spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / mtd / devices / mtd_dataflash.c
blob236057ead0d2ab2fcd5d57bff92e18a05e927223
1 /*
2 * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
4 * Largely derived from at91_dataflash.c:
5 * Copyright (C) 2003-2005 SAN People (Pty) Ltd
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/math64.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
23 #include <linux/spi/spi.h>
24 #include <linux/spi/flash.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/partitions.h>
30 * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
31 * each chip, which may be used for double buffered I/O; but this driver
32 * doesn't (yet) use these for any kind of i/o overlap or prefetching.
34 * Sometimes DataFlash is packaged in MMC-format cards, although the
35 * MMC stack can't (yet?) distinguish between MMC and DataFlash
36 * protocols during enumeration.
39 /* reads can bypass the buffers */
40 #define OP_READ_CONTINUOUS 0xE8
41 #define OP_READ_PAGE 0xD2
43 /* group B requests can run even while status reports "busy" */
44 #define OP_READ_STATUS 0xD7 /* group B */
46 /* move data between host and buffer */
47 #define OP_READ_BUFFER1 0xD4 /* group B */
48 #define OP_READ_BUFFER2 0xD6 /* group B */
49 #define OP_WRITE_BUFFER1 0x84 /* group B */
50 #define OP_WRITE_BUFFER2 0x87 /* group B */
52 /* erasing flash */
53 #define OP_ERASE_PAGE 0x81
54 #define OP_ERASE_BLOCK 0x50
56 /* move data between buffer and flash */
57 #define OP_TRANSFER_BUF1 0x53
58 #define OP_TRANSFER_BUF2 0x55
59 #define OP_MREAD_BUFFER1 0xD4
60 #define OP_MREAD_BUFFER2 0xD6
61 #define OP_MWERASE_BUFFER1 0x83
62 #define OP_MWERASE_BUFFER2 0x86
63 #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
64 #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
66 /* write to buffer, then write-erase to flash */
67 #define OP_PROGRAM_VIA_BUF1 0x82
68 #define OP_PROGRAM_VIA_BUF2 0x85
70 /* compare buffer to flash */
71 #define OP_COMPARE_BUF1 0x60
72 #define OP_COMPARE_BUF2 0x61
74 /* read flash to buffer, then write-erase to flash */
75 #define OP_REWRITE_VIA_BUF1 0x58
76 #define OP_REWRITE_VIA_BUF2 0x59
78 /* newer chips report JEDEC manufacturer and device IDs; chip
79 * serial number and OTP bits; and per-sector writeprotect.
81 #define OP_READ_ID 0x9F
82 #define OP_READ_SECURITY 0x77
83 #define OP_WRITE_SECURITY_REVC 0x9A
84 #define OP_WRITE_SECURITY 0x9B /* revision D */
87 struct dataflash {
88 uint8_t command[4];
89 char name[24];
91 unsigned partitioned:1;
93 unsigned short page_offset; /* offset in flash address */
94 unsigned int page_size; /* of bytes per page */
96 struct mutex lock;
97 struct spi_device *spi;
99 struct mtd_info mtd;
102 #ifdef CONFIG_OF
103 static const struct of_device_id dataflash_dt_ids[] = {
104 { .compatible = "atmel,at45", },
105 { .compatible = "atmel,dataflash", },
106 { /* sentinel */ }
108 #else
109 #define dataflash_dt_ids NULL
110 #endif
112 /* ......................................................................... */
115 * Return the status of the DataFlash device.
117 static inline int dataflash_status(struct spi_device *spi)
119 /* NOTE: at45db321c over 25 MHz wants to write
120 * a dummy byte after the opcode...
122 return spi_w8r8(spi, OP_READ_STATUS);
126 * Poll the DataFlash device until it is READY.
127 * This usually takes 5-20 msec or so; more for sector erase.
