spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / net / ethernet / chelsio / cxgb4vf / sge.c
blob0bd585bba39dc9e6026c38d25f18b30ff9cb3ce8
1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
36 #include <linux/skbuff.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/ip.h>
41 #include <net/ipv6.h>
42 #include <net/tcp.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/prefetch.h>
46 #include "t4vf_common.h"
47 #include "t4vf_defs.h"
49 #include "../cxgb4/t4_regs.h"
50 #include "../cxgb4/t4fw_api.h"
51 #include "../cxgb4/t4_msg.h"
54 * Decoded Adapter Parameters.
56 static u32 FL_PG_ORDER; /* large page allocation size */
57 static u32 STAT_LEN; /* length of status page at ring end */
58 static u32 PKTSHIFT; /* padding between CPL and packet data */
59 static u32 FL_ALIGN; /* response queue message alignment */
62 * Constants ...
64 enum {
66 * Egress Queue sizes, producer and consumer indices are all in units
67 * of Egress Context Units bytes. Note that as far as the hardware is
68 * concerned, the free list is an Egress Queue (the host produces free
69 * buffers which the hardware consumes) and free list entries are
70 * 64-bit PCI DMA addresses.
72 EQ_UNIT = SGE_EQ_IDXSIZE,
73 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
74 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
77 * Max number of TX descriptors we clean up at a time. Should be
78 * modest as freeing skbs isn't cheap and it happens while holding
79 * locks. We just need to free packets faster than they arrive, we
80 * eventually catch up and keep the amortized cost reasonable.
82 MAX_TX_RECLAIM = 16,
85 * Max number of Rx buffers we replenish at a time. Again keep this
86 * modest, allocating buffers isn't cheap either.
88 MAX_RX_REFILL = 16,
91 * Period of the Rx queue check timer. This timer is infrequent as it
92 * has something to do only when the system experiences severe memory
93 * shortage.
95 RX_QCHECK_PERIOD = (HZ / 2),
98 * Period of the TX queue check timer and the maximum number of TX
99 * descriptors to be reclaimed by the TX timer.
101 TX_QCHECK_PERIOD = (HZ / 2),
102 MAX_TIMER_TX_RECLAIM = 100,
105 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic
106 * timer will attempt to refill it.
108 FL_STARVE_THRES = 4,
111 * Suspend an Ethernet TX queue with fewer available descriptors than
112 * this. We always want to have room for a maximum sized packet:
113 * inline immediate data + MAX_SKB_FRAGS. This is the same as
114 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
115 * (see that function and its helpers for a description of the
116 * calculation).
118 ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
119 ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
120 ((ETHTXQ_MAX_FRAGS-1) & 1) +
122 ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
123 sizeof(struct cpl_tx_pkt_lso_core) +
124 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
125 ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
127 ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
130 * Max TX descriptor space we allow for an Ethernet packet to be
131 * inlined into a WR. This is limited by the maximum value which
132 * we can specify for immediate data in the firmware Ethernet TX
133 * Work Request.
135 MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_MASK,
138 * Max size of a WR sent through a control TX queue.
140 MAX_CTRL_WR_LEN = 256,
143 * Maximum amount of data which we'll ever need to inline into a
144 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
146 MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
147 ? MAX_IMM_TX_PKT_LEN
148 : MAX_CTRL_WR_LEN),
151 * For incoming packets less than RX_COPY_THRES, we copy the data into
152 * an skb rather than referencing the data. We allocate enough
153 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
154 * of the data (header).
156 RX_COPY_THRES = 256,
157 RX_PULL_LEN = 128,
160 * Main body length for sk_buffs used for RX Ethernet packets with
161 * fragments. Should be >= RX_PULL_LEN but possibly bigger to give
162 * pskb_may_pull() some room.
164 RX_SKB_LEN = 512,
168 * Software state per TX descriptor.
170 struct tx_sw_desc {
171 struct sk_buff *skb; /* socket buffer of TX data source */
172 struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */
176 * Software state per RX Free List descriptor. We keep track of the allocated
177 * FL page, its size, and its PCI DMA address (if the page is mapped). The FL
178 * page size and its PCI DMA mapped state are stored in the low bits of the
179 * PCI DMA address as per below.
181 struct rx_sw_desc {
182 struct page *page; /* Free List page buffer */
183 dma_addr_t dma_addr; /* PCI DMA address (if mapped) */
184 /* and flags (see below) */
188 * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the
189 * SGE also uses the low 4 bits to determine the size of the buffer. It uses
190 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
191 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
192 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
193 * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is
194 * maintained in an inverse sense so the hardware never sees that bit high.
196 enum {
197 RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */
198 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */
202 * get_buf_addr - return DMA buffer address of software descriptor
203 * @sdesc: pointer to the software buffer descriptor
205 * Return the DMA buffer address of a software descriptor (stripping out
206 * our low-order flag bits).
208 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
210 return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
214 * is_buf_mapped - is buffer mapped for DMA?
215 * @sdesc: pointer to the software buffer descriptor
217 * Determine whether the buffer associated with a software descriptor in
218 * mapped for DMA or not.
220 static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
222 return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
226 * need_skb_unmap - does the platform need unmapping of sk_buffs?
228 * Returns true if the platform needs sk_buff unmapping. The compiler
229 * optimizes away unnecessary code if this returns true.
231 static inline int need_skb_unmap(void)
233 #ifdef CONFIG_NEED_DMA_MAP_STATE
234 return 1;
235 #else
236 return 0;
237 #endif
241 * txq_avail - return the number of available slots in a TX queue
242 * @tq: the TX queue
244 * Returns the number of available descriptors in a TX queue.
246 static inline unsigned int txq_avail(const struct sge_txq *tq)
248 return tq->size - 1 - tq->in_use;
252 * fl_cap - return the capacity of a Free List
253 * @fl: the Free List
255 * Returns the capacity of a Free List. The capacity is less than the
256 * size because an Egress Queue Index Unit worth of descriptors needs to
257 * be left unpopulated, otherwise the Producer and Consumer indices PIDX
258 * and CIDX will match and the hardware will think the FL is empty.
260 static inline unsigned int fl_cap(const struct sge_fl *fl)
262 return fl->size - FL_PER_EQ_UNIT;
266 * fl_starving - return whether a Free List is starving.
267 * @fl: the Free List
269 * Tests specified Free List to see whether the number of buffers
270 * available to the hardware has falled below our "starvation"
271 * threshold.
273 static inline bool fl_starving(const struct sge_fl *fl)
275 return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
279 * map_skb - map an skb for DMA to the device
280 * @dev: the egress net device
281 * @skb: the packet to map
282 * @addr: a pointer to the base of the DMA mapping array
284 * Map an skb for DMA to the device and return an array of DMA addresses.
286 static int map_skb(struct device *dev, const struct sk_buff *skb,
287 dma_addr_t *addr)
289 const skb_frag_t *fp, *end;
290 const struct skb_shared_info *si;
292 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
293 if (dma_mapping_error(dev, *addr))
294 goto out_err;
296 si = skb_shinfo(skb);
297 end = &si->frags[si->nr_frags];
298 for (fp = si->frags; fp < end; fp++) {
299 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
300 DMA_TO_DEVICE);
301 if (dma_mapping_error(dev, *addr))
302 goto unwind;
304 return 0;
306 unwind:
307 while (fp-- > si->frags)
308 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
309 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
311 out_err:
312 return -ENOMEM;
315 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
316 const struct ulptx_sgl *sgl, const struct sge_txq *tq)
318 const struct ulptx_sge_pair *p;
319 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
321 if (likely(skb_headlen(skb)))
322 dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
323 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
324 else {
325 dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
326 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
327 nfrags--;
331 * the complexity below is because of the possibility of a wrap-around
332 * in the middle of an SGL
334 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
335 if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
336 unmap:
337 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
338 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
339 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
340 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
341 p++;
342 } else if ((u8 *)p == (u8 *)tq->stat) {
343 p = (const struct ulptx_sge_pair *)tq->desc;
344 goto unmap;
345 } else if ((u8 *)p + 8 == (u8 *)tq->stat) {
346 const __be64 *addr = (const __be64 *)tq->desc;
348 dma_unmap_page(dev, be64_to_cpu(addr[0]),
349 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
350 dma_unmap_page(dev, be64_to_cpu(addr[1]),
351 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
352 p = (const struct ulptx_sge_pair *)&addr[2];
353 } else {
354 const __be64 *addr = (const __be64 *)tq->desc;
356 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
357 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
358 dma_unmap_page(dev, be64_to_cpu(addr[0]),
359 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
360 p = (const struct ulptx_sge_pair *)&addr[1];
363 if (nfrags) {
364 __be64 addr;
366 if ((u8 *)p == (u8 *)tq->stat)
367 p = (const struct ulptx_sge_pair *)tq->desc;
368 addr = ((u8 *)p + 16 <= (u8 *)tq->stat
369 ? p->addr[0]
370 : *(const __be64 *)tq->desc);
371 dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
372 DMA_TO_DEVICE);
377 * free_tx_desc - reclaims TX descriptors and their buffers
378 * @adapter: the adapter
379 * @tq: the TX queue to reclaim descriptors from
380 * @n: the number of descriptors to reclaim
381 * @unmap: whether the buffers should be unmapped for DMA
383 * Reclaims TX descriptors from an SGE TX queue and frees the associated
384 * TX buffers. Called with the TX queue lock held.
