spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / net / ethernet / broadcom / sb1250-mac.c
blob084904ceaa301b4fd76f00a8411433ec1711b49e
1 /*
2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3 * Copyright (c) 2006, 2007 Maciej W. Rozycki
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 * This driver is designed for the Broadcom SiByte SOC built-in
21 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
23 * Updated to the driver model and the PHY abstraction layer
24 * by Maciej W. Rozycki.
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/timer.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/init.h>
40 #include <linux/bitops.h>
41 #include <linux/err.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/phy.h>
45 #include <linux/platform_device.h>
46 #include <linux/prefetch.h>
48 #include <asm/cache.h>
49 #include <asm/io.h>
50 #include <asm/processor.h> /* Processor type for cache alignment. */
52 /* Operational parameters that usually are not changed. */
54 #define CONFIG_SBMAC_COALESCE
56 /* Time in jiffies before concluding the transmitter is hung. */
57 #define TX_TIMEOUT (2*HZ)
60 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
61 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
63 /* A few user-configurable values which may be modified when a driver
64 module is loaded. */
66 /* 1 normal messages, 0 quiet .. 7 verbose. */
67 static int debug = 1;
68 module_param(debug, int, S_IRUGO);
69 MODULE_PARM_DESC(debug, "Debug messages");
71 #ifdef CONFIG_SBMAC_COALESCE
72 static int int_pktcnt_tx = 255;
73 module_param(int_pktcnt_tx, int, S_IRUGO);
74 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
76 static int int_timeout_tx = 255;
77 module_param(int_timeout_tx, int, S_IRUGO);
78 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
80 static int int_pktcnt_rx = 64;
81 module_param(int_pktcnt_rx, int, S_IRUGO);
82 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
84 static int int_timeout_rx = 64;
85 module_param(int_timeout_rx, int, S_IRUGO);
86 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
87 #endif
89 #include <asm/sibyte/board.h>
90 #include <asm/sibyte/sb1250.h>
91 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
92 #include <asm/sibyte/bcm1480_regs.h>
93 #include <asm/sibyte/bcm1480_int.h>
94 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
95 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
96 #include <asm/sibyte/sb1250_regs.h>
97 #include <asm/sibyte/sb1250_int.h>
98 #else
99 #error invalid SiByte MAC configuration
100 #endif
101 #include <asm/sibyte/sb1250_scd.h>
102 #include <asm/sibyte/sb1250_mac.h>
103 #include <asm/sibyte/sb1250_dma.h>
105 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
106 #define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
107 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
108 #define UNIT_INT(n) (K_INT_MAC_0 + (n))
109 #else
110 #error invalid SiByte MAC configuration
111 #endif
113 #ifdef K_INT_PHY
114 #define SBMAC_PHY_INT K_INT_PHY
115 #else
116 #define SBMAC_PHY_INT PHY_POLL
117 #endif
119 /**********************************************************************
120 * Simple types
121 ********************************************************************* */
123 enum sbmac_speed {
124 sbmac_speed_none = 0,
125 sbmac_speed_10 = SPEED_10,
126 sbmac_speed_100 = SPEED_100,
127 sbmac_speed_1000 = SPEED_1000,
130 enum sbmac_duplex {
131 sbmac_duplex_none = -1,
132 sbmac_duplex_half = DUPLEX_HALF,
133 sbmac_duplex_full = DUPLEX_FULL,
136 enum sbmac_fc {
137 sbmac_fc_none,
138 sbmac_fc_disabled,
139 sbmac_fc_frame,
140 sbmac_fc_collision,
141 sbmac_fc_carrier,
144 enum sbmac_state {
145 sbmac_state_uninit,
146 sbmac_state_off,
147 sbmac_state_on,
148 sbmac_state_broken,
152 /**********************************************************************
153 * Macros
154 ********************************************************************* */
157 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
158 (d)->sbdma_dscrtable : (d)->f+1)
161 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
163 #define SBMAC_MAX_TXDESCR 256
164 #define SBMAC_MAX_RXDESCR 256
166 #define ENET_PACKET_SIZE 1518
167 /*#define ENET_PACKET_SIZE 9216 */
169 /**********************************************************************
170 * DMA Descriptor structure
171 ********************************************************************* */
173 struct sbdmadscr {
174 uint64_t dscr_a;
175 uint64_t dscr_b;
178 /**********************************************************************
179 * DMA Controller structure
180 ********************************************************************* */
182 struct sbmacdma {
185 * This stuff is used to identify the channel and the registers
186 * associated with it.
188 struct sbmac_softc *sbdma_eth; /* back pointer to associated
189 MAC */
190 int sbdma_channel; /* channel number */
191 int sbdma_txdir; /* direction (1=transmit) */
192 int sbdma_maxdescr; /* total # of descriptors
193 in ring */
194 #ifdef CONFIG_SBMAC_COALESCE
195 int sbdma_int_pktcnt;
196 /* # descriptors rx/tx
197 before interrupt */
198 int sbdma_int_timeout;
199 /* # usec rx/tx interrupt */
200 #endif
201 void __iomem *sbdma_config0; /* DMA config register 0 */
202 void __iomem *sbdma_config1; /* DMA config register 1 */
203 void __iomem *sbdma_dscrbase;
204 /* descriptor base address */
205 void __iomem *sbdma_dscrcnt; /* descriptor count register */
206 void __iomem *sbdma_curdscr; /* current descriptor
207 address */
208 void __iomem *sbdma_oodpktlost;
209 /* pkt drop (rx only) */
212 * This stuff is for maintenance of the ring
214 void *sbdma_dscrtable_unaligned;
215 struct sbdmadscr *sbdma_dscrtable;
216 /* base of descriptor table */
217 struct sbdmadscr *sbdma_dscrtable_end;
218 /* end of descriptor table */
219 struct sk_buff **sbdma_ctxtable;
220 /* context table, one
221 per descr */
222 dma_addr_t sbdma_dscrtable_phys;
223 /* and also the phys addr */
224 struct sbdmadscr *sbdma_addptr; /* next dscr for sw to add */
225 struct sbdmadscr *sbdma_remptr; /* next dscr for sw
226 to remove */
230 /**********************************************************************
231 * Ethernet softc structure
232 ********************************************************************* */
234 struct sbmac_softc {
237 * Linux-specific things
239 struct net_device *sbm_dev; /* pointer to linux device */
240 struct napi_struct napi;
241 struct phy_device *phy_dev; /* the associated PHY device */
242 struct mii_bus *mii_bus; /* the MII bus */
243 int phy_irq[PHY_MAX_ADDR];
244 spinlock_t sbm_lock; /* spin lock */
245 int sbm_devflags; /* current device flags */
248 * Controller-specific things
250 void __iomem *sbm_base; /* MAC's base address */
251 enum sbmac_state sbm_state; /* current state */
253 void __iomem *sbm_macenable; /* MAC Enable Register */
254 void __iomem *sbm_maccfg; /* MAC Config Register */
255 void __iomem *sbm_fifocfg; /* FIFO Config Register */
256 void __iomem *sbm_framecfg; /* Frame Config Register */
257 void __iomem *sbm_rxfilter; /* Receive Filter Register */
258 void __iomem *sbm_isr; /* Interrupt Status Register */
259 void __iomem *sbm_imr; /* Interrupt Mask Register */
260 void __iomem *sbm_mdio; /* MDIO Register */
262 enum sbmac_speed sbm_speed; /* current speed */
263 enum sbmac_duplex sbm_duplex; /* current duplex */
264 enum sbmac_fc sbm_fc; /* cur. flow control setting */
265 int sbm_pause; /* current pause setting */
266 int sbm_link; /* current link state */
268 unsigned char sbm_hwaddr[ETH_ALEN];
270 struct sbmacdma sbm_txdma; /* only channel 0 for now */
271 struct sbmacdma sbm_rxdma;
272 int rx_hw_checksum;
273 int sbe_idx;
277 /**********************************************************************
278 * Externs
279 ********************************************************************* */
281 /**********************************************************************
282 * Prototypes
283 ********************************************************************* */
285 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
286 int txrx, int maxdescr);
287 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
288 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
289 struct sk_buff *m);
290 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
291 static void sbdma_emptyring(struct sbmacdma *d);
292 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
293 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
294 int work_to_do, int poll);
295 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
296 int poll);
297 static int sbmac_initctx(struct sbmac_softc *s);
298 static void sbmac_channel_start(struct sbmac_softc *s);
299 static void sbmac_channel_stop(struct sbmac_softc *s);
300 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
301 enum sbmac_state);
302 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
303 static uint64_t sbmac_addr2reg(unsigned char *ptr);
304 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
305 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
306 static void sbmac_setmulti(struct sbmac_softc *sc);
307 static int sbmac_init(struct platform_device *pldev, long long base);
308 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
309 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
310 enum sbmac_fc fc);
312 static int sbmac_open(struct net_device *dev);
313 static void sbmac_tx_timeout (struct net_device *dev);
314 static void sbmac_set_rx_mode(struct net_device *dev);
315 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
316 static int sbmac_close(struct net_device *dev);
317 static int sbmac_poll(struct napi_struct *napi, int budget);
319 static void sbmac_mii_poll(struct net_device *dev);
320 static int sbmac_mii_probe(struct net_device *dev);
322 static void sbmac_mii_sync(void __iomem *sbm_mdio);
323 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
324 int bitcnt);
325 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
326 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
327 u16 val);
330 /**********************************************************************
331 * Globals
332 ********************************************************************* */
334 static char sbmac_string[] = "sb1250-mac";
336 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
339 /**********************************************************************
340 * MDIO constants
341 ********************************************************************* */
343 #define MII_COMMAND_START 0x01
344 #define MII_COMMAND_READ 0x02
345 #define MII_COMMAND_WRITE 0x01
346 #define MII_COMMAND_ACK 0x02
348 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
350 #define ENABLE 1
351 #define DISABLE 0
353 /**********************************************************************
354 * SBMAC_MII_SYNC(sbm_mdio)
356 * Synchronize with the MII - send a pattern of bits to the MII
357 * that will guarantee that it is ready to accept a command.
