spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / md / raid5.c
blobd1162e53151ec0956ed08e21e0edabca40cbf2fe
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
62 * Stripe cache
65 #define NR_STRIPES 256
66 #define STRIPE_SIZE PAGE_SIZE
67 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD 1
70 #define BYPASS_THRESHOLD 1
71 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK (NR_HASH - 1)
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
76 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81 * order without overlap. There may be several bio's per stripe+device, and
82 * a bio could span several devices.
83 * When walking this list for a particular stripe+device, we must never proceed
84 * beyond a bio that extends past this device, as the next bio might no longer
85 * be valid.
86 * This function is used to determine the 'next' bio in the list, given the sector
87 * of the current stripe+device
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
91 int sectors = bio->bi_size >> 9;
92 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 return bio->bi_next;
94 else
95 return NULL;
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102 static inline int raid5_bi_phys_segments(struct bio *bio)
104 return bio->bi_phys_segments & 0xffff;
107 static inline int raid5_bi_hw_segments(struct bio *bio)
109 return (bio->bi_phys_segments >> 16) & 0xffff;
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
114 --bio->bi_phys_segments;
115 return raid5_bi_phys_segments(bio);
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
120 unsigned short val = raid5_bi_hw_segments(bio);
122 --val;
123 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 return val;
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
129 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
135 if (sh->ddf_layout)
136 /* ddf always start from first device */
137 return 0;
138 /* md starts just after Q block */
139 if (sh->qd_idx == sh->disks - 1)
140 return 0;
141 else
142 return sh->qd_idx + 1;
144 static inline int raid6_next_disk(int disk, int raid_disks)
146 disk++;
147 return (disk < raid_disks) ? disk : 0;
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 int *count, int syndrome_disks)
158 int slot = *count;
160 if (sh->ddf_layout)
161 (*count)++;
162 if (idx == sh->pd_idx)
163 return syndrome_disks;
164 if (idx == sh->qd_idx)
165 return syndrome_disks + 1;
166 if (!sh->ddf_layout)
167 (*count)++;
168 return slot;
171 static void return_io(struct bio *return_bi)
173 struct bio *bi = return_bi;
174 while (bi) {
176 return_bi = bi->bi_next;
177 bi->bi_next = NULL;
178 bi->bi_size = 0;
179 bio_endio(bi, 0);
180 bi = return_bi;
184 static void print_raid5_conf (struct r5conf *conf);
186 static int stripe_operations_active(struct stripe_head *sh)
188 return sh->check_state || sh->reconstruct_state ||
189 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
195 if (atomic_dec_and_test(&sh->count)) {
196 BUG_ON(!list_empty(&sh->lru));
197 BUG_ON(atomic_read(&conf->active_stripes)==0);
198 if (test_bit(STRIPE_HANDLE, &sh->state)) {
199 if (test_bit(STRIPE_DELAYED, &sh->state))
200 list_add_tail(&sh->lru, &conf->delayed_list);
201 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202 sh->bm_seq - conf->seq_write > 0)
203 list_add_tail(&sh->lru, &conf->bitmap_list);
204 else {
205 clear_bit(STRIPE_BIT_DELAY, &sh->state);
206 list_add_tail(&sh->lru, &conf->handle_list);
208 md_wakeup_thread(conf->mddev->thread);
209 } else {
210 BUG_ON(stripe_operations_active(sh));
211 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
212 atomic_dec(&conf->preread_active_stripes);
213 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
214 md_wakeup_thread(conf->mddev->thread);
216 atomic_dec(&conf->active_stripes);
217 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
218 list_add_tail(&sh->lru, &conf->inactive_list);
219 wake_up(&conf->wait_for_stripe);
220 if (conf->retry_read_aligned)
221 md_wakeup_thread(conf->mddev->thread);
227 static void release_stripe(struct stripe_head *sh)
229 struct r5conf *conf = sh->raid_conf;
230 unsigned long flags;
232 spin_lock_irqsave(&conf->device_lock, flags);
233 __release_stripe(conf, sh);
234 spin_unlock_irqrestore(&conf->device_lock, flags);
237 static inline void remove_hash(struct stripe_head *sh)
239 pr_debug("remove_hash(), stripe %llu\n",
240 (unsigned long long)sh->sector);
242 hlist_del_init(&sh->hash);
245 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
247 struct hlist_head *hp = stripe_hash(conf, sh->sector);
249 pr_debug("insert_hash(), stripe %llu\n",
250 (unsigned long long)sh->sector);
252 hlist_add_head(&sh->hash, hp);
256 /* find an idle stripe, make sure it is unhashed, and return it. */
257 static struct stripe_head *get_free_stripe(struct r5conf *conf)
259 struct stripe_head *sh = NULL;
260 struct list_head *first;
262 if (list_empty(&conf->inactive_list))
263 goto out;
264 first = conf->inactive_list.next;
265 sh = list_entry(first, struct stripe_head, lru);
266 list_del_init(first);
267 remove_hash(sh);
268 atomic_inc(&conf->active_stripes);
269 out:
270 return sh;
273 static void shrink_buffers(struct stripe_head *sh)
275 struct page *p;
276 int i;
277 int num = sh->raid_conf->pool_size;
279 for (i = 0; i < num ; i++) {
280 p = sh->dev[i].page;
281 if (!p)
282 continue;
283 sh->dev[i].page = NULL;
284 put_page(p);
288 static int grow_buffers(struct stripe_head *sh)
290 int i;
291 int num = sh->raid_conf->pool_size;
293 for (i = 0; i < num; i++) {
294 struct page *page;
296 if (!(page = alloc_page(GFP_KERNEL))) {
297 return 1;
299 sh->dev[i].page = page;
301 return 0;
304 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
305 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
306 struct stripe_head *sh);
308 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
310 struct r5conf *conf = sh->raid_conf;
311 int i;
313 BUG_ON(atomic_read(&sh->count) != 0);
314 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
315 BUG_ON(stripe_operations_active(sh));
317 pr_debug("init_stripe called, stripe %llu\n",
318 (unsigned long long)sh->sector);
320 remove_hash(sh);
322 sh->generation = conf->generation - previous;
323 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
324 sh->sector = sector;
325 stripe_set_idx(sector, conf, previous, sh);
326 sh->state = 0;
329 for (i = sh->disks; i--; ) {
330 struct r5dev *dev = &sh->dev[i];
332 if (dev->toread || dev->read || dev->towrite || dev->written ||
333 test_bit(R5_LOCKED, &dev->flags)) {
334 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
335 (unsigned long long)sh->sector, i, dev->toread,
336 dev->read, dev->towrite, dev->written,
337 test_bit(R5_LOCKED, &dev->flags));
338 WARN_ON(1);
340 dev->flags = 0;
341 raid5_build_block(sh, i, previous);
343 insert_hash(conf, sh);
346 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
347 short generation)
349 struct stripe_head *sh;
350 struct hlist_node *hn;
352 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354 if (sh->sector == sector && sh->generation == generation)
355 return sh;
356 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
357 return NULL;
361 * Need to check if array has failed when deciding whether to:
362 * - start an array
363 * - remove non-faulty devices
364 * - add a spare
365 * - allow a reshape
366 * This determination is simple when no reshape is happening.
367 * However if there is a reshape, we need to carefully check
368 * both the before and after sections.
369 * This is because some failed devices may only affect one
370 * of the two sections, and some non-in_sync devices may
371 * be insync in the section most affected by failed devices.
373 static int calc_degraded(struct r5conf *conf)
375 int degraded, degraded2;
376 int i;
378 rcu_read_lock();
379 degraded = 0;
380 for (i = 0; i < conf->previous_raid_disks; i++) {
381 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
382 if (!rdev || test_bit(Faulty, &rdev->flags))
383 degraded++;
384 else if (test_bit(In_sync, &rdev->flags))
386 else
387 /* not in-sync or faulty.
388 * If the reshape increases the number of devices,
389 * this is being recovered by the reshape, so
390 * this 'previous' section is not in_sync.
391 * If the number of devices is being reduced however,
392 * the device can only be part of the array if
393 * we are reverting a reshape, so this section will
394 * be in-sync.
396 if (conf->raid_disks >= conf->previous_raid_disks)
397 degraded++;
399 rcu_read_unlock();
400 if (conf->raid_disks == conf->previous_raid_disks)
401 return degraded;
402 rcu_read_lock();
403 degraded2 = 0;
404 for (i = 0; i < conf->raid_disks; i++) {
405 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
406 if (!rdev || test_bit(Faulty, &rdev->flags))
407 degraded2++;
408 else if (test_bit(In_sync, &rdev->flags))
410 else
411 /* not in-sync or faulty.
412 * If reshape increases the number of devices, this
413 * section has already been recovered, else it
414 * almost certainly hasn't.
416 if (conf->raid_disks <= conf->previous_raid_disks)
417 degraded2++;
419 rcu_read_unlock();
420 if (degraded2 > degraded)
421 return degraded2;
422 return degraded;
425 static int has_failed(struct r5conf *conf)
427 int degraded;
429 if (conf->mddev->reshape_position == MaxSector)
430 return conf->mddev->degraded > conf->max_degraded;
432 degraded = calc_degraded(conf);
433 if (degraded > conf->max_degraded)
434 return 1;
435 return 0;
438 static struct stripe_head *
439 get_active_stripe(struct r5conf *conf, sector_t sector,
440 int previous, int noblock, int noquiesce)
442 struct stripe_head *sh;
444 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
446 spin_lock_irq(&conf->device_lock);
448 do {
449 wait_event_lock_irq(conf->wait_for_stripe,
450 conf->quiesce == 0 || noquiesce,
451 conf->device_lock, /* nothing */);
452 sh = __find_stripe(conf, sector, conf->generation - previous);
453 if (!sh) {
454 if (!conf->inactive_blocked)
455 sh = get_free_stripe(conf);
456 if (noblock && sh == NULL)
457 break;
458 if (!sh) {
459 conf->inactive_blocked = 1;
460 wait_event_lock_irq(conf->wait_for_stripe,
461 !list_empty(&conf->inactive_list) &&
462 (atomic_read(&conf->active_stripes)
463 < (conf->max_nr_stripes *3/4)
464 || !conf->inactive_blocked),
465 conf->device_lock,
467 conf->inactive_blocked = 0;
468 } else
469 init_stripe(sh, sector, previous);
470 } else {
471 if (atomic_read(&sh->count)) {
472 BUG_ON(!list_empty(&sh->lru)
473 && !test_bit(STRIPE_EXPANDING, &sh->state));
474 } else {
475 if (!test_bit(STRIPE_HANDLE, &sh->state))
476 atomic_inc(&conf->active_stripes);
477 if (list_empty(&sh->lru) &&
478 !test_bit(STRIPE_EXPANDING, &sh->state))
479 BUG();
480 list_del_init(&sh->lru);
483 } while (sh == NULL);
485 if (sh)
486 atomic_inc(&sh->count);
488 spin_unlock_irq(&conf->device_lock);
489 return sh;
492 static void
493 raid5_end_read_request(struct bio *bi, int error);
494 static void
495 raid5_end_write_request(struct bio *bi, int error);
497 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
499 struct r5conf *conf = sh->raid_conf;
500 int i, disks = sh->disks;
502 might_sleep();
504 for (i = disks; i--; ) {
505 int rw;
506 int replace_only = 0;
507 struct bio *bi, *rbi;
508 struct md_rdev *rdev, *rrdev = NULL;
509 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
510 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
511 rw = WRITE_FUA;
512 else
513 rw = WRITE;
514 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
515 rw = READ;
516 else if (test_and_clear_bit(R5_WantReplace,
517 &sh->dev[i].flags)) {
518 rw = WRITE;
519 replace_only = 1;
520 } else
521 continue;
523 bi = &sh->dev[i].req;
524 rbi = &sh->dev[i].rreq; /* For writing to replacement */
526 bi->bi_rw = rw;
527 rbi->bi_rw = rw;
528 if (rw & WRITE) {
529 bi->bi_end_io = raid5_end_write_request;
530 rbi->bi_end_io = raid5_end_write_request;
531 } else
532 bi->bi_end_io = raid5_end_read_request;
534 rcu_read_lock();
535 rrdev = rcu_dereference(conf->disks[i].replacement);
536 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
537 rdev = rcu_dereference(conf->disks[i].rdev);
538 if (!rdev) {
539 rdev = rrdev;
540 rrdev = NULL;
542 if (rw & WRITE) {
543 if (replace_only)
544 rdev = NULL;
545 if (rdev == rrdev)
546 /* We raced and saw duplicates */
547 rrdev = NULL;
548 } else {
549 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
550 rdev = rrdev;
551 rrdev = NULL;
554 if (rdev && test_bit(Faulty, &rdev->flags))
555 rdev = NULL;
556 if (rdev)
557 atomic_inc(&rdev->nr_pending);
558 if (rrdev && test_bit(Faulty, &rrdev->flags))
559 rrdev = NULL;
560 if (rrdev)
561 atomic_inc(&rrdev->nr_pending);
562 rcu_read_unlock();
564 /* We have already checked bad blocks for reads. Now
565 * need to check for writes. We never accept write errors
566 * on the replacement, so we don't to check rrdev.
568 while ((rw & WRITE) && rdev &&
569 test_bit(WriteErrorSeen, &rdev->flags)) {
570 sector_t first_bad;
571 int bad_sectors;
572 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
573 &first_bad, &bad_sectors);
574 if (!bad)
575 break;
577 if (bad < 0) {
578 set_bit(BlockedBadBlocks, &rdev->flags);
579 if (!conf->mddev->external &&
580 conf->mddev->flags) {
581 /* It is very unlikely, but we might
582 * still need to write out the
583 * bad block log - better give it
584 * a chance*/
585 md_check_recovery(conf->mddev);
587 md_wait_for_blocked_rdev(rdev, conf->mddev);
588 } else {
589 /* Acknowledged bad block - skip the write */
590 rdev_dec_pending(rdev, conf->mddev);
591 rdev = NULL;
595 if (rdev) {
596 if (s->syncing || s->expanding || s->expanded
597 || s->replacing)
598 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
600 set_bit(STRIPE_IO_STARTED, &sh->state);
602 bi->bi_bdev = rdev->bdev;
603 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
604 __func__, (unsigned long long)sh->sector,
605 bi->bi_rw, i);
606 atomic_inc(&sh->count);
607 bi->bi_sector = sh->sector + rdev->data_offset;
608 bi->bi_flags = 1 << BIO_UPTODATE;
609 bi->bi_idx = 0;
610 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
611 bi->bi_io_vec[0].bv_offset = 0;
612 bi->bi_size = STRIPE_SIZE;
613 bi->bi_next = NULL;
614 if (rrdev)
615 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
616 generic_make_request(bi);
618 if (rrdev) {
619 if (s->syncing || s->expanding || s->expanded
620 || s->replacing)
621 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
623 set_bit(STRIPE_IO_STARTED, &sh->state);
625 rbi->bi_bdev = rrdev->bdev;
626 pr_debug("%s: for %llu schedule op %ld on "
627 "replacement disc %d\n",
628 __func__, (unsigned long long)sh->sector,
629 rbi->bi_rw, i);
630 atomic_inc(&sh->count);
631 rbi->bi_sector = sh->sector + rrdev->data_offset;
632 rbi->bi_flags = 1 << BIO_UPTODATE;
633 rbi->bi_idx = 0;
634 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
635 rbi->bi_io_vec[0].bv_offset = 0;
636 rbi->bi_size = STRIPE_SIZE;
637 rbi->bi_next = NULL;
638 generic_make_request(rbi);
640 if (!rdev && !rrdev) {
641 if (rw & WRITE)
642 set_bit(STRIPE_DEGRADED, &sh->state);
643 pr_debug("skip op %ld on disc %d for sector %llu\n",
644 bi->bi_rw, i, (unsigned long long)sh->sector);
645 clear_bit(R5_LOCKED, &sh->dev[i].flags);
646 set_bit(STRIPE_HANDLE, &sh->state);
651 static struct dma_async_tx_descriptor *
652 async_copy_data(int frombio, struct bio *bio, struct page *page,
653 sector_t sector, struct dma_async_tx_descriptor *tx)
655 struct bio_vec *bvl;
656 struct page *bio_page;
657 int i;
658 int page_offset;
659 struct async_submit_ctl submit;
660 enum async_tx_flags flags = 0;
662 if (bio->bi_sector >= sector)
663 page_offset = (signed)(bio->bi_sector - sector) * 512;
664 else
665 page_offset = (signed)(sector - bio->bi_sector) * -512;
667 if (frombio)
668 flags |= ASYNC_TX_FENCE;
669 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
671 bio_for_each_segment(bvl, bio, i) {
672 int len = bvl->bv_len;
673 int clen;
674 int b_offset = 0;
676 if (page_offset < 0) {
677 b_offset = -page_offset;
678 page_offset += b_offset;
679 len -= b_offset;
682 if (len > 0 && page_offset + len > STRIPE_SIZE)
683 clen = STRIPE_SIZE - page_offset;
684 else
685 clen = len;
687 if (clen > 0) {
688 b_offset += bvl->bv_offset;
689 bio_page = bvl->bv_page;
690 if (frombio)
691 tx = async_memcpy(page, bio_page, page_offset,
692 b_offset, clen, &submit);
693 else
694 tx = async_memcpy(bio_page, page, b_offset,
695 page_offset, clen, &submit);
697 /* chain the operations */
698 submit.depend_tx = tx;
700 if (clen < len) /* hit end of page */
701 break;
702 page_offset += len;
705 return tx;
708 static void ops_complete_biofill(void *stripe_head_ref)
710 struct stripe_head *sh = stripe_head_ref;
711 struct bio *return_bi = NULL;
712 struct r5conf *conf = sh->raid_conf;
713 int i;
715 pr_debug("%s: stripe %llu\n", __func__,
716 (unsigned long long)sh->sector);
718 /* clear completed biofills */
719 spin_lock_irq(&conf->device_lock);
720 for (i = sh->disks; i--; ) {
721 struct r5dev *dev = &sh->dev[i];
723 /* acknowledge completion of a biofill operation */
724 /* and check if we need to reply to a read request,
725 * new R5_Wantfill requests are held off until
726 * !STRIPE_BIOFILL_RUN
728 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
729 struct bio *rbi, *rbi2;
731 BUG_ON(!dev->read);
732 rbi = dev->read;
733 dev->read = NULL;
734 while (rbi && rbi->bi_sector <
735 dev->sector + STRIPE_SECTORS) {
736 rbi2 = r5_next_bio(rbi, dev->sector);
737 if (!raid5_dec_bi_phys_segments(rbi)) {
738 rbi->bi_next = return_bi;
739 return_bi = rbi;
741 rbi = rbi2;
745 spin_unlock_irq(&conf->device_lock);
746 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
748 return_io(return_bi);
750 set_bit(STRIPE_HANDLE, &sh->state);
751 release_stripe(sh);
754 static void ops_run_biofill(struct stripe_head *sh)
756 struct dma_async_tx_descriptor *tx = NULL;
757 struct r5conf *conf = sh->raid_conf;
758 struct async_submit_ctl submit;
759 int i;
761 pr_debug("%s: stripe %llu\n", __func__,
762 (unsigned long long)sh->sector);
764 for (i = sh->disks; i--; ) {
765 struct r5dev *dev = &sh->dev[i];
766 if (test_bit(R5_Wantfill, &dev->flags)) {
767 struct bio *rbi;
768 spin_lock_irq(&conf->device_lock);
769 dev->read = rbi = dev->toread;
770 dev->toread = NULL;
771 spin_unlock_irq(&conf->device_lock);
772 while (rbi && rbi->bi_sector <
773 dev->sector + STRIPE_SECTORS) {
774 tx = async_copy_data(0, rbi, dev->page,
775 dev->sector, tx);
776 rbi = r5_next_bio(rbi, dev->sector);
781 atomic_inc(&sh->count);
782 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
783 async_trigger_callback(&submit);
786 static void mark_target_uptodate(struct stripe_head *sh, int target)
788 struct r5dev *tgt;
790 if (target < 0)
791 return;
793 tgt = &sh->dev[target];
794 set_bit(R5_UPTODATE, &tgt->flags);
795 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
796 clear_bit(R5_Wantcompute, &tgt->flags);
799 static void ops_complete_compute(void *stripe_head_ref)
801 struct stripe_head *sh = stripe_head_ref;
803 pr_debug("%s: stripe %llu\n", __func__,
804 (unsigned long long)sh->sector);
806 /* mark the computed target(s) as uptodate */
807 mark_target_uptodate(sh, sh->ops.target);
808 mark_target_uptodate(sh, sh->ops.target2);
810 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
811 if (sh->check_state == check_state_compute_run)
812 sh->check_state = check_state_compute_result;
813 set_bit(STRIPE_HANDLE, &sh->state);
814 release_stripe(sh);
817 /* return a pointer to the address conversion region of the scribble buffer */
818 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
819 struct raid5_percpu *percpu)
821 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
824 static struct dma_async_tx_descriptor *
825 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
827 int disks = sh->disks;
828 struct page **xor_srcs = percpu->scribble;
829 int target = sh->ops.target;
830 struct r5dev *tgt = &sh->dev[target];
831 struct page *xor_dest = tgt->page;
832 int count = 0;
833 struct dma_async_tx_descriptor *tx;
834 struct async_submit_ctl submit;
835 int i;
837 pr_debug("%s: stripe %llu block: %d\n",
838 __func__, (unsigned long long)sh->sector, target);
839 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
841 for (i = disks; i--; )
842 if (i != target)
843 xor_srcs[count++] = sh->dev[i].page;
845 atomic_inc(&sh->count);
847 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
848 ops_complete_compute, sh, to_addr_conv(sh, percpu));
849 if (unlikely(count == 1))
850 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
851 else
852 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
854 return tx;
857 /* set_syndrome_sources - populate source buffers for gen_syndrome
858 * @srcs - (struct page *) array of size sh->disks
859 * @sh - stripe_head to parse
861 * Populates srcs in proper layout order for the stripe and returns the
862 * 'count' of sources to be used in a call to async_gen_syndrome. The P
863 * destination buffer is recorded in srcs[count] and the Q destination
864 * is recorded in srcs[count+1]].