386 static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
387 unsigned int n, bool unmap)
389 struct tx_sw_desc *sdesc;
390 unsigned int cidx = tq->cidx;
391 struct device *dev = adapter->pdev_dev;
393 const int need_unmap = need_skb_unmap() && unmap;
395 sdesc = &tq->sdesc[cidx];
396 while (n--) {
398 * If we kept a reference to the original TX skb, we need to
399 * unmap it from PCI DMA space (if required) and free it.
401 if (sdesc->skb) {
402 if (need_unmap)
403 unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
404 kfree_skb(sdesc->skb);
405 sdesc->skb = NULL;
408 sdesc++;
409 if (++cidx == tq->size) {
410 cidx = 0;
411 sdesc = tq->sdesc;
414 tq->cidx = cidx;
418 * Return the number of reclaimable descriptors in a TX queue.
420 static inline int reclaimable(const struct sge_txq *tq)
422 int hw_cidx = be16_to_cpu(tq->stat->cidx);
423 int reclaimable = hw_cidx - tq->cidx;
424 if (reclaimable < 0)
425 reclaimable += tq->size;
426 return reclaimable;
430 * reclaim_completed_tx - reclaims completed TX descriptors
431 * @adapter: the adapter
432 * @tq: the TX queue to reclaim completed descriptors from
433 * @unmap: whether the buffers should be unmapped for DMA
435 * Reclaims TX descriptors that the SGE has indicated it has processed,
436 * and frees the associated buffers if possible. Called with the TX
437 * queue locked.
439 static inline void reclaim_completed_tx(struct adapter *adapter,
440 struct sge_txq *tq,
441 bool unmap)
443 int avail = reclaimable(tq);
445 if (avail) {
447 * Limit the amount of clean up work we do at a time to keep
448 * the TX lock hold time O(1).
450 if (avail > MAX_TX_RECLAIM)
451 avail = MAX_TX_RECLAIM;
453 free_tx_desc(adapter, tq, avail, unmap);
454 tq->in_use -= avail;
459 * get_buf_size - return the size of an RX Free List buffer.
460 * @sdesc: pointer to the software buffer descriptor
462 static inline int get_buf_size(const struct rx_sw_desc *sdesc)
464 return FL_PG_ORDER > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
465 ? (PAGE_SIZE << FL_PG_ORDER)
466 : PAGE_SIZE;
470 * free_rx_bufs - free RX buffers on an SGE Free List
471 * @adapter: the adapter
472 * @fl: the SGE Free List to free buffers from
473 * @n: how many buffers to free
475 * Release the next @n buffers on an SGE Free List RX queue. The
476 * buffers must be made inaccessible to hardware before calling this
477 * function.
479 static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
481 while (n--) {
482 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
484 if (is_buf_mapped(sdesc))
485 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
486 get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
487 put_page(sdesc->page);
488 sdesc->page = NULL;
489 if (++fl->cidx == fl->size)
490 fl->cidx = 0;
491 fl->avail--;
496 * unmap_rx_buf - unmap the current RX buffer on an SGE Free List
497 * @adapter: the adapter
498 * @fl: the SGE Free List
500 * Unmap the current buffer on an SGE Free List RX queue. The
501 * buffer must be made inaccessible to HW before calling this function.
503 * This is similar to @free_rx_bufs above but does not free the buffer.
504 * Do note that the FL still loses any further access to the buffer.
505 * This is used predominantly to "transfer ownership" of an FL buffer
506 * to another entity (typically an skb's fragment list).
508 static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
510 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
512 if (is_buf_mapped(sdesc))
513 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
514 get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
515 sdesc->page = NULL;
516 if (++fl->cidx == fl->size)
517 fl->cidx = 0;
518 fl->avail--;
522 * ring_fl_db - righ doorbell on free list
523 * @adapter: the adapter
524 * @fl: the Free List whose doorbell should be rung ...
526 * Tell the Scatter Gather Engine that there are new free list entries
527 * available.
529 static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
532 * The SGE keeps track of its Producer and Consumer Indices in terms
533 * of Egress Queue Units so we can only tell it about integral numbers
534 * of multiples of Free List Entries per Egress Queue Units ...
536 if (fl->pend_cred >= FL_PER_EQ_UNIT) {
537 wmb();
538 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
539 DBPRIO |
540 QID(fl->cntxt_id) |
541 PIDX(fl->pend_cred / FL_PER_EQ_UNIT));
542 fl->pend_cred %= FL_PER_EQ_UNIT;
547 * set_rx_sw_desc - initialize software RX buffer descriptor
548 * @sdesc: pointer to the softwore RX buffer descriptor
549 * @page: pointer to the page data structure backing the RX buffer
550 * @dma_addr: PCI DMA address (possibly with low-bit flags)
552 static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
553 dma_addr_t dma_addr)
555 sdesc->page = page;
556 sdesc->dma_addr = dma_addr;
560 * Support for poisoning RX buffers ...
562 #define POISON_BUF_VAL -1
564 static inline void poison_buf(struct page *page, size_t sz)
566 #if POISON_BUF_VAL >= 0
567 memset(page_address(page), POISON_BUF_VAL, sz);
568 #endif
572 * refill_fl - refill an SGE RX buffer ring
573 * @adapter: the adapter
574 * @fl: the Free List ring to refill
575 * @n: the number of new buffers to allocate
576 * @gfp: the gfp flags for the allocations
578 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
579 * allocated with the supplied gfp flags. The caller must assure that
580 * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
581 * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number
582 * of buffers allocated. If afterwards the queue is found critically low,
583 * mark it as starving in the bitmap of starving FLs.
585 static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
586 int n, gfp_t gfp)
588 struct page *page;
589 dma_addr_t dma_addr;
590 unsigned int cred = fl->avail;
591 __be64 *d = &fl->desc[fl->pidx];
592 struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
595 * Sanity: ensure that the result of adding n Free List buffers
596 * won't result in wrapping the SGE's Producer Index around to
597 * it's Consumer Index thereby indicating an empty Free List ...
599 BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
602 * If we support large pages, prefer large buffers and fail over to
603 * small pages if we can't allocate large pages to satisfy the refill.
604 * If we don't support large pages, drop directly into the small page
605 * allocation code.
607 if (FL_PG_ORDER == 0)
608 goto alloc_small_pages;
610 while (n) {
611 page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
612 FL_PG_ORDER);
613 if (unlikely(!page)) {
615 * We've failed inour attempt to allocate a "large
616 * page". Fail over to the "small page" allocation
617 * below.
619 fl->large_alloc_failed++;
620 break;
622 poison_buf(page, PAGE_SIZE << FL_PG_ORDER);
624 dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
625 PAGE_SIZE << FL_PG_ORDER,
626 PCI_DMA_FROMDEVICE);
627 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
629 * We've run out of DMA mapping space. Free up the
630 * buffer and return with what we've managed to put
631 * into the free list. We don't want to fail over to
632 * the small page allocation below in this case
633 * because DMA mapping resources are typically
634 * critical resources once they become scarse.
