2 * Common Flash Interface support:
3 * ST Advanced Architecture Command Set (ID 0x0020)
5 * (C) 2000 Red Hat. GPL'd
7 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
8 * - completely revamped method functions so they are aware and
9 * independent of the flash geometry (buswidth, interleave, etc.)
10 * - scalability vs code size is completely set at compile-time
11 * (see include/linux/mtd/cfi.h for selection)
12 * - optimized write buffer method
13 * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others
14 * - modified Intel Command Set 0x0001 to support ST Advanced Architecture
15 * (command set 0x0020)
16 * - added a writev function
17 * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de>
18 * - Plugged memory leak in cfi_staa_writev().
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/init.h>
27 #include <asm/byteorder.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/delay.h>
32 #include <linux/interrupt.h>
33 #include <linux/mtd/map.h>
34 #include <linux/mtd/cfi.h>
35 #include <linux/mtd/mtd.h>
38 static int cfi_staa_read(struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
39 static int cfi_staa_write_buffers(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
40 static int cfi_staa_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
41 unsigned long count
, loff_t to
, size_t *retlen
);
42 static int cfi_staa_erase_varsize(struct mtd_info
*, struct erase_info
*);
43 static void cfi_staa_sync (struct mtd_info
*);
44 static int cfi_staa_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
45 static int cfi_staa_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
46 static int cfi_staa_suspend (struct mtd_info
*);
47 static void cfi_staa_resume (struct mtd_info
*);
49 static void cfi_staa_destroy(struct mtd_info
*);
51 struct mtd_info
*cfi_cmdset_0020(struct map_info
*, int);
53 static struct mtd_info
*cfi_staa_setup (struct map_info
*);
55 static struct mtd_chip_driver cfi_staa_chipdrv
= {
56 .probe
= NULL
, /* Not usable directly */
57 .destroy
= cfi_staa_destroy
,
58 .name
= "cfi_cmdset_0020",
62 /* #define DEBUG_LOCK_BITS */
63 //#define DEBUG_CFI_FEATURES
65 #ifdef DEBUG_CFI_FEATURES
66 static void cfi_tell_features(struct cfi_pri_intelext
*extp
)
69 printk(" Feature/Command Support: %4.4X\n", extp
->FeatureSupport
);
70 printk(" - Chip Erase: %s\n", extp
->FeatureSupport
&1?"supported":"unsupported");
71 printk(" - Suspend Erase: %s\n", extp
->FeatureSupport
&2?"supported":"unsupported");
72 printk(" - Suspend Program: %s\n", extp
->FeatureSupport
&4?"supported":"unsupported");
73 printk(" - Legacy Lock/Unlock: %s\n", extp
->FeatureSupport
&8?"supported":"unsupported");
74 printk(" - Queued Erase: %s\n", extp
->FeatureSupport
&16?"supported":"unsupported");
75 printk(" - Instant block lock: %s\n", extp
->FeatureSupport
&32?"supported":"unsupported");
76 printk(" - Protection Bits: %s\n", extp
->FeatureSupport
&64?"supported":"unsupported");
77 printk(" - Page-mode read: %s\n", extp
->FeatureSupport
&128?"supported":"unsupported");
78 printk(" - Synchronous read: %s\n", extp
->FeatureSupport
&256?"supported":"unsupported");
79 for (i
=9; i
<32; i
++) {
80 if (extp
->FeatureSupport
& (1<<i
))
81 printk(" - Unknown Bit %X: supported\n", i
);
84 printk(" Supported functions after Suspend: %2.2X\n", extp
->SuspendCmdSupport
);
85 printk(" - Program after Erase Suspend: %s\n", extp
->SuspendCmdSupport
&1?"supported":"unsupported");
87 if (extp
->SuspendCmdSupport
& (1<<i
))
88 printk(" - Unknown Bit %X: supported\n", i
);
91 printk(" Block Status Register Mask: %4.4X\n", extp
->BlkStatusRegMask
);
92 printk(" - Lock Bit Active: %s\n", extp
->BlkStatusRegMask
&1?"yes":"no");
93 printk(" - Valid Bit Active: %s\n", extp
->BlkStatusRegMask
&2?"yes":"no");
94 for (i
=2; i
<16; i
++) {
95 if (extp
->BlkStatusRegMask
& (1<<i
))
96 printk(" - Unknown Bit %X Active: yes\n",i
);
99 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
100 extp
->VccOptimal
>> 8, extp
->VccOptimal
& 0xf);
101 if (extp
->VppOptimal
)
102 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
103 extp
->VppOptimal
>> 8, extp
->VppOptimal
& 0xf);
107 /* This routine is made available to other mtd code via
108 * inter_module_register. It must only be accessed through
109 * inter_module_get which will bump the use count of this module. The
110 * addresses passed back in cfi are valid as long as the use count of
111 * this module is non-zero, i.e. between inter_module_get and
112 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
114 struct mtd_info
*cfi_cmdset_0020(struct map_info