866 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
868 int disks = sh->disks;
869 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
870 int d0_idx = raid6_d0(sh);
871 int count;
872 int i;
874 for (i = 0; i < disks; i++)
875 srcs[i] = NULL;
877 count = 0;
878 i = d0_idx;
879 do {
880 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
882 srcs[slot] = sh->dev[i].page;
883 i = raid6_next_disk(i, disks);
884 } while (i != d0_idx);
886 return syndrome_disks;
889 static struct dma_async_tx_descriptor *
890 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
892 int disks = sh->disks;
893 struct page **blocks = percpu->scribble;
894 int target;
895 int qd_idx = sh->qd_idx;
896 struct dma_async_tx_descriptor *tx;
897 struct async_submit_ctl submit;
898 struct r5dev *tgt;
899 struct page *dest;
900 int i;
901 int count;
903 if (sh->ops.target < 0)
904 target = sh->ops.target2;
905 else if (sh->ops.target2 < 0)
906 target = sh->ops.target;
907 else
908 /* we should only have one valid target */
909 BUG();
910 BUG_ON(target < 0);
911 pr_debug("%s: stripe %llu block: %d\n",
912 __func__, (unsigned long long)sh->sector, target);
914 tgt = &sh->dev[target];
915 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
916 dest = tgt->page;
918 atomic_inc(&sh->count);
920 if (target == qd_idx) {
921 count = set_syndrome_sources(blocks, sh);
922 blocks[count] = NULL; /* regenerating p is not necessary */
923 BUG_ON(blocks[count+1] != dest); /* q should already be set */
924 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
925 ops_complete_compute, sh,
926 to_addr_conv(sh, percpu));
927 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
928 } else {
929 /* Compute any data- or p-drive using XOR */
930 count = 0;
931 for (i = disks; i-- ; ) {
932 if (i == target || i == qd_idx)
933 continue;
934 blocks[count++] = sh->dev[i].page;
937 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
938 NULL, ops_complete_compute, sh,
939 to_addr_conv(sh, percpu));
940 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
943 return tx;
946 static struct dma_async_tx_descriptor *
947 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
949 int i, count, disks = sh->disks;
950 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
951 int d0_idx = raid6_d0(sh);
952 int faila = -1, failb = -1;
953 int target = sh->ops.target;
954 int target2 = sh->ops.target2;
955 struct r5dev *tgt = &sh->dev[target];
956 struct r5dev *tgt2 = &sh->dev[target2];
957 struct dma_async_tx_descriptor *tx;
958 struct page **blocks = percpu->scribble;
959 struct async_submit_ctl submit;
961 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
962 __func__, (unsigned long long)sh->sector, target, target2);
963 BUG_ON(target < 0 || target2 < 0);
964 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
965 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
967 /* we need to open-code set_syndrome_sources to handle the
968 * slot number conversion for 'faila' and 'failb'
970 for (i = 0; i < disks ; i++)
971 blocks[i] = NULL;
972 count = 0;
973 i = d0_idx;
974 do {
975 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
977 blocks[slot] = sh->dev[i].page;
979 if (i == target)
980 faila = slot;
981 if (i == target2)
982 failb = slot;
983 i = raid6_next_disk(i, disks);
984 } while (i != d0_idx);
986 BUG_ON(faila == failb);
987 if (failb < faila)
988 swap(faila, failb);
989 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
990 __func__, (unsigned long long)sh->sector, faila, failb);
992 atomic_inc(&sh->count);
994 if (failb == syndrome_disks+1) {
995 /* Q disk is one of the missing disks */
996 if (faila == syndrome_disks) {
997 /* Missing P+Q, just recompute */
998 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
999 ops_complete_compute, sh,
1000 to_addr_conv(sh, percpu));
1001 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1002 STRIPE_SIZE, &submit);
1003 } else {
1004 struct page *dest;
1005 int data_target;
1006 int qd_idx = sh->qd_idx;
1008 /* Missing D+Q: recompute D from P, then recompute Q */
1009 if (target == qd_idx)
1010 data_target = target2;
1011 else
1012 data_target = target;
1014 count = 0;
1015 for (i = disks; i-- ; ) {
1016 if (i == data_target || i == qd_idx)
1017 continue;
1018 blocks[count++] = sh->dev[i].page;
1020 dest = sh->dev[data_target].page;
1021 init_async_submit(&submit,
1022 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1023 NULL, NULL, NULL,
1024 to_addr_conv(sh, percpu));
1025 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1026 &submit);
1028 count = set_syndrome_sources(blocks, sh);
1029 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1030 ops_complete_compute, sh,
1031 to_addr_conv(sh, percpu));
1032 return async_gen_syndrome(blocks, 0, count+2,
1033 STRIPE_SIZE, &submit);
1035 } else {
1036 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1037 ops_complete_compute, sh,
1038 to_addr_conv(sh, percpu));
1039 if (failb == syndrome_disks) {
1040 /* We're missing D+P. */
1041 return async_raid6_datap_recov(syndrome_disks+2,
1042 STRIPE_SIZE, faila,
1043 blocks, &submit);
1044 } else {
1045 /* We're missing D+D. */
1046 return async_raid6_2data_recov(syndrome_disks+2,
1047 STRIPE_SIZE, faila, failb,
1048 blocks, &submit);
1054 static void ops_complete_prexor(void *stripe_head_ref)
1056 struct stripe_head *sh = stripe_head_ref;
1058 pr_debug("%s: stripe %llu\n", __func__,
1059 (unsigned long long)sh->sector);
1062 static struct dma_async_tx_descriptor *
1063 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1064 struct dma_async_tx_descriptor *tx)
1066 int disks = sh->disks;
1067 struct page **xor_srcs = percpu->scribble;
1068 int count = 0, pd_idx = sh->pd_idx, i;
1069 struct async_submit_ctl submit;
1071 /* existing parity data subtracted */
1072 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1074 pr_debug("%s: stripe %llu\n", __func__,
1075 (unsigned long long)sh->sector);
1077 for (i = disks; i--; ) {
1078 struct r5dev *dev = &sh->dev[i];
1079 /* Only process blocks that are known to be uptodate */
1080 if (test_bit(R5_Wantdrain, &dev->flags))
1081 xor_srcs[count++] = dev->page;
1084 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1085 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1086 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1088 return tx;
1091 static struct dma_async_tx_descriptor *
1092 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1094 int disks = sh->disks;
1095 int i;
1097 pr_debug("%s: stripe %llu\n", __func__,
1098 (unsigned long long)sh->sector);
1100 for (i = disks; i--; ) {
1101 struct r5dev *dev = &sh->dev[i];
1102 struct bio *chosen;
1104 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1105 struct bio *wbi;
1107 spin_lock_irq(&sh->raid_conf->device_lock);
1108 chosen = dev->towrite;
1109 dev->towrite = NULL;
1110 BUG_ON(dev->written);
1111 wbi = dev->written = chosen;
1112 spin_unlock_irq(&sh->raid_conf->device_lock);
1114 while (wbi && wbi->bi_sector <
1115 dev->sector + STRIPE_SECTORS) {
1116 if (wbi->bi_rw & REQ_FUA)
1117 set_bit(R5_WantFUA, &dev->flags);
1118 tx = async_copy_data(1, wbi, dev->page,
1119 dev->sector, tx);
1120 wbi = r5_next_bio(wbi, dev->sector);
1125 return tx;
1128 static void ops_complete_reconstruct(void *stripe_head_ref)
1130 struct stripe_head *sh = stripe_head_ref;
1131 int disks = sh->disks;
1132 int pd_idx = sh->pd_idx;
1133 int qd_idx = sh->qd_idx;
1134 int i;
1135 bool fua = false;
1137 pr_debug("%s: stripe %llu\n", __func__,
1138 (unsigned long long)sh->sector);
1140 for (i = disks; i--; )
1141 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1143 for (i = disks; i--; ) {
1144 struct r5dev *dev = &sh->dev[i];
1146 if (dev->written || i == pd_idx || i == qd_idx) {
1147 set_bit(R5_UPTODATE, &dev->flags);
1148 if (fua)
1149 set_bit(R5_WantFUA, &dev->flags);
1153 if (sh->reconstruct_state == reconstruct_state_drain_run)
1154 sh->reconstruct_state = reconstruct_state_drain_result;
1155 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1156 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1157 else {
1158 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1159 sh->reconstruct_state = reconstruct_state_result;
1162 set_bit(STRIPE_HANDLE, &sh->state);
1163 release_stripe(sh);
1166 static void
1167 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1168 struct dma_async_tx_descriptor *tx)
1170 int disks = sh->disks;
1171 struct page **xor_srcs = percpu->scribble;
1172 struct async_submit_ctl submit;
1173 int count = 0, pd_idx = sh->pd_idx, i;
1174 struct page *xor_dest;
1175 int prexor = 0;
1176 unsigned long flags;
1178 pr_debug("%s: stripe %llu\n", __func__,
1179 (unsigned long long)sh->sector);
1181 /* check if prexor is active which means only process blocks
1182 * that are part of a read-modify-write (written)
1184 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1185 prexor = 1;
1186 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1187 for (i = disks; i--; ) {
1188 struct r5dev *dev = &sh->dev[i];
1189 if (dev->written)
1190 xor_srcs[count++] = dev->page;
1192 } else {
1193 xor_dest = sh->dev[pd_idx].page;
1194 for (i = disks; i--; ) {
1195 struct r5dev *dev = &sh->dev[i];
1196 if (i != pd_idx)
1197 xor_srcs[count++] = dev->page;
1201 /* 1/ if we prexor'd then the dest is reused as a source
1202 * 2/ if we did not prexor then we are redoing the parity
1203 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1204 * for the synchronous xor case
1206 flags = ASYNC_TX_ACK |
1207 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1209 atomic_inc(&sh->count);
1211 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1212 to_addr_conv(sh, percpu));
1213 if (unlikely(count == 1))
1214 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1215 else
1216 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1219 static void
1220 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1221 struct dma_async_tx_descriptor *tx)
1223 struct async_submit_ctl submit;
1224 struct page **blocks = percpu->scribble;
1225 int count;
1227 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1229 count = set_syndrome_sources(blocks, sh);
1231 atomic_inc(&sh->count);
1233 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1234 sh, to_addr_conv(sh, percpu));
1235 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1238 static void ops_complete_check(void *stripe_head_ref)
1240 struct stripe_head *sh = stripe_head_ref;
1242 pr_debug("%s: stripe %llu\n", __func__,
1243 (unsigned long long)sh->sector);
1245 sh->check_state = check_state_check_result;
1246 set_bit(STRIPE_HANDLE, &sh->state);
1247 release_stripe(sh);
1250 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1252 int disks = sh->disks;
1253 int pd_idx = sh->pd_idx;
1254 int qd_idx = sh->qd_idx;
1255 struct page *xor_dest;
1256 struct page **xor_srcs = percpu->scribble;
1257 struct dma_async_tx_descriptor *tx;
1258 struct async_submit_ctl submit;
1259 int count;
1260 int i;
1262 pr_debug("%s: stripe %llu\n", __func__,
1263 (unsigned long long)sh->sector);
1265 count = 0;
1266 xor_dest = sh->dev[pd_idx].page;
1267 xor_srcs[count++] = xor_dest;
1268 for (i = disks; i--; ) {
1269 if (i == pd_idx || i == qd_idx)
1270 continue;
1271 xor_srcs[count++] = sh->dev[i].page;
1274 init_async_submit(&submit, 0, NULL, NULL, NULL,
1275 to_addr_conv(sh, percpu));
1276 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1277 &sh->ops.zero_sum_result, &submit);
1279 atomic_inc(&sh->count);
1280 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1281 tx = async_trigger_callback(&submit);
1284 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1286 struct page **srcs = percpu->scribble;
1287 struct async_submit_ctl submit;
1288 int count;
1290 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1291 (unsigned long long)sh->sector, checkp);
1293 count = set_syndrome_sources(srcs, sh);
1294 if (!checkp)
1295 srcs[count] = NULL;
1297 atomic_inc(&sh->count);
1298 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1299 sh, to_addr_conv(sh, percpu));
1300 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1301 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1304 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1306 int overlap_clear = 0, i, disks = sh->disks;
1307 struct dma_async_tx_descriptor *tx = NULL;
1308 struct r5conf *conf = sh->raid_conf;
1309 int level = conf->level;
1310 struct raid5_percpu *percpu;
1311 unsigned long cpu;
1313 cpu = get_cpu();
1314 percpu = per_cpu_ptr(conf->percpu, cpu);
1315 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1316 ops_run_biofill(sh);
1317 overlap_clear++;
1320 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1321 if (level < 6)
1322 tx = ops_run_compute5(sh, percpu);
1323 else {
1324 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1325 tx = ops_run_compute6_1(sh, percpu);
1326 else
1327 tx = ops_run_compute6_2(sh, percpu);
1329 /* terminate the chain if reconstruct is not set to be run */
1330 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1331 async_tx_ack(tx);
1334 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1335 tx = ops_run_prexor(sh, percpu, tx);
1337 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1338 tx = ops_run_biodrain(sh, tx);
1339 overlap_clear++;
1342 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1343 if (level < 6)
1344 ops_run_reconstruct5(sh, percpu, tx);
1345 else
1346 ops_run_reconstruct6(sh, percpu, tx);
1349 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1350 if (sh->check_state == check_state_run)
1351 ops_run_check_p(sh, percpu);
1352 else if (sh->check_state == check_state_run_q)
1353 ops_run_check_pq(sh, percpu, 0);
1354 else if (sh->check_state == check_state_run_pq)
1355 ops_run_check_pq(sh, percpu, 1);
1356 else
1357 BUG();
1360 if (overlap_clear)
1361 for (i = disks; i--; ) {
1362 struct r5dev *dev = &sh->dev[i];
1363 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1364 wake_up(&sh->raid_conf->wait_for_overlap);
1366 put_cpu();
1369 #ifdef CONFIG_MULTICORE_RAID456
1370 static void async_run_ops(void *param, async_cookie_t cookie)
1372 struct stripe_head *sh = param;
1373 unsigned long ops_request = sh->ops.request;
1375 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1376 wake_up(&sh->ops.wait_for_ops);
1378 __raid_run_ops(sh, ops_request);
1379 release_stripe(sh);
1382 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1384 /* since handle_stripe can be called outside of raid5d context
1385 * we need to ensure sh->ops.request is de-staged before another
1386 * request arrives
1388 wait_event(sh->ops.wait_for_ops,
1389 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1390 sh->ops.request = ops_request;
1392 atomic_inc(&sh->count);
1393 async_schedule(async_run_ops, sh);
1395 #else
1396 #define raid_run_ops __raid_run_ops
1397 #endif
1399 static int grow_one_stripe(struct r5conf *conf)
1401 struct stripe_head *sh;
1402 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1403 if (!sh)
1404 return 0;
1406 sh->raid_conf = conf;
1407 #ifdef CONFIG_MULTICORE_RAID456
1408 init_waitqueue_head(&sh->ops.wait_for_ops);
1409 #endif
1411 if (grow_buffers(sh)) {
1412 shrink_buffers(sh);
1413 kmem_cache_free(conf->slab_cache, sh);
1414 return 0;
1416 /* we just created an active stripe so... */
1417 atomic_set(&sh->count, 1);
1418 atomic_inc(&conf->active_stripes);
1419 INIT_LIST_HEAD(&sh->lru);
1420 release_stripe(sh);
1421 return 1;
1424 static int grow_stripes(struct r5conf *conf, int num)
1426 struct kmem_cache *sc;
1427 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1429 if (conf->mddev->gendisk)
1430 sprintf(conf->cache_name[0],
1431 "raid%d-%s", conf->level, mdname(conf->mddev));
1432 else
1433 sprintf(conf->cache_name[0],
1434 "raid%d-%p", conf->level, conf->mddev);
1435 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1437 conf->active_name = 0;
1438 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1439 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1440 0, 0, NULL);
1441 if (!sc)
1442 return 1;
1443 conf->slab_cache = sc;
1444 conf->pool_size = devs;
1445 while (num--)
1446 if (!grow_one_stripe(conf))
1447 return 1;
1448 return 0;
1452 * scribble_len - return the required size of the scribble region
1453 * @num - total number of disks in the array
1455 * The size must be enough to contain:
1456 * 1/ a struct page pointer for each device in the array +2
1457 * 2/ room to convert each entry in (1) to its corresponding dma
1458 * (dma_map_page()) or page (page_address()) address.
1460 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1461 * calculate over all devices (not just the data blocks), using zeros in place
1462 * of the P and Q blocks.
1464 static size_t scribble_len(int num)
1466 size_t len;
1468 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1470 return len;
1473 static int resize_stripes(struct r5conf *conf, int newsize)
1475 /* Make all the stripes able to hold 'newsize' devices.
1476 * New slots in each stripe get 'page' set to a new page.
1478 * This happens in stages:
1479 * 1/ create a new kmem_cache and allocate the required number of
1480 * stripe_heads.
1481 * 2/ gather all the old stripe_heads and tranfer the pages across
1482 * to the new stripe_heads. This will have the side effect of
1483 * freezing the array as once all stripe_heads have been collected,
1484 * no IO will be possible. Old stripe heads are freed once their
1485 * pages have been transferred over, and the old kmem_cache is
1486 * freed when all stripes are done.
1487 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1488 * we simple return a failre status - no need to clean anything up.
1489 * 4/ allocate new pages for the new slots in the new stripe_heads.
1490 * If this fails, we don't bother trying the shrink the
1491 * stripe_heads down again, we just leave them as they are.
1492 * As each stripe_head is processed the new one is released into
1493 * active service.
1495 * Once step2 is started, we cannot afford to wait for a write,
1496 * so we use GFP_NOIO allocations.
1498 struct stripe_head *osh, *nsh;
1499 LIST_HEAD(newstripes);
1500 struct disk_info *ndisks;
1501 unsigned long cpu;
1502 int err;
1503 struct kmem_cache *sc;
1504 int i;
1506 if (newsize <= conf->pool_size)
1507 return 0; /* never bother to shrink */
1509 err = md_allow_write(conf->mddev);
1510 if (err)
1511 return err;
1513 /* Step 1 */
1514 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1515 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1516 0, 0, NULL);
1517 if (!sc)
1518 return -ENOMEM;
1520 for (i = conf->max_nr_stripes; i; i--) {
1521 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1522 if (!nsh)
1523 break;
1525 nsh->raid_conf = conf;
1526 #ifdef CONFIG_MULTICORE_RAID456
1527 init_waitqueue_head(&nsh->ops.wait_for_ops);
1528 #endif
1530 list_add(&nsh->lru, &newstripes);
1532 if (i) {
1533 /* didn't get enough, give up */
1534 while (!list_empty(&newstripes)) {
1535 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1536 list_del(&nsh->lru);
1537 kmem_cache_free(sc, nsh);
1539 kmem_cache_destroy(sc);
1540 return -ENOMEM;
1542 /* Step 2 - Must use GFP_NOIO now.
1543 * OK, we have enough stripes, start collecting inactive
1544 * stripes and copying them over
1546 list_for_each_entry(nsh, &newstripes, lru) {
1547 spin_lock_irq(&conf->device_lock);
1548 wait_event_lock_irq(conf->wait_for_stripe,
1549 !list_empty(&conf->inactive_list),
1550 conf->device_lock,
1552 osh = get_free_stripe(conf);
1553 spin_unlock_irq(&conf->device_lock);
1554 atomic_set(&nsh->count, 1);
1555 for(i=0; i<conf->pool_size; i++)
1556 nsh->dev[i].page = osh->dev[i].page;
1557 for( ; i<newsize; i++)
1558 nsh->dev[i].page = NULL;
1559 kmem_cache_free(conf->slab_cache, osh);
1561 kmem_cache_destroy(conf->slab_cache);
1563 /* Step 3.
1564 * At this point, we are holding all the stripes so the array
1565 * is completely stalled, so now is a good time to resize
1566 * conf->disks and the scribble region
1568 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1569 if (ndisks) {
1570 for (i=0; i<conf->raid_disks; i++)
1571 ndisks[i] = conf->disks[i];
1572 kfree(conf->disks);
1573 conf->disks = ndisks;
1574 } else
1575 err = -ENOMEM;
1577 get_online_cpus();
1578 conf->scribble_len = scribble_len(newsize);
1579 for_each_present_cpu(cpu) {
1580 struct raid5_percpu *percpu;
1581 void *scribble;
1583 percpu = per_cpu_ptr(conf->percpu, cpu);
1584 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1586 if (scribble) {
1587 kfree(percpu->scribble);
1588 percpu->scribble = scribble;
1589 } else {
1590 err = -ENOMEM;
1591 break;
1594 put_online_cpus();
1596 /* Step 4, return new stripes to service */
1597 while(!list_empty(&newstripes)) {
1598 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1599 list_del_init(&nsh->lru);
1601 for (i=conf->raid_disks; i < newsize; i++)
1602 if (nsh->dev[i].page == NULL) {
1603 struct page *p = alloc_page(GFP_NOIO);
1604 nsh->dev[i].page = p;
1605 if (!p)
1606 err = -ENOMEM;
1608 release_stripe(nsh);
1610 /* critical section pass, GFP_NOIO no longer needed */
1612 conf->slab_cache = sc;
1613 conf->active_name = 1-conf->active_name;
1614 conf->pool_size = newsize;
1615 return err;
1618 static int drop_one_stripe(struct r5conf *conf)
1620 struct stripe_head *sh;
1622 spin_lock_irq(&conf->device_lock);
1623 sh = get_free_stripe(conf);
1624 spin_unlock_irq(&conf->device_lock);
1625 if (!sh)
1626 return 0;
1627 BUG_ON(atomic_read(&sh->count));
1628 shrink_buffers(sh);
1629 kmem_cache_free(conf->slab_cache, sh);
1630 atomic_dec(&conf->active_stripes);
1631 return 1;
1634 static void shrink_stripes(struct r5conf *conf)
1636 while (drop_one_stripe(conf))
1639 if (conf->slab_cache)
1640 kmem_cache_destroy(conf->slab_cache);
1641 conf->slab_cache = NULL;
1644 static void raid5_end_read_request(struct bio * bi, int error)
1646 struct stripe_head *sh = bi->bi_private;
1647 struct r5conf *conf = sh->raid_conf;
1648 int disks = sh->disks, i;
1649 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1650 char b[BDEVNAME_SIZE];
1651 struct md_rdev *rdev = NULL;
1654 for (i=0 ; i<disks; i++)
1655 if (bi == &sh->dev[i].req)
1656 break;
1658 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1659 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1660 uptodate);
1661 if (i == disks) {
1662 BUG();
1663 return;
1665 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1666 /* If replacement finished while this request was outstanding,
1667 * 'replacement' might be NULL already.
1668 * In that case it moved down to 'rdev'.
1669 * rdev is not removed until all requests are finished.