636 __free_pages(page, FL_PG_ORDER);
637 goto out;
639 dma_addr |= RX_LARGE_BUF;
640 *d++ = cpu_to_be64(dma_addr);
642 set_rx_sw_desc(sdesc, page, dma_addr);
643 sdesc++;
645 fl->avail++;
646 if (++fl->pidx == fl->size) {
647 fl->pidx = 0;
648 sdesc = fl->sdesc;
649 d = fl->desc;
651 n--;
654 alloc_small_pages:
655 while (n--) {
656 page = alloc_page(gfp | __GFP_NOWARN | __GFP_COLD);
657 if (unlikely(!page)) {
658 fl->alloc_failed++;
659 break;
661 poison_buf(page, PAGE_SIZE);
663 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
664 PCI_DMA_FROMDEVICE);
665 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
666 put_page(page);
667 break;
669 *d++ = cpu_to_be64(dma_addr);
671 set_rx_sw_desc(sdesc, page, dma_addr);
672 sdesc++;
674 fl->avail++;
675 if (++fl->pidx == fl->size) {
676 fl->pidx = 0;
677 sdesc = fl->sdesc;
678 d = fl->desc;
682 out:
684 * Update our accounting state to incorporate the new Free List
685 * buffers, tell the hardware about them and return the number of
686 * buffers which we were able to allocate.
688 cred = fl->avail - cred;
689 fl->pend_cred += cred;
690 ring_fl_db(adapter, fl);
692 if (unlikely(fl_starving(fl))) {
693 smp_wmb();
694 set_bit(fl->cntxt_id, adapter->sge.starving_fl);
697 return cred;
701 * Refill a Free List to its capacity or the Maximum Refill Increment,
702 * whichever is smaller ...
704 static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
706 refill_fl(adapter, fl,
707 min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
708 GFP_ATOMIC);
712 * alloc_ring - allocate resources for an SGE descriptor ring
713 * @dev: the PCI device's core device
714 * @nelem: the number of descriptors
715 * @hwsize: the size of each hardware descriptor
716 * @swsize: the size of each software descriptor
717 * @busaddrp: the physical PCI bus address of the allocated ring
718 * @swringp: return address pointer for software ring
719 * @stat_size: extra space in hardware ring for status information
721 * Allocates resources for an SGE descriptor ring, such as TX queues,
722 * free buffer lists, response queues, etc. Each SGE ring requires
723 * space for its hardware descriptors plus, optionally, space for software
724 * state associated with each hardware entry (the metadata). The function
725 * returns three values: the virtual address for the hardware ring (the
726 * return value of the function), the PCI bus address of the hardware
727 * ring (in *busaddrp), and the address of the software ring (in swringp).
728 * Both the hardware and software rings are returned zeroed out.
730 static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
731 size_t swsize, dma_addr_t *busaddrp, void *swringp,
732 size_t stat_size)
735 * Allocate the hardware ring and PCI DMA bus address space for said.
737 size_t hwlen = nelem * hwsize + stat_size;
738 void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
740 if (!hwring)
741 return NULL;
744 * If the caller wants a software ring, allocate it and return a
745 * pointer to it in *swringp.
747 BUG_ON((swsize != 0) != (swringp != NULL));
748 if (swsize) {
749 void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
751 if (!swring) {
752 dma_free_coherent(dev, hwlen, hwring, *busaddrp);
753 return NULL;
755 *(void **)swringp = swring;
759 * Zero out the hardware ring and return its address as our function
760 * value.
762 memset(hwring, 0, hwlen);
763 return hwring;
767 * sgl_len - calculates the size of an SGL of the given capacity
768 * @n: the number of SGL entries
770 * Calculates the number of flits (8-byte units) needed for a Direct
771 * Scatter/Gather List that can hold the given number of entries.
773 static inline unsigned int sgl_len(unsigned int n)
776 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
777 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
778 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
779 * repeated sequences of { Length[i], Length[i+1], Address[i],
780 * Address[i+1] } (this ensures that all addresses are on 64-bit
781 * boundaries). If N is even, then Length[N+1] should be set to 0 and
782 * Address[N+1] is omitted.
784 * The following calculation incorporates all of the above. It's
785 * somewhat hard to follow but, briefly: the "+2" accounts for the
786 * first two flits which include the DSGL header, Length0 and
787 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
788 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
789 * finally the "+((n-1)&1)" adds the one remaining flit needed if
790 * (n-1) is odd ...
792 n--;
793 return (3 * n) / 2 + (n & 1) + 2;
797 * flits_to_desc - returns the num of TX descriptors for the given flits
798 * @flits: the number of flits
800 * Returns the number of TX descriptors needed for the supplied number
801 * of flits.
803 static inline unsigned int flits_to_desc(unsigned int flits)
805 BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
806 return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
810 * is_eth_imm - can an Ethernet packet be sent as immediate data?
811 * @skb: the packet
813 * Returns whether an Ethernet packet is small enough to fit completely as
814 * immediate data.
816 static inline int is_eth_imm(const struct sk_buff *skb)
819 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
820 * which does not accommodate immediate data. We could dike out all
821 * of the support code for immediate data but that would tie our hands
822 * too much if we ever want to enhace the firmware. It would also
823 * create more differences between the PF and VF Drivers.
825 return false;
829 * calc_tx_flits - calculate the number of flits for a packet TX WR
830 * @skb: the packet
832 * Returns the number of flits needed for a TX Work Request for the
833 * given Ethernet packet, including the needed WR and CPL headers.
835 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
837 unsigned int flits;
840 * If the skb is small enough, we can pump it out as a work request
841 * with only immediate data. In that case we just have to have the
842 * TX Packet header plus the skb data in the Work Request.
844 if (is_eth_imm(skb))
845 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
846 sizeof(__be64));
849 * Otherwise, we're going to have to construct a Scatter gather list
850 * of the skb body and fragments. We also include the flits necessary
851 * for the TX Packet Work Request and CPL. We always have a firmware
852 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
853 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
854 * message or, if we're doing a Large Send Offload, an LSO CPL message
855 * with an embeded TX Packet Write CPL message.
857 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
858 if (skb_shinfo(skb)->gso_size)
859 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
860 sizeof(struct cpl_tx_pkt_lso_core) +
861 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
862 else
863 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
864 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
865 return flits;
869 * write_sgl - populate a Scatter/Gather List for a packet
870 * @skb: the packet
871 * @tq: the TX queue we are writing into
872 * @sgl: starting location for writing the SGL
873 * @end: points right after the end of the SGL
874 * @start: start offset into skb main-body data to include in the SGL
875 * @addr: the list of DMA bus addresses for the SGL elements
877 * Generates a Scatter/Gather List for the buffers that make up a packet.
878 * The caller must provide adequate space for the SGL that will be written.
879 * The SGL includes all of the packet's page fragments and the data in its
880 * main body except for the first @start bytes. @pos must be 16-byte
881 * aligned and within a TX descriptor with available space. @end points
882 * write after the end of the SGL but does not account for any potential
883 * wrap around, i.e., @end > @tq->stat.
885 static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
886 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
887 const dma_addr_t *addr)
889 unsigned int i, len;
890 struct ulptx_sge_pair *to;
891 const struct skb_shared_info *si = skb_shinfo(skb);
892 unsigned int nfrags = si->nr_frags;
893 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
895 len = skb_headlen(skb) - start;
896 if (likely(len)) {
897 sgl->len0 = htonl(len);
898 sgl->addr0 = cpu_to_be64(addr[0] + start);
899 nfrags++;
900 } else {
901 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
902 sgl->addr0 = cpu_to_be64(addr[1]);
905 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) |
906 ULPTX_NSGE(nfrags));
907 if (likely(--nfrags == 0))
908 return;
910 * Most of the complexity below deals with the possibility we hit the
911 * end of the queue in the middle of writing the SGL. For this case
912 * only we create the SGL in a temporary buffer and then copy it.