129 static int dataflash_waitready(struct spi_device *spi)
131 int status;
133 for (;;) {
134 status = dataflash_status(spi);
135 if (status < 0) {
136 pr_debug("%s: status %d?\n",
137 dev_name(&spi->dev), status);
138 status = 0;
141 if (status & (1 << 7)) /* RDY/nBSY */
142 return status;
144 msleep(3);
148 /* ......................................................................... */
151 * Erase pages of flash.
153 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
155 struct dataflash *priv = mtd->priv;
156 struct spi_device *spi = priv->spi;
157 struct spi_transfer x = { .tx_dma = 0, };
158 struct spi_message msg;
159 unsigned blocksize = priv->page_size << 3;
160 uint8_t *command;
161 uint32_t rem;
163 pr_debug("%s: erase addr=0x%llx len 0x%llx\n",
164 dev_name(&spi->dev), (long long)instr->addr,
165 (long long)instr->len);
167 /* Sanity checks */
168 if (instr->addr + instr->len > mtd->size)
169 return -EINVAL;
170 div_u64_rem(instr->len, priv->page_size, &rem);
171 if (rem)
172 return -EINVAL;
173 div_u64_rem(instr->addr, priv->page_size, &rem);
174 if (rem)
175 return -EINVAL;
177 spi_message_init(&msg);
179 x.tx_buf = command = priv->command;
180 x.len = 4;
181 spi_message_add_tail(&x, &msg);
183 mutex_lock(&priv->lock);
184 while (instr->len > 0) {
185 unsigned int pageaddr;
186 int status;
187 int do_block;
189 /* Calculate flash page address; use block erase (for speed) if
190 * we're at a block boundary and need to erase the whole block.
192 pageaddr = div_u64(instr->addr, priv->page_size);
193 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
194 pageaddr = pageaddr << priv->page_offset;
196 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
197 command[1] = (uint8_t)(pageaddr >> 16);
198 command[2] = (uint8_t)(pageaddr >> 8);
199 command[3] = 0;
201 pr_debug("ERASE %s: (%x) %x %x %x [%i]\n",
202 do_block ? "block" : "page",
203 command[0], command[1], command[2], command[3],
204 pageaddr);
206 status = spi_sync(spi, &msg);
207 (void) dataflash_waitready(spi);
209 if (status < 0) {
210 printk(KERN_ERR "%s: erase %x, err %d\n",
211 dev_name(&spi->dev), pageaddr, status);
212 /* REVISIT: can retry instr->retries times; or
213 * giveup and instr->fail_addr = instr->addr;
215 continue;
218 if (do_block) {
219 instr->addr += blocksize;
220 instr->len -= blocksize;
221 } else {
222 instr->addr += priv->page_size;
223 instr->len -= priv->page_size;
226 mutex_unlock(&priv->lock);
228 /* Inform MTD subsystem that erase is complete */
229 instr->state = MTD_ERASE_DONE;
230 mtd_erase_callback(instr);
232 return 0;
236 * Read from the DataFlash device.
237 * from : Start offset in flash device
238 * len : Amount to read
239 * retlen : About of data actually read
240 * buf : Buffer containing the data
242 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
243 size_t *retlen, u_char *buf)
245 struct dataflash *priv = mtd->priv;
246 struct spi_transfer x[2] = { { .tx_dma = 0, }, };
247 struct spi_message msg;
248 unsigned int addr;
249 uint8_t *command;
250 int status;
252 pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev),
253 (unsigned)from, (unsigned)(from + len));
255 *retlen = 0;
257 /* Sanity checks */
258 if (!len)
259 return 0;
260 if (from + len > mtd->size)
261 return -EINVAL;
263 /* Calculate flash page/byte address */
264 addr = (((unsigned)from / priv->page_size) << priv->page_offset)
265 + ((unsigned)from % priv->page_size);
267 command = priv->command;
269 pr_debug("READ: (%x) %x %x %x\n",
270 command[0], command[1], command[2], command[3]);
272 spi_message_init(&msg);
274 x[0].tx_buf = command;
275 x[0].len = 8;
276 spi_message_add_tail(&x[0], &msg);
278 x[1].rx_buf = buf;
279 x[1].len = len;
280 spi_message_add_tail(&x[1], &msg);
282 mutex_lock(&priv->lock);
284 /* Continuous read, max clock = f(car) which may be less than
285 * the peak rate available. Some chips support commands with
286 * fewer "don't care" bytes. Both buffers stay unchanged.