1671 rdev = conf->disks[i].replacement;
1672 if (!rdev)
1673 rdev = conf->disks[i].rdev;
1675 if (uptodate) {
1676 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1677 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1678 /* Note that this cannot happen on a
1679 * replacement device. We just fail those on
1680 * any error
1682 printk_ratelimited(
1683 KERN_INFO
1684 "md/raid:%s: read error corrected"
1685 " (%lu sectors at %llu on %s)\n",
1686 mdname(conf->mddev), STRIPE_SECTORS,
1687 (unsigned long long)(sh->sector
1688 + rdev->data_offset),
1689 bdevname(rdev->bdev, b));
1690 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1691 clear_bit(R5_ReadError, &sh->dev[i].flags);
1692 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1694 if (atomic_read(&rdev->read_errors))
1695 atomic_set(&rdev->read_errors, 0);
1696 } else {
1697 const char *bdn = bdevname(rdev->bdev, b);
1698 int retry = 0;
1700 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1701 atomic_inc(&rdev->read_errors);
1702 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1703 printk_ratelimited(
1704 KERN_WARNING
1705 "md/raid:%s: read error on replacement device "
1706 "(sector %llu on %s).\n",
1707 mdname(conf->mddev),
1708 (unsigned long long)(sh->sector
1709 + rdev->data_offset),
1710 bdn);
1711 else if (conf->mddev->degraded >= conf->max_degraded)
1712 printk_ratelimited(
1713 KERN_WARNING
1714 "md/raid:%s: read error not correctable "
1715 "(sector %llu on %s).\n",
1716 mdname(conf->mddev),
1717 (unsigned long long)(sh->sector
1718 + rdev->data_offset),
1719 bdn);
1720 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1721 /* Oh, no!!! */
1722 printk_ratelimited(
1723 KERN_WARNING
1724 "md/raid:%s: read error NOT corrected!! "
1725 "(sector %llu on %s).\n",
1726 mdname(conf->mddev),
1727 (unsigned long long)(sh->sector
1728 + rdev->data_offset),
1729 bdn);
1730 else if (atomic_read(&rdev->read_errors)
1731 > conf->max_nr_stripes)
1732 printk(KERN_WARNING
1733 "md/raid:%s: Too many read errors, failing device %s.\n",
1734 mdname(conf->mddev), bdn);
1735 else
1736 retry = 1;
1737 if (retry)
1738 set_bit(R5_ReadError, &sh->dev[i].flags);
1739 else {
1740 clear_bit(R5_ReadError, &sh->dev[i].flags);
1741 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1742 md_error(conf->mddev, rdev);
1745 rdev_dec_pending(rdev, conf->mddev);
1746 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1747 set_bit(STRIPE_HANDLE, &sh->state);
1748 release_stripe(sh);
1751 static void raid5_end_write_request(struct bio *bi, int error)
1753 struct stripe_head *sh = bi->bi_private;
1754 struct r5conf *conf = sh->raid_conf;
1755 int disks = sh->disks, i;
1756 struct md_rdev *uninitialized_var(rdev);
1757 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1758 sector_t first_bad;
1759 int bad_sectors;
1760 int replacement = 0;
1762 for (i = 0 ; i < disks; i++) {
1763 if (bi == &sh->dev[i].req) {
1764 rdev = conf->disks[i].rdev;
1765 break;
1767 if (bi == &sh->dev[i].rreq) {
1768 rdev = conf->disks[i].replacement;
1769 if (rdev)
1770 replacement = 1;
1771 else
1772 /* rdev was removed and 'replacement'
1773 * replaced it. rdev is not removed
1774 * until all requests are finished.
1776 rdev = conf->disks[i].rdev;
1777 break;
1780 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1781 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1782 uptodate);
1783 if (i == disks) {
1784 BUG();
1785 return;
1788 if (replacement) {
1789 if (!uptodate)
1790 md_error(conf->mddev, rdev);
1791 else if (is_badblock(rdev, sh->sector,
1792 STRIPE_SECTORS,
1793 &first_bad, &bad_sectors))
1794 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1795 } else {
1796 if (!uptodate) {
1797 set_bit(WriteErrorSeen, &rdev->flags);
1798 set_bit(R5_WriteError, &sh->dev[i].flags);
1799 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1800 set_bit(MD_RECOVERY_NEEDED,
1801 &rdev->mddev->recovery);
1802 } else if (is_badblock(rdev, sh->sector,
1803 STRIPE_SECTORS,
1804 &first_bad, &bad_sectors))
1805 set_bit(R5_MadeGood, &sh->dev[i].flags);
1807 rdev_dec_pending(rdev, conf->mddev);
1809 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1810 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1811 set_bit(STRIPE_HANDLE, &sh->state);
1812 release_stripe(sh);
1815 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1817 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1819 struct r5dev *dev = &sh->dev[i];
1821 bio_init(&dev->req);
1822 dev->req.bi_io_vec = &dev->vec;
1823 dev->req.bi_vcnt++;
1824 dev->req.bi_max_vecs++;
1825 dev->req.bi_private = sh;
1826 dev->vec.bv_page = dev->page;
1828 bio_init(&dev->rreq);
1829 dev->rreq.bi_io_vec = &dev->rvec;
1830 dev->rreq.bi_vcnt++;
1831 dev->rreq.bi_max_vecs++;
1832 dev->rreq.bi_private = sh;
1833 dev->rvec.bv_page = dev->page;
1835 dev->flags = 0;
1836 dev->sector = compute_blocknr(sh, i, previous);
1839 static void error(struct mddev *mddev, struct md_rdev *rdev)
1841 char b[BDEVNAME_SIZE];
1842 struct r5conf *conf = mddev->private;
1843 unsigned long flags;
1844 pr_debug("raid456: error called\n");
1846 spin_lock_irqsave(&conf->device_lock, flags);
1847 clear_bit(In_sync, &rdev->flags);
1848 mddev->degraded = calc_degraded(conf);
1849 spin_unlock_irqrestore(&conf->device_lock, flags);
1850 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1852 set_bit(Blocked, &rdev->flags);
1853 set_bit(Faulty, &rdev->flags);
1854 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1855 printk(KERN_ALERT
1856 "md/raid:%s: Disk failure on %s, disabling device.\n"
1857 "md/raid:%s: Operation continuing on %d devices.\n",
1858 mdname(mddev),
1859 bdevname(rdev->bdev, b),
1860 mdname(mddev),
1861 conf->raid_disks - mddev->degraded);
1865 * Input: a 'big' sector number,
1866 * Output: index of the data and parity disk, and the sector # in them.
1868 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1869 int previous, int *dd_idx,
1870 struct stripe_head *sh)
1872 sector_t stripe, stripe2;
1873 sector_t chunk_number;
1874 unsigned int chunk_offset;
1875 int pd_idx, qd_idx;
1876 int ddf_layout = 0;
1877 sector_t new_sector;
1878 int algorithm = previous ? conf->prev_algo
1879 : conf->algorithm;
1880 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1881 : conf->chunk_sectors;
1882 int raid_disks = previous ? conf->previous_raid_disks
1883 : conf->raid_disks;
1884 int data_disks = raid_disks - conf->max_degraded;
1886 /* First compute the information on this sector */
1889 * Compute the chunk number and the sector offset inside the chunk
1891 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1892 chunk_number = r_sector;
1895 * Compute the stripe number
1897 stripe = chunk_number;
1898 *dd_idx = sector_div(stripe, data_disks);
1899 stripe2 = stripe;
1901 * Select the parity disk based on the user selected algorithm.
1903 pd_idx = qd_idx = -1;
1904 switch(conf->level) {
1905 case 4:
1906 pd_idx = data_disks;
1907 break;
1908 case 5:
1909 switch (algorithm) {
1910 case ALGORITHM_LEFT_ASYMMETRIC:
1911 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1912 if (*dd_idx >= pd_idx)
1913 (*dd_idx)++;
1914 break;
1915 case ALGORITHM_RIGHT_ASYMMETRIC:
1916 pd_idx = sector_div(stripe2, raid_disks);
1917 if (*dd_idx >= pd_idx)
1918 (*dd_idx)++;
1919 break;
1920 case ALGORITHM_LEFT_SYMMETRIC:
1921 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1922 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1923 break;
1924 case ALGORITHM_RIGHT_SYMMETRIC:
1925 pd_idx = sector_div(stripe2, raid_disks);
1926 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1927 break;
1928 case ALGORITHM_PARITY_0:
1929 pd_idx = 0;
1930 (*dd_idx)++;
1931 break;
1932 case ALGORITHM_PARITY_N:
1933 pd_idx = data_disks;
1934 break;
1935 default:
1936 BUG();
1938 break;
1939 case 6:
1941 switch (algorithm) {
1942 case ALGORITHM_LEFT_ASYMMETRIC:
1943 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1944 qd_idx = pd_idx + 1;
1945 if (pd_idx == raid_disks-1) {
1946 (*dd_idx)++; /* Q D D D P */
1947 qd_idx = 0;
1948 } else if (*dd_idx >= pd_idx)
1949 (*dd_idx) += 2; /* D D P Q D */
1950 break;
1951 case ALGORITHM_RIGHT_ASYMMETRIC:
1952 pd_idx = sector_div(stripe2, raid_disks);
1953 qd_idx = pd_idx + 1;
1954 if (pd_idx == raid_disks-1) {
1955 (*dd_idx)++; /* Q D D D P */
1956 qd_idx = 0;
1957 } else if (*dd_idx >= pd_idx)
1958 (*dd_idx) += 2; /* D D P Q D */
1959 break;
1960 case ALGORITHM_LEFT_SYMMETRIC:
1961 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1962 qd_idx = (pd_idx + 1) % raid_disks;
1963 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1964 break;
1965 case ALGORITHM_RIGHT_SYMMETRIC:
1966 pd_idx = sector_div(stripe2, raid_disks);
1967 qd_idx = (pd_idx + 1) % raid_disks;
1968 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1969 break;
1971 case ALGORITHM_PARITY_0:
1972 pd_idx = 0;
1973 qd_idx = 1;
1974 (*dd_idx) += 2;
1975 break;
1976 case ALGORITHM_PARITY_N:
1977 pd_idx = data_disks;
1978 qd_idx = data_disks + 1;
1979 break;
1981 case ALGORITHM_ROTATING_ZERO_RESTART:
1982 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1983 * of blocks for computing Q is different.
1985 pd_idx = sector_div(stripe2, raid_disks);
1986 qd_idx = pd_idx + 1;
1987 if (pd_idx == raid_disks-1) {
1988 (*dd_idx)++; /* Q D D D P */
1989 qd_idx = 0;
1990 } else if (*dd_idx >= pd_idx)
1991 (*dd_idx) += 2; /* D D P Q D */
1992 ddf_layout = 1;
1993 break;
1995 case ALGORITHM_ROTATING_N_RESTART:
1996 /* Same a left_asymmetric, by first stripe is
1997 * D D D P Q rather than
1998 * Q D D D P
2000 stripe2 += 1;
2001 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2002 qd_idx = pd_idx + 1;
2003 if (pd_idx == raid_disks-1) {
2004 (*dd_idx)++; /* Q D D D P */
2005 qd_idx = 0;
2006 } else if (*dd_idx >= pd_idx)
2007 (*dd_idx) += 2; /* D D P Q D */
2008 ddf_layout = 1;
2009 break;
2011 case ALGORITHM_ROTATING_N_CONTINUE:
2012 /* Same as left_symmetric but Q is before P */
2013 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2014 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2015 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2016 ddf_layout = 1;
2017 break;
2019 case ALGORITHM_LEFT_ASYMMETRIC_6:
2020 /* RAID5 left_asymmetric, with Q on last device */
2021 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2022 if (*dd_idx >= pd_idx)
2023 (*dd_idx)++;
2024 qd_idx = raid_disks - 1;
2025 break;
2027 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2028 pd_idx = sector_div(stripe2, raid_disks-1);
2029 if (*dd_idx >= pd_idx)
2030 (*dd_idx)++;
2031 qd_idx = raid_disks - 1;
2032 break;
2034 case ALGORITHM_LEFT_SYMMETRIC_6:
2035 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2036 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2037 qd_idx = raid_disks - 1;
2038 break;
2040 case ALGORITHM_RIGHT_SYMMETRIC_6:
2041 pd_idx = sector_div(stripe2, raid_disks-1);
2042 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2043 qd_idx = raid_disks - 1;
2044 break;
2046 case ALGORITHM_PARITY_0_6:
2047 pd_idx = 0;
2048 (*dd_idx)++;
2049 qd_idx = raid_disks - 1;
2050 break;
2052 default:
2053 BUG();
2055 break;
2058 if (sh) {
2059 sh->pd_idx = pd_idx;
2060 sh->qd_idx = qd_idx;
2061 sh->ddf_layout = ddf_layout;
2064 * Finally, compute the new sector number
2066 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2067 return new_sector;
2071 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2073 struct r5conf *conf = sh->raid_conf;
2074 int raid_disks = sh->disks;
2075 int data_disks = raid_disks - conf->max_degraded;
2076 sector_t new_sector = sh->sector, check;
2077 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2078 : conf->chunk_sectors;
2079 int algorithm = previous ? conf->prev_algo
2080 : conf->algorithm;
2081 sector_t stripe;
2082 int chunk_offset;
2083 sector_t chunk_number;
2084 int dummy1, dd_idx = i;
2085 sector_t r_sector;
2086 struct stripe_head sh2;
2089 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2090 stripe = new_sector;
2092 if (i == sh->pd_idx)
2093 return 0;
2094 switch(conf->level) {
2095 case 4: break;
2096 case 5:
2097 switch (algorithm) {
2098 case ALGORITHM_LEFT_ASYMMETRIC:
2099 case ALGORITHM_RIGHT_ASYMMETRIC:
2100 if (i > sh->pd_idx)
2101 i--;
2102 break;
2103 case ALGORITHM_LEFT_SYMMETRIC:
2104 case ALGORITHM_RIGHT_SYMMETRIC:
2105 if (i < sh->pd_idx)
2106 i += raid_disks;
2107 i -= (sh->pd_idx + 1);
2108 break;
2109 case ALGORITHM_PARITY_0:
2110 i -= 1;
2111 break;
2112 case ALGORITHM_PARITY_N:
2113 break;
2114 default:
2115 BUG();
2117 break;
2118 case 6:
2119 if (i == sh->qd_idx)
2120 return 0; /* It is the Q disk */
2121 switch (algorithm) {
2122 case ALGORITHM_LEFT_ASYMMETRIC:
2123 case ALGORITHM_RIGHT_ASYMMETRIC:
2124 case ALGORITHM_ROTATING_ZERO_RESTART:
2125 case ALGORITHM_ROTATING_N_RESTART:
2126 if (sh->pd_idx == raid_disks-1)
2127 i--; /* Q D D D P */
2128 else if (i > sh->pd_idx)
2129 i -= 2; /* D D P Q D */
2130 break;
2131 case ALGORITHM_LEFT_SYMMETRIC:
2132 case ALGORITHM_RIGHT_SYMMETRIC:
2133 if (sh->pd_idx == raid_disks-1)
2134 i--; /* Q D D D P */
2135 else {
2136 /* D D P Q D */
2137 if (i < sh->pd_idx)
2138 i += raid_disks;
2139 i -= (sh->pd_idx + 2);
2141 break;
2142 case ALGORITHM_PARITY_0:
2143 i -= 2;
2144 break;
2145 case ALGORITHM_PARITY_N:
2146 break;
2147 case ALGORITHM_ROTATING_N_CONTINUE:
2148 /* Like left_symmetric, but P is before Q */
2149 if (sh->pd_idx == 0)
2150 i--; /* P D D D Q */
2151 else {
2152 /* D D Q P D */
2153 if (i < sh->pd_idx)
2154 i += raid_disks;
2155 i -= (sh->pd_idx + 1);
2157 break;
2158 case ALGORITHM_LEFT_ASYMMETRIC_6:
2159 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2160 if (i > sh->pd_idx)
2161 i--;
2162 break;
2163 case ALGORITHM_LEFT_SYMMETRIC_6:
2164 case ALGORITHM_RIGHT_SYMMETRIC_6:
2165 if (i < sh->pd_idx)
2166 i += data_disks + 1;
2167 i -= (sh->pd_idx + 1);
2168 break;
2169 case ALGORITHM_PARITY_0_6:
2170 i -= 1;
2171 break;
2172 default:
2173 BUG();
2175 break;
2178 chunk_number = stripe * data_disks + i;
2179 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2181 check = raid5_compute_sector(conf, r_sector,
2182 previous, &dummy1, &sh2);
2183 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2184 || sh2.qd_idx != sh->qd_idx) {
2185 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2186 mdname(conf->mddev));
2187 return 0;
2189 return r_sector;
2193 static void
2194 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2195 int rcw, int expand)
2197 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2198 struct r5conf *conf = sh->raid_conf;
2199 int level = conf->level;
2201 if (rcw) {
2202 /* if we are not expanding this is a proper write request, and
2203 * there will be bios with new data to be drained into the
2204 * stripe cache
2206 if (!expand) {
2207 sh->reconstruct_state = reconstruct_state_drain_run;
2208 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2209 } else
2210 sh->reconstruct_state = reconstruct_state_run;
2212 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2214 for (i = disks; i--; ) {
2215 struct r5dev *dev = &sh->dev[i];
2217 if (dev->towrite) {
2218 set_bit(R5_LOCKED, &dev->flags);
2219 set_bit(R5_Wantdrain, &dev->flags);
2220 if (!expand)
2221 clear_bit(R5_UPTODATE, &dev->flags);
2222 s->locked++;
2225 if (s->locked + conf->max_degraded == disks)
2226 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2227 atomic_inc(&conf->pending_full_writes);
2228 } else {
2229 BUG_ON(level == 6);
2230 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2231 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2233 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2234 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2235 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2236 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2238 for (i = disks; i--; ) {
2239 struct r5dev *dev = &sh->dev[i];
2240 if (i == pd_idx)
2241 continue;
2243 if (dev->towrite &&
2244 (test_bit(R5_UPTODATE, &dev->flags) ||
2245 test_bit(R5_Wantcompute, &dev->flags))) {
2246 set_bit(R5_Wantdrain, &dev->flags);
2247 set_bit(R5_LOCKED, &dev->flags);
2248 clear_bit(R5_UPTODATE, &dev->flags);
2249 s->locked++;
2254 /* keep the parity disk(s) locked while asynchronous operations
2255 * are in flight
2257 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2258 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2259 s->locked++;
2261 if (level == 6) {
2262 int qd_idx = sh->qd_idx;
2263 struct r5dev *dev = &sh->dev[qd_idx];
2265 set_bit(R5_LOCKED, &dev->flags);
2266 clear_bit(R5_UPTODATE, &dev->flags);
2267 s->locked++;
2270 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2271 __func__, (unsigned long long)sh->sector,
2272 s->locked, s->ops_request);
2276 * Each stripe/dev can have one or more bion attached.
2277 * toread/towrite point to the first in a chain.
2278 * The bi_next chain must be in order.
2280 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2282 struct bio **bip;
2283 struct r5conf *conf = sh->raid_conf;
2284 int firstwrite=0;
2286 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2287 (unsigned long long)bi->bi_sector,
2288 (unsigned long long)sh->sector);
2291 spin_lock_irq(&conf->device_lock);
2292 if (forwrite) {
2293 bip = &sh->dev[dd_idx].towrite;
2294 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2295 firstwrite = 1;
2296 } else
2297 bip = &sh->dev[dd_idx].toread;
2298 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2299 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2300 goto overlap;
2301 bip = & (*bip)->bi_next;
2303 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2304 goto overlap;
2306 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2307 if (*bip)
2308 bi->bi_next = *bip;
2309 *bip = bi;
2310 bi->bi_phys_segments++;
2312 if (forwrite) {
2313 /* check if page is covered */
2314 sector_t sector = sh->dev[dd_idx].sector;
2315 for (bi=sh->dev[dd_idx].towrite;
2316 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2317 bi && bi->bi_sector <= sector;
2318 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2319 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2320 sector = bi->bi_sector + (bi->bi_size>>9);
2322 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2323 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2325 spin_unlock_irq(&conf->device_lock);
2327 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2328 (unsigned long long)(*bip)->bi_sector,
2329 (unsigned long long)sh->sector, dd_idx);
2331 if (conf->mddev->bitmap && firstwrite) {
2332 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2333 STRIPE_SECTORS, 0);
2334 sh->bm_seq = conf->seq_flush+1;
2335 set_bit(STRIPE_BIT_DELAY, &sh->state);
2337 return 1;
2339 overlap:
2340 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2341 spin_unlock_irq(&conf->device_lock);
2342 return 0;
2345 static void end_reshape(struct r5conf *conf);
2347 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2348 struct stripe_head *sh)
2350 int sectors_per_chunk =
2351 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2352 int dd_idx;
2353 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2354 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2356 raid5_compute_sector(conf,
2357 stripe * (disks - conf->max_degraded)
2358 *sectors_per_chunk + chunk_offset,
2359 previous,
2360 &dd_idx, sh);
2363 static void
2364 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2365 struct stripe_head_state *s, int disks,
2366 struct bio **return_bi)
2368 int i;
2369 for (i = disks; i--; ) {
2370 struct bio *bi;
2371 int bitmap_end = 0;
2373 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2374 struct md_rdev *rdev;
2375 rcu_read_lock();
2376 rdev = rcu_dereference(conf->disks[i].rdev);
2377 if (rdev && test_bit(In_sync, &rdev->flags))
2378 atomic_inc(&rdev->nr_pending);
2379 else
2380 rdev = NULL;
2381 rcu_read_unlock();
2382 if (rdev) {
2383 if (!rdev_set_badblocks(
2384 rdev,
2385 sh->sector,
2386 STRIPE_SECTORS, 0))
2387 md_error(conf->mddev, rdev);
2388 rdev_dec_pending(rdev, conf->mddev);
2391 spin_lock_irq(&conf->device_lock);
2392 /* fail all writes first */
2393 bi = sh->dev[i].towrite;
2394 sh->dev[i].towrite = NULL;
2395 if (bi) {
2396 s->to_write--;
2397 bitmap_end = 1;
2400 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2401 wake_up(&conf->wait_for_overlap);
2403 while (bi && bi->bi_sector <
2404 sh->dev[i].sector + STRIPE_SECTORS) {
2405 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2406 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2407 if (!raid5_dec_bi_phys_segments(bi)) {
2408 md_write_end(conf->mddev);
2409 bi->bi_next = *return_bi;
2410 *return_bi = bi;
2412 bi = nextbi;
2414 /* and fail all 'written' */
2415 bi = sh->dev[i].written;
2416 sh->dev[i].written = NULL;
2417 if (bi) bitmap_end = 1;
2418 while (bi && bi->bi_sector <
2419 sh->dev[i].sector + STRIPE_SECTORS) {
2420 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2421 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2422 if (!raid5_dec_bi_phys_segments(bi)) {
2423 md_write_end(conf->mddev);
2424 bi->bi_next = *return_bi;
2425 *return_bi = bi;
2427 bi = bi2;
2430 /* fail any reads if this device is non-operational and
2431 * the data has not reached the cache yet.