914 to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
916 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
917 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
918 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
919 to->addr[0] = cpu_to_be64(addr[i]);
920 to->addr[1] = cpu_to_be64(addr[++i]);
922 if (nfrags) {
923 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
924 to->len[1] = cpu_to_be32(0);
925 to->addr[0] = cpu_to_be64(addr[i + 1]);
927 if (unlikely((u8 *)end > (u8 *)tq->stat)) {
928 unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
930 if (likely(part0))
931 memcpy(sgl->sge, buf, part0);
932 part1 = (u8 *)end - (u8 *)tq->stat;
933 memcpy(tq->desc, (u8 *)buf + part0, part1);
934 end = (void *)tq->desc + part1;
936 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
937 *(u64 *)end = 0;
941 * check_ring_tx_db - check and potentially ring a TX queue's doorbell
942 * @adapter: the adapter
943 * @tq: the TX queue
944 * @n: number of new descriptors to give to HW
946 * Ring the doorbel for a TX queue.
948 static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
949 int n)
952 * Warn if we write doorbells with the wrong priority and write
953 * descriptors before telling HW.
955 WARN_ON((QID(tq->cntxt_id) | PIDX(n)) & DBPRIO);
956 wmb();
957 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
958 QID(tq->cntxt_id) | PIDX(n));
962 * inline_tx_skb - inline a packet's data into TX descriptors
963 * @skb: the packet
964 * @tq: the TX queue where the packet will be inlined
965 * @pos: starting position in the TX queue to inline the packet
967 * Inline a packet's contents directly into TX descriptors, starting at
968 * the given position within the TX DMA ring.
969 * Most of the complexity of this operation is dealing with wrap arounds
970 * in the middle of the packet we want to inline.
972 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
973 void *pos)
975 u64 *p;
976 int left = (void *)tq->stat - pos;
978 if (likely(skb->len <= left)) {
979 if (likely(!skb->data_len))
980 skb_copy_from_linear_data(skb, pos, skb->len);
981 else
982 skb_copy_bits(skb, 0, pos, skb->len);
983 pos += skb->len;
984 } else {
985 skb_copy_bits(skb, 0, pos, left);
986 skb_copy_bits(skb, left, tq->desc, skb->len - left);
987 pos = (void *)tq->desc + (skb->len - left);
990 /* 0-pad to multiple of 16 */
991 p = PTR_ALIGN(pos, 8);
992 if ((uintptr_t)p & 8)
993 *p = 0;
997 * Figure out what HW csum a packet wants and return the appropriate control
998 * bits.
1000 static u64 hwcsum(const struct sk_buff *skb)
1002 int csum_type;
1003 const struct iphdr *iph = ip_hdr(skb);
1005 if (iph->version == 4) {
1006 if (iph->protocol == IPPROTO_TCP)
1007 csum_type = TX_CSUM_TCPIP;
1008 else if (iph->protocol == IPPROTO_UDP)
1009 csum_type = TX_CSUM_UDPIP;
1010 else {
1011 nocsum:
1013 * unknown protocol, disable HW csum
1014 * and hope a bad packet is detected
1016 return TXPKT_L4CSUM_DIS;
1018 } else {
1020 * this doesn't work with extension headers
1022 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1024 if (ip6h->nexthdr == IPPROTO_TCP)
1025 csum_type = TX_CSUM_TCPIP6;
1026 else if (ip6h->nexthdr == IPPROTO_UDP)
1027 csum_type = TX_CSUM_UDPIP6;
1028 else
1029 goto nocsum;
1032 if (likely(csum_type >= TX_CSUM_TCPIP))
1033 return TXPKT_CSUM_TYPE(csum_type) |
1034 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1035 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1036 else {
1037 int start = skb_transport_offset(skb);
1039 return TXPKT_CSUM_TYPE(csum_type) |
1040 TXPKT_CSUM_START(start) |
1041 TXPKT_CSUM_LOC(start + skb->csum_offset);
1046 * Stop an Ethernet TX queue and record that state change.
1048 static void txq_stop(struct sge_eth_txq *txq)
1050 netif_tx_stop_queue(txq->txq);
1051 txq->q.stops++;
1055 * Advance our software state for a TX queue by adding n in use descriptors.
1057 static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1059 tq->in_use += n;
1060 tq->pidx += n;
1061 if (tq->pidx >= tq->size)
1062 tq->pidx -= tq->size;
1066 * t4vf_eth_xmit - add a packet to an Ethernet TX queue
1067 * @skb: the packet
1068 * @dev: the egress net device
1070 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1072 int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1074 u32 wr_mid;
1075 u64 cntrl, *end;
1076 int qidx, credits;
1077 unsigned int flits, ndesc;
1078 struct adapter *adapter;
1079 struct sge_eth_txq *txq;
1080 const struct port_info *pi;
1081 struct fw_eth_tx_pkt_vm_wr *wr;
1082 struct cpl_tx_pkt_core *cpl;
1083 const struct skb_shared_info *ssi;
1084 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1085 const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1086 sizeof(wr->ethmacsrc) +
1087 sizeof(wr->ethtype) +
1088 sizeof(wr->vlantci));
1091 * The chip minimum packet length is 10 octets but the firmware
1092 * command that we are using requires that we copy the Ethernet header
1093 * (including the VLAN tag) into the header so we reject anything
1094 * smaller than that ...
1096 if (unlikely(skb->len < fw_hdr_copy_len))
1097 goto out_free;
1100 * Figure out which TX Queue we're going to use.
1102 pi = netdev_priv(dev);
1103 adapter = pi->adapter;
1104 qidx = skb_get_queue_mapping(skb);
1105 BUG_ON(qidx >= pi->nqsets);
1106 txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1109 * Take this opportunity to reclaim any TX Descriptors whose DMA
1110 * transfers have completed.
1112 reclaim_completed_tx(adapter, &txq->q, true);
1115 * Calculate the number of flits and TX Descriptors we're going to
1116 * need along with how many TX Descriptors will be left over after
1117 * we inject our Work Request.
1119 flits = calc_tx_flits(skb);
1120 ndesc = flits_to_desc(flits);
1121 credits = txq_avail(&txq->q) - ndesc;
1123 if (unlikely(credits < 0)) {
1125 * Not enough room for this packet's Work Request. Stop the
1126 * TX Queue and return a "busy" condition. The queue will get
1127 * started later on when the firmware informs us that space
1128 * has opened up.
1130 txq_stop(txq);
1131 dev_err(adapter->pdev_dev,
1132 "%s: TX ring %u full while queue awake!\n",
1133 dev->name, qidx);
1134 return NETDEV_TX_BUSY;
1137 if (!is_eth_imm(skb) &&
1138 unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1140 * We need to map the skb into PCI DMA space (because it can't
1141 * be in-lined directly into the Work Request) and the mapping
1142 * operation failed. Record the error and drop the packet.
1144 txq->mapping_err++;
1145 goto out_free;
1148 wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
1149 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1151 * After we're done injecting the Work Request for this
1152 * packet, we'll be below our "stop threshold" so stop the TX
1153 * Queue now and schedule a request for an SGE Egress Queue
1154 * Update message. The queue will get started later on when
1155 * the firmware processes this Work Request and sends us an
1156 * Egress Queue Status Update message indicating that space
1157 * has opened up.
1159 txq_stop(txq);
1160 wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
1164 * Start filling in our Work Request. Note that we do _not_ handle
1165 * the WR Header wrapping around the TX Descriptor Ring. If our
1166 * maximum header size ever exceeds one TX Descriptor, we'll need to
1167 * do something else here.
1169 BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1170 wr = (void *)&txq->q.desc[txq->q.pidx];
1171 wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1172 wr->r3[0] = cpu_to_be64(0);
1173 wr->r3[1] = cpu_to_be64(0);
1174 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1175 end = (u64 *)wr + flits;
1178 * If this is a Large Send Offload packet we'll put in an LSO CPL
1179 * message with an encapsulated TX Packet CPL message. Otherwise we
1180 * just use a TX Packet CPL message.
1182 ssi = skb_shinfo(skb);
1183 if (ssi->gso_size) {
1184 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1185 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1186 int l3hdr_len = skb_network_header_len(skb);
1187 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1189 wr->op_immdlen =
1190 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1191 FW_WR_IMMDLEN(sizeof(*lso) +
1192 sizeof(*cpl)));
1194 * Fill in the LSO CPL message.