359 * Input parameters:
360 * sbm_mdio - address of the MAC's MDIO register
362 * Return value:
363 * nothing
364 ********************************************************************* */
366 static void sbmac_mii_sync(void __iomem *sbm_mdio)
368 int cnt;
369 uint64_t bits;
370 int mac_mdio_genc;
372 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
374 bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
376 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
378 for (cnt = 0; cnt < 32; cnt++) {
379 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
380 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
384 /**********************************************************************
385 * SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
387 * Send some bits to the MII. The bits to be sent are right-
388 * justified in the 'data' parameter.
390 * Input parameters:
391 * sbm_mdio - address of the MAC's MDIO register
392 * data - data to send
393 * bitcnt - number of bits to send
394 ********************************************************************* */
396 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
397 int bitcnt)
399 int i;
400 uint64_t bits;
401 unsigned int curmask;
402 int mac_mdio_genc;
404 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
406 bits = M_MAC_MDIO_DIR_OUTPUT;
407 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
409 curmask = 1 << (bitcnt - 1);
411 for (i = 0; i < bitcnt; i++) {
412 if (data & curmask)
413 bits |= M_MAC_MDIO_OUT;
414 else bits &= ~M_MAC_MDIO_OUT;
415 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
416 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
417 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
418 curmask >>= 1;
424 /**********************************************************************
425 * SBMAC_MII_READ(bus, phyaddr, regidx)
426 * Read a PHY register.
428 * Input parameters:
429 * bus - MDIO bus handle
430 * phyaddr - PHY's address
431 * regnum - index of register to read
433 * Return value:
434 * value read, or 0xffff if an error occurred.
435 ********************************************************************* */
437 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
439 struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
440 void __iomem *sbm_mdio = sc->sbm_mdio;
441 int idx;
442 int error;
443 int regval;
444 int mac_mdio_genc;
447 * Synchronize ourselves so that the PHY knows the next
448 * thing coming down is a command
450 sbmac_mii_sync(sbm_mdio);
453 * Send the data to the PHY. The sequence is
454 * a "start" command (2 bits)
455 * a "read" command (2 bits)
456 * the PHY addr (5 bits)
457 * the register index (5 bits)
459 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
460 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
461 sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
462 sbmac_mii_senddata(sbm_mdio, regidx, 5);
464 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
467 * Switch the port around without a clock transition.
469 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
472 * Send out a clock pulse to signal we want the status
474 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
475 sbm_mdio);
476 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
479 * If an error occurred, the PHY will signal '1' back
481 error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
484 * Issue an 'idle' clock pulse, but keep the direction
485 * the same.
487 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
488 sbm_mdio);
489 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
491 regval = 0;
493 for (idx = 0; idx < 16; idx++) {
494 regval <<= 1;
496 if (error == 0) {
497 if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
498 regval |= 1;
501 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
502 sbm_mdio);
503 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
506 /* Switch back to output */
507 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
509 if (error == 0)
510 return regval;
511 return 0xffff;
515 /**********************************************************************
516 * SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
518 * Write a value to a PHY register.
520 * Input parameters:
521 * bus - MDIO bus handle
522 * phyaddr - PHY to use
523 * regidx - register within the PHY
524 * regval - data to write to register
526 * Return value:
527 * 0 for success
528 ********************************************************************* */
530 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
531 u16 regval)
533 struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
534 void __iomem *sbm_mdio = sc->sbm_mdio;
535 int mac_mdio_genc;
537 sbmac_mii_sync(sbm_mdio);
539 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
540 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
541 sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
542 sbmac_mii_senddata(sbm_mdio, regidx, 5);
543 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
544 sbmac_mii_senddata(sbm_mdio, regval, 16);
546 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
548 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
550 return 0;
555 /**********************************************************************
556 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
558 * Initialize a DMA channel context. Since there are potentially
559 * eight DMA channels per MAC, it's nice to do this in a standard
560 * way.
562 * Input parameters:
563 * d - struct sbmacdma (DMA channel context)
564 * s - struct sbmac_softc (pointer to a MAC)
565 * chan - channel number (0..1 right now)
566 * txrx - Identifies DMA_TX or DMA_RX for channel direction
567 * maxdescr - number of descriptors
569 * Return value:
570 * nothing
571 ********************************************************************* */
573 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
574 int txrx, int maxdescr)
576 #ifdef CONFIG_SBMAC_COALESCE
577 int int_pktcnt, int_timeout;
578 #endif
581 * Save away interesting stuff in the structure
584 d->sbdma_eth = s;
585 d->sbdma_channel = chan;
586 d->sbdma_txdir = txrx;
588 #if 0
589 /* RMON clearing */
590 s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
591 #endif
593 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
594 __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
595 __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
596 __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
597 __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
598 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
599 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
600 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
601 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
602 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
603 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
604 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
605 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
606 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
607 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
608 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
609 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
610 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
611 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
612 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
613 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
616 * initialize register pointers
619 d->sbdma_config0 =
620 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
621 d->sbdma_config1 =
622 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
623 d->sbdma_dscrbase =
624 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
625 d->sbdma_dscrcnt =
626 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
627 d->sbdma_curdscr =
628 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
629 if (d->sbdma_txdir)
630 d->sbdma_oodpktlost = NULL;
631 else
632 d->sbdma_oodpktlost =
633 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
636 * Allocate memory for the ring
639 d->sbdma_maxdescr = maxdescr;
641 d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
642 sizeof(*d->sbdma_dscrtable),
643 GFP_KERNEL);
646 * The descriptor table must be aligned to at least 16 bytes or the
647 * MAC will corrupt it.
649 d->sbdma_dscrtable = (struct sbdmadscr *)
650 ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
651 sizeof(*d->sbdma_dscrtable));
653 d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
655 d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
658 * And context table
661 d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
662 sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
664 #ifdef CONFIG_SBMAC_COALESCE
666 * Setup Rx/Tx DMA coalescing defaults
669 int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
670 if ( int_pktcnt ) {
671 d->sbdma_int_pktcnt = int_pktcnt;
672 } else {
673 d->sbdma_int_pktcnt = 1;
676 int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
677 if ( int_timeout ) {
678 d->sbdma_int_timeout = int_timeout;
679 } else {
680 d->sbdma_int_timeout = 0;
682 #endif
686 /**********************************************************************
687 * SBDMA_CHANNEL_START(d)
689 * Initialize the hardware registers for a DMA channel.