2433 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2434 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2435 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2436 bi = sh->dev[i].toread;
2437 sh->dev[i].toread = NULL;
2438 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2439 wake_up(&conf->wait_for_overlap);
2440 if (bi) s->to_read--;
2441 while (bi && bi->bi_sector <
2442 sh->dev[i].sector + STRIPE_SECTORS) {
2443 struct bio *nextbi =
2444 r5_next_bio(bi, sh->dev[i].sector);
2445 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2446 if (!raid5_dec_bi_phys_segments(bi)) {
2447 bi->bi_next = *return_bi;
2448 *return_bi = bi;
2450 bi = nextbi;
2453 spin_unlock_irq(&conf->device_lock);
2454 if (bitmap_end)
2455 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2456 STRIPE_SECTORS, 0, 0);
2457 /* If we were in the middle of a write the parity block might
2458 * still be locked - so just clear all R5_LOCKED flags
2460 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2463 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2464 if (atomic_dec_and_test(&conf->pending_full_writes))
2465 md_wakeup_thread(conf->mddev->thread);
2468 static void
2469 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2470 struct stripe_head_state *s)
2472 int abort = 0;
2473 int i;
2475 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2476 clear_bit(STRIPE_SYNCING, &sh->state);
2477 s->syncing = 0;
2478 s->replacing = 0;
2479 /* There is nothing more to do for sync/check/repair.
2480 * For recover/replace we need to record a bad block on all
2481 * non-sync devices, or abort the recovery
2483 if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2484 return;
2485 /* During recovery devices cannot be removed, so locking and
2486 * refcounting of rdevs is not needed
2488 for (i = 0; i < conf->raid_disks; i++) {
2489 struct md_rdev *rdev = conf->disks[i].rdev;
2490 if (rdev
2491 && !test_bit(Faulty, &rdev->flags)
2492 && !test_bit(In_sync, &rdev->flags)
2493 && !rdev_set_badblocks(rdev, sh->sector,
2494 STRIPE_SECTORS, 0))
2495 abort = 1;
2496 rdev = conf->disks[i].replacement;
2497 if (rdev
2498 && !test_bit(Faulty, &rdev->flags)
2499 && !test_bit(In_sync, &rdev->flags)
2500 && !rdev_set_badblocks(rdev, sh->sector,
2501 STRIPE_SECTORS, 0))
2502 abort = 1;
2504 if (abort) {
2505 conf->recovery_disabled = conf->mddev->recovery_disabled;
2506 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2510 static int want_replace(struct stripe_head *sh, int disk_idx)
2512 struct md_rdev *rdev;
2513 int rv = 0;
2514 /* Doing recovery so rcu locking not required */
2515 rdev = sh->raid_conf->disks[disk_idx].replacement;
2516 if (rdev
2517 && !test_bit(Faulty, &rdev->flags)
2518 && !test_bit(In_sync, &rdev->flags)
2519 && (rdev->recovery_offset <= sh->sector
2520 || rdev->mddev->recovery_cp <= sh->sector))
2521 rv = 1;
2523 return rv;
2526 /* fetch_block - checks the given member device to see if its data needs
2527 * to be read or computed to satisfy a request.
2529 * Returns 1 when no more member devices need to be checked, otherwise returns
2530 * 0 to tell the loop in handle_stripe_fill to continue
2532 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2533 int disk_idx, int disks)
2535 struct r5dev *dev = &sh->dev[disk_idx];
2536 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2537 &sh->dev[s->failed_num[1]] };
2539 /* is the data in this block needed, and can we get it? */
2540 if (!test_bit(R5_LOCKED, &dev->flags) &&
2541 !test_bit(R5_UPTODATE, &dev->flags) &&
2542 (dev->toread ||
2543 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2544 s->syncing || s->expanding ||
2545 (s->replacing && want_replace(sh, disk_idx)) ||
2546 (s->failed >= 1 && fdev[0]->toread) ||
2547 (s->failed >= 2 && fdev[1]->toread) ||
2548 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2549 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2550 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2551 /* we would like to get this block, possibly by computing it,
2552 * otherwise read it if the backing disk is insync
2554 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2555 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2556 if ((s->uptodate == disks - 1) &&
2557 (s->failed && (disk_idx == s->failed_num[0] ||
2558 disk_idx == s->failed_num[1]))) {
2559 /* have disk failed, and we're requested to fetch it;
2560 * do compute it
2562 pr_debug("Computing stripe %llu block %d\n",
2563 (unsigned long long)sh->sector, disk_idx);
2564 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2565 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2566 set_bit(R5_Wantcompute, &dev->flags);
2567 sh->ops.target = disk_idx;
2568 sh->ops.target2 = -1; /* no 2nd target */
2569 s->req_compute = 1;
2570 /* Careful: from this point on 'uptodate' is in the eye
2571 * of raid_run_ops which services 'compute' operations
2572 * before writes. R5_Wantcompute flags a block that will
2573 * be R5_UPTODATE by the time it is needed for a
2574 * subsequent operation.
2576 s->uptodate++;
2577 return 1;
2578 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2579 /* Computing 2-failure is *very* expensive; only
2580 * do it if failed >= 2
2582 int other;
2583 for (other = disks; other--; ) {
2584 if (other == disk_idx)
2585 continue;
2586 if (!test_bit(R5_UPTODATE,
2587 &sh->dev[other].flags))
2588 break;
2590 BUG_ON(other < 0);
2591 pr_debug("Computing stripe %llu blocks %d,%d\n",
2592 (unsigned long long)sh->sector,
2593 disk_idx, other);
2594 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2595 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2596 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2597 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2598 sh->ops.target = disk_idx;
2599 sh->ops.target2 = other;
2600 s->uptodate += 2;
2601 s->req_compute = 1;
2602 return 1;
2603 } else if (test_bit(R5_Insync, &dev->flags)) {
2604 set_bit(R5_LOCKED, &dev->flags);
2605 set_bit(R5_Wantread, &dev->flags);
2606 s->locked++;
2607 pr_debug("Reading block %d (sync=%d)\n",
2608 disk_idx, s->syncing);
2612 return 0;
2616 * handle_stripe_fill - read or compute data to satisfy pending requests.
2618 static void handle_stripe_fill(struct stripe_head *sh,
2619 struct stripe_head_state *s,
2620 int disks)
2622 int i;
2624 /* look for blocks to read/compute, skip this if a compute
2625 * is already in flight, or if the stripe contents are in the
2626 * midst of changing due to a write
2628 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2629 !sh->reconstruct_state)
2630 for (i = disks; i--; )
2631 if (fetch_block(sh, s, i, disks))
2632 break;
2633 set_bit(STRIPE_HANDLE, &sh->state);
2637 /* handle_stripe_clean_event
2638 * any written block on an uptodate or failed drive can be returned.
2639 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2640 * never LOCKED, so we don't need to test 'failed' directly.
2642 static void handle_stripe_clean_event(struct r5conf *conf,
2643 struct stripe_head *sh, int disks, struct bio **return_bi)
2645 int i;
2646 struct r5dev *dev;
2648 for (i = disks; i--; )
2649 if (sh->dev[i].written) {
2650 dev = &sh->dev[i];
2651 if (!test_bit(R5_LOCKED, &dev->flags) &&
2652 test_bit(R5_UPTODATE, &dev->flags)) {
2653 /* We can return any write requests */
2654 struct bio *wbi, *wbi2;
2655 int bitmap_end = 0;
2656 pr_debug("Return write for disc %d\n", i);
2657 spin_lock_irq(&conf->device_lock);
2658 wbi = dev->written;
2659 dev->written = NULL;
2660 while (wbi && wbi->bi_sector <
2661 dev->sector + STRIPE_SECTORS) {
2662 wbi2 = r5_next_bio(wbi, dev->sector);
2663 if (!raid5_dec_bi_phys_segments(wbi)) {
2664 md_write_end(conf->mddev);
2665 wbi->bi_next = *return_bi;
2666 *return_bi = wbi;
2668 wbi = wbi2;
2670 if (dev->towrite == NULL)
2671 bitmap_end = 1;
2672 spin_unlock_irq(&conf->device_lock);
2673 if (bitmap_end)
2674 bitmap_endwrite(conf->mddev->bitmap,
2675 sh->sector,
2676 STRIPE_SECTORS,
2677 !test_bit(STRIPE_DEGRADED, &sh->state),
2682 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2683 if (atomic_dec_and_test(&conf->pending_full_writes))
2684 md_wakeup_thread(conf->mddev->thread);
2687 static void handle_stripe_dirtying(struct r5conf *conf,
2688 struct stripe_head *sh,
2689 struct stripe_head_state *s,
2690 int disks)
2692 int rmw = 0, rcw = 0, i;
2693 if (conf->max_degraded == 2) {
2694 /* RAID6 requires 'rcw' in current implementation
2695 * Calculate the real rcw later - for now fake it
2696 * look like rcw is cheaper
2698 rcw = 1; rmw = 2;
2699 } else for (i = disks; i--; ) {
2700 /* would I have to read this buffer for read_modify_write */
2701 struct r5dev *dev = &sh->dev[i];
2702 if ((dev->towrite || i == sh->pd_idx) &&
2703 !test_bit(R5_LOCKED, &dev->flags) &&
2704 !(test_bit(R5_UPTODATE, &dev->flags) ||
2705 test_bit(R5_Wantcompute, &dev->flags))) {
2706 if (test_bit(R5_Insync, &dev->flags))
2707 rmw++;
2708 else
2709 rmw += 2*disks; /* cannot read it */
2711 /* Would I have to read this buffer for reconstruct_write */
2712 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2713 !test_bit(R5_LOCKED, &dev->flags) &&
2714 !(test_bit(R5_UPTODATE, &dev->flags) ||
2715 test_bit(R5_Wantcompute, &dev->flags))) {
2716 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2717 else
2718 rcw += 2*disks;
2721 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2722 (unsigned long long)sh->sector, rmw, rcw);
2723 set_bit(STRIPE_HANDLE, &sh->state);
2724 if (rmw < rcw && rmw > 0)
2725 /* prefer read-modify-write, but need to get some data */
2726 for (i = disks; i--; ) {
2727 struct r5dev *dev = &sh->dev[i];
2728 if ((dev->towrite || i == sh->pd_idx) &&
2729 !test_bit(R5_LOCKED, &dev->flags) &&
2730 !(test_bit(R5_UPTODATE, &dev->flags) ||
2731 test_bit(R5_Wantcompute, &dev->flags)) &&
2732 test_bit(R5_Insync, &dev->flags)) {
2733 if (
2734 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2735 pr_debug("Read_old block "
2736 "%d for r-m-w\n", i);
2737 set_bit(R5_LOCKED, &dev->flags);
2738 set_bit(R5_Wantread, &dev->flags);
2739 s->locked++;
2740 } else {
2741 set_bit(STRIPE_DELAYED, &sh->state);
2742 set_bit(STRIPE_HANDLE, &sh->state);
2746 if (rcw <= rmw && rcw > 0) {
2747 /* want reconstruct write, but need to get some data */
2748 rcw = 0;
2749 for (i = disks; i--; ) {
2750 struct r5dev *dev = &sh->dev[i];
2751 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2752 i != sh->pd_idx && i != sh->qd_idx &&
2753 !test_bit(R5_LOCKED, &dev->flags) &&
2754 !(test_bit(R5_UPTODATE, &dev->flags) ||
2755 test_bit(R5_Wantcompute, &dev->flags))) {
2756 rcw++;
2757 if (!test_bit(R5_Insync, &dev->flags))
2758 continue; /* it's a failed drive */
2759 if (
2760 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2761 pr_debug("Read_old block "
2762 "%d for Reconstruct\n", i);
2763 set_bit(R5_LOCKED, &dev->flags);
2764 set_bit(R5_Wantread, &dev->flags);
2765 s->locked++;
2766 } else {
2767 set_bit(STRIPE_DELAYED, &sh->state);
2768 set_bit(STRIPE_HANDLE, &sh->state);
2773 /* now if nothing is locked, and if we have enough data,
2774 * we can start a write request
2776 /* since handle_stripe can be called at any time we need to handle the
2777 * case where a compute block operation has been submitted and then a
2778 * subsequent call wants to start a write request. raid_run_ops only
2779 * handles the case where compute block and reconstruct are requested
2780 * simultaneously. If this is not the case then new writes need to be
2781 * held off until the compute completes.
2783 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2784 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2785 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2786 schedule_reconstruction(sh, s, rcw == 0, 0);
2789 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2790 struct stripe_head_state *s, int disks)
2792 struct r5dev *dev = NULL;
2794 set_bit(STRIPE_HANDLE, &sh->state);
2796 switch (sh->check_state) {
2797 case check_state_idle:
2798 /* start a new check operation if there are no failures */
2799 if (s->failed == 0) {
2800 BUG_ON(s->uptodate != disks);
2801 sh->check_state = check_state_run;
2802 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2803 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2804 s->uptodate--;
2805 break;
2807 dev = &sh->dev[s->failed_num[0]];
2808 /* fall through */
2809 case check_state_compute_result:
2810 sh->check_state = check_state_idle;
2811 if (!dev)
2812 dev = &sh->dev[sh->pd_idx];
2814 /* check that a write has not made the stripe insync */
2815 if (test_bit(STRIPE_INSYNC, &sh->state))
2816 break;
2818 /* either failed parity check, or recovery is happening */
2819 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2820 BUG_ON(s->uptodate != disks);
2822 set_bit(R5_LOCKED, &dev->flags);
2823 s->locked++;
2824 set_bit(R5_Wantwrite, &dev->flags);
2826 clear_bit(STRIPE_DEGRADED, &sh->state);
2827 set_bit(STRIPE_INSYNC, &sh->state);
2828 break;
2829 case check_state_run:
2830 break; /* we will be called again upon completion */
2831 case check_state_check_result:
2832 sh->check_state = check_state_idle;
2834 /* if a failure occurred during the check operation, leave
2835 * STRIPE_INSYNC not set and let the stripe be handled again
2837 if (s->failed)
2838 break;
2840 /* handle a successful check operation, if parity is correct
2841 * we are done. Otherwise update the mismatch count and repair
2842 * parity if !MD_RECOVERY_CHECK
2844 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2845 /* parity is correct (on disc,
2846 * not in buffer any more)
2848 set_bit(STRIPE_INSYNC, &sh->state);
2849 else {
2850 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2851 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2852 /* don't try to repair!! */
2853 set_bit(STRIPE_INSYNC, &sh->state);
2854 else {
2855 sh->check_state = check_state_compute_run;
2856 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2857 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2858 set_bit(R5_Wantcompute,
2859 &sh->dev[sh->pd_idx].flags);
2860 sh->ops.target = sh->pd_idx;
2861 sh->ops.target2 = -1;
2862 s->uptodate++;
2865 break;
2866 case check_state_compute_run:
2867 break;
2868 default:
2869 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2870 __func__, sh->check_state,
2871 (unsigned long long) sh->sector);
2872 BUG();
2877 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2878 struct stripe_head_state *s,
2879 int disks)
2881 int pd_idx = sh->pd_idx;
2882 int qd_idx = sh->qd_idx;
2883 struct r5dev *dev;
2885 set_bit(STRIPE_HANDLE, &sh->state);
2887 BUG_ON(s->failed > 2);
2889 /* Want to check and possibly repair P and Q.
2890 * However there could be one 'failed' device, in which
2891 * case we can only check one of them, possibly using the
2892 * other to generate missing data
2895 switch (sh->check_state) {
2896 case check_state_idle:
2897 /* start a new check operation if there are < 2 failures */
2898 if (s->failed == s->q_failed) {
2899 /* The only possible failed device holds Q, so it
2900 * makes sense to check P (If anything else were failed,
2901 * we would have used P to recreate it).
2903 sh->check_state = check_state_run;
2905 if (!s->q_failed && s->failed < 2) {
2906 /* Q is not failed, and we didn't use it to generate
2907 * anything, so it makes sense to check it
2909 if (sh->check_state == check_state_run)
2910 sh->check_state = check_state_run_pq;
2911 else
2912 sh->check_state = check_state_run_q;
2915 /* discard potentially stale zero_sum_result */
2916 sh->ops.zero_sum_result = 0;
2918 if (sh->check_state == check_state_run) {
2919 /* async_xor_zero_sum destroys the contents of P */
2920 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2921 s->uptodate--;
2923 if (sh->check_state >= check_state_run &&
2924 sh->check_state <= check_state_run_pq) {
2925 /* async_syndrome_zero_sum preserves P and Q, so
2926 * no need to mark them !uptodate here
2928 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2929 break;
2932 /* we have 2-disk failure */
2933 BUG_ON(s->failed != 2);
2934 /* fall through */
2935 case check_state_compute_result:
2936 sh->check_state = check_state_idle;
2938 /* check that a write has not made the stripe insync */
2939 if (test_bit(STRIPE_INSYNC, &sh->state))
2940 break;
2942 /* now write out any block on a failed drive,
2943 * or P or Q if they were recomputed
2945 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2946 if (s->failed == 2) {
2947 dev = &sh->dev[s->failed_num[1]];
2948 s->locked++;
2949 set_bit(R5_LOCKED, &dev->flags);
2950 set_bit(R5_Wantwrite, &dev->flags);
2952 if (s->failed >= 1) {
2953 dev = &sh->dev[s->failed_num[0]];
2954 s->locked++;
2955 set_bit(R5_LOCKED, &dev->flags);
2956 set_bit(R5_Wantwrite, &dev->flags);
2958 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2959 dev = &sh->dev[pd_idx];
2960 s->locked++;
2961 set_bit(R5_LOCKED, &dev->flags);
2962 set_bit(R5_Wantwrite, &dev->flags);
2964 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2965 dev = &sh->dev[qd_idx];
2966 s->locked++;
2967 set_bit(R5_LOCKED, &dev->flags);
2968 set_bit(R5_Wantwrite, &dev->flags);
2970 clear_bit(STRIPE_DEGRADED, &sh->state);
2972 set_bit(STRIPE_INSYNC, &sh->state);
2973 break;
2974 case check_state_run:
2975 case check_state_run_q:
2976 case check_state_run_pq:
2977 break; /* we will be called again upon completion */
2978 case check_state_check_result:
2979 sh->check_state = check_state_idle;
2981 /* handle a successful check operation, if parity is correct
2982 * we are done. Otherwise update the mismatch count and repair
2983 * parity if !MD_RECOVERY_CHECK
2985 if (sh->ops.zero_sum_result == 0) {
2986 /* both parities are correct */
2987 if (!s->failed)
2988 set_bit(STRIPE_INSYNC, &sh->state);
2989 else {
2990 /* in contrast to the raid5 case we can validate
2991 * parity, but still have a failure to write
2992 * back
2994 sh->check_state = check_state_compute_result;
2995 /* Returning at this point means that we may go
2996 * off and bring p and/or q uptodate again so
2997 * we make sure to check zero_sum_result again
2998 * to verify if p or q need writeback
3001 } else {
3002 conf->mddev->resync_mismatches += STRIPE_SECTORS;
3003 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3004 /* don't try to repair!! */
3005 set_bit(STRIPE_INSYNC, &sh->state);
3006 else {
3007 int *target = &sh->ops.target;
3009 sh->ops.target = -1;
3010 sh->ops.target2 = -1;
3011 sh->check_state = check_state_compute_run;
3012 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3013 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3014 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3015 set_bit(R5_Wantcompute,
3016 &sh->dev[pd_idx].flags);
3017 *target = pd_idx;
3018 target = &sh->ops.target2;
3019 s->uptodate++;
3021 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3022 set_bit(R5_Wantcompute,
3023 &sh->dev[qd_idx].flags);
3024 *target = qd_idx;
3025 s->uptodate++;
3029 break;
3030 case check_state_compute_run:
3031 break;
3032 default:
3033 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3034 __func__, sh->check_state,
3035 (unsigned long long) sh->sector);
3036 BUG();
3040 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3042 int i;
3044 /* We have read all the blocks in this stripe and now we need to
3045 * copy some of them into a target stripe for expand.
3047 struct dma_async_tx_descriptor *tx = NULL;
3048 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3049 for (i = 0; i < sh->disks; i++)
3050 if (i != sh->pd_idx && i != sh->qd_idx) {
3051 int dd_idx, j;
3052 struct stripe_head *sh2;
3053 struct async_submit_ctl submit;
3055 sector_t bn = compute_blocknr(sh, i, 1);
3056 sector_t s = raid5_compute_sector(conf, bn, 0,
3057 &dd_idx, NULL);
3058 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3059 if (sh2 == NULL)
3060 /* so far only the early blocks of this stripe
3061 * have been requested. When later blocks
3062 * get requested, we will try again
3064 continue;
3065 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3066 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3067 /* must have already done this block */
3068 release_stripe(sh2);
3069 continue;
3072 /* place all the copies on one channel */
3073 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3074 tx = async_memcpy(sh2->dev[dd_idx].page,
3075 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3076 &submit);
3078 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3079 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3080 for (j = 0; j < conf->raid_disks; j++)
3081 if (j != sh2->pd_idx &&
3082 j != sh2->qd_idx &&
3083 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3084 break;
3085 if (j == conf->raid_disks) {
3086 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3087 set_bit(STRIPE_HANDLE, &sh2->state);
3089 release_stripe(sh2);
3092 /* done submitting copies, wait for them to complete */
3093 if (tx) {
3094 async_tx_ack(tx);
3095 dma_wait_for_async_tx(tx);
3100 * handle_stripe - do things to a stripe.
3102 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3103 * state of various bits to see what needs to be done.