*map
, int primary
)
116 struct cfi_private
*cfi
= map
->fldrv_priv
;
121 * It's a real CFI chip, not one for which the probe
122 * routine faked a CFI structure. So we read the feature
125 __u16 adr
= primary
?cfi
->cfiq
->P_ADR
:cfi
->cfiq
->A_ADR
;
126 struct cfi_pri_intelext
*extp
;
128 extp
= (struct cfi_pri_intelext
*)cfi_read_pri(map
, adr
, sizeof(*extp
), "ST Microelectronics");
132 if (extp
->MajorVersion
!= '1' ||
133 (extp
->MinorVersion
< '0' || extp
->MinorVersion
> '3')) {
134 printk(KERN_ERR
" Unknown ST Microelectronics"
135 " Extended Query version %c.%c.\n",
136 extp
->MajorVersion
, extp
->MinorVersion
);
141 /* Do some byteswapping if necessary */
142 extp
->FeatureSupport
= cfi32_to_cpu(map
, extp
->FeatureSupport
);
143 extp
->BlkStatusRegMask
= cfi32_to_cpu(map
,
144 extp
->BlkStatusRegMask
);
146 #ifdef DEBUG_CFI_FEATURES
147 /* Tell the user about it in lots of lovely detail */
148 cfi_tell_features(extp
);
151 /* Install our own private info structure */
152 cfi
->cmdset_priv
= extp
;
155 for (i
=0; i
< cfi
->numchips
; i
++) {
156 cfi
->chips
[i
].word_write_time
= 128;
157 cfi
->chips
[i
].buffer_write_time
= 128;
158 cfi
->chips
[i
].erase_time
= 1024;
159 cfi
->chips
[i
].ref_point_counter
= 0;
160 init_waitqueue_head(&(cfi
->chips
[i
].wq
));
163 return cfi_staa_setup(map
);
165 EXPORT_SYMBOL_GPL(cfi_cmdset_0020
);
167 static struct mtd_info
*cfi_staa_setup(struct map_info
*map
)
169 struct cfi_private
*cfi
= map
->fldrv_priv
;
170 struct mtd_info
*mtd
;
171 unsigned long offset
= 0;
173 unsigned long devsize
= (1<<cfi
->cfiq
->DevSize
) * cfi
->interleave
;
175 mtd
= kzalloc(sizeof(*mtd
), GFP_KERNEL
);
176 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
179 printk(KERN_ERR
"Failed to allocate memory for MTD device\n");
180 kfree(cfi
->cmdset_priv
);
185 mtd
->type
= MTD_NORFLASH
;
186 mtd
->size
= devsize
* cfi
->numchips
;
188 mtd
->numeraseregions
= cfi
->cfiq
->NumEraseRegions
* cfi
->numchips
;
189 mtd
->eraseregions
= kmalloc(sizeof(struct mtd_erase_region_info
)
190 * mtd
->numeraseregions
, GFP_KERNEL
);
191 if (!mtd
->eraseregions
) {
192 printk(KERN_ERR
"Failed to allocate memory for MTD erase region info\n");
193 kfree(cfi
->cmdset_priv
);
198 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++) {
199 unsigned long ernum
, ersize
;
200 ersize
= ((cfi
->cfiq
->EraseRegionInfo
[i
] >> 8) & ~0xff) * cfi
->interleave
;
201 ernum
= (cfi
->cfiq
->EraseRegionInfo
[i
] & 0xffff) + 1;
203 if (mtd
->erasesize
< ersize
) {
204 mtd
->erasesize
= ersize
;
206 for (j
=0; j
<cfi
->numchips
; j
++) {
207 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].offset
= (j
*devsize
)+offset
;
208 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].erasesize
= ersize
;
209 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].numblocks
= ernum
;
211 offset
+= (ersize
* ernum
);
214 if (offset
!= devsize
) {
216 printk(KERN_WARNING
"Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset
, devsize
);
217 kfree(mtd
->eraseregions
);
218 kfree(cfi
->cmdset_priv
);
223 for (i
=0; i
<mtd
->numeraseregions
;i
++){
224 printk(KERN_DEBUG
"%d: offset=0x%llx,size=0x%x,blocks=%d\n",
225 i
, (unsigned long long)mtd
->eraseregions
[i
].offset
,
226 mtd
->eraseregions
[i
].erasesize
,
227 mtd
->eraseregions
[i
].numblocks
);
230 /* Also select the correct geometry setup too */
231 mtd
->erase
= cfi_staa_erase_varsize
;
232 mtd
->read
= cfi_staa_read
;
233 mtd
->write
= cfi_staa_write_buffers
;
234 mtd
->writev
= cfi_staa_writev
;
235 mtd
->sync
= cfi_staa_sync
;
236 mtd
->lock
= cfi_staa_lock
;
237 mtd
->unlock
= cfi_staa_unlock
;
238 mtd
->suspend
= cfi_staa_suspend
;
239 mtd
->resume
= cfi_staa_resume
;
240 mtd
->flags
= MTD_CAP_NORFLASH
& ~MTD_BIT_WRITEABLE
;
241 mtd
->writesize
= 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
242 mtd
->writebufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
243 map
->fldrv
= &cfi_staa_chipdrv
;
244 __module_get(THIS_MODULE
);
245 mtd
->name
= map
->name
;
250 static inline int do_read_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
252 map_word status
, status_OK
;
254 DECLARE_WAITQUEUE(wait
, current
);
256 unsigned long cmd_addr
;
257 struct cfi_private
*cfi
= map
->fldrv_priv
;
261 /* Ensure cmd read/writes are aligned. */
262 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
264 /* Let's determine this according to the interleave only once */
265 status_OK
= CMD(0x80);
267 timeo
= jiffies
+ HZ
;
269 mutex_lock(&chip
->mutex
);
271 /* Check that the chip's ready to talk to us.