288 command[0] = OP_READ_CONTINUOUS;
289 command[1] = (uint8_t)(addr >> 16);
290 command[2] = (uint8_t)(addr >> 8);
291 command[3] = (uint8_t)(addr >> 0);
292 /* plus 4 "don't care" bytes */
294 status = spi_sync(priv->spi, &msg);
295 mutex_unlock(&priv->lock);
297 if (status >= 0) {
298 *retlen = msg.actual_length - 8;
299 status = 0;
300 } else
301 pr_debug("%s: read %x..%x --> %d\n",
302 dev_name(&priv->spi->dev),
303 (unsigned)from, (unsigned)(from + len),
304 status);
305 return status;
309 * Write to the DataFlash device.
310 * to : Start offset in flash device
311 * len : Amount to write
312 * retlen : Amount of data actually written
313 * buf : Buffer containing the data
315 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
316 size_t * retlen, const u_char * buf)
318 struct dataflash *priv = mtd->priv;
319 struct spi_device *spi = priv->spi;
320 struct spi_transfer x[2] = { { .tx_dma = 0, }, };
321 struct spi_message msg;
322 unsigned int pageaddr, addr, offset, writelen;
323 size_t remaining = len;
324 u_char *writebuf = (u_char *) buf;
325 int status = -EINVAL;
326 uint8_t *command;
328 pr_debug("%s: write 0x%x..0x%x\n",
329 dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
331 *retlen = 0;
333 /* Sanity checks */
334 if (!len)
335 return 0;
336 if ((to + len) > mtd->size)
337 return -EINVAL;
339 spi_message_init(&msg);
341 x[0].tx_buf = command = priv->command;
342 x[0].len = 4;
343 spi_message_add_tail(&x[0], &msg);
345 pageaddr = ((unsigned)to / priv->page_size);
346 offset = ((unsigned)to % priv->page_size);
347 if (offset + len > priv->page_size)
348 writelen = priv->page_size - offset;
349 else
350 writelen = len;
352 mutex_lock(&priv->lock);
353 while (remaining > 0) {
354 pr_debug("write @ %i:%i len=%i\n",
355 pageaddr, offset, writelen);
357 /* REVISIT:
358 * (a) each page in a sector must be rewritten at least
359 * once every 10K sibling erase/program operations.
360 * (b) for pages that are already erased, we could
361 * use WRITE+MWRITE not PROGRAM for ~30% speedup.
362 * (c) WRITE to buffer could be done while waiting for
363 * a previous MWRITE/MWERASE to complete ...
364 * (d) error handling here seems to be mostly missing.
366 * Two persistent bits per page, plus a per-sector counter,
367 * could support (a) and (b) ... we might consider using
368 * the second half of sector zero, which is just one block,
369 * to track that state. (On AT91, that sector should also
370 * support boot-from-DataFlash.)