3104 * Possible results:
3105 * return some read requests which now have data
3106 * return some write requests which are safely on storage
3107 * schedule a read on some buffers
3108 * schedule a write of some buffers
3109 * return confirmation of parity correctness
3113 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3115 struct r5conf *conf = sh->raid_conf;
3116 int disks = sh->disks;
3117 struct r5dev *dev;
3118 int i;
3119 int do_recovery = 0;
3121 memset(s, 0, sizeof(*s));
3123 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3124 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3125 s->failed_num[0] = -1;
3126 s->failed_num[1] = -1;
3128 /* Now to look around and see what can be done */
3129 rcu_read_lock();
3130 spin_lock_irq(&conf->device_lock);
3131 for (i=disks; i--; ) {
3132 struct md_rdev *rdev;
3133 sector_t first_bad;
3134 int bad_sectors;
3135 int is_bad = 0;
3137 dev = &sh->dev[i];
3139 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3140 i, dev->flags,
3141 dev->toread, dev->towrite, dev->written);
3142 /* maybe we can reply to a read
3144 * new wantfill requests are only permitted while
3145 * ops_complete_biofill is guaranteed to be inactive
3147 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3148 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3149 set_bit(R5_Wantfill, &dev->flags);
3151 /* now count some things */
3152 if (test_bit(R5_LOCKED, &dev->flags))
3153 s->locked++;
3154 if (test_bit(R5_UPTODATE, &dev->flags))
3155 s->uptodate++;
3156 if (test_bit(R5_Wantcompute, &dev->flags)) {
3157 s->compute++;
3158 BUG_ON(s->compute > 2);
3161 if (test_bit(R5_Wantfill, &dev->flags))
3162 s->to_fill++;
3163 else if (dev->toread)
3164 s->to_read++;
3165 if (dev->towrite) {
3166 s->to_write++;
3167 if (!test_bit(R5_OVERWRITE, &dev->flags))
3168 s->non_overwrite++;
3170 if (dev->written)
3171 s->written++;
3172 /* Prefer to use the replacement for reads, but only
3173 * if it is recovered enough and has no bad blocks.
3175 rdev = rcu_dereference(conf->disks[i].replacement);
3176 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3177 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3178 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3179 &first_bad, &bad_sectors))
3180 set_bit(R5_ReadRepl, &dev->flags);
3181 else {
3182 if (rdev)
3183 set_bit(R5_NeedReplace, &dev->flags);
3184 rdev = rcu_dereference(conf->disks[i].rdev);
3185 clear_bit(R5_ReadRepl, &dev->flags);
3187 if (rdev && test_bit(Faulty, &rdev->flags))
3188 rdev = NULL;
3189 if (rdev) {
3190 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3191 &first_bad, &bad_sectors);
3192 if (s->blocked_rdev == NULL
3193 && (test_bit(Blocked, &rdev->flags)
3194 || is_bad < 0)) {
3195 if (is_bad < 0)
3196 set_bit(BlockedBadBlocks,
3197 &rdev->flags);
3198 s->blocked_rdev = rdev;
3199 atomic_inc(&rdev->nr_pending);
3202 clear_bit(R5_Insync, &dev->flags);
3203 if (!rdev)
3204 /* Not in-sync */;
3205 else if (is_bad) {
3206 /* also not in-sync */
3207 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3208 /* treat as in-sync, but with a read error
3209 * which we can now try to correct
3211 set_bit(R5_Insync, &dev->flags);
3212 set_bit(R5_ReadError, &dev->flags);
3214 } else if (test_bit(In_sync, &rdev->flags))
3215 set_bit(R5_Insync, &dev->flags);
3216 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3217 /* in sync if before recovery_offset */
3218 set_bit(R5_Insync, &dev->flags);
3219 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3220 test_bit(R5_Expanded, &dev->flags))
3221 /* If we've reshaped into here, we assume it is Insync.
3222 * We will shortly update recovery_offset to make
3223 * it official.
3225 set_bit(R5_Insync, &dev->flags);
3227 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3228 /* This flag does not apply to '.replacement'
3229 * only to .rdev, so make sure to check that*/
3230 struct md_rdev *rdev2 = rcu_dereference(
3231 conf->disks[i].rdev);
3232 if (rdev2 == rdev)
3233 clear_bit(R5_Insync, &dev->flags);
3234 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3235 s->handle_bad_blocks = 1;
3236 atomic_inc(&rdev2->nr_pending);
3237 } else
3238 clear_bit(R5_WriteError, &dev->flags);
3240 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3241 /* This flag does not apply to '.replacement'
3242 * only to .rdev, so make sure to check that*/
3243 struct md_rdev *rdev2 = rcu_dereference(
3244 conf->disks[i].rdev);
3245 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3246 s->handle_bad_blocks = 1;
3247 atomic_inc(&rdev2->nr_pending);
3248 } else
3249 clear_bit(R5_MadeGood, &dev->flags);
3251 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3252 struct md_rdev *rdev2 = rcu_dereference(
3253 conf->disks[i].replacement);
3254 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3255 s->handle_bad_blocks = 1;
3256 atomic_inc(&rdev2->nr_pending);
3257 } else
3258 clear_bit(R5_MadeGoodRepl, &dev->flags);
3260 if (!test_bit(R5_Insync, &dev->flags)) {
3261 /* The ReadError flag will just be confusing now */
3262 clear_bit(R5_ReadError, &dev->flags);
3263 clear_bit(R5_ReWrite, &dev->flags);
3265 if (test_bit(R5_ReadError, &dev->flags))
3266 clear_bit(R5_Insync, &dev->flags);
3267 if (!test_bit(R5_Insync, &dev->flags)) {
3268 if (s->failed < 2)
3269 s->failed_num[s->failed] = i;
3270 s->failed++;
3271 if (rdev && !test_bit(Faulty, &rdev->flags))
3272 do_recovery = 1;
3275 spin_unlock_irq(&conf->device_lock);
3276 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3277 /* If there is a failed device being replaced,
3278 * we must be recovering.
3279 * else if we are after recovery_cp, we must be syncing
3280 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3281 * else we can only be replacing
3282 * sync and recovery both need to read all devices, and so
3283 * use the same flag.
3285 if (do_recovery ||
3286 sh->sector >= conf->mddev->recovery_cp ||
3287 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3288 s->syncing = 1;
3289 else
3290 s->replacing = 1;
3292 rcu_read_unlock();
3295 static void handle_stripe(struct stripe_head *sh)
3297 struct stripe_head_state s;
3298 struct r5conf *conf = sh->raid_conf;
3299 int i;
3300 int prexor;
3301 int disks = sh->disks;
3302 struct r5dev *pdev, *qdev;
3304 clear_bit(STRIPE_HANDLE, &sh->state);
3305 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3306 /* already being handled, ensure it gets handled
3307 * again when current action finishes */
3308 set_bit(STRIPE_HANDLE, &sh->state);
3309 return;
3312 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3313 set_bit(STRIPE_SYNCING, &sh->state);
3314 clear_bit(STRIPE_INSYNC, &sh->state);
3316 clear_bit(STRIPE_DELAYED, &sh->state);
3318 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3319 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3320 (unsigned long long)sh->sector, sh->state,
3321 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3322 sh->check_state, sh->reconstruct_state);
3324 analyse_stripe(sh, &s);
3326 if (s.handle_bad_blocks) {
3327 set_bit(STRIPE_HANDLE, &sh->state);
3328 goto finish;
3331 if (unlikely(s.blocked_rdev)) {
3332 if (s.syncing || s.expanding || s.expanded ||
3333 s.replacing || s.to_write || s.written) {
3334 set_bit(STRIPE_HANDLE, &sh->state);
3335 goto finish;
3337 /* There is nothing for the blocked_rdev to block */
3338 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3339 s.blocked_rdev = NULL;
3342 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3343 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3344 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3347 pr_debug("locked=%d uptodate=%d to_read=%d"
3348 " to_write=%d failed=%d failed_num=%d,%d\n",
3349 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3350 s.failed_num[0], s.failed_num[1]);
3351 /* check if the array has lost more than max_degraded devices and,
3352 * if so, some requests might need to be failed.
3354 if (s.failed > conf->max_degraded) {
3355 sh->check_state = 0;
3356 sh->reconstruct_state = 0;
3357 if (s.to_read+s.to_write+s.written)
3358 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3359 if (s.syncing + s.replacing)
3360 handle_failed_sync(conf, sh, &s);
3364 * might be able to return some write requests if the parity blocks
3365 * are safe, or on a failed drive
3367 pdev = &sh->dev[sh->pd_idx];
3368 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3369 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3370 qdev = &sh->dev[sh->qd_idx];
3371 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3372 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3373 || conf->level < 6;
3375 if (s.written &&
3376 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3377 && !test_bit(R5_LOCKED, &pdev->flags)
3378 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3379 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3380 && !test_bit(R5_LOCKED, &qdev->flags)
3381 && test_bit(R5_UPTODATE, &qdev->flags)))))
3382 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3384 /* Now we might consider reading some blocks, either to check/generate
3385 * parity, or to satisfy requests
3386 * or to load a block that is being partially written.
3388 if (s.to_read || s.non_overwrite
3389 || (conf->level == 6 && s.to_write && s.failed)
3390 || (s.syncing && (s.uptodate + s.compute < disks))
3391 || s.replacing
3392 || s.expanding)
3393 handle_stripe_fill(sh, &s, disks);
3395 /* Now we check to see if any write operations have recently
3396 * completed
3398 prexor = 0;
3399 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3400 prexor = 1;
3401 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3402 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3403 sh->reconstruct_state = reconstruct_state_idle;
3405 /* All the 'written' buffers and the parity block are ready to
3406 * be written back to disk
3408 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3409 BUG_ON(sh->qd_idx >= 0 &&
3410 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3411 for (i = disks; i--; ) {
3412 struct r5dev *dev = &sh->dev[i];
3413 if (test_bit(R5_LOCKED, &dev->flags) &&
3414 (i == sh->pd_idx || i == sh->qd_idx ||
3415 dev->written)) {
3416 pr_debug("Writing block %d\n", i);
3417 set_bit(R5_Wantwrite, &dev->flags);
3418 if (prexor)
3419 continue;
3420 if (!test_bit(R5_Insync, &dev->flags) ||
3421 ((i == sh->pd_idx || i == sh->qd_idx) &&
3422 s.failed == 0))
3423 set_bit(STRIPE_INSYNC, &sh->state);
3426 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3427 s.dec_preread_active = 1;
3430 /* Now to consider new write requests and what else, if anything
3431 * should be read. We do not handle new writes when:
3432 * 1/ A 'write' operation (copy+xor) is already in flight.
3433 * 2/ A 'check' operation is in flight, as it may clobber the parity
3434 * block.
3436 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3437 handle_stripe_dirtying(conf, sh, &s, disks);
3439 /* maybe we need to check and possibly fix the parity for this stripe
3440 * Any reads will already have been scheduled, so we just see if enough
3441 * data is available. The parity check is held off while parity
3442 * dependent operations are in flight.
3444 if (sh->check_state ||
3445 (s.syncing && s.locked == 0 &&
3446 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3447 !test_bit(STRIPE_INSYNC, &sh->state))) {
3448 if (conf->level == 6)
3449 handle_parity_checks6(conf, sh, &s, disks);
3450 else
3451 handle_parity_checks5(conf, sh, &s, disks);
3454 if (s.replacing && s.locked == 0
3455 && !test_bit(STRIPE_INSYNC, &sh->state)) {
3456 /* Write out to replacement devices where possible */
3457 for (i = 0; i < conf->raid_disks; i++)
3458 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3459 test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3460 set_bit(R5_WantReplace, &sh->dev[i].flags);
3461 set_bit(R5_LOCKED, &sh->dev[i].flags);
3462 s.locked++;
3464 set_bit(STRIPE_INSYNC, &sh->state);
3466 if ((s.syncing || s.replacing) && s.locked == 0 &&
3467 test_bit(STRIPE_INSYNC, &sh->state)) {
3468 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3469 clear_bit(STRIPE_SYNCING, &sh->state);
3472 /* If the failed drives are just a ReadError, then we might need
3473 * to progress the repair/check process
3475 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3476 for (i = 0; i < s.failed; i++) {
3477 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3478 if (test_bit(R5_ReadError, &dev->flags)
3479 && !test_bit(R5_LOCKED, &dev->flags)
3480 && test_bit(R5_UPTODATE, &dev->flags)
3482 if (!test_bit(R5_ReWrite, &dev->flags)) {
3483 set_bit(R5_Wantwrite, &dev->flags);
3484 set_bit(R5_ReWrite, &dev->flags);
3485 set_bit(R5_LOCKED, &dev->flags);
3486 s.locked++;
3487 } else {
3488 /* let's read it back */
3489 set_bit(R5_Wantread, &dev->flags);
3490 set_bit(R5_LOCKED, &dev->flags);
3491 s.locked++;
3497 /* Finish reconstruct operations initiated by the expansion process */
3498 if (sh->reconstruct_state == reconstruct_state_result) {
3499 struct stripe_head *sh_src
3500 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3501 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3502 /* sh cannot be written until sh_src has been read.
3503 * so arrange for sh to be delayed a little
3505 set_bit(STRIPE_DELAYED, &sh->state);
3506 set_bit(STRIPE_HANDLE, &sh->state);
3507 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3508 &sh_src->state))
3509 atomic_inc(&conf->preread_active_stripes);
3510 release_stripe(sh_src);
3511 goto finish;
3513 if (sh_src)
3514 release_stripe(sh_src);
3516 sh->reconstruct_state = reconstruct_state_idle;
3517 clear_bit(STRIPE_EXPANDING, &sh->state);
3518 for (i = conf->raid_disks; i--; ) {
3519 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3520 set_bit(R5_LOCKED, &sh->dev[i].flags);
3521 s.locked++;
3525 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3526 !sh->reconstruct_state) {
3527 /* Need to write out all blocks after computing parity */
3528 sh->disks = conf->raid_disks;
3529 stripe_set_idx(sh->sector, conf, 0, sh);
3530 schedule_reconstruction(sh, &s, 1, 1);
3531 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3532 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3533 atomic_dec(&conf->reshape_stripes);
3534 wake_up(&conf->wait_for_overlap);
3535 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3538 if (s.expanding && s.locked == 0 &&
3539 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3540 handle_stripe_expansion(conf, sh);
3542 finish:
3543 /* wait for this device to become unblocked */
3544 if (conf->mddev->external && unlikely(s.blocked_rdev))
3545 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3547 if (s.handle_bad_blocks)
3548 for (i = disks; i--; ) {
3549 struct md_rdev *rdev;
3550 struct r5dev *dev = &sh->dev[i];
3551 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3552 /* We own a safe reference to the rdev */
3553 rdev = conf->disks[i].rdev;
3554 if (!rdev_set_badblocks(rdev, sh->sector,
3555 STRIPE_SECTORS, 0))
3556 md_error(conf->mddev, rdev);
3557 rdev_dec_pending(rdev, conf->mddev);
3559 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3560 rdev = conf->disks[i].rdev;
3561 rdev_clear_badblocks(rdev, sh->sector,
3562 STRIPE_SECTORS);
3563 rdev_dec_pending(rdev, conf->mddev);
3565 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3566 rdev = conf->disks[i].replacement;
3567 if (!rdev)
3568 /* rdev have been moved down */
3569 rdev = conf->disks[i].rdev;
3570 rdev_clear_badblocks(rdev, sh->sector,
3571 STRIPE_SECTORS);
3572 rdev_dec_pending(rdev, conf->mddev);
3576 if (s.ops_request)
3577 raid_run_ops(sh, s.ops_request);
3579 ops_run_io(sh, &s);
3581 if (s.dec_preread_active) {
3582 /* We delay this until after ops_run_io so that if make_request
3583 * is waiting on a flush, it won't continue until the writes
3584 * have actually been submitted.
3586 atomic_dec(&conf->preread_active_stripes);
3587 if (atomic_read(&conf->preread_active_stripes) <
3588 IO_THRESHOLD)
3589 md_wakeup_thread(conf->mddev->thread);
3592 return_io(s.return_bi);
3594 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3597 static void raid5_activate_delayed(struct r5conf *conf)
3599 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3600 while (!list_empty(&conf->delayed_list)) {
3601 struct list_head *l = conf->delayed_list.next;
3602 struct stripe_head *sh;
3603 sh = list_entry(l, struct stripe_head, lru);
3604 list_del_init(l);
3605 clear_bit(STRIPE_DELAYED, &sh->state);
3606 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3607 atomic_inc(&conf->preread_active_stripes);
3608 list_add_tail(&sh->lru, &conf->hold_list);
3613 static void activate_bit_delay(struct r5conf *conf)
3615 /* device_lock is held */
3616 struct list_head head;
3617 list_add(&head, &conf->bitmap_list);
3618 list_del_init(&conf->bitmap_list);
3619 while (!list_empty(&head)) {
3620 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3621 list_del_init(&sh->lru);
3622 atomic_inc(&sh->count);
3623 __release_stripe(conf, sh);
3627 int md_raid5_congested(struct mddev *mddev, int bits)
3629 struct r5conf *conf = mddev->private;
3631 /* No difference between reads and writes. Just check
3632 * how busy the stripe_cache is
3635 if (conf->inactive_blocked)
3636 return 1;
3637 if (conf->quiesce)
3638 return 1;
3639 if (list_empty_careful(&conf->inactive_list))
3640 return 1;
3642 return 0;
3644 EXPORT_SYMBOL_GPL(md_raid5_congested);
3646 static int raid5_congested(void *data, int bits)
3648 struct mddev *mddev = data;
3650 return mddev_congested(mddev, bits) ||
3651 md_raid5_congested(mddev, bits);
3654 /* We want read requests to align with chunks where possible,
3655 * but write requests don't need to.
3657 static int raid5_mergeable_bvec(struct request_queue *q,
3658 struct bvec_merge_data *bvm,
3659 struct bio_vec *biovec)
3661 struct mddev *mddev = q->queuedata;
3662 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3663 int max;
3664 unsigned int chunk_sectors = mddev->chunk_sectors;
3665 unsigned int bio_sectors = bvm->bi_size >> 9;
3667 if ((bvm->bi_rw & 1) == WRITE)
3668 return biovec->bv_len; /* always allow writes to be mergeable */
3670 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3671 chunk_sectors = mddev->new_chunk_sectors;
3672 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3673 if (max < 0) max = 0;
3674 if (max <= biovec->bv_len && bio_sectors == 0)
3675 return biovec->bv_len;
3676 else
3677 return max;
3681 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3683 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3684 unsigned int chunk_sectors = mddev->chunk_sectors;
3685 unsigned int bio_sectors = bio->bi_size >> 9;
3687 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3688 chunk_sectors = mddev->new_chunk_sectors;
3689 return chunk_sectors >=
3690 ((sector & (chunk_sectors - 1)) + bio_sectors);
3694 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3695 * later sampled by raid5d.
3697 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3699 unsigned long flags;
3701 spin_lock_irqsave(&conf->device_lock, flags);
3703 bi->bi_next = conf->retry_read_aligned_list;
3704 conf->retry_read_aligned_list = bi;
3706 spin_unlock_irqrestore(&conf->device_lock, flags);
3707 md_wakeup_thread(conf->mddev->thread);
3711 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3713 struct bio *bi;
3715 bi = conf->retry_read_aligned;
3716 if (bi) {
3717 conf->retry_read_aligned = NULL;
3718 return bi;
3720 bi = conf->retry_read_aligned_list;
3721 if(bi) {
3722 conf->retry_read_aligned_list = bi->bi_next;
3723 bi->bi_next = NULL;
3725 * this sets the active strip count to 1 and the processed
3726 * strip count to zero (upper 8 bits)
3728 bi->bi_phys_segments = 1; /* biased count of active stripes */
3731 return bi;
3736 * The "raid5_align_endio" should check if the read succeeded and if it
3737 * did, call bio_endio on the original bio (having bio_put the new bio
3738 * first).
3739 * If the read failed..
3741 static void raid5_align_endio(struct bio *bi, int error)
3743 struct bio* raid_bi = bi->bi_private;
3744 struct mddev *mddev;
3745 struct r5conf *conf;
3746 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3747 struct md_rdev *rdev;
3749 bio_put(bi);
3751 rdev = (void*)raid_bi->bi_next;
3752 raid_bi->bi_next = NULL;
3753 mddev = rdev->mddev;
3754 conf = mddev->private;
3756 rdev_dec_pending(rdev, conf->mddev);
3758 if (!error && uptodate) {
3759 bio_endio(raid_bi, 0);
3760 if (atomic_dec_and_test(&conf->active_aligned_reads))
3761 wake_up(&conf->wait_for_stripe);
3762 return;
3766 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3768 add_bio_to_retry(raid_bi, conf);
3771 static int bio_fits_rdev(struct bio *bi)
3773 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3775 if ((bi->bi_size>>9) > queue_max_sectors(q))
3776 return 0;
3777 blk_recount_segments(q, bi);
3778 if (bi->bi_phys_segments > queue_max_segments(q))
3779 return 0;
3781 if (q->merge_bvec_fn)
3782 /* it's too hard to apply the merge_bvec_fn at this stage,
3783 * just just give up
3785 return 0;
3787 return 1;
3791 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3793 struct r5conf *conf = mddev->private;
3794 int dd_idx;
3795 struct bio* align_bi;
3796 struct md_rdev *rdev;
3797 sector_t end_sector;
3799 if (!in_chunk_boundary(mddev, raid_bio)) {
3800 pr_debug("chunk_aligned_read : non aligned\n");
3801 return 0;
3804 * use bio_clone_mddev to make a copy of the bio
3806 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3807 if (!align_bi)
3808 return 0;
3810 * set bi_end_io to a new function, and set bi_private to the
3811 * original bio.
3813 align_bi->bi_end_io = raid5_align_endio;
3814 align_bi->bi_private = raid_bio;
3816 * compute position
3818 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3820 &dd_idx, NULL);
3822 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3823 rcu_read_lock();
3824 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3825 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3826 rdev->recovery_offset < end_sector) {
3827 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3828 if (rdev &&
3829 (test_bit(Faulty, &rdev->flags) ||
3830 !(test_bit(In_sync, &rdev->flags) ||
3831 rdev->recovery_offset >= end_sector)))
3832 rdev = NULL;
3834 if (rdev) {
3835 sector_t first_bad;
3836 int bad_sectors;
3838 atomic_inc(&rdev->nr_pending);
3839 rcu_read_unlock();
3840 raid_bio->bi_next = (void*)rdev;
3841 align_bi->bi_bdev = rdev->bdev;
3842 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3843 align_bi->bi_sector += rdev->data_offset;
3845 if (!bio_fits_rdev(align_bi) ||
3846 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3847 &first_bad, &bad_sectors)) {
3848 /* too big in some way, or has a known bad block */
3849 bio_put(align_bi);
3850 rdev_dec_pending(rdev, mddev);
3851 return 0;
3854 spin_lock_irq(&conf->device_lock);
3855 wait_event_lock_irq(conf->wait_for_stripe,
3856 conf->quiesce == 0,
3857 conf->device_lock, /* nothing */);
3858 atomic_inc(&conf->active_aligned_reads);
3859 spin_unlock_irq(&conf->device_lock);
3861 generic_make_request(align_bi);
3862 return 1;
3863 } else {
3864 rcu_read_unlock();
3865 bio_put(align_bi);
3866 return 0;
3870 /* __get_priority_stripe - get the next stripe to process
3872 * Full stripe writes are allowed to pass preread active stripes up until
3873 * the bypass_threshold is exceeded. In general the bypass_count
3874 * increments when the handle_list is handled before the hold_list; however, it
3875 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3876 * stripe with in flight i/o. The bypass_count will be reset when the
3877 * head of the hold_list has changed, i.e. the head was promoted to the
3878 * handle_list.