272 * If it's in FL_ERASING state, suspend it and make it talk now.
274 switch (chip
->state
) {
276 if (!(((struct cfi_pri_intelext
*)cfi
->cmdset_priv
)->FeatureSupport
& 2))
277 goto sleep
; /* We don't support erase suspend */
279 map_write (map
, CMD(0xb0), cmd_addr
);
280 /* If the flash has finished erasing, then 'erase suspend'
281 * appears to make some (28F320) flash devices switch to
282 * 'read' mode. Make sure that we switch to 'read status'
283 * mode so we get the right data. --rmk
285 map_write(map
, CMD(0x70), cmd_addr
);
286 chip
->oldstate
= FL_ERASING
;
287 chip
->state
= FL_ERASE_SUSPENDING
;
288 // printk("Erase suspending at 0x%lx\n", cmd_addr);
290 status
= map_read(map
, cmd_addr
);
291 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
294 if (time_after(jiffies
, timeo
)) {
296 map_write(map
, CMD(0xd0), cmd_addr
);
297 /* make sure we're in 'read status' mode */
298 map_write(map
, CMD(0x70), cmd_addr
);
299 chip
->state
= FL_ERASING
;
301 mutex_unlock(&chip
->mutex
);
302 printk(KERN_ERR
"Chip not ready after erase "
303 "suspended: status = 0x%lx\n", status
.x
[0]);
307 mutex_unlock(&chip
->mutex
);
309 mutex_lock(&chip
->mutex
);
313 map_write(map
, CMD(0xff), cmd_addr
);
314 chip
->state
= FL_READY
;
327 map_write(map
, CMD(0x70), cmd_addr
);
328 chip
->state
= FL_STATUS
;
331 status
= map_read(map
, cmd_addr
);
332 if (map_word_andequal(map
, status
, status_OK
, status_OK
)) {
333 map_write(map
, CMD(0xff), cmd_addr
);
334 chip
->state
= FL_READY
;
338 /* Urgh. Chip not yet ready to talk to us. */
339 if (time_after(jiffies
, timeo
)) {
340 mutex_unlock(&chip
->mutex
);
341 printk(KERN_ERR
"waiting for chip to be ready timed out in read. WSM status = %lx\n", status
.x
[0]);
345 /* Latency issues. Drop the lock, wait a while and retry */
346 mutex_unlock(&chip
->mutex
);
352 /* Stick ourselves on a wait queue to be woken when
353 someone changes the status */
354 set_current_state(TASK_UNINTERRUPTIBLE
);
355 add_wait_queue(&chip
->wq
, &wait
);
356 mutex_unlock(&chip
->mutex
);
358 remove_wait_queue(&chip
->wq
, &wait
);
359 timeo
= jiffies
+ HZ
;
363 map_copy_from(map
, buf
, adr
, len
);
366 chip
->state
= chip
->oldstate
;
367 /* What if one interleaved chip has finished and the
368 other hasn't? The old code would leave the finished
369 one in READY mode. That's bad, and caused -EROFS
370 errors to be returned from do_erase_oneblock because
371 that's the only bit it checked for at the time.
372 As the state machine appears to explicitly allow
373 sending the 0x70 (Read Status) command to an erasing
374 chip and expecting it to be ignored, that's what we
376 map_write(map
, CMD(0xd0), cmd_addr
);
377 map_write(map
, CMD(0x70), cmd_addr
);
381 mutex_unlock(&chip
->mutex
);
385 static int cfi_staa_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
387 struct map_info
*map
= mtd
->priv
;
388 struct cfi_private
*cfi
= map
->fldrv_priv
;
393 /* ofs: offset within the first chip that the first read should start */
394 chipnum
= (from
>> cfi
->chipshift
);
395 ofs
= from
- (chipnum
<< cfi
->chipshift
);
400 unsigned long thislen
;
402 if (chipnum
>= cfi
->numchips
)
405 if ((len
+ ofs
-1) >> cfi
->chipshift
)
406 thislen
= (1<<cfi
->chipshift
) - ofs
;
410 ret
= do_read_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
424 static inline int do_write_buffer(struct map_info
*map
, struct flchip
*chip
,
425 unsigned long adr
, const u_char
*buf
, int len
)
427 struct cfi_private
*cfi
= map
->fldrv_priv
;
428 map_word status
, status_OK
;
429 unsigned long cmd_adr
, timeo
;
430 DECLARE_WAITQUEUE(wait
, current
);
433 /* M58LW064A requires bus alignment for buffer wriets -- saw */
434 if (adr
& (map_bankwidth(map
)-1))
437 wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
439 cmd_adr
= adr
& ~(wbufsize
-1);
441 /* Let's determine this according to the interleave only once */
442 status_OK
= CMD(0x80);
444 timeo
= jiffies
+ HZ
;
447 #ifdef DEBUG_CFI_FEATURES
448 printk("%s: chip->state[%d]\n", __func__
, chip
->state
);
450 mutex_lock(&chip
->mutex
);
452 /* Check that the chip's ready to talk to us.