373 addr = pageaddr << priv->page_offset;
375 /* (1) Maybe transfer partial page to Buffer1 */
376 if (writelen != priv->page_size) {
377 command[0] = OP_TRANSFER_BUF1;
378 command[1] = (addr & 0x00FF0000) >> 16;
379 command[2] = (addr & 0x0000FF00) >> 8;
380 command[3] = 0;
382 pr_debug("TRANSFER: (%x) %x %x %x\n",
383 command[0], command[1], command[2], command[3]);
385 status = spi_sync(spi, &msg);
386 if (status < 0)
387 pr_debug("%s: xfer %u -> %d\n",
388 dev_name(&spi->dev), addr, status);
390 (void) dataflash_waitready(priv->spi);
393 /* (2) Program full page via Buffer1 */
394 addr += offset;
395 command[0] = OP_PROGRAM_VIA_BUF1;
396 command[1] = (addr & 0x00FF0000) >> 16;
397 command[2] = (addr & 0x0000FF00) >> 8;
398 command[3] = (addr & 0x000000FF);
400 pr_debug("PROGRAM: (%x) %x %x %x\n",
401 command[0], command[1], command[2], command[3]);
403 x[1].tx_buf = writebuf;
404 x[1].len = writelen;
405 spi_message_add_tail(x + 1, &msg);
406 status = spi_sync(spi, &msg);
407 spi_transfer_del(x + 1);
408 if (status < 0)
409 pr_debug("%s: pgm %u/%u -> %d\n",
410 dev_name(&spi->dev), addr, writelen, status);
412 (void) dataflash_waitready(priv->spi);
415 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
417 /* (3) Compare to Buffer1 */
418 addr = pageaddr << priv->page_offset;
419 command[0] = OP_COMPARE_BUF1;
420 command[1] = (addr & 0x00FF0000) >> 16;
421 command[2] = (addr & 0x0000FF00) >> 8;
422 command[3] = 0;
424 pr_debug("COMPARE: (%x) %x %x %x\n",
425 command[0], command[1], command[2], command[3]);
427 status = spi_sync(spi, &msg);
428 if (status < 0)
429 pr_debug("%s: compare %u -> %d\n",
430 dev_name(&spi->dev), addr, status);
432 status = dataflash_waitready(priv->spi);
434 /* Check result of the compare operation */
435 if (status & (1 << 6)) {
436 printk(KERN_ERR "%s: compare page %u, err %d\n",
437 dev_name(&spi->dev), pageaddr, status);
438 remaining = 0;
439 status = -EIO;
440 break;
441 } else
442 status = 0;
444 #endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
446 remaining = remaining - writelen;
447 pageaddr++;
448 offset = 0;
449 writebuf += writelen;
450 *retlen += writelen;
452 if (remaining > priv->page_size)
453 writelen = priv->page_size;
454 else
455 writelen = remaining;
457 mutex_unlock(&priv->lock);
459 return status;
462 /* ......................................................................... */
464 #ifdef CONFIG_MTD_DATAFLASH_OTP
466 static int dataflash_get_otp_info(struct mtd_info *mtd,
467 struct otp_info *info, size_t len)
469 /* Report both blocks as identical: bytes 0..64, locked.
470 * Unless the user block changed from all-ones, we can't
471 * tell whether it's still writable; so we assume it isn't.
473 info->start = 0;
474 info->length = 64;
475 info->locked = 1;
476 return sizeof(*info);
479 static ssize_t otp_read(struct spi_device *spi, unsigned base,
480 uint8_t *buf, loff_t off, size_t len)
482 struct spi_message m;
483 size_t l;
484 uint8_t *scratch;
485 struct spi_transfer t;
486 int status;
488 if (off > 64)
489 return -EINVAL;
491 if ((off + len) > 64)
492 len = 64 - off;
493 if (len == 0)
494 return len;
496 spi_message_init(&m);
498 l = 4 + base + off + len;
499 scratch = kzalloc(l, GFP_KERNEL);
500 if (!scratch)