1196 lso->lso_ctrl =
1197 cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) |
1198 LSO_FIRST_SLICE |
1199 LSO_LAST_SLICE |
1200 LSO_IPV6(v6) |
1201 LSO_ETHHDR_LEN(eth_xtra_len/4) |
1202 LSO_IPHDR_LEN(l3hdr_len/4) |
1203 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1204 lso->ipid_ofst = cpu_to_be16(0);
1205 lso->mss = cpu_to_be16(ssi->gso_size);
1206 lso->seqno_offset = cpu_to_be32(0);
1207 lso->len = cpu_to_be32(skb->len);
1210 * Set up TX Packet CPL pointer, control word and perform
1211 * accounting.
1213 cpl = (void *)(lso + 1);
1214 cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1215 TXPKT_IPHDR_LEN(l3hdr_len) |
1216 TXPKT_ETHHDR_LEN(eth_xtra_len));
1217 txq->tso++;
1218 txq->tx_cso += ssi->gso_segs;
1219 } else {
1220 int len;
1222 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1223 wr->op_immdlen =
1224 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1225 FW_WR_IMMDLEN(len));
1228 * Set up TX Packet CPL pointer, control word and perform
1229 * accounting.
1231 cpl = (void *)(wr + 1);
1232 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1233 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1234 txq->tx_cso++;
1235 } else
1236 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1240 * If there's a VLAN tag present, add that to the list of things to
1241 * do in this Work Request.
1243 if (vlan_tx_tag_present(skb)) {
1244 txq->vlan_ins++;
1245 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1249 * Fill in the TX Packet CPL message header.
1251 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1252 TXPKT_INTF(pi->port_id) |
1253 TXPKT_PF(0));
1254 cpl->pack = cpu_to_be16(0);
1255 cpl->len = cpu_to_be16(skb->len);
1256 cpl->ctrl1 = cpu_to_be64(cntrl);
1258 #ifdef T4_TRACE
1259 T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1260 "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1261 ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1262 #endif
1265 * Fill in the body of the TX Packet CPL message with either in-lined
1266 * data or a Scatter/Gather List.
1268 if (is_eth_imm(skb)) {
1270 * In-line the packet's data and free the skb since we don't
1271 * need it any longer.
1273 inline_tx_skb(skb, &txq->q, cpl + 1);
1274 dev_kfree_skb(skb);
1275 } else {
1277 * Write the skb's Scatter/Gather list into the TX Packet CPL
1278 * message and retain a pointer to the skb so we can free it
1279 * later when its DMA completes. (We store the skb pointer
1280 * in the Software Descriptor corresponding to the last TX
1281 * Descriptor used by the Work Request.)
1283 * The retained skb will be freed when the corresponding TX
1284 * Descriptors are reclaimed after their DMAs complete.
1285 * However, this could take quite a while since, in general,
1286 * the hardware is set up to be lazy about sending DMA
1287 * completion notifications to us and we mostly perform TX
1288 * reclaims in the transmit routine.
1290 * This is good for performamce but means that we rely on new
1291 * TX packets arriving to run the destructors of completed
1292 * packets, which open up space in their sockets' send queues.
1293 * Sometimes we do not get such new packets causing TX to
1294 * stall. A single UDP transmitter is a good example of this
1295 * situation. We have a clean up timer that periodically
1296 * reclaims completed packets but it doesn't run often enough
1297 * (nor do we want it to) to prevent lengthy stalls. A
1298 * solution to this problem is to run the destructor early,
1299 * after the packet is queued but before it's DMAd. A con is
1300 * that we lie to socket memory accounting, but the amount of
1301 * extra memory is reasonable (limited by the number of TX
1302 * descriptors), the packets do actually get freed quickly by
1303 * new packets almost always, and for protocols like TCP that
1304 * wait for acks to really free up the data the extra memory
1305 * is even less. On the positive side we run the destructors
1306 * on the sending CPU rather than on a potentially different
1307 * completing CPU, usually a good thing.
1309 * Run the destructor before telling the DMA engine about the
1310 * packet to make sure it doesn't complete and get freed
1311 * prematurely.
1313 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1314 struct sge_txq *tq = &txq->q;
1315 int last_desc;
1318 * If the Work Request header was an exact multiple of our TX
1319 * Descriptor length, then it's possible that the starting SGL
1320 * pointer lines up exactly with the end of our TX Descriptor
1321 * ring. If that's the case, wrap around to the beginning
1322 * here ...
1324 if (unlikely((void *)sgl == (void *)tq->stat)) {
1325 sgl = (void *)tq->desc;
1326 end = (void *)((void *)tq->desc +
1327 ((void *)end - (void *)tq->stat));
1330 write_sgl(skb, tq, sgl, end, 0, addr);
1331 skb_orphan(skb);
1333 last_desc = tq->pidx + ndesc - 1;
1334 if (last_desc >= tq->size)
1335 last_desc -= tq->size;
1336 tq->sdesc[last_desc].skb = skb;
1337 tq->sdesc[last_desc].sgl = sgl;
1341 * Advance our internal TX Queue state, tell the hardware about
1342 * the new TX descriptors and return success.
1344 txq_advance(&txq->q, ndesc);
1345 dev->trans_start = jiffies;
1346 ring_tx_db(adapter, &txq->q, ndesc);
1347 return NETDEV_TX_OK;
1349 out_free:
1351 * An error of some sort happened. Free the TX skb and tell the
1352 * OS that we've "dealt" with the packet ...
1354 dev_kfree_skb(skb);
1355 return NETDEV_TX_OK;
1359 * copy_frags - copy fragments from gather list into skb_shared_info
1360 * @skb: destination skb
1361 * @gl: source internal packet gather list
1362 * @offset: packet start offset in first page
1364 * Copy an internal packet gather list into a Linux skb_shared_info
1365 * structure.
1367 static inline void copy_frags(struct sk_buff *skb,
1368 const struct pkt_gl *gl,
1369 unsigned int offset)
1371 int i;
1373 /* usually there's just one frag */
1374 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1375 gl->frags[0].offset + offset,
1376 gl->frags[0].size - offset);
1377 skb_shinfo(skb)->nr_frags = gl->nfrags;
1378 for (i = 1; i < gl->nfrags; i++)
1379 __skb_fill_page_desc(skb, i, gl->frags[i].page,
1380 gl->frags[i].offset,
1381 gl->frags[i].size);
1383 /* get a reference to the last page, we don't own it */
1384 get_page(gl->frags[gl->nfrags - 1].page);
1388 * t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1389 * @gl: the gather list
1390 * @skb_len: size of sk_buff main body if it carries fragments
1391 * @pull_len: amount of data to move to the sk_buff's main body
1393 * Builds an sk_buff from the given packet gather list. Returns the
1394 * sk_buff or %NULL if sk_buff allocation failed.
1396 struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1397 unsigned int skb_len, unsigned int pull_len)
1399 struct sk_buff *skb;
1402 * If the ingress packet is small enough, allocate an skb large enough
1403 * for all of the data and copy it inline. Otherwise, allocate an skb
1404 * with enough room to pull in the header and reference the rest of
1405 * the data via the skb fragment list.
1407 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1408 * buff! size, which is expected since buffers are at least
1409 * PAGE_SIZEd. In this case packets up to RX_COPY_THRES have only one
1410 * fragment.
1412 if (gl->tot_len <= RX_COPY_THRES) {
1413 /* small packets have only one fragment */
1414 skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1415 if (unlikely(!skb))
1416 goto out;
1417 __skb_put(skb, gl->tot_len);
1418 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1419 } else {
1420 skb = alloc_skb(skb_len, GFP_ATOMIC);
1421 if (unlikely(!skb))
1422 goto out;
1423 __skb_put(skb, pull_len);
1424 skb_copy_to_linear_data(skb, gl->va, pull_len);
1426 copy_frags(skb, gl, pull_len);
1427 skb->len = gl->tot_len;
1428 skb->data_len = skb->len - pull_len;
1429 skb->truesize += skb->data_len;
1432 out:
1433 return skb;
1437 * t4vf_pktgl_free - free a packet gather list
1438 * @gl: the gather list
1440 * Releases the pages of a packet gather list. We do not own the last
1441 * page on the list and do not free it.
