR) {
1134 * Our caller has assured us that we can set all four
1135 * channels at once. Trust that. If mask is not 0xFF,
1136 * we will read the _specified_ channel for our starting
1137 * value.
1139 loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1140 chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
1141 if (mask != 0xFF) {
1142 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
1143 loc & ~EPB_GLOBAL_WR, 0, 0);
1144 if (ret < 0) {
1145 int sloc = loc >> EPB_ADDR_SHF;
1147 qib_dev_err(dd, "pre-read failed: elt %d,"
1148 " addr 0x%X, chnl %d\n",
1149 (sloc & 0xF),
1150 (sloc >> 9) & 0x3f, chnl);
1151 return ret;
1153 val = (ret & ~mask) | (val & mask);
1155 loc &= ~(7 << (4+EPB_ADDR_SHF));
1156 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1157 if (ret < 0) {
1158 int sloc = loc >> EPB_ADDR_SHF;
1160 qib_dev_err(dd, "Global WR failed: elt %d,"
1161 " addr 0x%X, val %02X\n",
1162 (sloc & 0xF), (sloc >> 9) & 0x3f, val);
1164 return ret;
1166 /* Clear "channel" and set CS so we can simply iterate */
1167 loc &= ~(7 << (4+EPB_ADDR_SHF));
1168 loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1169 for (chnl = 0; chnl < 4; ++chnl) {
1170 int cloc = loc | (chnl << (4+EPB_ADDR_SHF));
1172 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
1173 if (ret < 0) {
1174 int sloc = loc >> EPB_ADDR_SHF;
1176 qib_dev_err(dd, "Write failed: elt %d,"
1177 " addr 0x%X, chnl %d, val 0x%02X,"
1178 " mask 0x%02X\n",
1179 (sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
1180 val & 0xFF, mask & 0xFF);
1181 break;
1184 return ret;
1188 * Set the Tx values normally modified by IBC in IB1.2 mode to default
1189 * values, as gotten from first row of init table.
1191 static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi)
1193 int ret;
1194 int idx, reg, data;
1195 uint32_t regmap;
1197 regmap = DDS_REG_MAP;
1198 for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1199 reg = (regmap & 0xF);
1200 regmap >>= 4;
1201 data = ddi->reg_vals[idx];
1202 /* Vendor says RMW not needed for these regs, use 0xFF mask */
1203 ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
1204 if (ret < 0)
1205 break;
1207 return ret;
1211 * Set the Rx values normally modified by IBC in IB1.2 mode to default
1212 * values, as gotten from selected column of init table.
1214 static int set_rxeq_vals(struct qib_devdata *dd, int vsel)
1216 int ret;
1217 int ridx;
1218 int cnt = ARRAY_SIZE(rxeq_init_vals);
1220 for (ridx = 0; ridx < cnt; ++ridx) {
1221 int elt, reg, val, loc;
1223 elt = rxeq_init_vals[ridx].rdesc & 0xF;
1224 reg = rxeq_init_vals[ridx].rdesc >> 4;
1225 loc = EPB_LOC(0, elt, reg);
1226 val = rxeq_init_vals[ridx].rdata[vsel];
1227 /* mask of 0xFF, because hardware does full-byte store. */
1228 ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
1229 if (ret < 0)
1230 break;
1232 return ret;
1236 * Set the default values (row 0) for DDR Driver Demphasis.
1237 * we do this initially and whenever we turn off IB-1.2
1239 * The "default" values for Rx equalization are also stored to
1240 * SerDes registers. Formerly (and still default), we used set 2.
1241 * For experimenting with cables and link-partners, we allow changing
1242 * that via a module parameter.
1244 static unsigned qib_rxeq_set = 2;
1245 module_param_named(rxeq_default_set, qib_rxeq_set, uint,
1246 S_IWUSR | S_IRUGO);
1247 MODULE_PARM_DESC(rxeq_default_set,
1248 "Which set [0..3] of Rx Equalization values is default");
1250 static int qib_internal_presets(struct qib_devdata *dd)
1252 int ret = 0;
1254 ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
1256 if (ret < 0)
1257 qib_dev_err(dd, "Failed to set default DDS values\n");
1258 ret = set_rxeq_vals(dd, qib_rxeq_set & 3);
1259 if (ret < 0)
1260 qib_dev_err(dd, "Failed to set default RXEQ values\n");
1261 return ret;
1264 int qib_sd7220_presets(struct qib_devdata *dd)
1266 int ret = 0;
1268 if (!dd->cspec->presets_needed)
1269 return ret;
1270 dd->cspec->presets_needed = 0;
1271 /* Assert uC reset, so we don't clash with it. */
1272 qib_ibsd_reset(dd, 1);
1273 udelay(2);
1274 qib_sd_trimdone_monitor(dd, "link-down");
1276 ret = qib_internal_presets(dd);
1277 return ret;
1280 static int qib_sd_trimself(struct qib_devdata *dd, int val)
1282 int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF);
1284 return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1287 static int qib_sd_early(struct qib_devdata *dd)
1289 int ret;
1291 ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF);
1292 if (ret < 0)
1293 goto bail;
1294 ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF);
1295 if (ret < 0)
1296 goto bail;
1297 ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF);
1298 bail:
1299 return ret;
1302 #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1303 #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1304 #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1306 static int qib_sd_dactrim(struct qib_devdata *dd)
1308 int ret;
1310 ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF);
1311 if (ret < 0)
1312 goto bail;
1314 /* more fine-tuning of what will be default */
1315 ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF);
1316 if (ret < 0)
1317 goto bail;
1319 ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF);
1320 if (ret < 0)
1321 goto bail;
1323 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1324 if (ret < 0)
1325 goto bail;
1327 ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1328 if (ret < 0)
1329 goto bail;
1332 * Delay for max possible number of steps, with slop.