501 return -ENOMEM;
503 /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
504 * IN: ignore 4 bytes, data bytes 0..N (max 127)
506 scratch[0] = OP_READ_SECURITY;
508 memset(&t, 0, sizeof t);
509 t.tx_buf = scratch;
510 t.rx_buf = scratch;
511 t.len = l;
512 spi_message_add_tail(&t, &m);
514 dataflash_waitready(spi);
516 status = spi_sync(spi, &m);
517 if (status >= 0) {
518 memcpy(buf, scratch + 4 + base + off, len);
519 status = len;
522 kfree(scratch);
523 return status;
526 static int dataflash_read_fact_otp(struct mtd_info *mtd,
527 loff_t from, size_t len, size_t *retlen, u_char *buf)
529 struct dataflash *priv = mtd->priv;
530 int status;
532 /* 64 bytes, from 0..63 ... start at 64 on-chip */
533 mutex_lock(&priv->lock);
534 status = otp_read(priv->spi, 64, buf, from, len);
535 mutex_unlock(&priv->lock);
537 if (status < 0)
538 return status;
539 *retlen = status;
540 return 0;
543 static int dataflash_read_user_otp(struct mtd_info *mtd,
544 loff_t from, size_t len, size_t *retlen, u_char *buf)
546 struct dataflash *priv = mtd->priv;
547 int status;
549 /* 64 bytes, from 0..63 ... start at 0 on-chip */
550 mutex_lock(&priv->lock);
551 status = otp_read(priv->spi, 0, buf, from, len);
552 mutex_unlock(&priv->lock);
554 if (status < 0)
555 return status;
556 *retlen = status;
557 return 0;
560 static int dataflash_write_user_otp(struct mtd_info *mtd,
561 loff_t from, size_t len, size_t *retlen, u_char *buf)
563 struct spi_message m;
564 const size_t l = 4 + 64;
565 uint8_t *scratch;
566 struct spi_transfer t;
567 struct dataflash *priv = mtd->priv;
568 int status;
570 if (len > 64)
571 return -EINVAL;
573 /* Strictly speaking, we *could* truncate the write ... but
574 * let's not do that for the only write that's ever possible.
576 if ((from + len) > 64)
577 return -EINVAL;
579 /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
580 * IN: ignore all
582 scratch = kzalloc(l, GFP_KERNEL);
583 if (!scratch)
584 return -ENOMEM;
585 scratch[0] = OP_WRITE_SECURITY;
586 memcpy(scratch + 4 + from, buf, len);
588 spi_message_init(&m);
590 memset(&t, 0, sizeof t);
591 t.tx_buf = scratch;
592 t.len = l;
593 spi_message_add_tail(&t, &m);
595 /* Write the OTP bits, if they've not yet been written.
596 * This modifies SRAM buffer1.
598 mutex_lock(&priv->lock);
599 dataflash_waitready(priv->spi);
600 status = spi_sync(priv->spi, &m);
601 mutex_unlock(&priv->lock);
603 kfree(scratch);
605 if (status >= 0) {
606 status = 0;
607 *retlen = len;
609 return status;
612 static char *otp_setup(struct mtd_info *device, char revision)
614 device->get_fact_prot_info = dataflash_get_otp_info;
615 device->read_fact_prot_reg = dataflash_read_fact_otp;
616 device->get_user_prot_info = dataflash_get_otp_info;
617 device->read_user_prot_reg = dataflash_read_user_otp;
619 /* rev c parts (at45db321c and at45db1281 only!) use a
620 * different write procedure; not (yet?) implemented.
622 if (revision > 'c')
623 device->write_user_prot_reg = dataflash_write_user_otp;
625 return ", OTP";
628 #else
630 static char *otp_setup(struct mtd_info *device, char revision)
632 return " (OTP)";
635 #endif
637 /* ......................................................................... */
640 * Register DataFlash device with MTD subsystem.