1443 void t4vf_pktgl_free(const struct pkt_gl *gl)
1445 int frag;
1447 frag = gl->nfrags - 1;
1448 while (frag--)
1449 put_page(gl->frags[frag].page);
1453 * do_gro - perform Generic Receive Offload ingress packet processing
1454 * @rxq: ingress RX Ethernet Queue
1455 * @gl: gather list for ingress packet
1456 * @pkt: CPL header for last packet fragment
1458 * Perform Generic Receive Offload (GRO) ingress packet processing.
1459 * We use the standard Linux GRO interfaces for this.
1461 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1462 const struct cpl_rx_pkt *pkt)
1464 int ret;
1465 struct sk_buff *skb;
1467 skb = napi_get_frags(&rxq->rspq.napi);
1468 if (unlikely(!skb)) {
1469 t4vf_pktgl_free(gl);
1470 rxq->stats.rx_drops++;
1471 return;
1474 copy_frags(skb, gl, PKTSHIFT);
1475 skb->len = gl->tot_len - PKTSHIFT;
1476 skb->data_len = skb->len;
1477 skb->truesize += skb->data_len;
1478 skb->ip_summed = CHECKSUM_UNNECESSARY;
1479 skb_record_rx_queue(skb, rxq->rspq.idx);
1481 if (pkt->vlan_ex)
1482 __vlan_hwaccel_put_tag(skb, be16_to_cpu(pkt->vlan));
1483 ret = napi_gro_frags(&rxq->rspq.napi);
1485 if (ret == GRO_HELD)
1486 rxq->stats.lro_pkts++;
1487 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1488 rxq->stats.lro_merged++;
1489 rxq->stats.pkts++;
1490 rxq->stats.rx_cso++;
1494 * t4vf_ethrx_handler - process an ingress ethernet packet
1495 * @rspq: the response queue that received the packet
1496 * @rsp: the response queue descriptor holding the RX_PKT message
1497 * @gl: the gather list of packet fragments
1499 * Process an ingress ethernet packet and deliver it to the stack.
1501 int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1502 const struct pkt_gl *gl)
1504 struct sk_buff *skb;
1505 const struct cpl_rx_pkt *pkt = (void *)&rsp[1];
1506 bool csum_ok = pkt->csum_calc && !pkt->err_vec;
1507 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1510 * If this is a good TCP packet and we have Generic Receive Offload
1511 * enabled, handle the packet in the GRO path.
1513 if ((pkt->l2info & cpu_to_be32(RXF_TCP)) &&
1514 (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1515 !pkt->ip_frag) {
1516 do_gro(rxq, gl, pkt);
1517 return 0;
1521 * Convert the Packet Gather List into an skb.
1523 skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1524 if (unlikely(!skb)) {
1525 t4vf_pktgl_free(gl);
1526 rxq->stats.rx_drops++;
1527 return 0;
1529 __skb_pull(skb, PKTSHIFT);
1530 skb->protocol = eth_type_trans(skb, rspq->netdev);
1531 skb_record_rx_queue(skb, rspq->idx);
1532 rxq->stats.pkts++;
1534 if (csum_ok && (rspq->netdev->features & NETIF_F_RXCSUM) &&
1535 !pkt->err_vec && (be32_to_cpu(pkt->l2info) & (RXF_UDP|RXF_TCP))) {
1536 if (!pkt->ip_frag)
1537 skb->ip_summed = CHECKSUM_UNNECESSARY;
1538 else {
1539 __sum16 c = (__force __sum16)pkt->csum;
1540 skb->csum = csum_unfold(c);
1541 skb->ip_summed = CHECKSUM_COMPLETE;
1543 rxq->stats.rx_cso++;
1544 } else
1545 skb_checksum_none_assert(skb);
1547 if (pkt->vlan_ex) {
1548 rxq->stats.vlan_ex++;
1549 __vlan_hwaccel_put_tag(skb, be16_to_cpu(pkt->vlan));
1552 netif_receive_skb(skb);
1554 return 0;
1558 * is_new_response - check if a response is newly written
1559 * @rc: the response control descriptor
1560 * @rspq: the response queue
1562 * Returns true if a response descriptor contains a yet unprocessed
1563 * response.
1565 static inline bool is_new_response(const struct rsp_ctrl *rc,
1566 const struct sge_rspq *rspq)
1568 return RSPD_GEN(rc->type_gen) == rspq->gen;
1572 * restore_rx_bufs - put back a packet's RX buffers
1573 * @gl: the packet gather list
1574 * @fl: the SGE Free List
1575 * @nfrags: how many fragments in @si
1577 * Called when we find out that the current packet, @si, can't be
1578 * processed right away for some reason. This is a very rare event and
1579 * there's no effort to make this suspension/resumption process
1580 * particularly efficient.
1582 * We implement the suspension by putting all of the RX buffers associated
1583 * with the current packet back on the original Free List. The buffers
1584 * have already been unmapped and are left unmapped, we mark them as
1585 * unmapped in order to prevent further unmapping attempts. (Effectively
1586 * this function undoes the series of @unmap_rx_buf calls which were done
1587 * to create the current packet's gather list.) This leaves us ready to
1588 * restart processing of the packet the next time we start processing the
1589 * RX Queue ...
1591 static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1592 int frags)
1594 struct rx_sw_desc *sdesc;
1596 while (frags--) {
1597 if (fl->cidx == 0)
1598 fl->cidx = fl->size - 1;
1599 else
1600 fl->cidx--;
1601 sdesc = &fl->sdesc[fl->cidx];
1602 sdesc->page = gl->frags[frags].page;
1603 sdesc->dma_addr |= RX_UNMAPPED_BUF;
1604 fl->avail++;
1609 * rspq_next - advance to the next entry in a response queue
1610 * @rspq: the queue
1612 * Updates the state of a response queue to advance it to the next entry.
1614 static inline void rspq_next(struct sge_rspq *rspq)
1616 rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1617 if (unlikely(++rspq->cidx == rspq->size)) {
1618 rspq->cidx = 0;
1619 rspq->gen ^= 1;
1620 rspq->cur_desc = rspq->desc;
1625 * process_responses - process responses from an SGE response queue
1626 * @rspq: the ingress response queue to process
1627 * @budget: how many responses can be processed in this round
1629 * Process responses from a Scatter Gather Engine response queue up to
1630 * the supplied budget. Responses include received packets as well as
1631 * control messages from firmware or hardware.
1633 * Additionally choose the interrupt holdoff time for the next interrupt
1634 * on this queue. If the system is under memory shortage use a fairly
1635 * long delay to help recovery.
1637 int process_responses(struct sge_rspq *rspq, int budget)
1639 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1640 int budget_left = budget;
1642 while (likely(budget_left)) {
1643 int ret, rsp_type;
1644 const struct rsp_ctrl *rc;
1646 rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1647 if (!is_new_response(rc, rspq))
1648 break;
1651 * Figure out what kind of response we've received from the
1652 * SGE.
1654 rmb();
1655 rsp_type = RSPD_TYPE(rc->type_gen);
1656 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1657 struct page_frag *fp;
1658 struct pkt_gl gl;
1659 const struct rx_sw_desc *sdesc;
1660 u32 bufsz, frag;
1661 u32 len = be32_to_cpu(rc->pldbuflen_qid);
1664 * If we get a "new buffer" message from the SGE we
1665 * need to move on to the next Free List buffer.
1667 if (len & RSPD_NEWBUF) {
1669 * We get one "new buffer" message when we
1670 * first start up a queue so we need to ignore
1671 * it when our offset into the buffer is 0.
1673 if (likely(rspq->offset > 0)) {
1674 free_rx_bufs(rspq->adapter, &rxq->fl,
1676 rspq->offset = 0;
1678 len = RSPD_LEN(len);
1680 gl.tot_len = len;
1683 * Gather packet fragments.