453 * Later, we can actually think about interrupting it
454 * if it's in FL_ERASING state.
455 * Not just yet, though.
457 switch (chip
->state
) {
463 map_write(map
, CMD(0x70), cmd_adr
);
464 chip
->state
= FL_STATUS
;
465 #ifdef DEBUG_CFI_FEATURES
466 printk("%s: 1 status[%x]\n", __func__
, map_read(map
, cmd_adr
));
470 status
= map_read(map
, cmd_adr
);
471 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
473 /* Urgh. Chip not yet ready to talk to us. */
474 if (time_after(jiffies
, timeo
)) {
475 mutex_unlock(&chip
->mutex
);
476 printk(KERN_ERR
"waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
477 status
.x
[0], map_read(map
, cmd_adr
).x
[0]);
481 /* Latency issues. Drop the lock, wait a while and retry */
482 mutex_unlock(&chip
->mutex
);
487 /* Stick ourselves on a wait queue to be woken when
488 someone changes the status */
489 set_current_state(TASK_UNINTERRUPTIBLE
);
490 add_wait_queue(&chip
->wq
, &wait
);
491 mutex_unlock(&chip
->mutex
);
493 remove_wait_queue(&chip
->wq
, &wait
);
494 timeo
= jiffies
+ HZ
;
499 map_write(map
, CMD(0xe8), cmd_adr
);
500 chip
->state
= FL_WRITING_TO_BUFFER
;
504 status
= map_read(map
, cmd_adr
);
505 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
508 mutex_unlock(&chip
->mutex
);
510 mutex_lock(&chip
->mutex
);
513 /* Argh. Not ready for write to buffer */
515 map_write(map
, CMD(0x70), cmd_adr
);
516 chip
->state
= FL_STATUS
;
517 mutex_unlock(&chip
->mutex
);
518 printk(KERN_ERR
"Chip not ready for buffer write. Xstatus = %lx\n", status
.x
[0]);
523 /* Write length of data to come */
524 map_write(map
, CMD(len
/map_bankwidth(map
)-1), cmd_adr
);
528 z
+= map_bankwidth(map
), buf
+= map_bankwidth(map
)) {
530 d
= map_word_load(map
, buf
);
531 map_write(map
, d
, adr
+z
);
534 map_write(map
, CMD(0xd0), cmd_adr
);
535 chip
->state
= FL_WRITING
;
537 mutex_unlock(&chip
->mutex
);
538 cfi_udelay(chip
->buffer_write_time
);
539 mutex_lock(&chip
->mutex
);
541 timeo
= jiffies
+ (HZ
/2);
544 if (chip
->state
!= FL_WRITING
) {
545 /* Someone's suspended the write. Sleep */
546 set_current_state(TASK_UNINTERRUPTIBLE
);
547 add_wait_queue(&chip
->wq
, &wait
);
548 mutex_unlock(&chip
->mutex
);
550 remove_wait_queue(&chip
->wq
, &wait
);
551 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
552 mutex_lock(&chip
->mutex
);
556 status
= map_read(map
, cmd_adr
);
557 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
560 /* OK Still waiting */
561 if (time_after(jiffies
, timeo
)) {
563 map_write(map
, CMD(0x50), cmd_adr
);
564 /* put back into read status register mode */
565 map_write(map
, CMD(0x70), adr
);
566 chip
->state
= FL_STATUS
;
568 mutex_unlock(&chip
->mutex
);
569 printk(KERN_ERR
"waiting for chip to be ready timed out in bufwrite\n");
573 /* Latency issues. Drop the lock, wait a while and retry */
574 mutex_unlock(&chip
->mutex
);
577 mutex_lock(&chip
->mutex
);
580 chip
->buffer_write_time
--;
581 if (!chip
->buffer_write_time
)
582 chip
->buffer_write_time
++;
585 chip
->buffer_write_time
++;
587 /* Done and happy. */
589 chip
->state
= FL_STATUS
;
591 /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
592 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
593 #ifdef DEBUG_CFI_FEATURES
594 printk("%s: 2 status[%lx]\n", __func__
, status
.x
[0]);
597 map_write(map
, CMD(0x50), cmd_adr
);
598 /* put back into read status register mode */
599 map_write(map
, CMD(0x70), adr
);
601 mutex_unlock(&chip
->mutex
);
602 return map_word_bitsset(map
, status
, CMD(0x02)) ? -EROFS
: -EIO
;
605 mutex_unlock(&chip
->mutex
);
610 static int cfi_staa_write_buffers (struct mtd_info
*mtd
, loff_t to
,
611 size_t len
, size_t *retlen
, const u_char
*buf
)
613 struct map_info
*map
= mtd
->priv
;
614 struct cfi_private
*cfi
= map
->fldrv_priv
;
615 int wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
624 chipnum
= to
>> cfi
->chipshift
;
625 ofs
= to
- (chipnum
<< cfi
->chipshift
);
627 #ifdef DEBUG_CFI_FEATURES
628 printk("%s: map_bankwidth(map)[%x]\n", __func__
, map_bankwidth(map
));
629 printk("%s: chipnum[%x] wbufsize[%x]\n", __func__
, chipnum
, wbufsize
);
630 printk("%s: ofs[%x] len[%x]\n", __func__
, ofs
, len
);
633 /* Write buffer is worth it only if more than one word to write... */
635 /* We must not cross write block boundaries */
636 int size
= wbufsize
- (ofs
& (wbufsize
-1));
641 ret
= do_write_buffer(map
, &cfi
->chips
[chipnum
],
651 if (ofs
>> cfi
->chipshift
) {
654 if (chipnum
== cfi
->numchips
)
663 * Writev for ECC-Flashes is a little more complicated. We need to maintain
664 * a small buffer for this.