691 * Input parameters:
692 * d - DMA channel to init (context must be previously init'd
693 * rxtx - DMA_RX or DMA_TX depending on what type of channel
695 * Return value:
696 * nothing
697 ********************************************************************* */
699 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
702 * Turn on the DMA channel
705 #ifdef CONFIG_SBMAC_COALESCE
706 __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
707 0, d->sbdma_config1);
708 __raw_writeq(M_DMA_EOP_INT_EN |
709 V_DMA_RINGSZ(d->sbdma_maxdescr) |
710 V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
711 0, d->sbdma_config0);
712 #else
713 __raw_writeq(0, d->sbdma_config1);
714 __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
715 0, d->sbdma_config0);
716 #endif
718 __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
721 * Initialize ring pointers
724 d->sbdma_addptr = d->sbdma_dscrtable;
725 d->sbdma_remptr = d->sbdma_dscrtable;
728 /**********************************************************************
729 * SBDMA_CHANNEL_STOP(d)
731 * Initialize the hardware registers for a DMA channel.
733 * Input parameters:
734 * d - DMA channel to init (context must be previously init'd
736 * Return value:
737 * nothing
738 ********************************************************************* */
740 static void sbdma_channel_stop(struct sbmacdma *d)
743 * Turn off the DMA channel
746 __raw_writeq(0, d->sbdma_config1);
748 __raw_writeq(0, d->sbdma_dscrbase);
750 __raw_writeq(0, d->sbdma_config0);
753 * Zero ring pointers
756 d->sbdma_addptr = NULL;
757 d->sbdma_remptr = NULL;
760 static inline void sbdma_align_skb(struct sk_buff *skb,
761 unsigned int power2, unsigned int offset)
763 unsigned char *addr = skb->data;
764 unsigned char *newaddr = PTR_ALIGN(addr, power2);
766 skb_reserve(skb, newaddr - addr + offset);
770 /**********************************************************************
771 * SBDMA_ADD_RCVBUFFER(d,sb)
773 * Add a buffer to the specified DMA channel. For receive channels,
774 * this queues a buffer for inbound packets.
776 * Input parameters:
777 * sc - softc structure
778 * d - DMA channel descriptor
779 * sb - sk_buff to add, or NULL if we should allocate one
781 * Return value:
782 * 0 if buffer could not be added (ring is full)
783 * 1 if buffer added successfully
784 ********************************************************************* */
787 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
788 struct sk_buff *sb)
790 struct net_device *dev = sc->sbm_dev;
791 struct sbdmadscr *dsc;
792 struct sbdmadscr *nextdsc;
793 struct sk_buff *sb_new = NULL;
794 int pktsize = ENET_PACKET_SIZE;
796 /* get pointer to our current place in the ring */
798 dsc = d->sbdma_addptr;
799 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
802 * figure out if the ring is full - if the next descriptor
803 * is the same as the one that we're going to remove from
804 * the ring, the ring is full
807 if (nextdsc == d->sbdma_remptr) {
808 return -ENOSPC;
812 * Allocate a sk_buff if we don't already have one.
813 * If we do have an sk_buff, reset it so that it's empty.
815 * Note: sk_buffs don't seem to be guaranteed to have any sort
816 * of alignment when they are allocated. Therefore, allocate enough
817 * extra space to make sure that:
819 * 1. the data does not start in the middle of a cache line.
820 * 2. The data does not end in the middle of a cache line
821 * 3. The buffer can be aligned such that the IP addresses are
822 * naturally aligned.
824 * Remember, the SOCs MAC writes whole cache lines at a time,
825 * without reading the old contents first. So, if the sk_buff's
826 * data portion starts in the middle of a cache line, the SOC
827 * DMA will trash the beginning (and ending) portions.
830 if (sb == NULL) {
831 sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
832 SMP_CACHE_BYTES * 2 +
833 NET_IP_ALIGN);
834 if (sb_new == NULL) {
835 pr_info("%s: sk_buff allocation failed\n",
836 d->sbdma_eth->sbm_dev->name);
837 return -ENOBUFS;
840 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
842 else {
843 sb_new = sb;
845 * nothing special to reinit buffer, it's already aligned
846 * and sb->data already points to a good place.
851 * fill in the descriptor
854 #ifdef CONFIG_SBMAC_COALESCE
856 * Do not interrupt per DMA transfer.
858 dsc->dscr_a = virt_to_phys(sb_new->data) |
859 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
860 #else
861 dsc->dscr_a = virt_to_phys(sb_new->data) |
862 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
863 M_DMA_DSCRA_INTERRUPT;
864 #endif
866 /* receiving: no options */
867 dsc->dscr_b = 0;
870 * fill in the context
873 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
876 * point at next packet
879 d->sbdma_addptr = nextdsc;
882 * Give the buffer to the DMA engine.
885 __raw_writeq(1, d->sbdma_dscrcnt);
887 return 0; /* we did it */
890 /**********************************************************************
891 * SBDMA_ADD_TXBUFFER(d,sb)
893 * Add a transmit buffer to the specified DMA channel, causing a
894 * transmit to start.
896 * Input parameters:
897 * d - DMA channel descriptor
898 * sb - sk_buff to add
900 * Return value:
901 * 0 transmit queued successfully
902 * otherwise error code
903 ********************************************************************* */
906 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
908 struct sbdmadscr *dsc;
909 struct sbdmadscr *nextdsc;
910 uint64_t phys;
911 uint64_t ncb;
912 int length;
914 /* get pointer to our current place in the ring */
916 dsc = d->sbdma_addptr;
917 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
920 * figure out if the ring is full - if the next descriptor
921 * is the same as the one that we're going to remove from
922 * the ring, the ring is full
925 if (nextdsc == d->sbdma_remptr) {
926 return -ENOSPC;
930 * Under Linux, it's not necessary to copy/coalesce buffers
931 * like it is on NetBSD. We think they're all contiguous,
932 * but that may not be true for GBE.
935 length = sb->len;
938 * fill in the descriptor. Note that the number of cache
939 * blocks in the descriptor is the number of blocks
940 * *spanned*, so we need to add in the offset (if any)
941 * while doing the calculation.
944 phys = virt_to_phys(sb->data);
945 ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
947 dsc->dscr_a = phys |
948 V_DMA_DSCRA_A_SIZE(ncb) |
949 #ifndef CONFIG_SBMAC_COALESCE
950 M_DMA_DSCRA_INTERRUPT |
951 #endif
952 M_DMA_ETHTX_SOP;
954 /* transmitting: set outbound options and length */
956 dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
957 V_DMA_DSCRB_PKT_SIZE(length);
960 * fill in the context
963 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
966 * point at next packet
969 d->sbdma_addptr = nextdsc;
972 * Give the buffer to the DMA engine.
975 __raw_writeq(1, d->sbdma_dscrcnt);
977 return 0; /* we did it */
983 /**********************************************************************
984 * SBDMA_EMPTYRING(d)
986 * Free all allocated sk_buffs on the specified DMA channel;
988 * Input parameters:
989 * d - DMA channel
991 * Return value:
992 * nothing
993 ********************************************************************* */
995 static void sbdma_emptyring(struct sbmacdma *d)
997 int idx;
998 struct sk_buff *sb;
1000 for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1001 sb = d->sbdma_ctxtable[idx];
1002 if (sb) {
1003 dev_kfree_skb(sb);
1004 d->sbdma_ctxtable[idx] = NULL;
1010 /**********************************************************************
1011 * SBDMA_FILLRING(d)
1013 * Fill the specified DMA channel (must be receive channel)
1014 * with sk_buffs
1016 * Input parameters:
1017 * sc - softc structure
1018 * d - DMA channel
1020 * Return value:
1021 * nothing
1022 ********************************************************************* */
1024 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1026 int idx;
1028 for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1029 if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1030 break;
1034 #ifdef CONFIG_NET_POLL_CONTROLLER
1035 static void sbmac_netpoll(struct net_device *netdev)
1037 struct sbmac_softc *sc = netdev_priv(netdev);
1038 int irq = sc->sbm_dev->irq;
1040 __raw_writeq(0, sc->sbm_imr);
1042 sbmac_intr(irq, netdev);
1044 #ifdef CONFIG_SBMAC_COALESCE
1045 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1046 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1047 sc->sbm_imr);
1048 #else
1049 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1050 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1051 #endif
1053 #endif
1055 /**********************************************************************
1056 * SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1058 * Process "completed" receive buffers on the specified DMA channel.