1685 for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1686 BUG_ON(frag >= MAX_SKB_FRAGS);
1687 BUG_ON(rxq->fl.avail == 0);
1688 sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1689 bufsz = get_buf_size(sdesc);
1690 fp->page = sdesc->page;
1691 fp->offset = rspq->offset;
1692 fp->size = min(bufsz, len);
1693 len -= fp->size;
1694 if (!len)
1695 break;
1696 unmap_rx_buf(rspq->adapter, &rxq->fl);
1698 gl.nfrags = frag+1;
1701 * Last buffer remains mapped so explicitly make it
1702 * coherent for CPU access and start preloading first
1703 * cache line ...
1705 dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1706 get_buf_addr(sdesc),
1707 fp->size, DMA_FROM_DEVICE);
1708 gl.va = (page_address(gl.frags[0].page) +
1709 gl.frags[0].offset);
1710 prefetch(gl.va);
1713 * Hand the new ingress packet to the handler for
1714 * this Response Queue.
1716 ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1717 if (likely(ret == 0))
1718 rspq->offset += ALIGN(fp->size, FL_ALIGN);
1719 else
1720 restore_rx_bufs(&gl, &rxq->fl, frag);
1721 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1722 ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1723 } else {
1724 WARN_ON(rsp_type > RSP_TYPE_CPL);
1725 ret = 0;
1728 if (unlikely(ret)) {
1730 * Couldn't process descriptor, back off for recovery.
1731 * We use the SGE's last timer which has the longest
1732 * interrupt coalescing value ...
1734 const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1735 rspq->next_intr_params =
1736 QINTR_TIMER_IDX(NOMEM_TIMER_IDX);
1737 break;
1740 rspq_next(rspq);
1741 budget_left--;
1745 * If this is a Response Queue with an associated Free List and
1746 * at least two Egress Queue units available in the Free List
1747 * for new buffer pointers, refill the Free List.
1749 if (rspq->offset >= 0 &&
1750 rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1751 __refill_fl(rspq->adapter, &rxq->fl);
1752 return budget - budget_left;
1756 * napi_rx_handler - the NAPI handler for RX processing
1757 * @napi: the napi instance
1758 * @budget: how many packets we can process in this round
1760 * Handler for new data events when using NAPI. This does not need any
1761 * locking or protection from interrupts as data interrupts are off at
1762 * this point and other adapter interrupts do not interfere (the latter
1763 * in not a concern at all with MSI-X as non-data interrupts then have
1764 * a separate handler).
1766 static int napi_rx_handler(struct napi_struct *napi, int budget)
1768 unsigned int intr_params;
1769 struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1770 int work_done = process_responses(rspq, budget);
1772 if (likely(work_done < budget)) {
1773 napi_complete(napi);
1774 intr_params = rspq->next_intr_params;
1775 rspq->next_intr_params = rspq->intr_params;
1776 } else
1777 intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX);
1779 if (unlikely(work_done == 0))
1780 rspq->unhandled_irqs++;
1782 t4_write_reg(rspq->adapter,
1783 T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1784 CIDXINC(work_done) |
1785 INGRESSQID((u32)rspq->cntxt_id) |
1786 SEINTARM(intr_params));
1787 return work_done;
1791 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1792 * (i.e., response queue serviced by NAPI polling).
1794 irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1796 struct sge_rspq *rspq = cookie;
1798 napi_schedule(&rspq->napi);
1799 return IRQ_HANDLED;
1803 * Process the indirect interrupt entries in the interrupt queue and kick off
1804 * NAPI for each queue that has generated an entry.
1806 static unsigned int process_intrq(struct adapter *adapter)
1808 struct sge *s = &adapter->sge;
1809 struct sge_rspq *intrq = &s->intrq;
1810 unsigned int work_done;
1812 spin_lock(&adapter->sge.intrq_lock);
1813 for (work_done = 0; ; work_done++) {
1814 const struct rsp_ctrl *rc;
1815 unsigned int qid, iq_idx;
1816 struct sge_rspq *rspq;
1819 * Grab the next response from the interrupt queue and bail
1820 * out if it's not a new response.
1822 rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1823 if (!is_new_response(rc, intrq))
1824 break;
1827 * If the response isn't a forwarded interrupt message issue a
1828 * error and go on to the next response message. This should
1829 * never happen ...
1831 rmb();
1832 if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) {
1833 dev_err(adapter->pdev_dev,
1834 "Unexpected INTRQ response type %d\n",
1835 RSPD_TYPE(rc->type_gen));
1836 continue;
1840 * Extract the Queue ID from the interrupt message and perform
1841 * sanity checking to make sure it really refers to one of our
1842 * Ingress Queues which is active and matches the queue's ID.
1843 * None of these error conditions should ever happen so we may
1844 * want to either make them fatal and/or conditionalized under
1845 * DEBUG.
1847 qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid));
1848 iq_idx = IQ_IDX(s, qid);
1849 if (unlikely(iq_idx >= MAX_INGQ)) {
1850 dev_err(adapter->pdev_dev,
1851 "Ingress QID %d out of range\n", qid);
1852 continue;
1854 rspq = s->ingr_map[iq_idx];
1855 if (unlikely(rspq == NULL)) {
1856 dev_err(adapter->pdev_dev,
1857 "Ingress QID %d RSPQ=NULL\n", qid);
1858 continue;
1860 if (unlikely(rspq->abs_id != qid)) {
1861 dev_err(adapter->pdev_dev,
1862 "Ingress QID %d refers to RSPQ %d\n",
1863 qid, rspq->abs_id);
1864 continue;
1868 * Schedule NAPI processing on the indicated Response Queue
1869 * and move on to the next entry in the Forwarded Interrupt
1870 * Queue.
1872 napi_schedule(&rspq->napi);
1873 rspq_next(intrq);
1876 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1877 CIDXINC(work_done) |
1878 INGRESSQID(intrq->cntxt_id) |
1879 SEINTARM(intrq->intr_params));
1881 spin_unlock(&adapter->sge.intrq_lock);
1883 return work_done;
1887 * The MSI interrupt handler handles data events from SGE response queues as
1888 * well as error and other async events as they all use the same MSI vector.
1890 irqreturn_t t4vf_intr_msi(int irq, void *cookie)
1892 struct adapter *adapter = cookie;
1894 process_intrq(adapter);
1895 return IRQ_HANDLED;
1899 * t4vf_intr_handler - select the top-level interrupt handler
1900 * @adapter: the adapter
1902 * Selects the top-level interrupt handler based on the type of interrupts
1903 * (MSI-X or MSI).
1905 irq_handler_t t4vf_intr_handler(struct adapter *adapter)
1907 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
1908 if (adapter->flags & USING_MSIX)
1909 return t4vf_sge_intr_msix;
1910 else
1911 return t4vf_intr_msi;
1915 * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
1916 * @data: the adapter
1918 * Runs periodically from a timer to perform maintenance of SGE RX queues.
1920 * a) Replenishes RX queues that have run out due to memory shortage.
1921 * Normally new RX buffers are added when existing ones are consumed but
1922 * when out of memory a queue can become empty. We schedule NAPI to do
1923 * the actual refill.
1925 static void sge_rx_timer_cb(unsigned long data)
1927 struct adapter *adapter = (struct adapter *)data;
1928 struct sge *s = &adapter->sge;
1929 unsigned int i;
1932 * Scan the "Starving Free Lists" flag array looking for any Free
1933 * Lists in need of more free buffers. If we find one and it's not
1934 * being actively polled, then bump its "starving" counter and attempt
1935 * to refill it. If we're successful in adding enough buffers to push
1936 * the Free List over the starving threshold, then we can clear its
1937 * "starving" status.
1939 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
1940 unsigned long m;
1942 for (m = s->starving_fl[i]; m; m &= m - 1) {
1943 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
1944 struct sge_fl *fl = s->egr_map[id];
1946 clear_bit(id, s->starving_fl);
1947 smp_mb__after_clear_bit();
1950 * Since we are accessing fl without a lock there's a
1951 * small probability of a false positive where we
1952 * schedule napi but the FL is no longer starving.
1953 * No biggie.