3880 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3882 struct stripe_head *sh;
3884 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3885 __func__,
3886 list_empty(&conf->handle_list) ? "empty" : "busy",
3887 list_empty(&conf->hold_list) ? "empty" : "busy",
3888 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3890 if (!list_empty(&conf->handle_list)) {
3891 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3893 if (list_empty(&conf->hold_list))
3894 conf->bypass_count = 0;
3895 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3896 if (conf->hold_list.next == conf->last_hold)
3897 conf->bypass_count++;
3898 else {
3899 conf->last_hold = conf->hold_list.next;
3900 conf->bypass_count -= conf->bypass_threshold;
3901 if (conf->bypass_count < 0)
3902 conf->bypass_count = 0;
3905 } else if (!list_empty(&conf->hold_list) &&
3906 ((conf->bypass_threshold &&
3907 conf->bypass_count > conf->bypass_threshold) ||
3908 atomic_read(&conf->pending_full_writes) == 0)) {
3909 sh = list_entry(conf->hold_list.next,
3910 typeof(*sh), lru);
3911 conf->bypass_count -= conf->bypass_threshold;
3912 if (conf->bypass_count < 0)
3913 conf->bypass_count = 0;
3914 } else
3915 return NULL;
3917 list_del_init(&sh->lru);
3918 atomic_inc(&sh->count);
3919 BUG_ON(atomic_read(&sh->count) != 1);
3920 return sh;
3923 static void make_request(struct mddev *mddev, struct bio * bi)
3925 struct r5conf *conf = mddev->private;
3926 int dd_idx;
3927 sector_t new_sector;
3928 sector_t logical_sector, last_sector;
3929 struct stripe_head *sh;
3930 const int rw = bio_data_dir(bi);
3931 int remaining;
3932 int plugged;
3934 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3935 md_flush_request(mddev, bi);
3936 return;
3939 md_write_start(mddev, bi);
3941 if (rw == READ &&
3942 mddev->reshape_position == MaxSector &&
3943 chunk_aligned_read(mddev,bi))
3944 return;
3946 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3947 last_sector = bi->bi_sector + (bi->bi_size>>9);
3948 bi->bi_next = NULL;
3949 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3951 plugged = mddev_check_plugged(mddev);
3952 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3953 DEFINE_WAIT(w);
3954 int disks, data_disks;
3955 int previous;
3957 retry:
3958 previous = 0;
3959 disks = conf->raid_disks;
3960 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3961 if (unlikely(conf->reshape_progress != MaxSector)) {
3962 /* spinlock is needed as reshape_progress may be
3963 * 64bit on a 32bit platform, and so it might be
3964 * possible to see a half-updated value
3965 * Of course reshape_progress could change after
3966 * the lock is dropped, so once we get a reference
3967 * to the stripe that we think it is, we will have
3968 * to check again.
3970 spin_lock_irq(&conf->device_lock);
3971 if (mddev->delta_disks < 0
3972 ? logical_sector < conf->reshape_progress
3973 : logical_sector >= conf->reshape_progress) {
3974 disks = conf->previous_raid_disks;
3975 previous = 1;
3976 } else {
3977 if (mddev->delta_disks < 0
3978 ? logical_sector < conf->reshape_safe
3979 : logical_sector >= conf->reshape_safe) {
3980 spin_unlock_irq(&conf->device_lock);
3981 schedule();
3982 goto retry;
3985 spin_unlock_irq(&conf->device_lock);
3987 data_disks = disks - conf->max_degraded;
3989 new_sector = raid5_compute_sector(conf, logical_sector,
3990 previous,
3991 &dd_idx, NULL);
3992 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3993 (unsigned long long)new_sector,
3994 (unsigned long long)logical_sector);
3996 sh = get_active_stripe(conf, new_sector, previous,
3997 (bi->bi_rw&RWA_MASK), 0);
3998 if (sh) {
3999 if (unlikely(previous)) {
4000 /* expansion might have moved on while waiting for a
4001 * stripe, so we must do the range check again.
4002 * Expansion could still move past after this
4003 * test, but as we are holding a reference to
4004 * 'sh', we know that if that happens,
4005 * STRIPE_EXPANDING will get set and the expansion
4006 * won't proceed until we finish with the stripe.
4008 int must_retry = 0;
4009 spin_lock_irq(&conf->device_lock);
4010 if (mddev->delta_disks < 0
4011 ? logical_sector >= conf->reshape_progress
4012 : logical_sector < conf->reshape_progress)
4013 /* mismatch, need to try again */
4014 must_retry = 1;
4015 spin_unlock_irq(&conf->device_lock);
4016 if (must_retry) {
4017 release_stripe(sh);
4018 schedule();
4019 goto retry;
4023 if (rw == WRITE &&
4024 logical_sector >= mddev->suspend_lo &&
4025 logical_sector < mddev->suspend_hi) {
4026 release_stripe(sh);
4027 /* As the suspend_* range is controlled by
4028 * userspace, we want an interruptible
4029 * wait.
4031 flush_signals(current);
4032 prepare_to_wait(&conf->wait_for_overlap,
4033 &w, TASK_INTERRUPTIBLE);
4034 if (logical_sector >= mddev->suspend_lo &&
4035 logical_sector < mddev->suspend_hi)
4036 schedule();
4037 goto retry;
4040 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4041 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4042 /* Stripe is busy expanding or
4043 * add failed due to overlap. Flush everything
4044 * and wait a while
4046 md_wakeup_thread(mddev->thread);
4047 release_stripe(sh);
4048 schedule();
4049 goto retry;
4051 finish_wait(&conf->wait_for_overlap, &w);
4052 set_bit(STRIPE_HANDLE, &sh->state);
4053 clear_bit(STRIPE_DELAYED, &sh->state);
4054 if ((bi->bi_rw & REQ_SYNC) &&
4055 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4056 atomic_inc(&conf->preread_active_stripes);
4057 release_stripe(sh);
4058 } else {
4059 /* cannot get stripe for read-ahead, just give-up */
4060 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4061 finish_wait(&conf->wait_for_overlap, &w);
4062 break;
4066 if (!plugged)
4067 md_wakeup_thread(mddev->thread);
4069 spin_lock_irq(&conf->device_lock);
4070 remaining = raid5_dec_bi_phys_segments(bi);
4071 spin_unlock_irq(&conf->device_lock);
4072 if (remaining == 0) {
4074 if ( rw == WRITE )
4075 md_write_end(mddev);
4077 bio_endio(bi, 0);
4081 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4083 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4085 /* reshaping is quite different to recovery/resync so it is
4086 * handled quite separately ... here.
4088 * On each call to sync_request, we gather one chunk worth of
4089 * destination stripes and flag them as expanding.
4090 * Then we find all the source stripes and request reads.
4091 * As the reads complete, handle_stripe will copy the data
4092 * into the destination stripe and release that stripe.
4094 struct r5conf *conf = mddev->private;
4095 struct stripe_head *sh;
4096 sector_t first_sector, last_sector;
4097 int raid_disks = conf->previous_raid_disks;
4098 int data_disks = raid_disks - conf->max_degraded;
4099 int new_data_disks = conf->raid_disks - conf->max_degraded;
4100 int i;
4101 int dd_idx;
4102 sector_t writepos, readpos, safepos;
4103 sector_t stripe_addr;
4104 int reshape_sectors;
4105 struct list_head stripes;
4107 if (sector_nr == 0) {
4108 /* If restarting in the middle, skip the initial sectors */
4109 if (mddev->delta_disks < 0 &&
4110 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4111 sector_nr = raid5_size(mddev, 0, 0)
4112 - conf->reshape_progress;
4113 } else if (mddev->delta_disks >= 0 &&
4114 conf->reshape_progress > 0)
4115 sector_nr = conf->reshape_progress;
4116 sector_div(sector_nr, new_data_disks);
4117 if (sector_nr) {
4118 mddev->curr_resync_completed = sector_nr;
4119 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4120 *skipped = 1;
4121 return sector_nr;
4125 /* We need to process a full chunk at a time.
4126 * If old and new chunk sizes differ, we need to process the
4127 * largest of these
4129 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4130 reshape_sectors = mddev->new_chunk_sectors;
4131 else
4132 reshape_sectors = mddev->chunk_sectors;
4134 /* we update the metadata when there is more than 3Meg
4135 * in the block range (that is rather arbitrary, should
4136 * probably be time based) or when the data about to be
4137 * copied would over-write the source of the data at
4138 * the front of the range.
4139 * i.e. one new_stripe along from reshape_progress new_maps
4140 * to after where reshape_safe old_maps to
4142 writepos = conf->reshape_progress;
4143 sector_div(writepos, new_data_disks);
4144 readpos = conf->reshape_progress;
4145 sector_div(readpos, data_disks);
4146 safepos = conf->reshape_safe;
4147 sector_div(safepos, data_disks);
4148 if (mddev->delta_disks < 0) {
4149 writepos -= min_t(sector_t, reshape_sectors, writepos);
4150 readpos += reshape_sectors;
4151 safepos += reshape_sectors;
4152 } else {
4153 writepos += reshape_sectors;
4154 readpos -= min_t(sector_t, reshape_sectors, readpos);
4155 safepos -= min_t(sector_t, reshape_sectors, safepos);
4158 /* 'writepos' is the most advanced device address we might write.
4159 * 'readpos' is the least advanced device address we might read.
4160 * 'safepos' is the least address recorded in the metadata as having
4161 * been reshaped.
4162 * If 'readpos' is behind 'writepos', then there is no way that we can
4163 * ensure safety in the face of a crash - that must be done by userspace
4164 * making a backup of the data. So in that case there is no particular
4165 * rush to update metadata.
4166 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4167 * update the metadata to advance 'safepos' to match 'readpos' so that
4168 * we can be safe in the event of a crash.
4169 * So we insist on updating metadata if safepos is behind writepos and
4170 * readpos is beyond writepos.
4171 * In any case, update the metadata every 10 seconds.
4172 * Maybe that number should be configurable, but I'm not sure it is
4173 * worth it.... maybe it could be a multiple of safemode_delay???
4175 if ((mddev->delta_disks < 0
4176 ? (safepos > writepos && readpos < writepos)
4177 : (safepos < writepos && readpos > writepos)) ||
4178 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4179 /* Cannot proceed until we've updated the superblock... */
4180 wait_event(conf->wait_for_overlap,
4181 atomic_read(&conf->reshape_stripes)==0);
4182 mddev->reshape_position = conf->reshape_progress;
4183 mddev->curr_resync_completed = sector_nr;
4184 conf->reshape_checkpoint = jiffies;
4185 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4186 md_wakeup_thread(mddev->thread);
4187 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4188 kthread_should_stop());
4189 spin_lock_irq(&conf->device_lock);
4190 conf->reshape_safe = mddev->reshape_position;
4191 spin_unlock_irq(&conf->device_lock);
4192 wake_up(&conf->wait_for_overlap);
4193 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4196 if (mddev->delta_disks < 0) {
4197 BUG_ON(conf->reshape_progress == 0);
4198 stripe_addr = writepos;
4199 BUG_ON((mddev->dev_sectors &
4200 ~((sector_t)reshape_sectors - 1))
4201 - reshape_sectors - stripe_addr
4202 != sector_nr);
4203 } else {
4204 BUG_ON(writepos != sector_nr + reshape_sectors);
4205 stripe_addr = sector_nr;
4207 INIT_LIST_HEAD(&stripes);
4208 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4209 int j;
4210 int skipped_disk = 0;
4211 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4212 set_bit(STRIPE_EXPANDING, &sh->state);
4213 atomic_inc(&conf->reshape_stripes);
4214 /* If any of this stripe is beyond the end of the old
4215 * array, then we need to zero those blocks
4217 for (j=sh->disks; j--;) {
4218 sector_t s;
4219 if (j == sh->pd_idx)
4220 continue;
4221 if (conf->level == 6 &&
4222 j == sh->qd_idx)
4223 continue;
4224 s = compute_blocknr(sh, j, 0);
4225 if (s < raid5_size(mddev, 0, 0)) {
4226 skipped_disk = 1;
4227 continue;
4229 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4230 set_bit(R5_Expanded, &sh->dev[j].flags);
4231 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4233 if (!skipped_disk) {
4234 set_bit(STRIPE_EXPAND_READY, &sh->state);
4235 set_bit(STRIPE_HANDLE, &sh->state);
4237 list_add(&sh->lru, &stripes);
4239 spin_lock_irq(&conf->device_lock);
4240 if (mddev->delta_disks < 0)
4241 conf->reshape_progress -= reshape_sectors * new_data_disks;
4242 else
4243 conf->reshape_progress += reshape_sectors * new_data_disks;
4244 spin_unlock_irq(&conf->device_lock);
4245 /* Ok, those stripe are ready. We can start scheduling
4246 * reads on the source stripes.
4247 * The source stripes are determined by mapping the first and last
4248 * block on the destination stripes.
4250 first_sector =
4251 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4252 1, &dd_idx, NULL);
4253 last_sector =
4254 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4255 * new_data_disks - 1),
4256 1, &dd_idx, NULL);
4257 if (last_sector >= mddev->dev_sectors)
4258 last_sector = mddev->dev_sectors - 1;
4259 while (first_sector <= last_sector) {
4260 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4261 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4262 set_bit(STRIPE_HANDLE, &sh->state);
4263 release_stripe(sh);
4264 first_sector += STRIPE_SECTORS;
4266 /* Now that the sources are clearly marked, we can release
4267 * the destination stripes
4269 while (!list_empty(&stripes)) {
4270 sh = list_entry(stripes.next, struct stripe_head, lru);
4271 list_del_init(&sh->lru);
4272 release_stripe(sh);
4274 /* If this takes us to the resync_max point where we have to pause,
4275 * then we need to write out the superblock.
4277 sector_nr += reshape_sectors;
4278 if ((sector_nr - mddev->curr_resync_completed) * 2
4279 >= mddev->resync_max - mddev->curr_resync_completed) {
4280 /* Cannot proceed until we've updated the superblock... */
4281 wait_event(conf->wait_for_overlap,
4282 atomic_read(&conf->reshape_stripes) == 0);
4283 mddev->reshape_position = conf->reshape_progress;
4284 mddev->curr_resync_completed = sector_nr;
4285 conf->reshape_checkpoint = jiffies;
4286 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4287 md_wakeup_thread(mddev->thread);
4288 wait_event(mddev->sb_wait,
4289 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4290 || kthread_should_stop());
4291 spin_lock_irq(&conf->device_lock);
4292 conf->reshape_safe = mddev->reshape_position;
4293 spin_unlock_irq(&conf->device_lock);
4294 wake_up(&conf->wait_for_overlap);
4295 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4297 return reshape_sectors;
4300 /* FIXME go_faster isn't used */
4301 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4303 struct r5conf *conf = mddev->private;
4304 struct stripe_head *sh;
4305 sector_t max_sector = mddev->dev_sectors;
4306 sector_t sync_blocks;
4307 int still_degraded = 0;
4308 int i;
4310 if (sector_nr >= max_sector) {
4311 /* just being told to finish up .. nothing much to do */
4313 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4314 end_reshape(conf);
4315 return 0;
4318 if (mddev->curr_resync < max_sector) /* aborted */
4319 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4320 &sync_blocks, 1);
4321 else /* completed sync */
4322 conf->fullsync = 0;
4323 bitmap_close_sync(mddev->bitmap);
4325 return 0;
4328 /* Allow raid5_quiesce to complete */
4329 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4331 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4332 return reshape_request(mddev, sector_nr, skipped);
4334 /* No need to check resync_max as we never do more than one
4335 * stripe, and as resync_max will always be on a chunk boundary,
4336 * if the check in md_do_sync didn't fire, there is no chance
4337 * of overstepping resync_max here
4340 /* if there is too many failed drives and we are trying
4341 * to resync, then assert that we are finished, because there is
4342 * nothing we can do.
4344 if (mddev->degraded >= conf->max_degraded &&
4345 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4346 sector_t rv = mddev->dev_sectors - sector_nr;
4347 *skipped = 1;
4348 return rv;
4350 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4351 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4352 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4353 /* we can skip this block, and probably more */
4354 sync_blocks /= STRIPE_SECTORS;
4355 *skipped = 1;
4356 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4359 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4361 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4362 if (sh == NULL) {
4363 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4364 /* make sure we don't swamp the stripe cache if someone else
4365 * is trying to get access
4367 schedule_timeout_uninterruptible(1);
4369 /* Need to check if array will still be degraded after recovery/resync
4370 * We don't need to check the 'failed' flag as when that gets set,
4371 * recovery aborts.
4373 for (i = 0; i < conf->raid_disks; i++)
4374 if (conf->disks[i].rdev == NULL)
4375 still_degraded = 1;
4377 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4379 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4381 handle_stripe(sh);
4382 release_stripe(sh);
4384 return STRIPE_SECTORS;
4387 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4389 /* We may not be able to submit a whole bio at once as there
4390 * may not be enough stripe_heads available.
4391 * We cannot pre-allocate enough stripe_heads as we may need
4392 * more than exist in the cache (if we allow ever large chunks).
4393 * So we do one stripe head at a time and record in
4394 * ->bi_hw_segments how many have been done.
4396 * We *know* that this entire raid_bio is in one chunk, so
4397 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4399 struct stripe_head *sh;
4400 int dd_idx;
4401 sector_t sector, logical_sector, last_sector;
4402 int scnt = 0;
4403 int remaining;
4404 int handled = 0;
4406 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4407 sector = raid5_compute_sector(conf, logical_sector,
4408 0, &dd_idx, NULL);
4409 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4411 for (; logical_sector < last_sector;
4412 logical_sector += STRIPE_SECTORS,
4413 sector += STRIPE_SECTORS,
4414 scnt++) {
4416 if (scnt < raid5_bi_hw_segments(raid_bio))
4417 /* already done this stripe */
4418 continue;
4420 sh = get_active_stripe(conf, sector, 0, 1, 0);
4422 if (!sh) {
4423 /* failed to get a stripe - must wait */
4424 raid5_set_bi_hw_segments(raid_bio, scnt);
4425 conf->retry_read_aligned = raid_bio;
4426 return handled;
4429 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4430 release_stripe(sh);
4431 raid5_set_bi_hw_segments(raid_bio, scnt);
4432 conf->retry_read_aligned = raid_bio;
4433 return handled;
4436 handle_stripe(sh);
4437 release_stripe(sh);
4438 handled++;
4440 spin_lock_irq(&conf->device_lock);
4441 remaining = raid5_dec_bi_phys_segments(raid_bio);
4442 spin_unlock_irq(&conf->device_lock);
4443 if (remaining == 0)
4444 bio_endio(raid_bio, 0);
4445 if (atomic_dec_and_test(&conf->active_aligned_reads))
4446 wake_up(&conf->wait_for_stripe);
4447 return handled;
4452 * This is our raid5 kernel thread.
4454 * We scan the hash table for stripes which can be handled now.
4455 * During the scan, completed stripes are saved for us by the interrupt
4456 * handler, so that they will not have to wait for our next wakeup.