665 * XXX: If the buffer size is not a multiple of 2, this will break
667 #define ECCBUF_SIZE (mtd->writesize)
668 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
669 #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1))
671 cfi_staa_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
672 unsigned long count
, loff_t to
, size_t *retlen
)
675 size_t totlen
= 0, thislen
;
681 /* We should fall back to a general writev implementation.
682 * Until that is written, just break.
686 buffer
= kmalloc(ECCBUF_SIZE
, GFP_KERNEL
);
690 for (i
=0; i
<count
; i
++) {
691 size_t elem_len
= vecs
[i
].iov_len
;
692 void *elem_base
= vecs
[i
].iov_base
;
693 if (!elem_len
) /* FIXME: Might be unnecessary. Check that */
695 if (buflen
) { /* cut off head */
696 if (buflen
+ elem_len
< ECCBUF_SIZE
) { /* just accumulate */
697 memcpy(buffer
+buflen
, elem_base
, elem_len
);
701 memcpy(buffer
+buflen
, elem_base
, ECCBUF_SIZE
-buflen
);
702 ret
= mtd_write(mtd
, to
, ECCBUF_SIZE
, &thislen
,
705 if (ret
|| thislen
!= ECCBUF_SIZE
)
707 elem_len
-= thislen
-buflen
;
708 elem_base
+= thislen
-buflen
;
711 if (ECCBUF_DIV(elem_len
)) { /* write clean aligned data */
712 ret
= mtd_write(mtd
, to
, ECCBUF_DIV(elem_len
),
713 &thislen
, elem_base
);
715 if (ret
|| thislen
!= ECCBUF_DIV(elem_len
))
719 buflen
= ECCBUF_MOD(elem_len
); /* cut off tail */
721 memset(buffer
, 0xff, ECCBUF_SIZE
);
722 memcpy(buffer
, elem_base
+ thislen
, buflen
);
725 if (buflen
) { /* flush last page, even if not full */
726 /* This is sometimes intended behaviour, really */
727 ret
= mtd_write(mtd
, to
, buflen
, &thislen
, buffer
);
729 if (ret
|| thislen
!= ECCBUF_SIZE
)
740 static inline int do_erase_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
742 struct cfi_private
*cfi
= map
->fldrv_priv
;
743 map_word status
, status_OK
;
746 DECLARE_WAITQUEUE(wait
, current
);
751 /* Let's determine this according to the interleave only once */
752 status_OK
= CMD(0x80);
754 timeo
= jiffies
+ HZ
;
756 mutex_lock(&chip
->mutex
);
758 /* Check that the chip's ready to talk to us. */
759 switch (chip
->state
) {
763 map_write(map
, CMD(0x70), adr
);
764 chip
->state
= FL_STATUS
;
767 status
= map_read(map
, adr
);
768 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
771 /* Urgh. Chip not yet ready to talk to us. */
772 if (time_after(jiffies
, timeo
)) {
773 mutex_unlock(&chip
->mutex
);
774 printk(KERN_ERR
"waiting for chip to be ready timed out in erase\n");
778 /* Latency issues. Drop the lock, wait a while and retry */
779 mutex_unlock(&chip
->mutex
);
784 /* Stick ourselves on a wait queue to be woken when
785 someone changes the status */
786 set_current_state(TASK_UNINTERRUPTIBLE
);
787 add_wait_queue(&chip
->wq
, &wait
);
788 mutex_unlock(&chip
->mutex
);
790 remove_wait_queue(&chip
->wq
, &wait
);
791 timeo
= jiffies
+ HZ
;
796 /* Clear the status register first */
797 map_write(map
, CMD(0x50), adr
);
800 map_write(map
, CMD(0x20), adr
);
801 map_write(map
, CMD(0xD0), adr
);
802 chip
->state
= FL_ERASING
;
804 mutex_unlock(&chip
->mutex
);
806 mutex_lock(&chip
->mutex
);
808 /* FIXME. Use a timer to check this, and return immediately. */
809 /* Once the state machine's known to be working I'll do that */
811 timeo
= jiffies
+ (HZ
*20);
813 if (chip
->state
!= FL_ERASING
) {
814 /* Someone's suspended the erase. Sleep */
815 set_current_state(TASK_UNINTERRUPTIBLE
);
816 add_wait_queue(&chip
->wq
, &wait
);
817 mutex_unlock(&chip
->mutex
);
819 remove_wait_queue(&chip
->wq
, &wait
);
820 timeo
= jiffies
+ (HZ
*20); /* FIXME */
821 mutex_lock(&chip
->mutex
);
825 status
= map_read(map
, adr
);
826 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
829 /* OK Still waiting */
830 if (time_after(jiffies
, timeo
)) {
831 map_write(map
, CMD(0x70), adr
);
832 chip
->state
= FL_STATUS
;
833 printk(KERN_ERR
"waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
835 mutex_unlock(&chip
->mutex
);
839 /* Latency issues. Drop the lock, wait a while and retry */
840 mutex_unlock(&chip
->mutex
);