642 static int __devinit
643 add_dataflash_otp(struct spi_device *spi, char *name,
644 int nr_pages, int pagesize, int pageoffset, char revision)
646 struct dataflash *priv;
647 struct mtd_info *device;
648 struct mtd_part_parser_data ppdata;
649 struct flash_platform_data *pdata = spi->dev.platform_data;
650 char *otp_tag = "";
651 int err = 0;
653 priv = kzalloc(sizeof *priv, GFP_KERNEL);
654 if (!priv)
655 return -ENOMEM;
657 mutex_init(&priv->lock);
658 priv->spi = spi;
659 priv->page_size = pagesize;
660 priv->page_offset = pageoffset;
662 /* name must be usable with cmdlinepart */
663 sprintf(priv->name, "spi%d.%d-%s",
664 spi->master->bus_num, spi->chip_select,
665 name);
667 device = &priv->mtd;
668 device->name = (pdata && pdata->name) ? pdata->name : priv->name;
669 device->size = nr_pages * pagesize;
670 device->erasesize = pagesize;
671 device->writesize = pagesize;
672 device->owner = THIS_MODULE;
673 device->type = MTD_DATAFLASH;
674 device->flags = MTD_WRITEABLE;
675 device->erase = dataflash_erase;
676 device->read = dataflash_read;
677 device->write = dataflash_write;
678 device->priv = priv;
680 device->dev.parent = &spi->dev;
682 if (revision >= 'c')
683 otp_tag = otp_setup(device, revision);
685 dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
686 name, (long long)((device->size + 1023) >> 10),
687 pagesize, otp_tag);
688 dev_set_drvdata(&spi->dev, priv);
690 ppdata.of_node = spi->dev.of_node;
691 err = mtd_device_parse_register(device, NULL, &ppdata,
692 pdata ? pdata->parts : NULL,
693 pdata ? pdata->nr_parts : 0);
695 if (!err)
696 return 0;
698 dev_set_drvdata(&spi->dev, NULL);
699 kfree(priv);
700 return err;
703 static inline int __devinit
704 add_dataflash(struct spi_device *spi, char *name,
705 int nr_pages, int pagesize, int pageoffset)
707 return add_dataflash_otp(spi, name, nr_pages, pagesize,
708 pageoffset, 0);
711 struct flash_info {
712 char *name;
714 /* JEDEC id has a high byte of zero plus three data bytes:
715 * the manufacturer id, then a two byte device id.
717 uint32_t jedec_id;
719 /* The size listed here is what works with OP_ERASE_PAGE. */
720 unsigned nr_pages;
721 uint16_t pagesize;
722 uint16_t pageoffset;
724 uint16_t flags;
725 #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
726 #define IS_POW2PS 0x0001 /* uses 2^N byte pages */
729 static struct flash_info __devinitdata dataflash_data [] = {
732 * NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
733 * one with IS_POW2PS and the other without. The entry with the
734 * non-2^N byte page size can't name exact chip revisions without
735 * losing backwards compatibility for cmdlinepart.
737 * These newer chips also support 128-byte security registers (with
738 * 64 bytes one-time-programmable) and software write-protection.
740 { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
741 { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
743 { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
744 { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
746 { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
747 { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
749 { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
750 { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
752 { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
753 { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
755 { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
757 { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
758 { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
760 { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
761 { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
764 static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
766 int tmp;
767 uint8_t code = OP_READ_ID;
768 uint8_t id[3];
769 uint32_t jedec;
770 struct flash_info *info;
771 int status;
773 /* JEDEC also defines an optional "extended device information"
774 * string for after vendor-specific data, after the three bytes
775 * we use here. Supporting some chips might require using it.
777 * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
778 * That's not an error; only rev C and newer chips handle it, and
779 * only Atmel sells these chips.
781 tmp = spi_write_then_read(spi, &code, 1, id, 3);
782 if (tmp < 0) {
783 pr_debug("%s: error %d reading JEDEC ID\n",
784 dev_name(&spi->dev), tmp);
785 return ERR_PTR(tmp);
787 if (id[0] != 0x1f)
788 return NULL;
790 jedec = id[0];
791 jedec = jedec << 8;
792 jedec |= id[1];
793 jedec = jedec << 8;
794 jedec |= id[2];
796 for (tmp = 0, info = dataflash_data;
797 tmp < ARRAY_SIZE(dataflash_data);
798 tmp++, info++) {
799 if (info->jedec_id == jedec) {
800 pr_debug("%s: OTP, sector protect%s\n",
801 dev_name(&spi->dev),
802 (info->flags & SUP_POW2PS)
803 ? ", binary pagesize" : ""
805 if (info->flags & SUP_POW2PS) {
806 status = dataflash_status(spi);
807 if (status < 0) {
808 pr_debug("%s: status error %d\n",
809 dev_name(&spi->dev), status);
810 return ERR_PTR(status);
812 if (status & 0x1) {
813 if (info->flags & IS_POW2PS)
814 return info;
815 } else {
816 if (!(info->flags & IS_POW2PS))
817 return info;
819 } else
820 return info;
825 * Treat other chips as errors ... we won't know the right page
826 * size (it might be binary) even when we can tell which density
827 * class is involved (legacy chip id scheme).