4458 static void raid5d(struct mddev *mddev)
4460 struct stripe_head *sh;
4461 struct r5conf *conf = mddev->private;
4462 int handled;
4463 struct blk_plug plug;
4465 pr_debug("+++ raid5d active\n");
4467 md_check_recovery(mddev);
4469 blk_start_plug(&plug);
4470 handled = 0;
4471 spin_lock_irq(&conf->device_lock);
4472 while (1) {
4473 struct bio *bio;
4475 if (atomic_read(&mddev->plug_cnt) == 0 &&
4476 !list_empty(&conf->bitmap_list)) {
4477 /* Now is a good time to flush some bitmap updates */
4478 conf->seq_flush++;
4479 spin_unlock_irq(&conf->device_lock);
4480 bitmap_unplug(mddev->bitmap);
4481 spin_lock_irq(&conf->device_lock);
4482 conf->seq_write = conf->seq_flush;
4483 activate_bit_delay(conf);
4485 if (atomic_read(&mddev->plug_cnt) == 0)
4486 raid5_activate_delayed(conf);
4488 while ((bio = remove_bio_from_retry(conf))) {
4489 int ok;
4490 spin_unlock_irq(&conf->device_lock);
4491 ok = retry_aligned_read(conf, bio);
4492 spin_lock_irq(&conf->device_lock);
4493 if (!ok)
4494 break;
4495 handled++;
4498 sh = __get_priority_stripe(conf);
4500 if (!sh)
4501 break;
4502 spin_unlock_irq(&conf->device_lock);
4504 handled++;
4505 handle_stripe(sh);
4506 release_stripe(sh);
4507 cond_resched();
4509 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4510 md_check_recovery(mddev);
4512 spin_lock_irq(&conf->device_lock);
4514 pr_debug("%d stripes handled\n", handled);
4516 spin_unlock_irq(&conf->device_lock);
4518 async_tx_issue_pending_all();
4519 blk_finish_plug(&plug);
4521 pr_debug("--- raid5d inactive\n");
4524 static ssize_t
4525 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4527 struct r5conf *conf = mddev->private;
4528 if (conf)
4529 return sprintf(page, "%d\n", conf->max_nr_stripes);
4530 else
4531 return 0;
4535 raid5_set_cache_size(struct mddev *mddev, int size)
4537 struct r5conf *conf = mddev->private;
4538 int err;
4540 if (size <= 16 || size > 32768)
4541 return -EINVAL;
4542 while (size < conf->max_nr_stripes) {
4543 if (drop_one_stripe(conf))
4544 conf->max_nr_stripes--;
4545 else
4546 break;
4548 err = md_allow_write(mddev);
4549 if (err)
4550 return err;
4551 while (size > conf->max_nr_stripes) {
4552 if (grow_one_stripe(conf))
4553 conf->max_nr_stripes++;
4554 else break;
4556 return 0;
4558 EXPORT_SYMBOL(raid5_set_cache_size);
4560 static ssize_t
4561 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4563 struct r5conf *conf = mddev->private;
4564 unsigned long new;
4565 int err;
4567 if (len >= PAGE_SIZE)
4568 return -EINVAL;
4569 if (!conf)
4570 return -ENODEV;
4572 if (strict_strtoul(page, 10, &new))
4573 return -EINVAL;
4574 err = raid5_set_cache_size(mddev, new);
4575 if (err)
4576 return err;
4577 return len;
4580 static struct md_sysfs_entry
4581 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4582 raid5_show_stripe_cache_size,
4583 raid5_store_stripe_cache_size);
4585 static ssize_t
4586 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4588 struct r5conf *conf = mddev->private;
4589 if (conf)
4590 return sprintf(page, "%d\n", conf->bypass_threshold);
4591 else
4592 return 0;
4595 static ssize_t
4596 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4598 struct r5conf *conf = mddev->private;
4599 unsigned long new;
4600 if (len >= PAGE_SIZE)
4601 return -EINVAL;
4602 if (!conf)
4603 return -ENODEV;
4605 if (strict_strtoul(page, 10, &new))
4606 return -EINVAL;
4607 if (new > conf->max_nr_stripes)
4608 return -EINVAL;
4609 conf->bypass_threshold = new;
4610 return len;
4613 static struct md_sysfs_entry
4614 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4615 S_IRUGO | S_IWUSR,
4616 raid5_show_preread_threshold,
4617 raid5_store_preread_threshold);
4619 static ssize_t
4620 stripe_cache_active_show(struct mddev *mddev, char *page)
4622 struct r5conf *conf = mddev->private;
4623 if (conf)
4624 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4625 else
4626 return 0;
4629 static struct md_sysfs_entry
4630 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4632 static struct attribute *raid5_attrs[] = {
4633 &raid5_stripecache_size.attr,
4634 &raid5_stripecache_active.attr,
4635 &raid5_preread_bypass_threshold.attr,
4636 NULL,
4638 static struct attribute_group raid5_attrs_group = {
4639 .name = NULL,
4640 .attrs = raid5_attrs,
4643 static sector_t
4644 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4646 struct r5conf *conf = mddev->private;
4648 if (!sectors)
4649 sectors = mddev->dev_sectors;
4650 if (!raid_disks)
4651 /* size is defined by the smallest of previous and new size */
4652 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4654 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4655 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4656 return sectors * (raid_disks - conf->max_degraded);
4659 static void raid5_free_percpu(struct r5conf *conf)
4661 struct raid5_percpu *percpu;
4662 unsigned long cpu;
4664 if (!conf->percpu)
4665 return;
4667 get_online_cpus();
4668 for_each_possible_cpu(cpu) {
4669 percpu = per_cpu_ptr(conf->percpu, cpu);
4670 safe_put_page(percpu->spare_page);
4671 kfree(percpu->scribble);
4673 #ifdef CONFIG_HOTPLUG_CPU
4674 unregister_cpu_notifier(&conf->cpu_notify);
4675 #endif
4676 put_online_cpus();
4678 free_percpu(conf->percpu);
4681 static void free_conf(struct r5conf *conf)
4683 shrink_stripes(conf);
4684 raid5_free_percpu(conf);
4685 kfree(conf->disks);
4686 kfree(conf->stripe_hashtbl);
4687 kfree(conf);
4690 #ifdef CONFIG_HOTPLUG_CPU
4691 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4692 void *hcpu)
4694 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4695 long cpu = (long)hcpu;
4696 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4698 switch (action) {
4699 case CPU_UP_PREPARE:
4700 case CPU_UP_PREPARE_FROZEN:
4701 if (conf->level == 6 && !percpu->spare_page)
4702 percpu->spare_page = alloc_page(GFP_KERNEL);
4703 if (!percpu->scribble)
4704 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4706 if (!percpu->scribble ||
4707 (conf->level == 6 && !percpu->spare_page)) {
4708 safe_put_page(percpu->spare_page);
4709 kfree(percpu->scribble);
4710 pr_err("%s: failed memory allocation for cpu%ld\n",
4711 __func__, cpu);
4712 return notifier_from_errno(-ENOMEM);
4714 break;
4715 case CPU_DEAD:
4716 case CPU_DEAD_FROZEN:
4717 safe_put_page(percpu->spare_page);
4718 kfree(percpu->scribble);
4719 percpu->spare_page = NULL;
4720 percpu->scribble = NULL;
4721 break;
4722 default:
4723 break;
4725 return NOTIFY_OK;
4727 #endif
4729 static int raid5_alloc_percpu(struct r5conf *conf)
4731 unsigned long cpu;
4732 struct page *spare_page;
4733 struct raid5_percpu __percpu *allcpus;
4734 void *scribble;
4735 int err;
4737 allcpus = alloc_percpu(struct raid5_percpu);
4738 if (!allcpus)
4739 return -ENOMEM;
4740 conf->percpu = allcpus;
4742 get_online_cpus();
4743 err = 0;
4744 for_each_present_cpu(cpu) {
4745 if (conf->level == 6) {
4746 spare_page = alloc_page(GFP_KERNEL);
4747 if (!spare_page) {
4748 err = -ENOMEM;
4749 break;
4751 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4753 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4754 if (!scribble) {
4755 err = -ENOMEM;
4756 break;
4758 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4760 #ifdef CONFIG_HOTPLUG_CPU
4761 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4762 conf->cpu_notify.priority = 0;
4763 if (err == 0)
4764 err = register_cpu_notifier(&conf->cpu_notify);
4765 #endif
4766 put_online_cpus();
4768 return err;
4771 static struct r5conf *setup_conf(struct mddev *mddev)
4773 struct r5conf *conf;
4774 int raid_disk, memory, max_disks;
4775 struct md_rdev *rdev;
4776 struct disk_info *disk;
4778 if (mddev->new_level != 5
4779 && mddev->new_level != 4
4780 && mddev->new_level != 6) {
4781 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4782 mdname(mddev), mddev->new_level);
4783 return ERR_PTR(-EIO);
4785 if ((mddev->new_level == 5
4786 && !algorithm_valid_raid5(mddev->new_layout)) ||
4787 (mddev->new_level == 6
4788 && !algorithm_valid_raid6(mddev->new_layout))) {
4789 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4790 mdname(mddev), mddev->new_layout);
4791 return ERR_PTR(-EIO);
4793 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4794 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4795 mdname(mddev), mddev->raid_disks);
4796 return ERR_PTR(-EINVAL);
4799 if (!mddev->new_chunk_sectors ||
4800 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4801 !is_power_of_2(mddev->new_chunk_sectors)) {
4802 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4803 mdname(mddev), mddev->new_chunk_sectors << 9);
4804 return ERR_PTR(-EINVAL);
4807 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4808 if (conf == NULL)
4809 goto abort;
4810 spin_lock_init(&conf->device_lock);
4811 init_waitqueue_head(&conf->wait_for_stripe);
4812 init_waitqueue_head(&conf->wait_for_overlap);
4813 INIT_LIST_HEAD(&conf->handle_list);
4814 INIT_LIST_HEAD(&conf->hold_list);
4815 INIT_LIST_HEAD(&conf->delayed_list);
4816 INIT_LIST_HEAD(&conf->bitmap_list);
4817 INIT_LIST_HEAD(&conf->inactive_list);
4818 atomic_set(&conf->active_stripes, 0);
4819 atomic_set(&conf->preread_active_stripes, 0);
4820 atomic_set(&conf->active_aligned_reads, 0);
4821 conf->bypass_threshold = BYPASS_THRESHOLD;
4822 conf->recovery_disabled = mddev->recovery_disabled - 1;
4824 conf->raid_disks = mddev->raid_disks;
4825 if (mddev->reshape_position == MaxSector)
4826 conf->previous_raid_disks = mddev->raid_disks;
4827 else
4828 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4829 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4830 conf->scribble_len = scribble_len(max_disks);
4832 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4833 GFP_KERNEL);
4834 if (!conf->disks)
4835 goto abort;
4837 conf->mddev = mddev;
4839 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4840 goto abort;
4842 conf->level = mddev->new_level;
4843 if (raid5_alloc_percpu(conf) != 0)
4844 goto abort;
4846 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4848 list_for_each_entry(rdev, &mddev->disks, same_set) {
4849 raid_disk = rdev->raid_disk;
4850 if (raid_disk >= max_disks
4851 || raid_disk < 0)
4852 continue;
4853 disk = conf->disks + raid_disk;
4855 if (test_bit(Replacement, &rdev->flags)) {
4856 if (disk->replacement)
4857 goto abort;
4858 disk->replacement = rdev;
4859 } else {
4860 if (disk->rdev)
4861 goto abort;
4862 disk->rdev = rdev;
4865 if (test_bit(In_sync, &rdev->flags)) {
4866 char b[BDEVNAME_SIZE];
4867 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4868 " disk %d\n",
4869 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4870 } else if (rdev->saved_raid_disk != raid_disk)
4871 /* Cannot rely on bitmap to complete recovery */
4872 conf->fullsync = 1;
4875 conf->chunk_sectors = mddev->new_chunk_sectors;
4876 conf->level = mddev->new_level;
4877 if (conf->level == 6)
4878 conf->max_degraded = 2;
4879 else
4880 conf->max_degraded = 1;
4881 conf->algorithm = mddev->new_layout;
4882 conf->max_nr_stripes = NR_STRIPES;
4883 conf->reshape_progress = mddev->reshape_position;
4884 if (conf->reshape_progress != MaxSector) {
4885 conf->prev_chunk_sectors = mddev->chunk_sectors;
4886 conf->prev_algo = mddev->layout;
4889 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4890 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4891 if (grow_stripes(conf, conf->max_nr_stripes)) {
4892 printk(KERN_ERR
4893 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4894 mdname(mddev), memory);
4895 goto abort;
4896 } else
4897 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4898 mdname(mddev), memory);
4900 conf->thread = md_register_thread(raid5d, mddev, NULL);
4901 if (!conf->thread) {
4902 printk(KERN_ERR
4903 "md/raid:%s: couldn't allocate thread.\n",
4904 mdname(mddev));
4905 goto abort;
4908 return conf;
4910 abort:
4911 if (conf) {
4912 free_conf(conf);
4913 return ERR_PTR(-EIO);
4914 } else
4915 return ERR_PTR(-ENOMEM);
4919 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4921 switch (algo) {
4922 case ALGORITHM_PARITY_0:
4923 if (raid_disk < max_degraded)
4924 return 1;
4925 break;
4926 case ALGORITHM_PARITY_N:
4927 if (raid_disk >= raid_disks - max_degraded)
4928 return 1;
4929 break;
4930 case ALGORITHM_PARITY_0_6:
4931 if (raid_disk == 0 ||
4932 raid_disk == raid_disks - 1)
4933 return 1;
4934 break;
4935 case ALGORITHM_LEFT_ASYMMETRIC_6:
4936 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4937 case ALGORITHM_LEFT_SYMMETRIC_6:
4938 case ALGORITHM_RIGHT_SYMMETRIC_6:
4939 if (raid_disk == raid_disks - 1)
4940 return 1;
4942 return 0;
4945 static int run(struct mddev *mddev)
4947 struct r5conf *conf;
4948 int working_disks = 0;
4949 int dirty_parity_disks = 0;
4950 struct md_rdev *rdev;
4951 sector_t reshape_offset = 0;
4952 int i;
4954 if (mddev->recovery_cp != MaxSector)
4955 printk(KERN_NOTICE "md/raid:%s: not clean"
4956 " -- starting background reconstruction\n",
4957 mdname(mddev));
4958 if (mddev->reshape_position != MaxSector) {
4959 /* Check that we can continue the reshape.
4960 * Currently only disks can change, it must
4961 * increase, and we must be past the point where
4962 * a stripe over-writes itself
4964 sector_t here_new, here_old;
4965 int old_disks;
4966 int max_degraded = (mddev->level == 6 ? 2 : 1);
4968 if (mddev->new_level != mddev->level) {
4969 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4970 "required - aborting.\n",
4971 mdname(mddev));
4972 return -EINVAL;
4974 old_disks = mddev->raid_disks - mddev->delta_disks;
4975 /* reshape_position must be on a new-stripe boundary, and one
4976 * further up in new geometry must map after here in old
4977 * geometry.
4979 here_new = mddev->reshape_position;
4980 if (sector_div(here_new, mddev->new_chunk_sectors *
4981 (mddev->raid_disks - max_degraded))) {
4982 printk(KERN_ERR "md/raid:%s: reshape_position not "
4983 "on a stripe boundary\n", mdname(mddev));
4984 return -EINVAL;
4986 reshape_offset = here_new * mddev->new_chunk_sectors;
4987 /* here_new is the stripe we will write to */
4988 here_old = mddev->reshape_position;
4989 sector_div(here_old, mddev->chunk_sectors *
4990 (old_disks-max_degraded));
4991 /* here_old is the first stripe that we might need to read
4992 * from */
4993 if (mddev->delta_disks == 0) {
4994 /* We cannot be sure it is safe to start an in-place
4995 * reshape. It is only safe if user-space if monitoring
4996 * and taking constant backups.
4997 * mdadm always starts a situation like this in
4998 * readonly mode so it can take control before
4999 * allowing any writes. So just check for that.
5001 if ((here_new * mddev->new_chunk_sectors !=
5002 here_old * mddev->chunk_sectors) ||
5003 mddev->ro == 0) {
5004 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5005 " in read-only mode - aborting\n",
5006 mdname(mddev));
5007 return -EINVAL;
5009 } else if (mddev->delta_disks < 0
5010 ? (here_new * mddev->new_chunk_sectors <=
5011 here_old * mddev->chunk_sectors)
5012 : (here_new * mddev->new_chunk_sectors >=
5013 here_old * mddev->chunk_sectors)) {
5014 /* Reading from the same stripe as writing to - bad */
5015 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5016 "auto-recovery - aborting.\n",
5017 mdname(mddev));
5018 return -EINVAL;
5020 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5021 mdname(mddev));
5022 /* OK, we should be able to continue; */
5023 } else {
5024 BUG_ON(mddev->level != mddev->new_level);
5025 BUG_ON(mddev->layout != mddev->new_layout);
5026 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5027 BUG_ON(mddev->delta_disks != 0);
5030 if (mddev->private == NULL)
5031 conf = setup_conf(mddev);
5032 else
5033 conf = mddev->private;
5035 if (IS_ERR(conf))
5036 return PTR_ERR(conf);
5038 mddev->thread = conf->thread;
5039 conf->thread = NULL;
5040 mddev->private = conf;
5042 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5043 i++) {
5044 rdev = conf->disks[i].rdev;
5045 if (!rdev && conf->disks[i].replacement) {
5046 /* The replacement is all we have yet */
5047 rdev = conf->disks[i].replacement;
5048 conf->disks[i].replacement = NULL;
5049 clear_bit(Replacement, &rdev->flags);
5050 conf->disks[i].rdev = rdev;
5052 if (!rdev)
5053 continue;
5054 if (conf->disks[i].replacement &&
5055 conf->reshape_progress != MaxSector) {
5056 /* replacements and reshape simply do not mix. */
5057 printk(KERN_ERR "md: cannot handle concurrent "
5058 "replacement and reshape.\n");
5059 goto abort;
5061 if (test_bit(In_sync, &rdev->flags)) {
5062 working_disks++;
5063 continue;
5065 /* This disc is not fully in-sync. However if it
5066 * just stored parity (beyond the recovery_offset),
5067 * when we don't need to be concerned about the
5068 * array being dirty.
5069 * When reshape goes 'backwards', we never have
5070 * partially completed devices, so we only need
5071 * to worry about reshape going forwards.
5073 /* Hack because v0.91 doesn't store recovery_offset properly. */
5074 if (mddev->major_version == 0 &&
5075 mddev->minor_version > 90)
5076 rdev->recovery_offset = reshape_offset;
5078 if (rdev->recovery_offset < reshape_offset) {
5079 /* We need to check old and new layout */
5080 if (!only_parity(rdev->raid_disk,
5081 conf->algorithm,
5082 conf->raid_disks,
5083 conf->max_degraded))
5084 continue;
5086 if (!only_parity(rdev->raid_disk,
5087 conf->prev_algo,
5088 conf->previous_raid_disks,
5089 conf->max_degraded))
5090 continue;
5091 dirty_parity_disks++;
5095 * 0 for a fully functional array, 1 or 2 for a degraded array.
5097 mddev->degraded = calc_degraded(conf);
5099 if (has_failed(conf)) {
5100 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5101 " (%d/%d failed)\n",
5102 mdname(mddev), mddev->degraded, conf->raid_disks);
5103 goto abort;
5106 /* device size must be a multiple of chunk size */
5107 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5108 mddev->resync_max_sectors = mddev->dev_sectors;
5110 if (mddev->degraded > dirty_parity_disks &&
5111 mddev->recovery_cp != MaxSector) {
5112 if (mddev->ok_start_degraded)
5113 printk(KERN_WARNING
5114 "md/raid:%s: starting dirty degraded array"
5115 " - data corruption possible.\n",
5116 mdname(mddev));
5117 else {
5118 printk(KERN_ERR
5119 "md/raid:%s: cannot start dirty degraded array.\n",
5120 mdname(mddev));
5121 goto abort;
5125 if (mddev->degraded == 0)
5126 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5127 " devices, algorithm %d\n", mdname(mddev), conf->level,
5128 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5129 mddev->new_layout);
5130 else
5131 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5132 " out of %d devices, algorithm %d\n",
5133 mdname(mddev), conf->level,
5134 mddev->raid_disks - mddev->degraded,
5135 mddev->raid_disks, mddev->new_layout);
5137 print_raid5_conf(conf);
5139 if (conf->reshape_progress != MaxSector) {
5140 conf->reshape_safe = conf->reshape_progress;
5141 atomic_set(&conf->reshape_stripes, 0);
5142 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5143 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5144 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5145 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5146 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5147 "reshape");
5151 /* Ok, everything is just fine now */
5152 if (mddev->to_remove == &raid5_attrs_group)
5153 mddev->to_remove = NULL;
5154 else if (mddev->kobj.sd &&
5155 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5156 printk(KERN_WARNING
5157 "raid5: failed to create sysfs attributes for %s\n",
5158 mdname(mddev));
5159 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5161 if (mddev->queue) {
5162 int chunk_size;
5163 /* read-ahead size must cover two whole stripes, which
5164 * is 2 * (datadisks) * chunksize where 'n' is the
5165 * number of raid devices
5167 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5168 int stripe = data_disks *
5169 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5170 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5171 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5173 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5175 mddev->queue->backing_dev_info.congested_data = mddev;
5176 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5178 chunk_size = mddev->chunk_sectors << 9;
5179 blk_queue_io_min(mddev->queue, chunk_size);
5180 blk_queue_io_opt(mddev->queue, chunk_size *
5181 (conf->raid_disks - conf->max_degraded));
5183 list_for_each_entry(rdev, &mddev->disks, same_set)
5184 disk_stack_limits(mddev->gendisk, rdev->bdev,
5185 rdev->data_offset << 9);
5188 return 0;
5189 abort:
5190 md_unregister_thread(&mddev->thread);
5191 print_raid5_conf(conf);
5192 free_conf(conf);
5193 mddev->private = NULL;
5194 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5195 return -EIO;
5198 static int stop(struct mddev *mddev)
5200 struct r5conf *conf = mddev->private;
5202 md_unregister_thread(&mddev->thread);
5203 if (mddev->queue)
5204 mddev->queue->backing_dev_info.congested_fn = NULL;
5205 free_conf(conf);
5206 mddev->private = NULL;
5207 mddev->to_remove = &raid5_attrs_group;
5208 return 0;
5211 static void status(struct seq_file *seq, struct mddev *mddev)
5213 struct r5conf *conf = mddev->private;
5214 int i;
5216 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5217 mddev->chunk_sectors / 2, mddev->layout);
5218 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5219 for (i = 0; i < conf->raid_disks; i++)
5220 seq_printf (seq, "%s",
5221 conf->disks[i].rdev &&
5222 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5223 seq_printf (seq, "]");
5226 static void print_raid5_conf (struct r5conf *conf)
5228 int i;
5229 struct disk_info *tmp;
5231 printk(KERN_DEBUG "RAID conf printout:\n");
5232 if (!conf) {
5233 printk("(conf==NULL)\n");
5234 return;
5236 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5237 conf->raid_disks,
5238 conf->raid_disks - conf->mddev->degraded);
5240 for (i = 0; i < conf->raid_disks; i++) {
5241 char b[BDEVNAME_SIZE];
5242 tmp = conf->disks + i;
5243 if (tmp->rdev)
5244 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5245 i, !test_bit(Faulty, &tmp->rdev->flags),
5246 bdevname(tmp->rdev->bdev, b));
5250 static int raid5_spare_active(struct mddev *mddev)
5252 int i;
5253 struct r5conf *conf = mddev->private;
5254 struct disk_info *tmp;
5255 int count = 0;
5256 unsigned long flags;
5258 for (i = 0; i < conf->raid_disks; i++) {
5259 tmp = conf->disks + i;
5260 if (tmp->replacement
5261 && tmp->replacement->recovery_offset == MaxSector
5262 && !test_bit(Faulty, &tmp->replacement->flags)
5263 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5264 /* Replacement has just become active. */
5265 if (!tmp->rdev
5266 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5267 count++;
5268 if (tmp->rdev) {
5269 /* Replaced device not technically faulty,
5270 * but we need to be sure it gets removed
5271 * and never re-added.
5273 set_bit(Faulty, &tmp->rdev->flags);
5274 sysfs_notify_dirent_safe(
5275 tmp->rdev->sysfs_state);
5277 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5278 } else if (tmp->rdev
5279 && tmp->rdev->recovery_offset == MaxSector
5280 && !test_bit(Faulty, &tmp->rdev->flags)
5281 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5282 count++;
5283 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5286 spin_lock_irqsave(&conf->device_lock, flags);
5287 mddev->degraded = calc_degraded(conf);
5288 spin_unlock_irqrestore(&conf->device_lock, flags);
5289 print_raid5_conf(conf);
5290 return count;
5293 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5295 struct r5conf *conf = mddev->private;
5296 int err = 0;
5297 int number = rdev->raid_disk;
5298 struct md_rdev **rdevp;
5299 struct disk_info *p = conf->disks + number;
5301 print_raid5_conf(conf);
5302 if (rdev == p->rdev)
5303 rdevp = &p->rdev;
5304 else if (rdev == p->replacement)
5305 rdevp = &p->replacement;
5306 else
5307 return 0;
5309 if (number >= conf->raid_disks &&
5310 conf->reshape_progress == MaxSector)
5311 clear_bit(In_sync, &rdev->flags);
5313 if (test_bit(In_sync, &rdev->flags) ||
5314 atomic_read(&rdev->nr_pending)) {
5315 err = -EBUSY;
5316 goto abort;
5318 /* Only remove non-faulty devices if recovery
5319 * isn't possible.