1060 * Input parameters:
1061 * sc - softc structure
1062 * d - DMA channel context
1063 * work_to_do - no. of packets to process before enabling interrupt
1064 * again (for NAPI)
1065 * poll - 1: using polling (for NAPI)
1067 * Return value:
1068 * nothing
1069 ********************************************************************* */
1071 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1072 int work_to_do, int poll)
1074 struct net_device *dev = sc->sbm_dev;
1075 int curidx;
1076 int hwidx;
1077 struct sbdmadscr *dsc;
1078 struct sk_buff *sb;
1079 int len;
1080 int work_done = 0;
1081 int dropped = 0;
1083 prefetch(d);
1085 again:
1086 /* Check if the HW dropped any frames */
1087 dev->stats.rx_fifo_errors
1088 += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1089 __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1091 while (work_to_do-- > 0) {
1093 * figure out where we are (as an index) and where
1094 * the hardware is (also as an index)
1096 * This could be done faster if (for example) the
1097 * descriptor table was page-aligned and contiguous in
1098 * both virtual and physical memory -- you could then
1099 * just compare the low-order bits of the virtual address
1100 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1103 dsc = d->sbdma_remptr;
1104 curidx = dsc - d->sbdma_dscrtable;
1106 prefetch(dsc);
1107 prefetch(&d->sbdma_ctxtable[curidx]);
1109 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1110 d->sbdma_dscrtable_phys) /
1111 sizeof(*d->sbdma_dscrtable);
1114 * If they're the same, that means we've processed all
1115 * of the descriptors up to (but not including) the one that
1116 * the hardware is working on right now.
1119 if (curidx == hwidx)
1120 goto done;
1123 * Otherwise, get the packet's sk_buff ptr back
1126 sb = d->sbdma_ctxtable[curidx];
1127 d->sbdma_ctxtable[curidx] = NULL;
1129 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1132 * Check packet status. If good, process it.
1133 * If not, silently drop it and put it back on the
1134 * receive ring.
1137 if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1140 * Add a new buffer to replace the old one. If we fail
1141 * to allocate a buffer, we're going to drop this
1142 * packet and put it right back on the receive ring.
1145 if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1146 -ENOBUFS)) {
1147 dev->stats.rx_dropped++;
1148 /* Re-add old buffer */
1149 sbdma_add_rcvbuffer(sc, d, sb);
1150 /* No point in continuing at the moment */
1151 printk(KERN_ERR "dropped packet (1)\n");
1152 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1153 goto done;
1154 } else {
1156 * Set length into the packet
1158 skb_put(sb,len);
1161 * Buffer has been replaced on the
1162 * receive ring. Pass the buffer to
1163 * the kernel
1165 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1166 /* Check hw IPv4/TCP checksum if supported */
1167 if (sc->rx_hw_checksum == ENABLE) {
1168 if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1169 !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1170 sb->ip_summed = CHECKSUM_UNNECESSARY;
1171 /* don't need to set sb->csum */
1172 } else {
1173 skb_checksum_none_assert(sb);
1176 prefetch(sb->data);
1177 prefetch((const void *)(((char *)sb->data)+32));
1178 if (poll)
1179 dropped = netif_receive_skb(sb);
1180 else
1181 dropped = netif_rx(sb);
1183 if (dropped == NET_RX_DROP) {
1184 dev->stats.rx_dropped++;
1185 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1186 goto done;
1188 else {
1189 dev->stats.rx_bytes += len;
1190 dev->stats.rx_packets++;
1193 } else {
1195 * Packet was mangled somehow. Just drop it and
1196 * put it back on the receive ring.
1198 dev->stats.rx_errors++;
1199 sbdma_add_rcvbuffer(sc, d, sb);
1204 * .. and advance to the next buffer.
1207 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1208 work_done++;
1210 if (!poll) {
1211 work_to_do = 32;
1212 goto again; /* collect fifo drop statistics again */
1214 done:
1215 return work_done;
1218 /**********************************************************************
1219 * SBDMA_TX_PROCESS(sc,d)
1221 * Process "completed" transmit buffers on the specified DMA channel.
1222 * This is normally called within the interrupt service routine.
1223 * Note that this isn't really ideal for priority channels, since
1224 * it processes all of the packets on a given channel before
1225 * returning.
1227 * Input parameters:
1228 * sc - softc structure
1229 * d - DMA channel context
1230 * poll - 1: using polling (for NAPI)
1232 * Return value:
1233 * nothing
1234 ********************************************************************* */
1236 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1237 int poll)
1239 struct net_device *dev = sc->sbm_dev;
1240 int curidx;
1241 int hwidx;
1242 struct sbdmadscr *dsc;
1243 struct sk_buff *sb;
1244 unsigned long flags;
1245 int packets_handled = 0;
1247 spin_lock_irqsave(&(sc->sbm_lock), flags);
1249 if (d->sbdma_remptr == d->sbdma_addptr)
1250 goto end_unlock;
1252 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1253 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1255 for (;;) {
1257 * figure out where we are (as an index) and where
1258 * the hardware is (also as an index)
1260 * This could be done faster if (for example) the
1261 * descriptor table was page-aligned and contiguous in
1262 * both virtual and physical memory -- you could then
1263 * just compare the low-order bits of the virtual address
1264 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1267 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1270 * If they're the same, that means we've processed all
1271 * of the descriptors up to (but not including) the one that
1272 * the hardware is working on right now.
1275 if (curidx == hwidx)
1276 break;
1279 * Otherwise, get the packet's sk_buff ptr back
1282 dsc = &(d->sbdma_dscrtable[curidx]);
1283 sb = d->sbdma_ctxtable[curidx];
1284 d->sbdma_ctxtable[curidx] = NULL;
1287 * Stats
1290 dev->stats.tx_bytes += sb->len;
1291 dev->stats.tx_packets++;
1294 * for transmits, we just free buffers.
1297 dev_kfree_skb_irq(sb);
1300 * .. and advance to the next buffer.
1303 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1305 packets_handled++;
1310 * Decide if we should wake up the protocol or not.
1311 * Other drivers seem to do this when we reach a low
1312 * watermark on the transmit queue.
1315 if (packets_handled)
1316 netif_wake_queue(d->sbdma_eth->sbm_dev);
1318 end_unlock:
1319 spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1325 /**********************************************************************
1326 * SBMAC_INITCTX(s)
1328 * Initialize an Ethernet context structure - this is called
1329 * once per MAC on the 1250. Memory is allocated here, so don't
1330 * call it again from inside the ioctl routines that bring the
1331 * interface up/down
1333 * Input parameters:
1334 * s - sbmac context structure
1336 * Return value:
1338 ********************************************************************* */
1340 static int sbmac_initctx(struct sbmac_softc *s)
1344 * figure out the addresses of some ports
1347 s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1348 s->sbm_maccfg = s->sbm_base + R_MAC_CFG;
1349 s->sbm_fifocfg = s->sbm_base + R_MAC_THRSH_CFG;
1350 s->sbm_framecfg = s->sbm_base + R_MAC_FRAMECFG;
1351 s->sbm_rxfilter = s->sbm_base + R_MAC_ADFILTER_CFG;
1352 s->sbm_isr = s->sbm_base + R_MAC_STATUS;
1353 s->sbm_imr = s->sbm_base + R_MAC_INT_MASK;
1354 s->sbm_mdio = s->sbm_base + R_MAC_MDIO;
1357 * Initialize the DMA channels. Right now, only one per MAC is used
1358 * Note: Only do this _once_, as it allocates memory from the kernel!