829 dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
830 return ERR_PTR(-ENODEV);
834 * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
835 * or else the ID code embedded in the status bits:
837 * Device Density ID code #Pages PageSize Offset
838 * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
839 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
840 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
841 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
842 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
843 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
844 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
845 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
847 static int __devinit dataflash_probe(struct spi_device *spi)
849 int status;
850 struct flash_info *info;
853 * Try to detect dataflash by JEDEC ID.
854 * If it succeeds we know we have either a C or D part.
855 * D will support power of 2 pagesize option.
856 * Both support the security register, though with different
857 * write procedures.
859 info = jedec_probe(spi);
860 if (IS_ERR(info))
861 return PTR_ERR(info);
862 if (info != NULL)
863 return add_dataflash_otp(spi, info->name, info->nr_pages,
864 info->pagesize, info->pageoffset,
865 (info->flags & SUP_POW2PS) ? 'd' : 'c');
868 * Older chips support only legacy commands, identifing
869 * capacity using bits in the status byte.
871 status = dataflash_status(spi);
872 if (status <= 0 || status == 0xff) {
873 pr_debug("%s: status error %d\n",
874 dev_name(&spi->dev), status);
875 if (status == 0 || status == 0xff)
876 status = -ENODEV;
877 return status;
880 /* if there's a device there, assume it's dataflash.
881 * board setup should have set spi->max_speed_max to
882 * match f(car) for continuous reads, mode 0 or 3.
884 switch (status & 0x3c) {
885 case 0x0c: /* 0 0 1 1 x x */
886 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
887 break;
888 case 0x14: /* 0 1 0 1 x x */
889 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
890 break;
891 case 0x1c: /* 0 1 1 1 x x */
892 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
893 break;
894 case 0x24: /* 1 0 0 1 x x */
895 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
896 break;
897 case 0x2c: /* 1 0 1 1 x x */
898 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
899 break;
900 case 0x34: /* 1 1 0 1 x x */
901 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
902 break;
903 case 0x38: /* 1 1 1 x x x */
904 case 0x3c:
905 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
906 break;
907 /* obsolete AT45DB1282 not (yet?) supported */
908 default:
909 pr_debug("%s: unsupported device (%x)\n", dev_name(&spi->dev),
910 status & 0x3c);
911 status = -ENODEV;
914 if (status < 0)
915 pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev),
916 status);
918 return status;
921 static int __devexit dataflash_remove(struct spi_device *spi)
923 struct dataflash *flash = dev_get_drvdata(&spi->dev);
924 int status;
926 pr_debug("%s: remove\n", dev_name(&spi->dev));
928 status = mtd_device_unregister(&flash->mtd);
929 if (status == 0) {
930 dev_set_drvdata(&spi->dev, NULL);
931 kfree(flash);
933 return status;
936 static struct spi_driver dataflash_driver = {
937 .driver = {
938 .name = "mtd_dataflash",
939 .owner = THIS_MODULE,
940 .of_match_table = dataflash_dt_ids,
943 .probe = dataflash_probe,
944 .remove = __devexit_p(dataflash_remove),
946 /* FIXME: investigate suspend and resume... */
949 static int __init dataflash_init(void)
951 return spi_register_driver(&dataflash_driver);
953 module_init(dataflash_init);
955 static void __exit dataflash_exit(void)
957 spi_unregister_driver(&dataflash_driver);
959 module_exit(dataflash_exit);
962 MODULE_LICENSE("GPL");
963 MODULE_AUTHOR("Andrew Victor, David Brownell");
964 MODULE_DESCRIPTION("MTD DataFlash driver");
965 MODULE_ALIAS("spi:mtd_dataflash");