5321 if (!test_bit(Faulty, &rdev->flags) &&
5322 mddev->recovery_disabled != conf->recovery_disabled &&
5323 !has_failed(conf) &&
5324 (!p->replacement || p->replacement == rdev) &&
5325 number < conf->raid_disks) {
5326 err = -EBUSY;
5327 goto abort;
5329 *rdevp = NULL;
5330 synchronize_rcu();
5331 if (atomic_read(&rdev->nr_pending)) {
5332 /* lost the race, try later */
5333 err = -EBUSY;
5334 *rdevp = rdev;
5335 } else if (p->replacement) {
5336 /* We must have just cleared 'rdev' */
5337 p->rdev = p->replacement;
5338 clear_bit(Replacement, &p->replacement->flags);
5339 smp_mb(); /* Make sure other CPUs may see both as identical
5340 * but will never see neither - if they are careful
5342 p->replacement = NULL;
5343 clear_bit(WantReplacement, &rdev->flags);
5344 } else
5345 /* We might have just removed the Replacement as faulty-
5346 * clear the bit just in case
5348 clear_bit(WantReplacement, &rdev->flags);
5349 abort:
5351 print_raid5_conf(conf);
5352 return err;
5355 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5357 struct r5conf *conf = mddev->private;
5358 int err = -EEXIST;
5359 int disk;
5360 struct disk_info *p;
5361 int first = 0;
5362 int last = conf->raid_disks - 1;
5364 if (mddev->recovery_disabled == conf->recovery_disabled)
5365 return -EBUSY;
5367 if (has_failed(conf))
5368 /* no point adding a device */
5369 return -EINVAL;
5371 if (rdev->raid_disk >= 0)
5372 first = last = rdev->raid_disk;
5375 * find the disk ... but prefer rdev->saved_raid_disk
5376 * if possible.
5378 if (rdev->saved_raid_disk >= 0 &&
5379 rdev->saved_raid_disk >= first &&
5380 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5381 disk = rdev->saved_raid_disk;
5382 else
5383 disk = first;
5384 for ( ; disk <= last ; disk++) {
5385 p = conf->disks + disk;
5386 if (p->rdev == NULL) {
5387 clear_bit(In_sync, &rdev->flags);
5388 rdev->raid_disk = disk;
5389 err = 0;
5390 if (rdev->saved_raid_disk != disk)
5391 conf->fullsync = 1;
5392 rcu_assign_pointer(p->rdev, rdev);
5393 break;
5395 if (test_bit(WantReplacement, &p->rdev->flags) &&
5396 p->replacement == NULL) {
5397 clear_bit(In_sync, &rdev->flags);
5398 set_bit(Replacement, &rdev->flags);
5399 rdev->raid_disk = disk;
5400 err = 0;
5401 conf->fullsync = 1;
5402 rcu_assign_pointer(p->replacement, rdev);
5403 break;
5406 print_raid5_conf(conf);
5407 return err;
5410 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5412 /* no resync is happening, and there is enough space
5413 * on all devices, so we can resize.
5414 * We need to make sure resync covers any new space.
5415 * If the array is shrinking we should possibly wait until
5416 * any io in the removed space completes, but it hardly seems
5417 * worth it.
5419 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5420 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5421 mddev->raid_disks));
5422 if (mddev->array_sectors >
5423 raid5_size(mddev, sectors, mddev->raid_disks))
5424 return -EINVAL;
5425 set_capacity(mddev->gendisk, mddev->array_sectors);
5426 revalidate_disk(mddev->gendisk);
5427 if (sectors > mddev->dev_sectors &&
5428 mddev->recovery_cp > mddev->dev_sectors) {
5429 mddev->recovery_cp = mddev->dev_sectors;
5430 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5432 mddev->dev_sectors = sectors;
5433 mddev->resync_max_sectors = sectors;
5434 return 0;
5437 static int check_stripe_cache(struct mddev *mddev)
5439 /* Can only proceed if there are plenty of stripe_heads.
5440 * We need a minimum of one full stripe,, and for sensible progress
5441 * it is best to have about 4 times that.
5442 * If we require 4 times, then the default 256 4K stripe_heads will
5443 * allow for chunk sizes up to 256K, which is probably OK.
5444 * If the chunk size is greater, user-space should request more
5445 * stripe_heads first.
5447 struct r5conf *conf = mddev->private;
5448 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5449 > conf->max_nr_stripes ||
5450 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5451 > conf->max_nr_stripes) {
5452 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5453 mdname(mddev),
5454 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5455 / STRIPE_SIZE)*4);
5456 return 0;
5458 return 1;
5461 static int check_reshape(struct mddev *mddev)
5463 struct r5conf *conf = mddev->private;
5465 if (mddev->delta_disks == 0 &&
5466 mddev->new_layout == mddev->layout &&
5467 mddev->new_chunk_sectors == mddev->chunk_sectors)
5468 return 0; /* nothing to do */
5469 if (mddev->bitmap)
5470 /* Cannot grow a bitmap yet */
5471 return -EBUSY;
5472 if (has_failed(conf))
5473 return -EINVAL;
5474 if (mddev->delta_disks < 0) {
5475 /* We might be able to shrink, but the devices must
5476 * be made bigger first.
5477 * For raid6, 4 is the minimum size.
5478 * Otherwise 2 is the minimum
5480 int min = 2;
5481 if (mddev->level == 6)
5482 min = 4;
5483 if (mddev->raid_disks + mddev->delta_disks < min)
5484 return -EINVAL;
5487 if (!check_stripe_cache(mddev))
5488 return -ENOSPC;
5490 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5493 static int raid5_start_reshape(struct mddev *mddev)
5495 struct r5conf *conf = mddev->private;
5496 struct md_rdev *rdev;
5497 int spares = 0;
5498 unsigned long flags;
5500 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5501 return -EBUSY;
5503 if (!check_stripe_cache(mddev))
5504 return -ENOSPC;
5506 list_for_each_entry(rdev, &mddev->disks, same_set)
5507 if (!test_bit(In_sync, &rdev->flags)
5508 && !test_bit(Faulty, &rdev->flags))
5509 spares++;
5511 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5512 /* Not enough devices even to make a degraded array
5513 * of that size
5515 return -EINVAL;
5517 /* Refuse to reduce size of the array. Any reductions in
5518 * array size must be through explicit setting of array_size
5519 * attribute.
5521 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5522 < mddev->array_sectors) {
5523 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5524 "before number of disks\n", mdname(mddev));
5525 return -EINVAL;
5528 atomic_set(&conf->reshape_stripes, 0);
5529 spin_lock_irq(&conf->device_lock);
5530 conf->previous_raid_disks = conf->raid_disks;
5531 conf->raid_disks += mddev->delta_disks;
5532 conf->prev_chunk_sectors = conf->chunk_sectors;
5533 conf->chunk_sectors = mddev->new_chunk_sectors;
5534 conf->prev_algo = conf->algorithm;
5535 conf->algorithm = mddev->new_layout;
5536 if (mddev->delta_disks < 0)
5537 conf->reshape_progress = raid5_size(mddev, 0, 0);
5538 else
5539 conf->reshape_progress = 0;
5540 conf->reshape_safe = conf->reshape_progress;
5541 conf->generation++;
5542 spin_unlock_irq(&conf->device_lock);
5544 /* Add some new drives, as many as will fit.
5545 * We know there are enough to make the newly sized array work.
5546 * Don't add devices if we are reducing the number of
5547 * devices in the array. This is because it is not possible
5548 * to correctly record the "partially reconstructed" state of
5549 * such devices during the reshape and confusion could result.
5551 if (mddev->delta_disks >= 0) {
5552 int added_devices = 0;
5553 list_for_each_entry(rdev, &mddev->disks, same_set)
5554 if (rdev->raid_disk < 0 &&
5555 !test_bit(Faulty, &rdev->flags)) {
5556 if (raid5_add_disk(mddev, rdev) == 0) {
5557 if (rdev->raid_disk
5558 >= conf->previous_raid_disks) {
5559 set_bit(In_sync, &rdev->flags);
5560 added_devices++;
5561 } else
5562 rdev->recovery_offset = 0;
5564 if (sysfs_link_rdev(mddev, rdev))
5565 /* Failure here is OK */;
5567 } else if (rdev->raid_disk >= conf->previous_raid_disks
5568 && !test_bit(Faulty, &rdev->flags)) {
5569 /* This is a spare that was manually added */
5570 set_bit(In_sync, &rdev->flags);
5571 added_devices++;
5574 /* When a reshape changes the number of devices,
5575 * ->degraded is measured against the larger of the
5576 * pre and post number of devices.
5578 spin_lock_irqsave(&conf->device_lock, flags);
5579 mddev->degraded = calc_degraded(conf);
5580 spin_unlock_irqrestore(&conf->device_lock, flags);
5582 mddev->raid_disks = conf->raid_disks;
5583 mddev->reshape_position = conf->reshape_progress;
5584 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5586 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5587 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5588 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5589 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5590 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5591 "reshape");
5592 if (!mddev->sync_thread) {
5593 mddev->recovery = 0;
5594 spin_lock_irq(&conf->device_lock);
5595 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5596 conf->reshape_progress = MaxSector;
5597 spin_unlock_irq(&conf->device_lock);
5598 return -EAGAIN;
5600 conf->reshape_checkpoint = jiffies;
5601 md_wakeup_thread(mddev->sync_thread);
5602 md_new_event(mddev);
5603 return 0;
5606 /* This is called from the reshape thread and should make any
5607 * changes needed in 'conf'
5609 static void end_reshape(struct r5conf *conf)
5612 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5614 spin_lock_irq(&conf->device_lock);
5615 conf->previous_raid_disks = conf->raid_disks;
5616 conf->reshape_progress = MaxSector;
5617 spin_unlock_irq(&conf->device_lock);
5618 wake_up(&conf->wait_for_overlap);
5620 /* read-ahead size must cover two whole stripes, which is
5621 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5623 if (conf->mddev->queue) {
5624 int data_disks = conf->raid_disks - conf->max_degraded;
5625 int stripe = data_disks * ((conf->chunk_sectors << 9)
5626 / PAGE_SIZE);
5627 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5628 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5633 /* This is called from the raid5d thread with mddev_lock held.
5634 * It makes config changes to the device.
5636 static void raid5_finish_reshape(struct mddev *mddev)
5638 struct r5conf *conf = mddev->private;
5640 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5642 if (mddev->delta_disks > 0) {
5643 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5644 set_capacity(mddev->gendisk, mddev->array_sectors);
5645 revalidate_disk(mddev->gendisk);
5646 } else {
5647 int d;
5648 spin_lock_irq(&conf->device_lock);
5649 mddev->degraded = calc_degraded(conf);
5650 spin_unlock_irq(&conf->device_lock);
5651 for (d = conf->raid_disks ;
5652 d < conf->raid_disks - mddev->delta_disks;
5653 d++) {
5654 struct md_rdev *rdev = conf->disks[d].rdev;
5655 if (rdev &&
5656 raid5_remove_disk(mddev, rdev) == 0) {
5657 sysfs_unlink_rdev(mddev, rdev);
5658 rdev->raid_disk = -1;
5662 mddev->layout = conf->algorithm;
5663 mddev->chunk_sectors = conf->chunk_sectors;
5664 mddev->reshape_position = MaxSector;
5665 mddev->delta_disks = 0;
5669 static void raid5_quiesce(struct mddev *mddev, int state)
5671 struct r5conf *conf = mddev->private;
5673 switch(state) {
5674 case 2: /* resume for a suspend */
5675 wake_up(&conf->wait_for_overlap);
5676 break;
5678 case 1: /* stop all writes */
5679 spin_lock_irq(&conf->device_lock);
5680 /* '2' tells resync/reshape to pause so that all
5681 * active stripes can drain
5683 conf->quiesce = 2;
5684 wait_event_lock_irq(conf->wait_for_stripe,
5685 atomic_read(&conf->active_stripes) == 0 &&
5686 atomic_read(&conf->active_aligned_reads) == 0,
5687 conf->device_lock, /* nothing */);
5688 conf->quiesce = 1;
5689 spin_unlock_irq(&conf->device_lock);
5690 /* allow reshape to continue */
5691 wake_up(&conf->wait_for_overlap);
5692 break;
5694 case 0: /* re-enable writes */
5695 spin_lock_irq(&conf->device_lock);
5696 conf->quiesce = 0;
5697 wake_up(&conf->wait_for_stripe);
5698 wake_up(&conf->wait_for_overlap);
5699 spin_unlock_irq(&conf->device_lock);
5700 break;
5705 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5707 struct r0conf *raid0_conf = mddev->private;
5708 sector_t sectors;
5710 /* for raid0 takeover only one zone is supported */
5711 if (raid0_conf->nr_strip_zones > 1) {
5712 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5713 mdname(mddev));
5714 return ERR_PTR(-EINVAL);
5717 sectors = raid0_conf->strip_zone[0].zone_end;
5718 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5719 mddev->dev_sectors = sectors;
5720 mddev->new_level = level;
5721 mddev->new_layout = ALGORITHM_PARITY_N;
5722 mddev->new_chunk_sectors = mddev->chunk_sectors;
5723 mddev->raid_disks += 1;
5724 mddev->delta_disks = 1;
5725 /* make sure it will be not marked as dirty */
5726 mddev->recovery_cp = MaxSector;
5728 return setup_conf(mddev);
5732 static void *raid5_takeover_raid1(struct mddev *mddev)
5734 int chunksect;
5736 if (mddev->raid_disks != 2 ||
5737 mddev->degraded > 1)
5738 return ERR_PTR(-EINVAL);
5740 /* Should check if there are write-behind devices? */
5742 chunksect = 64*2; /* 64K by default */
5744 /* The array must be an exact multiple of chunksize */
5745 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5746 chunksect >>= 1;
5748 if ((chunksect<<9) < STRIPE_SIZE)
5749 /* array size does not allow a suitable chunk size */
5750 return ERR_PTR(-EINVAL);
5752 mddev->new_level = 5;
5753 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5754 mddev->new_chunk_sectors = chunksect;
5756 return setup_conf(mddev);
5759 static void *raid5_takeover_raid6(struct mddev *mddev)
5761 int new_layout;
5763 switch (mddev->layout) {
5764 case ALGORITHM_LEFT_ASYMMETRIC_6:
5765 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5766 break;
5767 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5768 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5769 break;
5770 case ALGORITHM_LEFT_SYMMETRIC_6:
5771 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5772 break;
5773 case ALGORITHM_RIGHT_SYMMETRIC_6:
5774 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5775 break;
5776 case ALGORITHM_PARITY_0_6:
5777 new_layout = ALGORITHM_PARITY_0;
5778 break;
5779 case ALGORITHM_PARITY_N:
5780 new_layout = ALGORITHM_PARITY_N;
5781 break;
5782 default:
5783 return ERR_PTR(-EINVAL);
5785 mddev->new_level = 5;
5786 mddev->new_layout = new_layout;
5787 mddev->delta_disks = -1;
5788 mddev->raid_disks -= 1;
5789 return setup_conf(mddev);
5793 static int raid5_check_reshape(struct mddev *mddev)
5795 /* For a 2-drive array, the layout and chunk size can be changed
5796 * immediately as not restriping is needed.
5797 * For larger arrays we record the new value - after validation
5798 * to be used by a reshape pass.
5800 struct r5conf *conf = mddev->private;
5801 int new_chunk = mddev->new_chunk_sectors;
5803 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5804 return -EINVAL;
5805 if (new_chunk > 0) {
5806 if (!is_power_of_2(new_chunk))
5807 return -EINVAL;
5808 if (new_chunk < (PAGE_SIZE>>9))
5809 return -EINVAL;
5810 if (mddev->array_sectors & (new_chunk-1))
5811 /* not factor of array size */
5812 return -EINVAL;
5815 /* They look valid */
5817 if (mddev->raid_disks == 2) {
5818 /* can make the change immediately */
5819 if (mddev->new_layout >= 0) {
5820 conf->algorithm = mddev->new_layout;
5821 mddev->layout = mddev->new_layout;
5823 if (new_chunk > 0) {
5824 conf->chunk_sectors = new_chunk ;
5825 mddev->chunk_sectors = new_chunk;
5827 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5828 md_wakeup_thread(mddev->thread);
5830 return check_reshape(mddev);
5833 static int raid6_check_reshape(struct mddev *mddev)
5835 int new_chunk = mddev->new_chunk_sectors;
5837 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5838 return -EINVAL;
5839 if (new_chunk > 0) {
5840 if (!is_power_of_2(new_chunk))
5841 return -EINVAL;
5842 if (new_chunk < (PAGE_SIZE >> 9))
5843 return -EINVAL;
5844 if (mddev->array_sectors & (new_chunk-1))
5845 /* not factor of array size */
5846 return -EINVAL;
5849 /* They look valid */
5850 return check_reshape(mddev);
5853 static void *raid5_takeover(struct mddev *mddev)
5855 /* raid5 can take over:
5856 * raid0 - if there is only one strip zone - make it a raid4 layout
5857 * raid1 - if there are two drives. We need to know the chunk size
5858 * raid4 - trivial - just use a raid4 layout.
5859 * raid6 - Providing it is a *_6 layout
5861 if (mddev->level == 0)
5862 return raid45_takeover_raid0(mddev, 5);
5863 if (mddev->level == 1)
5864 return raid5_takeover_raid1(mddev);
5865 if (mddev->level == 4) {
5866 mddev->new_layout = ALGORITHM_PARITY_N;
5867 mddev->new_level = 5;
5868 return setup_conf(mddev);
5870 if (mddev->level == 6)
5871 return raid5_takeover_raid6(mddev);
5873 return ERR_PTR(-EINVAL);
5876 static void *raid4_takeover(struct mddev *mddev)
5878 /* raid4 can take over:
5879 * raid0 - if there is only one strip zone
5880 * raid5 - if layout is right
5882 if (mddev->level == 0)
5883 return raid45_takeover_raid0(mddev, 4);
5884 if (mddev->level == 5 &&
5885 mddev->layout == ALGORITHM_PARITY_N) {
5886 mddev->new_layout = 0;
5887 mddev->new_level = 4;
5888 return setup_conf(mddev);
5890 return ERR_PTR(-EINVAL);
5893 static struct md_personality raid5_personality;
5895 static void *raid6_takeover(struct mddev *mddev)
5897 /* Currently can only take over a raid5. We map the
5898 * personality to an equivalent raid6 personality
5899 * with the Q block at the end.
5901 int new_layout;
5903 if (mddev->pers != &raid5_personality)
5904 return ERR_PTR(-EINVAL);
5905 if (mddev->degraded > 1)
5906 return ERR_PTR(-EINVAL);
5907 if (mddev->raid_disks > 253)
5908 return ERR_PTR(-EINVAL);
5909 if (mddev->raid_disks < 3)
5910 return ERR_PTR(-EINVAL);
5912 switch (mddev->layout) {
5913 case ALGORITHM_LEFT_ASYMMETRIC:
5914 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5915 break;
5916 case ALGORITHM_RIGHT_ASYMMETRIC:
5917 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5918 break;
5919 case ALGORITHM_LEFT_SYMMETRIC:
5920 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5921 break;
5922 case ALGORITHM_RIGHT_SYMMETRIC:
5923 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5924 break;
5925 case ALGORITHM_PARITY_0:
5926 new_layout = ALGORITHM_PARITY_0_6;
5927 break;
5928 case ALGORITHM_PARITY_N:
5929 new_layout = ALGORITHM_PARITY_N;
5930 break;
5931 default:
5932 return ERR_PTR(-EINVAL);
5934 mddev->new_level = 6;
5935 mddev->new_layout = new_layout;
5936 mddev->delta_disks = 1;
5937 mddev->raid_disks += 1;
5938 return setup_conf(mddev);
5942 static struct md_personality raid6_personality =
5944 .name = "raid6",
5945 .level = 6,
5946 .owner = THIS_MODULE,
5947 .make_request = make_request,
5948 .run = run,
5949 .stop = stop,
5950 .status = status,
5951 .error_handler = error,
5952 .hot_add_disk = raid5_add_disk,
5953 .hot_remove_disk= raid5_remove_disk,
5954 .spare_active = raid5_spare_active,
5955 .sync_request = sync_request,
5956 .resize = raid5_resize,
5957 .size = raid5_size,
5958 .check_reshape = raid6_check_reshape,
5959 .start_reshape = raid5_start_reshape,
5960 .finish_reshape = raid5_finish_reshape,
5961 .quiesce = raid5_quiesce,
5962 .takeover = raid6_takeover,
5964 static struct md_personality raid5_personality =
5966 .name = "raid5",
5967 .level = 5,
5968 .owner = THIS_MODULE,
5969 .make_request = make_request,
5970 .run = run,
5971 .stop = stop,
5972 .status = status,
5973 .error_handler = error,
5974 .hot_add_disk = raid5_add_disk,
5975 .hot_remove_disk= raid5_remove_disk,
5976 .spare_active = raid5_spare_active,
5977 .sync_request = sync_request,
5978 .resize = raid5_resize,
5979 .size = raid5_size,
5980 .check_reshape = raid5_check_reshape,
5981 .start_reshape = raid5_start_reshape,
5982 .finish_reshape = raid5_finish_reshape,
5983 .quiesce = raid5_quiesce,
5984 .takeover = raid5_takeover,
5987 static struct md_personality raid4_personality =
5989 .name = "raid4",
5990 .level = 4,
5991 .owner = THIS_MODULE,
5992 .make_request = make_request,
5993 .run = run,
5994 .stop = stop,
5995 .status = status,
5996 .error_handler = error,
5997 .hot_add_disk = raid5_add_disk,
5998 .hot_remove_disk= raid5_remove_disk,
5999 .spare_active = raid5_spare_active,
6000 .sync_request = sync_request,
6001 .resize = raid5_resize,
6002 .size = raid5_size,
6003 .check_reshape = raid5_check_reshape,
6004 .start_reshape = raid5_start_reshape,
6005 .finish_reshape = raid5_finish_reshape,
6006 .quiesce = raid5_quiesce,
6007 .takeover = raid4_takeover,
6010 static int __init raid5_init(void)
6012 register_md_personality(&raid6_personality);
6013 register_md_personality(&raid5_personality);
6014 register_md_personality(&raid4_personality);
6015 return 0;
6018 static void raid5_exit(void)
6020 unregister_md_personality(&raid6_personality);
6021 unregister_md_personality(&raid5_personality);
6022 unregister_md_personality(&raid4_personality);
6025 module_init(raid5_init);
6026 module_exit(raid5_exit);
6027 MODULE_LICENSE("GPL");
6028 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6029 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6030 MODULE_ALIAS("md-raid5");
6031 MODULE_ALIAS("md-raid4");
6032 MODULE_ALIAS("md-level-5");
6033 MODULE_ALIAS("md-level-4");
6034 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6035 MODULE_ALIAS("md-raid6");
6036 MODULE_ALIAS("md-level-6");
6038 /* This used to be two separate modules, they were: */
6039 MODULE_ALIAS("raid5");
6040 MODULE_ALIAS("raid6");