1333 * Each step is about 4usec.
1335 udelay(415);
1337 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF);
1339 bail:
1340 return ret;
1343 #define RELOCK_FIRST_MS 3
1344 #define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
1345 void toggle_7220_rclkrls(struct qib_devdata *dd)
1347 int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
1348 int ret;
1350 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1351 if (ret < 0)
1352 qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1353 else {
1354 udelay(1);
1355 ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1357 /* And again for good measure */
1358 udelay(1);
1359 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1360 if (ret < 0)
1361 qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1362 else {
1363 udelay(1);
1364 ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1366 /* Now reset xgxs and IBC to complete the recovery */
1367 dd->f_xgxs_reset(dd->pport);
1371 * Shut down the timer that polls for relock occasions, if needed
1372 * this is "hooked" from qib_7220_quiet_serdes(), which is called
1373 * just before qib_shutdown_device() in qib_driver.c shuts down all
1374 * the other timers
1376 void shutdown_7220_relock_poll(struct qib_devdata *dd)
1378 if (dd->cspec->relock_timer_active)
1379 del_timer_sync(&dd->cspec->relock_timer);
1382 static unsigned qib_relock_by_timer = 1;
1383 module_param_named(relock_by_timer, qib_relock_by_timer, uint,
1384 S_IWUSR | S_IRUGO);
1385 MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
1387 static void qib_run_relock(unsigned long opaque)
1389 struct qib_devdata *dd = (struct qib_devdata *)opaque;
1390 struct qib_pportdata *ppd = dd->pport;
1391 struct qib_chip_specific *cs = dd->cspec;
1392 int timeoff;
1395 * Check link-training state for "stuck" state, when down.
1396 * if found, try relock and schedule another try at
1397 * exponentially growing delay, maxed at one second.
1398 * if not stuck, our work is done.
1400 if ((dd->flags & QIB_INITTED) && !(ppd->lflags &
1401 (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED |
1402 QIBL_LINKACTIVE))) {
1403 if (qib_relock_by_timer) {
1404 if (!(ppd->lflags & QIBL_IB_LINK_DISABLED))
1405 toggle_7220_rclkrls(dd);
1407 /* re-set timer for next check */
1408 timeoff = cs->relock_interval << 1;
1409 if (timeoff > HZ)
1410 timeoff = HZ;
1411 cs->relock_interval = timeoff;
1412 } else
1413 timeoff = HZ;
1414 mod_timer(&cs->relock_timer, jiffies + timeoff);
1417 void set_7220_relock_poll(struct qib_devdata *dd, int ibup)
1419 struct qib_chip_specific *cs = dd->cspec;
1421 if (ibup) {
1422 /* We are now up, relax timer to 1 second interval */
1423 if (cs->relock_timer_active) {
1424 cs->relock_interval = HZ;
1425 mod_timer(&cs->relock_timer, jiffies + HZ);
1427 } else {
1428 /* Transition to down, (re-)set timer to short interval. */
1429 unsigned int timeout;
1431 timeout = msecs_to_jiffies(RELOCK_FIRST_MS);
1432 if (timeout == 0)
1433 timeout = 1;
1434 /* If timer has not yet been started, do so. */
1435 if (!cs->relock_timer_active) {
1436 cs->relock_timer_active = 1;
1437 init_timer(&cs->relock_timer);
1438 cs->relock_timer.function = qib_run_relock;
1439 cs->relock_timer.data = (unsigned long) dd;
1440 cs->relock_interval = timeout;
1441 cs->relock_timer.expires = jiffies + timeout;
1442 add_timer(&cs->relock_timer);
1443 } else {
1444 cs->relock_interval = timeout;
1445 mod_timer(&cs->relock_timer, jiffies + timeout);