842 mutex_lock(&chip
->mutex
);
848 /* We've broken this before. It doesn't hurt to be safe */
849 map_write(map
, CMD(0x70), adr
);
850 chip
->state
= FL_STATUS
;
851 status
= map_read(map
, adr
);
853 /* check for lock bit */
854 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
855 unsigned char chipstatus
= status
.x
[0];
856 if (!map_word_equal(map
, status
, CMD(chipstatus
))) {
858 for (w
=0; w
<map_words(map
); w
++) {
859 for (i
= 0; i
<cfi_interleave(cfi
); i
++) {
860 chipstatus
|= status
.x
[w
] >> (cfi
->device_type
* 8);
863 printk(KERN_WARNING
"Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
864 status
.x
[0], chipstatus
);
866 /* Reset the error bits */
867 map_write(map
, CMD(0x50), adr
);
868 map_write(map
, CMD(0x70), adr
);
870 if ((chipstatus
& 0x30) == 0x30) {
871 printk(KERN_NOTICE
"Chip reports improper command sequence: status 0x%x\n", chipstatus
);
873 } else if (chipstatus
& 0x02) {
874 /* Protection bit set */
876 } else if (chipstatus
& 0x8) {
878 printk(KERN_WARNING
"Chip reports voltage low on erase: status 0x%x\n", chipstatus
);
880 } else if (chipstatus
& 0x20) {
882 printk(KERN_DEBUG
"Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr
, chipstatus
);
883 timeo
= jiffies
+ HZ
;
884 chip
->state
= FL_STATUS
;
885 mutex_unlock(&chip
->mutex
);
888 printk(KERN_DEBUG
"Chip erase failed at 0x%08lx: status 0x%x\n", adr
, chipstatus
);
894 mutex_unlock(&chip
->mutex
);
898 static int cfi_staa_erase_varsize(struct mtd_info
*mtd
,
899 struct erase_info
*instr
)
900 { struct map_info
*map
= mtd
->priv
;
901 struct cfi_private
*cfi
= map
->fldrv_priv
;
902 unsigned long adr
, len
;
903 int chipnum
, ret
= 0;
905 struct mtd_erase_region_info
*regions
= mtd
->eraseregions
;
907 if (instr
->addr
> mtd
->size
)
910 if ((instr
->len
+ instr
->addr
) > mtd
->size
)
913 /* Check that both start and end of the requested erase are
914 * aligned with the erasesize at the appropriate addresses.
919 /* Skip all erase regions which are ended before the start of
920 the requested erase. Actually, to save on the calculations,
921 we skip to the first erase region which starts after the
922 start of the requested erase, and then go back one.
925 while (i
< mtd
->numeraseregions
&& instr
->addr
>= regions
[i
].offset
)
929 /* OK, now i is pointing at the erase region in which this
930 erase request starts. Check the start of the requested
931 erase range is aligned with the erase size which is in
935 if (instr
->addr
& (regions
[i
].erasesize
-1))
938 /* Remember the erase region we start on */
941 /* Next, check that the end of the requested erase is aligned
942 * with the erase region at that address.
945 while (i
<mtd
->numeraseregions
&& (instr
->addr
+ instr
->len
) >= regions
[i
].offset
)
948 /* As before, drop back one to point at the region in which
949 the address actually falls
953 if ((instr
->addr
+ instr
->len
) & (regions
[i
].erasesize
-1))
956 chipnum
= instr
->addr
>> cfi
->chipshift
;
957 adr
= instr
->addr
- (chipnum
<< cfi
->chipshift
);
963 ret
= do_erase_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
968 adr
+= regions
[i
].erasesize
;
969 len
-= regions
[i
].erasesize
;
971 if (adr
% (1<< cfi
->chipshift
) == (((unsigned long)regions
[i
].offset
+ (regions
[i
].erasesize
* regions
[i
].numblocks
)) %( 1<< cfi
->chipshift
)))
974 if (adr
>> cfi
->chipshift
) {
978 if (chipnum
>= cfi
->numchips
)
983 instr
->state
= MTD_ERASE_DONE
;
984 mtd_erase_callback(instr
);
989 static void cfi_staa_sync (struct mtd_info
*mtd
)
991 struct map_info
*map
= mtd
->priv
;
992 struct cfi_private
*cfi
= map
->fldrv_priv
;
996 DECLARE_WAITQUEUE(wait
, current
);
998 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
999 chip
= &cfi
->chips
[i
];
1002 mutex_lock(&chip
->mutex
);
1004 switch(chip
->state
) {
1008 case FL_JEDEC_QUERY
:
1009 chip
->oldstate
= chip
->state
;
1010 chip
->state
= FL_SYNCING
;
1011 /* No need to wake_up() on this state change -
1012 * as the whole point is that nobody can do anything
1013 * with the chip now anyway.