1361 sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1362 sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1365 * initial state is OFF
1368 s->sbm_state = sbmac_state_off;
1370 return 0;
1374 static void sbdma_uninitctx(struct sbmacdma *d)
1376 if (d->sbdma_dscrtable_unaligned) {
1377 kfree(d->sbdma_dscrtable_unaligned);
1378 d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1381 if (d->sbdma_ctxtable) {
1382 kfree(d->sbdma_ctxtable);
1383 d->sbdma_ctxtable = NULL;
1388 static void sbmac_uninitctx(struct sbmac_softc *sc)
1390 sbdma_uninitctx(&(sc->sbm_txdma));
1391 sbdma_uninitctx(&(sc->sbm_rxdma));
1395 /**********************************************************************
1396 * SBMAC_CHANNEL_START(s)
1398 * Start packet processing on this MAC.
1400 * Input parameters:
1401 * s - sbmac structure
1403 * Return value:
1404 * nothing
1405 ********************************************************************* */
1407 static void sbmac_channel_start(struct sbmac_softc *s)
1409 uint64_t reg;
1410 void __iomem *port;
1411 uint64_t cfg,fifo,framecfg;
1412 int idx, th_value;
1415 * Don't do this if running
1418 if (s->sbm_state == sbmac_state_on)
1419 return;
1422 * Bring the controller out of reset, but leave it off.
1425 __raw_writeq(0, s->sbm_macenable);
1428 * Ignore all received packets
1431 __raw_writeq(0, s->sbm_rxfilter);
1434 * Calculate values for various control registers.
1437 cfg = M_MAC_RETRY_EN |
1438 M_MAC_TX_HOLD_SOP_EN |
1439 V_MAC_TX_PAUSE_CNT_16K |
1440 M_MAC_AP_STAT_EN |
1441 M_MAC_FAST_SYNC |
1442 M_MAC_SS_EN |
1446 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1447 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1448 * Use a larger RD_THRSH for gigabit
1450 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1451 th_value = 28;
1452 else
1453 th_value = 64;
1455 fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1456 ((s->sbm_speed == sbmac_speed_1000)
1457 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1458 V_MAC_TX_RL_THRSH(4) |
1459 V_MAC_RX_PL_THRSH(4) |
1460 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1461 V_MAC_RX_RL_THRSH(8) |
1464 framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1465 V_MAC_MAX_FRAMESZ_DEFAULT |
1466 V_MAC_BACKOFF_SEL(1);
1469 * Clear out the hash address map
1472 port = s->sbm_base + R_MAC_HASH_BASE;
1473 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1474 __raw_writeq(0, port);
1475 port += sizeof(uint64_t);
1479 * Clear out the exact-match table
1482 port = s->sbm_base + R_MAC_ADDR_BASE;
1483 for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1484 __raw_writeq(0, port);
1485 port += sizeof(uint64_t);
1489 * Clear out the DMA Channel mapping table registers
1492 port = s->sbm_base + R_MAC_CHUP0_BASE;
1493 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1494 __raw_writeq(0, port);
1495 port += sizeof(uint64_t);
1499 port = s->sbm_base + R_MAC_CHLO0_BASE;
1500 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1501 __raw_writeq(0, port);
1502 port += sizeof(uint64_t);
1506 * Program the hardware address. It goes into the hardware-address
1507 * register as well as the first filter register.
1510 reg = sbmac_addr2reg(s->sbm_hwaddr);
1512 port = s->sbm_base + R_MAC_ADDR_BASE;
1513 __raw_writeq(reg, port);
1514 port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1516 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1518 * Pass1 SOCs do not receive packets addressed to the
1519 * destination address in the R_MAC_ETHERNET_ADDR register.
1520 * Set the value to zero.
1522 __raw_writeq(0, port);
1523 #else
1524 __raw_writeq(reg, port);
1525 #endif
1528 * Set the receive filter for no packets, and write values
1529 * to the various config registers
1532 __raw_writeq(0, s->sbm_rxfilter);
1533 __raw_writeq(0, s->sbm_imr);
1534 __raw_writeq(framecfg, s->sbm_framecfg);
1535 __raw_writeq(fifo, s->sbm_fifocfg);
1536 __raw_writeq(cfg, s->sbm_maccfg);
1539 * Initialize DMA channels (rings should be ok now)
1542 sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1543 sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1546 * Configure the speed, duplex, and flow control
1549 sbmac_set_speed(s,s->sbm_speed);
1550 sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1553 * Fill the receive ring
1556 sbdma_fillring(s, &(s->sbm_rxdma));
1559 * Turn on the rest of the bits in the enable register
1562 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1563 __raw_writeq(M_MAC_RXDMA_EN0 |
1564 M_MAC_TXDMA_EN0, s->sbm_macenable);
1565 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1566 __raw_writeq(M_MAC_RXDMA_EN0 |
1567 M_MAC_TXDMA_EN0 |
1568 M_MAC_RX_ENABLE |
1569 M_MAC_TX_ENABLE, s->sbm_macenable);
1570 #else
1571 #error invalid SiByte MAC configuration
1572 #endif
1574 #ifdef CONFIG_SBMAC_COALESCE
1575 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1576 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1577 #else
1578 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1579 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1580 #endif
1583 * Enable receiving unicasts and broadcasts
1586 __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1589 * we're running now.
1592 s->sbm_state = sbmac_state_on;
1595 * Program multicast addresses
1598 sbmac_setmulti(s);
1601 * If channel was in promiscuous mode before, turn that on
1604 if (s->sbm_devflags & IFF_PROMISC) {
1605 sbmac_promiscuous_mode(s,1);
1611 /**********************************************************************
1612 * SBMAC_CHANNEL_STOP(s)
1614 * Stop packet processing on this MAC.
1616 * Input parameters:
1617 * s - sbmac structure
1619 * Return value:
1620 * nothing
1621 ********************************************************************* */
1623 static void sbmac_channel_stop(struct sbmac_softc *s)
1625 /* don't do this if already stopped */
1627 if (s->sbm_state == sbmac_state_off)
1628 return;
1630 /* don't accept any packets, disable all interrupts */
1632 __raw_writeq(0, s->sbm_rxfilter);
1633 __raw_writeq(0, s->sbm_imr);
1635 /* Turn off ticker */
1637 /* XXX */
1639 /* turn off receiver and transmitter */
1641 __raw_writeq(0, s->sbm_macenable);
1643 /* We're stopped now. */
1645 s->sbm_state = sbmac_state_off;
1648 * Stop DMA channels (rings should be ok now)
1651 sbdma_channel_stop(&(s->sbm_rxdma));
1652 sbdma_channel_stop(&(s->sbm_txdma));
1654 /* Empty the receive and transmit rings */
1656 sbdma_emptyring(&(s->sbm_rxdma));
1657 sbdma_emptyring(&(s->sbm_txdma));
1661 /**********************************************************************
1662 * SBMAC_SET_CHANNEL_STATE(state)
1664 * Set the channel's state ON or OFF
1666 * Input parameters:
1667 * state - new state
1669 * Return value:
1670 * old state
1671 ********************************************************************* */
1672 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1673 enum sbmac_state state)
1675 enum sbmac_state oldstate = sc->sbm_state;
1678 * If same as previous state, return
1681 if (state == oldstate) {
1682 return oldstate;
1686 * If new state is ON, turn channel on
1689 if (state == sbmac_state_on) {
1690 sbmac_channel_start(sc);
1692 else {
1693 sbmac_channel_stop(sc);
1697 * Return previous state
1700 return oldstate;
1704 /**********************************************************************
1705 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1707 * Turn on or off promiscuous mode
1709 * Input parameters:
1710 * sc - softc
1711 * onoff - 1 to turn on, 0 to turn off
1713 * Return value:
1714 * nothing
1715 ********************************************************************* */
1717 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1719 uint64_t reg;
1721 if (sc->sbm_state != sbmac_state_on)
1722 return;
1724 if (onoff) {
1725 reg = __raw_readq(sc->sbm_rxfilter);
1726 reg |= M_MAC_ALLPKT_EN;
1727 __raw_writeq(reg, sc->sbm_rxfilter);
1729 else {
1730 reg = __raw_readq(sc->sbm_rxfilter);
1731 reg &= ~M_MAC_ALLPKT_EN;
1732 __raw_writeq(reg, sc->sbm_rxfilter);
1736 /**********************************************************************
1737 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1739 * Set the iphdr offset as 15 assuming ethernet encapsulation
1741 * Input parameters:
1742 * sc - softc
1744 * Return value:
1745 * nothing
1746 ********************************************************************* */
1748 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1750 uint64_t reg;
1752 /* Hard code the off set to 15 for now */
1753 reg = __raw_readq(sc->sbm_rxfilter);
1754 reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1755 __raw_writeq(reg, sc->sbm_rxfilter);
1757 /* BCM1250 pass1 didn't have hardware checksum. Everything
1758 later does. */
1759 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1760 sc->rx_hw_checksum = DISABLE;
1761 } else {
1762 sc->rx_hw_checksum = ENABLE;
1767 /**********************************************************************
1768 * SBMAC_ADDR2REG(ptr)
1770 * Convert six bytes into the 64-bit register value that
1771 * we typically write into the SBMAC's address/mcast registers
1773 * Input parameters:
1774 * ptr - pointer to 6 bytes
1776 * Return value:
1777 * register value
1778 ********************************************************************* */
1780 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1782 uint64_t reg = 0;
1784 ptr += 6;
1786 reg |= (uint64_t) *(--ptr);
1787 reg <<= 8;
1788 reg |= (uint64_t) *(--ptr);
1789 reg <<= 8;
1790 reg |= (uint64_t) *(--ptr);
1791 reg <<= 8;
1792 reg |= (uint64_t) *(--ptr);
1793 reg <<= 8;
1794 reg |= (uint64_t) *(--ptr);
1795 reg <<= 8;
1796 reg |= (uint64_t) *(--ptr);
1798 return reg;
1802 /**********************************************************************
1803 * SBMAC_SET_SPEED(s,speed)
1805 * Configure LAN speed for the specified MAC.