1016 mutex_unlock(&chip
->mutex
);
1020 /* Not an idle state */
1021 set_current_state(TASK_UNINTERRUPTIBLE
);
1022 add_wait_queue(&chip
->wq
, &wait
);
1024 mutex_unlock(&chip
->mutex
);
1026 remove_wait_queue(&chip
->wq
, &wait
);
1032 /* Unlock the chips again */
1034 for (i
--; i
>=0; i
--) {
1035 chip
= &cfi
->chips
[i
];
1037 mutex_lock(&chip
->mutex
);
1039 if (chip
->state
== FL_SYNCING
) {
1040 chip
->state
= chip
->oldstate
;
1043 mutex_unlock(&chip
->mutex
);
1047 static inline int do_lock_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
1049 struct cfi_private
*cfi
= map
->fldrv_priv
;
1050 map_word status
, status_OK
;
1051 unsigned long timeo
= jiffies
+ HZ
;
1052 DECLARE_WAITQUEUE(wait
, current
);
1056 /* Let's determine this according to the interleave only once */
1057 status_OK
= CMD(0x80);
1059 timeo
= jiffies
+ HZ
;
1061 mutex_lock(&chip
->mutex
);
1063 /* Check that the chip's ready to talk to us. */
1064 switch (chip
->state
) {
1066 case FL_JEDEC_QUERY
:
1068 map_write(map
, CMD(0x70), adr
);
1069 chip
->state
= FL_STATUS
;
1072 status
= map_read(map
, adr
);
1073 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1076 /* Urgh. Chip not yet ready to talk to us. */
1077 if (time_after(jiffies
, timeo
)) {
1078 mutex_unlock(&chip
->mutex
);
1079 printk(KERN_ERR
"waiting for chip to be ready timed out in lock\n");
1083 /* Latency issues. Drop the lock, wait a while and retry */
1084 mutex_unlock(&chip
->mutex
);
1089 /* Stick ourselves on a wait queue to be woken when
1090 someone changes the status */
1091 set_current_state(TASK_UNINTERRUPTIBLE
);
1092 add_wait_queue(&chip
->wq
, &wait
);
1093 mutex_unlock(&chip
->mutex
);
1095 remove_wait_queue(&chip
->wq
, &wait
);
1096 timeo
= jiffies
+ HZ
;
1101 map_write(map
, CMD(0x60), adr
);
1102 map_write(map
, CMD(0x01), adr
);
1103 chip
->state
= FL_LOCKING
;
1105 mutex_unlock(&chip
->mutex
);
1107 mutex_lock(&chip
->mutex
);
1109 /* FIXME. Use a timer to check this, and return immediately. */
1110 /* Once the state machine's known to be working I'll do that */
1112 timeo
= jiffies
+ (HZ
*2);
1115 status
= map_read(map
, adr
);
1116 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1119 /* OK Still waiting */
1120 if (time_after(jiffies
, timeo
)) {
1121 map_write(map
, CMD(0x70), adr
);
1122 chip
->state
= FL_STATUS
;
1123 printk(KERN_ERR
"waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
1125 mutex_unlock(&chip
->mutex
);
1129 /* Latency issues. Drop the lock, wait a while and retry */
1130 mutex_unlock(&chip
->mutex
);
1132 mutex_lock(&chip
->mutex
);
1135 /* Done and happy. */
1136 chip
->state
= FL_STATUS
;
1139 mutex_unlock(&chip
->mutex
);
1142 static int cfi_staa_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1144 struct map_info
*map
= mtd
->priv
;
1145 struct cfi_private
*cfi
= map
->fldrv_priv
;
1147 int chipnum
, ret
= 0;
1148 #ifdef DEBUG_LOCK_BITS
1149 int ofs_factor
= cfi
->interleave
* cfi
->device_type
;
1152 if (ofs
& (mtd
->erasesize
- 1))
1155 if (len
& (mtd
->erasesize
-1))
1158 if ((len
+ ofs
) > mtd
->size
)
1161 chipnum
= ofs
>> cfi
->chipshift
;
1162 adr
= ofs
- (chipnum
<< cfi
->chipshift
);
1166 #ifdef DEBUG_LOCK_BITS
1167 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1168 printk("before lock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1169 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1172 ret
= do_lock_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
1174 #ifdef DEBUG_LOCK_BITS
1175 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1176 printk("after lock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1177 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1183 adr
+= mtd
->erasesize
;
1184 len
-= mtd
->erasesize
;
1186 if (adr
>> cfi
->chipshift
) {
1190 if (chipnum
>= cfi
->numchips
)
1196 static inline int do_unlock_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
1198 struct cfi_private
*cfi
= map
->fldrv_priv
;
1199 map_word status
, status_OK
;
1200 unsigned long timeo
= jiffies
+ HZ
;
1201 DECLARE_WAITQUEUE(wait
, current
);
1205 /* Let's determine this according to the interleave only once */
1206 status_OK
= CMD(0x80);
1208 timeo
= jiffies
+ HZ
;
1210 mutex_lock(&chip
->mutex
);
1212 /* Check that the chip's ready to talk to us. */
1213 switch (chip
->state
) {
1215 case FL_JEDEC_QUERY
:
1217 map_write(map
, CMD(0x70), adr
);
1218 chip
->state