1806 * Warning: must be called when MAC is off!
1808 * Input parameters:
1809 * s - sbmac structure
1810 * speed - speed to set MAC to (see enum sbmac_speed)
1812 * Return value:
1813 * 1 if successful
1814 * 0 indicates invalid parameters
1815 ********************************************************************* */
1817 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1819 uint64_t cfg;
1820 uint64_t framecfg;
1823 * Save new current values
1826 s->sbm_speed = speed;
1828 if (s->sbm_state == sbmac_state_on)
1829 return 0; /* save for next restart */
1832 * Read current register values
1835 cfg = __raw_readq(s->sbm_maccfg);
1836 framecfg = __raw_readq(s->sbm_framecfg);
1839 * Mask out the stuff we want to change
1842 cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1843 framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1844 M_MAC_SLOT_SIZE);
1847 * Now add in the new bits
1850 switch (speed) {
1851 case sbmac_speed_10:
1852 framecfg |= V_MAC_IFG_RX_10 |
1853 V_MAC_IFG_TX_10 |
1854 K_MAC_IFG_THRSH_10 |
1855 V_MAC_SLOT_SIZE_10;
1856 cfg |= V_MAC_SPEED_SEL_10MBPS;
1857 break;
1859 case sbmac_speed_100:
1860 framecfg |= V_MAC_IFG_RX_100 |
1861 V_MAC_IFG_TX_100 |
1862 V_MAC_IFG_THRSH_100 |
1863 V_MAC_SLOT_SIZE_100;
1864 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1865 break;
1867 case sbmac_speed_1000:
1868 framecfg |= V_MAC_IFG_RX_1000 |
1869 V_MAC_IFG_TX_1000 |
1870 V_MAC_IFG_THRSH_1000 |
1871 V_MAC_SLOT_SIZE_1000;
1872 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1873 break;
1875 default:
1876 return 0;
1880 * Send the bits back to the hardware
1883 __raw_writeq(framecfg, s->sbm_framecfg);
1884 __raw_writeq(cfg, s->sbm_maccfg);
1886 return 1;
1889 /**********************************************************************
1890 * SBMAC_SET_DUPLEX(s,duplex,fc)
1892 * Set Ethernet duplex and flow control options for this MAC
1893 * Warning: must be called when MAC is off!
1895 * Input parameters:
1896 * s - sbmac structure
1897 * duplex - duplex setting (see enum sbmac_duplex)
1898 * fc - flow control setting (see enum sbmac_fc)
1900 * Return value:
1901 * 1 if ok
1902 * 0 if an invalid parameter combination was specified
1903 ********************************************************************* */
1905 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1906 enum sbmac_fc fc)
1908 uint64_t cfg;
1911 * Save new current values
1914 s->sbm_duplex = duplex;
1915 s->sbm_fc = fc;
1917 if (s->sbm_state == sbmac_state_on)
1918 return 0; /* save for next restart */
1921 * Read current register values
1924 cfg = __raw_readq(s->sbm_maccfg);
1927 * Mask off the stuff we're about to change
1930 cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1933 switch (duplex) {
1934 case sbmac_duplex_half:
1935 switch (fc) {
1936 case sbmac_fc_disabled:
1937 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1938 break;
1940 case sbmac_fc_collision:
1941 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1942 break;
1944 case sbmac_fc_carrier:
1945 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1946 break;
1948 case sbmac_fc_frame: /* not valid in half duplex */
1949 default: /* invalid selection */
1950 return 0;
1952 break;
1954 case sbmac_duplex_full:
1955 switch (fc) {
1956 case sbmac_fc_disabled:
1957 cfg |= V_MAC_FC_CMD_DISABLED;
1958 break;
1960 case sbmac_fc_frame:
1961 cfg |= V_MAC_FC_CMD_ENABLED;
1962 break;
1964 case sbmac_fc_collision: /* not valid in full duplex */
1965 case sbmac_fc_carrier: /* not valid in full duplex */
1966 default:
1967 return 0;
1969 break;
1970 default:
1971 return 0;
1975 * Send the bits back to the hardware
1978 __raw_writeq(cfg, s->sbm_maccfg);
1980 return 1;
1986 /**********************************************************************
1987 * SBMAC_INTR()
1989 * Interrupt handler for MAC interrupts
1991 * Input parameters:
1992 * MAC structure
1994 * Return value:
1995 * nothing
1996 ********************************************************************* */
1997 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1999 struct net_device *dev = (struct net_device *) dev_instance;
2000 struct sbmac_softc *sc = netdev_priv(dev);
2001 uint64_t isr;
2002 int handled = 0;
2005 * Read the ISR (this clears the bits in the real
2006 * register, except for counter addr)
2009 isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2011 if (isr == 0)
2012 return IRQ_RETVAL(0);
2013 handled = 1;
2016 * Transmits on channel 0
2019 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2020 sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2022 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2023 if (napi_schedule_prep(&sc->napi)) {
2024 __raw_writeq(0, sc->sbm_imr);
2025 __napi_schedule(&sc->napi);
2026 /* Depend on the exit from poll to reenable intr */
2028 else {
2029 /* may leave some packets behind */
2030 sbdma_rx_process(sc,&(sc->sbm_rxdma),
2031 SBMAC_MAX_RXDESCR * 2, 0);
2034 return IRQ_RETVAL(handled);
2037 /**********************************************************************
2038 * SBMAC_START_TX(skb,dev)
2040 * Start output on the specified interface. Basically, we
2041 * queue as many buffers as we can until the ring fills up, or
2042 * we run off the end of the queue, whichever comes first.
2044 * Input parameters:
2047 * Return value:
2048 * nothing
2049 ********************************************************************* */
2050 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2052 struct sbmac_softc *sc = netdev_priv(dev);
2053 unsigned long flags;
2055 /* lock eth irq */
2056 spin_lock_irqsave(&sc->sbm_lock, flags);
2059 * Put the buffer on the transmit ring. If we
2060 * don't have room, stop the queue.
2063 if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2064 /* XXX save skb that we could not send */
2065 netif_stop_queue(dev);
2066 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2068 return NETDEV_TX_BUSY;
2071 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2073 return NETDEV_TX_OK;
2076 /**********************************************************************
2077 * SBMAC_SETMULTI(sc)
2079 * Reprogram the multicast table into the hardware, given
2080 * the list of multicasts associated with the interface
2081 * structure.
2083 * Input parameters:
2084 * sc - softc
2086 * Return value:
2087 * nothing
2088 ********************************************************************* */
2090 static void sbmac_setmulti(struct sbmac_softc *sc)
2092 uint64_t reg;
2093 void __iomem *port;
2094 int idx;
2095 struct netdev_hw_addr *ha;
2096 struct net_device *dev = sc->sbm_dev;
2099 * Clear out entire multicast table. We do this by nuking
2100 * the entire hash table and all the direct matches except
2101 * the first one, which is used for our station address
2104 for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2105 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2106 __raw_writeq(0, port);
2109 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2110 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2111 __raw_writeq(0, port);
2115 * Clear the filter to say we don't want any multicasts.
2118 reg = __raw_readq(sc->sbm_rxfilter);
2119 reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2120 __raw_writeq(reg, sc->sbm_rxfilter);
2122 if (dev->flags & IFF_ALLMULTI) {
2124 * Enable ALL multicasts. Do this by inverting the
2125 * multicast enable bit.
2127 reg = __raw_readq(sc->sbm_rxfilter);
2128 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2129 __raw_writeq(reg, sc->sbm_rxfilter);
2130 return;
2135 * Progam new multicast entries. For now, only use the
2136 * perfect filter. In the future we'll need to use the
2137 * hash filter if the perfect filter overflows
2140 /* XXX only using perfect filter for now, need to use hash
2141 * XXX if the table overflows */
2143 idx = 1; /* skip station address */
2144 netdev_for_each_mc_addr(ha, dev) {
2145 if (idx == MAC_ADDR_COUNT)
2146 break;
2147 reg = sbmac_addr2reg(ha->addr);
2148 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2149 __raw_writeq(reg, port);
2150 idx++;
2154 * Enable the "accept multicast bits" if we programmed at least one
2155 * multicast.
2158 if (idx > 1) {
2159 reg = __raw_readq(sc->sbm_rxfilter);
2160 reg |= M_MAC_MCAST_EN;
2161 __raw_writeq(reg, sc->sbm_rxfilter);
2165 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2167 if (new_mtu > ENET_PACKET_SIZE)
2168 return -EINVAL;
2169 _dev->mtu = new_mtu;
2170 pr_info("changing the mtu to %d\n", new_mtu);
2171 return 0;
2174 static const struct net_device_ops sbmac_netdev_ops = {
2175 .ndo_open = sbmac_open,
2176 .ndo_stop = sbmac_close,
2177 .ndo_start_xmit = sbmac_start_tx,
2178 .ndo_set_rx_mode = sbmac_set_rx_mode,
2179 .ndo_tx_timeout = sbmac_tx_timeout,
2180 .ndo_do_ioctl = sbmac_mii_ioctl,
2181 .ndo_change_mtu = sb1250_change_mtu,
2182 .ndo_validate_addr = eth_validate_addr,
2183 .ndo_set_mac_address = eth_mac_addr,
2184 #ifdef CONFIG_NET_POLL_CONTROLLER
2185 .ndo_poll_controller = sbmac_netpoll,
2186 #endif
2189 /**********************************************************************
2190 * SBMAC_INIT(dev)
2192 * Attach routine - init hardware and hook ourselves into linux
2194 * Input parameters:
2195 * dev - net_device structure
2197 * Return value:
2198 * status
2199 ********************************************************************* */
2201 static int sbmac_init(struct platform_device *pldev, long long base)
2203 struct net_device *dev = dev_get_drvdata(&pldev->dev);
2204 int idx = pldev->id;
2205 struct sbmac_softc *sc = netdev_priv(dev);
2206 unsigned char *eaddr;
2207 uint64_t ea_reg;
2208 int i;
2209 int err;
2211 sc->sbm_dev = dev;
2212 sc->sbe_idx = idx;
2214 eaddr = sc->sbm_hwaddr;
2217 * Read the ethernet address. The firmware left this programmed
2218 * for us in the ethernet address register for each mac.
2221 ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2222 __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2223 for (i = 0; i < 6; i++) {
2224 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2225 ea_reg >>= 8;
2228 for (i = 0; i < 6; i++) {
2229 dev->dev_addr[i] = eaddr[i];
2233 * Initialize context (get pointers to registers and stuff), then
2234 * allocate the memory for the descriptor tables.
2237 sbmac_initctx(sc);
2240 * Set up Linux device callins
2243 spin_lock_init(&(sc->sbm_lock));
2245 dev->netdev_ops = &sbmac_netdev_ops;
2246 dev->watchdog_timeo = TX_TIMEOUT;
2248 netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2250 dev->irq = UNIT_INT(idx);
2252 /* This is needed for PASS2 for Rx H/W checksum feature */
2253 sbmac_set_iphdr_offset(sc);
2255 sc->mii_bus = mdiobus_alloc();
2256 if (sc->mii_bus == NULL) {
2257 err = -ENOMEM;
2258 goto uninit_ctx;
2261 sc->mii_bus->name = sbmac_mdio_string;
2262 snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2263 pldev->name, idx);
2264 sc->mii_bus->priv = sc;
2265 sc->mii_bus->read = sbmac_mii_read;
2266 sc->mii_bus->write = sbmac_mii_write;
2267 sc->mii_bus->irq = sc->phy_irq;
2268 for (i = 0; i < PHY_MAX_ADDR; ++i)
2269 sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2271 sc->mii_bus->parent = &pldev->dev;
2273 * Probe PHY address
2275 err = mdiobus_register(sc->mii_bus);
2276 if (err) {
2277 printk(KERN_ERR "%s: unable to register MDIO bus\n",
2278 dev->name);
2279 goto free_mdio;
2281 dev_set_drvdata(&pldev->dev, sc->mii_bus);
2283 err = register_netdev(dev);
2284 if (err) {
2285 printk(KERN_ERR "%s.%d: unable to register netdev\n",
2286 sbmac_string, idx);
2287 goto unreg_mdio;
2290 pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2292 if (sc->rx_hw_checksum == ENABLE)
2293 pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2296 * Display Ethernet address (this is called during the config
2297 * process so we need to finish off the config message that
2298 * was being displayed)
2300 pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2301 dev->name, base, eaddr);
2303 return 0;
2304 unreg_mdio:
2305 mdiobus_unregister(sc->mii_bus);
2306 dev_set_drvdata(&pldev->dev, NULL);
2307 free_mdio:
2308 mdiobus_free(sc->mii_bus);
2309 uninit_ctx:
2310 sbmac_uninitctx(sc);
2311 return err;
2315 static int sbmac_open(struct net_device *dev)
2317 struct sbmac_softc *sc = netdev_priv(dev);
2318 int err;
2320 if (debug > 1)
2321 pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2324 * map/route interrupt (clear status first, in case something
2325 * weird is pending; we haven't initialized the mac registers
2326 * yet)
2329 __raw_readq(sc->sbm_isr);
2330 err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2331 if (err) {
2332 printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2333 dev->irq);
2334 goto out_err;
2337 sc->sbm_speed = sbmac_speed_none;
2338 sc->sbm_duplex = sbmac_duplex_none;
2339 sc->sbm_fc = sbmac_fc_none;
2340 sc->sbm_pause = -1;
2341 sc->sbm_link = 0;
2344 * Attach to the PHY
2346 err = sbmac_mii_probe(dev);
2347 if (err)
2348 goto out_unregister;
2351 * Turn on the channel
2354 sbmac_set_channel_state(sc,sbmac_state_on);
2356 netif_start_queue(dev);
2358 sbmac_set_rx_mode(dev);
2360 phy_start(sc->phy_dev);
2362 napi_enable(&sc->napi);
2364 return 0;
2366 out_unregister:
2367 free_irq(dev->irq, dev);
2368 out_err:
2369 return err;
2372 static int sbmac_mii_probe(struct net_device *dev)
2374 struct sbmac_softc *sc = netdev_priv(dev);
2375 struct phy_device *phy_dev;
2376 int i;
2378 for (i = 0; i < PHY_MAX_ADDR; i++) {