= FL_STATUS
;
1221 status
= map_read(map
, adr
);
1222 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1225 /* Urgh. Chip not yet ready to talk to us. */
1226 if (time_after(jiffies
, timeo
)) {
1227 mutex_unlock(&chip
->mutex
);
1228 printk(KERN_ERR
"waiting for chip to be ready timed out in unlock\n");
1232 /* Latency issues. Drop the lock, wait a while and retry */
1233 mutex_unlock(&chip
->mutex
);
1238 /* Stick ourselves on a wait queue to be woken when
1239 someone changes the status */
1240 set_current_state(TASK_UNINTERRUPTIBLE
);
1241 add_wait_queue(&chip
->wq
, &wait
);
1242 mutex_unlock(&chip
->mutex
);
1244 remove_wait_queue(&chip
->wq
, &wait
);
1245 timeo
= jiffies
+ HZ
;
1250 map_write(map
, CMD(0x60), adr
);
1251 map_write(map
, CMD(0xD0), adr
);
1252 chip
->state
= FL_UNLOCKING
;
1254 mutex_unlock(&chip
->mutex
);
1256 mutex_lock(&chip
->mutex
);
1258 /* FIXME. Use a timer to check this, and return immediately. */
1259 /* Once the state machine's known to be working I'll do that */
1261 timeo
= jiffies
+ (HZ
*2);
1264 status
= map_read(map
, adr
);
1265 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1268 /* OK Still waiting */
1269 if (time_after(jiffies
, timeo
)) {
1270 map_write(map
, CMD(0x70), adr
);
1271 chip
->state
= FL_STATUS
;
1272 printk(KERN_ERR
"waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
1274 mutex_unlock(&chip
->mutex
);
1278 /* Latency issues. Drop the unlock, wait a while and retry */
1279 mutex_unlock(&chip
->mutex
);
1281 mutex_lock(&chip
->mutex
);
1284 /* Done and happy. */
1285 chip
->state
= FL_STATUS
;
1288 mutex_unlock(&chip
->mutex
);
1291 static int cfi_staa_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1293 struct map_info
*map
= mtd
->priv
;
1294 struct cfi_private
*cfi
= map
->fldrv_priv
;
1296 int chipnum
, ret
= 0;
1297 #ifdef DEBUG_LOCK_BITS
1298 int ofs_factor
= cfi
->interleave
* cfi
->device_type
;
1301 chipnum
= ofs
>> cfi
->chipshift
;
1302 adr
= ofs
- (chipnum
<< cfi
->chipshift
);
1304 #ifdef DEBUG_LOCK_BITS
1306 unsigned long temp_adr
= adr
;
1307 unsigned long temp_len
= len
;
1309 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1311 printk("before unlock %x: block status register is %x\n",temp_adr
,cfi_read_query(map
, temp_adr
+(2*ofs_factor
)));
1312 temp_adr
+= mtd
->erasesize
;
1313 temp_len
-= mtd
->erasesize
;
1315 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1319 ret
= do_unlock_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
1321 #ifdef DEBUG_LOCK_BITS
1322 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1323 printk("after unlock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1324 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1330 static int cfi_staa_suspend(struct mtd_info
*mtd
)
1332 struct map_info
*map
= mtd
->priv
;
1333 struct cfi_private
*cfi
= map
->fldrv_priv
;
1335 struct flchip
*chip
;
1338 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
1339 chip
= &cfi
->chips
[i
];
1341 mutex_lock(&chip
->mutex
);
1343 switch(chip
->state
) {
1347 case FL_JEDEC_QUERY
:
1348 chip
->oldstate
= chip
->state
;
1349 chip
->state
= FL_PM_SUSPENDED
;
1350 /* No need to wake_up() on this state change -
1351 * as the whole point is that nobody can do anything
1352 * with the chip now anyway.
1354 case FL_PM_SUSPENDED
:
1361 mutex_unlock(&chip
->mutex
);
1364 /* Unlock the chips again */
1367 for (i
--; i
>=0; i
--) {
1368 chip
= &cfi
->chips
[i
];
1370 mutex_lock(&chip
->mutex
);
1372 if (chip
->state
== FL_PM_SUSPENDED
) {
1373 /* No need to force it into a known state here,
1374 because we're returning failure, and it didn't
1376 chip
->state
= chip
->oldstate
;
1379 mutex_unlock(&chip
->mutex
);
1386 static void cfi_staa_resume(struct mtd_info
*mtd
)
1388 struct map_info
*map
= mtd
->priv
;
1389 struct cfi_private
*cfi
= map
->fldrv_priv
;
1391 struct flchip
*chip
;
1393 for (i
=0; i
<cfi
->numchips
; i
++) {
1395 chip
= &cfi
->chips
[i
];
1397 mutex_lock(&chip
->mutex
);
1399 /* Go to known state. Chip may have been power cycled */
1400 if (chip
->state
== FL_PM_SUSPENDED
) {
1401 map_write(map
, CMD(0xFF), 0);
1402 chip
->state
= FL_READY
;
1406 mutex_unlock(&chip
->mutex
);
1410 static void cfi_staa_destroy(struct mtd_info
*mtd
)
1412 struct map_info
*map
= mtd
->priv
;
1413 struct cfi_private
*cfi
= map
->fldrv_priv
;
1414 kfree(cfi
->cmdset_priv
);
1418 MODULE_LICENSE("GPL");