2379 phy_dev = sc->mii_bus->phy_map[i];
2380 if (phy_dev)
2381 break;
2383 if (!phy_dev) {
2384 printk(KERN_ERR "%s: no PHY found\n", dev->name);
2385 return -ENXIO;
2388 phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll, 0,
2389 PHY_INTERFACE_MODE_GMII);
2390 if (IS_ERR(phy_dev)) {
2391 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2392 return PTR_ERR(phy_dev);
2395 /* Remove any features not supported by the controller */
2396 phy_dev->supported &= SUPPORTED_10baseT_Half |
2397 SUPPORTED_10baseT_Full |
2398 SUPPORTED_100baseT_Half |
2399 SUPPORTED_100baseT_Full |
2400 SUPPORTED_1000baseT_Half |
2401 SUPPORTED_1000baseT_Full |
2402 SUPPORTED_Autoneg |
2403 SUPPORTED_MII |
2404 SUPPORTED_Pause |
2405 SUPPORTED_Asym_Pause;
2406 phy_dev->advertising = phy_dev->supported;
2408 pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2409 dev->name, phy_dev->drv->name,
2410 dev_name(&phy_dev->dev), phy_dev->irq);
2412 sc->phy_dev = phy_dev;
2414 return 0;
2418 static void sbmac_mii_poll(struct net_device *dev)
2420 struct sbmac_softc *sc = netdev_priv(dev);
2421 struct phy_device *phy_dev = sc->phy_dev;
2422 unsigned long flags;
2423 enum sbmac_fc fc;
2424 int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2426 link_chg = (sc->sbm_link != phy_dev->link);
2427 speed_chg = (sc->sbm_speed != phy_dev->speed);
2428 duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2429 pause_chg = (sc->sbm_pause != phy_dev->pause);
2431 if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2432 return; /* Hmmm... */
2434 if (!phy_dev->link) {
2435 if (link_chg) {
2436 sc->sbm_link = phy_dev->link;
2437 sc->sbm_speed = sbmac_speed_none;
2438 sc->sbm_duplex = sbmac_duplex_none;
2439 sc->sbm_fc = sbmac_fc_disabled;
2440 sc->sbm_pause = -1;
2441 pr_info("%s: link unavailable\n", dev->name);
2443 return;
2446 if (phy_dev->duplex == DUPLEX_FULL) {
2447 if (phy_dev->pause)
2448 fc = sbmac_fc_frame;
2449 else
2450 fc = sbmac_fc_disabled;
2451 } else
2452 fc = sbmac_fc_collision;
2453 fc_chg = (sc->sbm_fc != fc);
2455 pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2456 phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2458 spin_lock_irqsave(&sc->sbm_lock, flags);
2460 sc->sbm_speed = phy_dev->speed;
2461 sc->sbm_duplex = phy_dev->duplex;
2462 sc->sbm_fc = fc;
2463 sc->sbm_pause = phy_dev->pause;
2464 sc->sbm_link = phy_dev->link;
2466 if ((speed_chg || duplex_chg || fc_chg) &&
2467 sc->sbm_state != sbmac_state_off) {
2469 * something changed, restart the channel
2471 if (debug > 1)
2472 pr_debug("%s: restarting channel "
2473 "because PHY state changed\n", dev->name);
2474 sbmac_channel_stop(sc);
2475 sbmac_channel_start(sc);
2478 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2482 static void sbmac_tx_timeout (struct net_device *dev)
2484 struct sbmac_softc *sc = netdev_priv(dev);
2485 unsigned long flags;
2487 spin_lock_irqsave(&sc->sbm_lock, flags);
2490 dev->trans_start = jiffies; /* prevent tx timeout */
2491 dev->stats.tx_errors++;
2493 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2495 printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2501 static void sbmac_set_rx_mode(struct net_device *dev)
2503 unsigned long flags;
2504 struct sbmac_softc *sc = netdev_priv(dev);
2506 spin_lock_irqsave(&sc->sbm_lock, flags);
2507 if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2509 * Promiscuous changed.
2512 if (dev->flags & IFF_PROMISC) {
2513 sbmac_promiscuous_mode(sc,1);
2515 else {
2516 sbmac_promiscuous_mode(sc,0);
2519 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2522 * Program the multicasts. Do this every time.
2525 sbmac_setmulti(sc);
2529 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2531 struct sbmac_softc *sc = netdev_priv(dev);
2533 if (!netif_running(dev) || !sc->phy_dev)
2534 return -EINVAL;
2536 return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2539 static int sbmac_close(struct net_device *dev)
2541 struct sbmac_softc *sc = netdev_priv(dev);
2543 napi_disable(&sc->napi);
2545 phy_stop(sc->phy_dev);
2547 sbmac_set_channel_state(sc, sbmac_state_off);
2549 netif_stop_queue(dev);
2551 if (debug > 1)
2552 pr_debug("%s: Shutting down ethercard\n", dev->name);
2554 phy_disconnect(sc->phy_dev);
2555 sc->phy_dev = NULL;
2556 free_irq(dev->irq, dev);
2558 sbdma_emptyring(&(sc->sbm_txdma));
2559 sbdma_emptyring(&(sc->sbm_rxdma));
2561 return 0;
2564 static int sbmac_poll(struct napi_struct *napi, int budget)
2566 struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2567 int work_done;
2569 work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2570 sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2572 if (work_done < budget) {
2573 napi_complete(napi);
2575 #ifdef CONFIG_SBMAC_COALESCE
2576 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2577 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2578 sc->sbm_imr);
2579 #else
2580 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2581 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2582 #endif
2585 return work_done;
2589 static int __devinit sbmac_probe(struct platform_device *pldev)
2591 struct net_device *dev;
2592 struct sbmac_softc *sc;
2593 void __iomem *sbm_base;
2594 struct resource *res;
2595 u64 sbmac_orig_hwaddr;
2596 int err;
2598 res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2599 BUG_ON(!res);
2600 sbm_base = ioremap_nocache(res->start, resource_size(res));
2601 if (!sbm_base) {
2602 printk(KERN_ERR "%s: unable to map device registers\n",
2603 dev_name(&pldev->dev));
2604 err = -ENOMEM;
2605 goto out_out;
2609 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2610 * value for us by the firmware if we're going to use this MAC.
2611 * If we find a zero, skip this MAC.
2613 sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2614 pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2615 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2616 if (sbmac_orig_hwaddr == 0) {
2617 err = 0;
2618 goto out_unmap;
2622 * Okay, cool. Initialize this MAC.
2624 dev = alloc_etherdev(sizeof(struct sbmac_softc));
2625 if (!dev) {
2626 printk(KERN_ERR "%s: unable to allocate etherdev\n",
2627 dev_name(&pldev->dev));
2628 err = -ENOMEM;
2629 goto out_unmap;
2632 dev_set_drvdata(&pldev->dev, dev);
2633 SET_NETDEV_DEV(dev, &pldev->dev);
2635 sc = netdev_priv(dev);
2636 sc->sbm_base = sbm_base;
2638 err = sbmac_init(pldev, res->start);
2639 if (err)
2640 goto out_kfree;
2642 return 0;
2644 out_kfree:
2645 free_netdev(dev);
2646 __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2648 out_unmap:
2649 iounmap(sbm_base);
2651 out_out:
2652 return err;
2655 static int __exit sbmac_remove(struct platform_device *pldev)
2657 struct net_device *dev = dev_get_drvdata(&pldev->dev);
2658 struct sbmac_softc *sc = netdev_priv(dev);
2660 unregister_netdev(dev);
2661 sbmac_uninitctx(sc);
2662 mdiobus_unregister(sc->mii_bus);
2663 mdiobus_free(sc->mii_bus);
2664 iounmap(sc->sbm_base);
2665 free_netdev(dev);
2667 return 0;
2670 static struct platform_driver sbmac_driver = {
2671 .probe = sbmac_probe,
2672 .remove = __exit_p(sbmac_remove),
2673 .driver = {
2674 .name = sbmac_string,
2675 .owner = THIS_MODULE,
2679 module_platform_driver(sbmac_driver);