1955 if (fl_starving(fl)) {
1956 struct sge_eth_rxq *rxq;
1958 rxq = container_of(fl, struct sge_eth_rxq, fl);
1959 if (napi_reschedule(&rxq->rspq.napi))
1960 fl->starving++;
1961 else
1962 set_bit(id, s->starving_fl);
1968 * Reschedule the next scan for starving Free Lists ...
1970 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
1974 * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
1975 * @data: the adapter
1977 * Runs periodically from a timer to perform maintenance of SGE TX queues.
1979 * b) Reclaims completed Tx packets for the Ethernet queues. Normally
1980 * packets are cleaned up by new Tx packets, this timer cleans up packets
1981 * when no new packets are being submitted. This is essential for pktgen,
1982 * at least.
1984 static void sge_tx_timer_cb(unsigned long data)
1986 struct adapter *adapter = (struct adapter *)data;
1987 struct sge *s = &adapter->sge;
1988 unsigned int i, budget;
1990 budget = MAX_TIMER_TX_RECLAIM;
1991 i = s->ethtxq_rover;
1992 do {
1993 struct sge_eth_txq *txq = &s->ethtxq[i];
1995 if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
1996 int avail = reclaimable(&txq->q);
1998 if (avail > budget)
1999 avail = budget;
2001 free_tx_desc(adapter, &txq->q, avail, true);
2002 txq->q.in_use -= avail;
2003 __netif_tx_unlock(txq->txq);
2005 budget -= avail;
2006 if (!budget)
2007 break;
2010 i++;
2011 if (i >= s->ethqsets)
2012 i = 0;
2013 } while (i != s->ethtxq_rover);
2014 s->ethtxq_rover = i;
2017 * If we found too many reclaimable packets schedule a timer in the
2018 * near future to continue where we left off. Otherwise the next timer
2019 * will be at its normal interval.
2021 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2025 * t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2026 * @adapter: the adapter
2027 * @rspq: pointer to to the new rxq's Response Queue to be filled in
2028 * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2029 * @dev: the network device associated with the new rspq
2030 * @intr_dest: MSI-X vector index (overriden in MSI mode)
2031 * @fl: pointer to the new rxq's Free List to be filled in
2032 * @hnd: the interrupt handler to invoke for the rspq
2034 int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2035 bool iqasynch, struct net_device *dev,
2036 int intr_dest,
2037 struct sge_fl *fl, rspq_handler_t hnd)
2039 struct port_info *pi = netdev_priv(dev);
2040 struct fw_iq_cmd cmd, rpl;
2041 int ret, iqandst, flsz = 0;
2044 * If we're using MSI interrupts and we're not initializing the
2045 * Forwarded Interrupt Queue itself, then set up this queue for
2046 * indirect interrupts to the Forwarded Interrupt Queue. Obviously
2047 * the Forwarded Interrupt Queue must be set up before any other
2048 * ingress queue ...
2050 if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
2051 iqandst = SGE_INTRDST_IQ;
2052 intr_dest = adapter->sge.intrq.abs_id;
2053 } else
2054 iqandst = SGE_INTRDST_PCI;
2057 * Allocate the hardware ring for the Response Queue. The size needs
2058 * to be a multiple of 16 which includes the mandatory status entry
2059 * (regardless of whether the Status Page capabilities are enabled or
2060 * not).
2062 rspq->size = roundup(rspq->size, 16);
2063 rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2064 0, &rspq->phys_addr, NULL, 0);
2065 if (!rspq->desc)
2066 return -ENOMEM;
2069 * Fill in the Ingress Queue Command. Note: Ideally this code would
2070 * be in t4vf_hw.c but there are so many parameters and dependencies
2071 * on our Linux SGE state that we would end up having to pass tons of
2072 * parameters. We'll have to think about how this might be migrated
2073 * into OS-independent common code ...
2075 memset(&cmd, 0, sizeof(cmd));
2076 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
2077 FW_CMD_REQUEST |
2078 FW_CMD_WRITE |
2079 FW_CMD_EXEC);
2080 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC |
2081 FW_IQ_CMD_IQSTART(1) |
2082 FW_LEN16(cmd));
2083 cmd.type_to_iqandstindex =
2084 cpu_to_be32(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2085 FW_IQ_CMD_IQASYNCH(iqasynch) |
2086 FW_IQ_CMD_VIID(pi->viid) |
2087 FW_IQ_CMD_IQANDST(iqandst) |
2088 FW_IQ_CMD_IQANUS(1) |
2089 FW_IQ_CMD_IQANUD(SGE_UPDATEDEL_INTR) |
2090 FW_IQ_CMD_IQANDSTINDEX(intr_dest));
2091 cmd.iqdroprss_to_iqesize =
2092 cpu_to_be16(FW_IQ_CMD_IQPCIECH(pi->port_id) |
2093 FW_IQ_CMD_IQGTSMODE |
2094 FW_IQ_CMD_IQINTCNTTHRESH(rspq->pktcnt_idx) |
2095 FW_IQ_CMD_IQESIZE(ilog2(rspq->iqe_len) - 4));
2096 cmd.iqsize = cpu_to_be16(rspq->size);
2097 cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2099 if (fl) {
2101 * Allocate the ring for the hardware free list (with space
2102 * for its status page) along with the associated software
2103 * descriptor ring. The free list size needs to be a multiple
2104 * of the Egress Queue Unit.
2106 fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2107 fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2108 sizeof(__be64), sizeof(struct rx_sw_desc),
2109 &fl->addr, &fl->sdesc, STAT_LEN);
2110 if (!fl->desc) {
2111 ret = -ENOMEM;
2112 goto err;
2116 * Calculate the size of the hardware free list ring plus
2117 * Status Page (which the SGE will place after the end of the
2118 * free list ring) in Egress Queue Units.
2120 flsz = (fl->size / FL_PER_EQ_UNIT +
2121 STAT_LEN / EQ_UNIT);
2124 * Fill in all the relevant firmware Ingress Queue Command
2125 * fields for the free list.
2127 cmd.iqns_to_fl0congen =
2128 cpu_to_be32(
2129 FW_IQ_CMD_FL0HOSTFCMODE(SGE_HOSTFCMODE_NONE) |
2130 FW_IQ_CMD_FL0PACKEN |
2131 FW_IQ_CMD_FL0PADEN);
2132 cmd.fl0dcaen_to_fl0cidxfthresh =
2133 cpu_to_be16(
2134 FW_IQ_CMD_FL0FBMIN(SGE_FETCHBURSTMIN_64B) |
2135 FW_IQ_CMD_FL0FBMAX(SGE_FETCHBURSTMAX_512B));
2136 cmd.fl0size = cpu_to_be16(flsz);
2137 cmd.fl0addr = cpu_to_be64(fl->addr);
2141 * Issue the firmware Ingress Queue Command and extract the results if
2142 * it completes successfully.
2144 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2145 if (ret)
2146 goto err;
2148 netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2149 rspq->cur_desc = rspq->desc;
2150 rspq->cidx = 0;
2151 rspq->gen = 1;
2152 rspq->next_intr_params = rspq->intr_params;
2153 rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2154 rspq->abs_id = be16_to_cpu(rpl.physiqid);
2155 rspq->size--; /* subtract status entry */
2156 rspq->adapter = adapter;
2157 rspq->netdev = dev;
2158 rspq->handler = hnd;
2160 /* set offset to -1 to distinguish ingress queues without FL */
2161 rspq->offset = fl ? 0 : -1;
2163 if (fl) {
2164 fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2165 fl->avail = 0;
2166 fl->pend_cred = 0;
2167 fl->pidx = 0;
2168 fl->cidx = 0;
2169 fl->alloc_failed = 0;
2170 fl->large_alloc_failed = 0;
2171 fl->starving = 0;
2172 refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2175 return 0;
2177 err:
2179 * An error occurred. Clean up our partial allocation state and
2180 * return the error.
2182 if (rspq->desc) {
2183 dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2184 rspq->desc, rspq->phys_addr);
2185 rspq->desc = NULL;
2187 if (fl && fl->desc) {
2188 kfree(fl->sdesc);
2189 fl->sdesc = NULL;
2190 dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2191 fl->desc, fl->addr);
2192 fl->desc = NULL;
2194 return ret;
2198 * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2199 * @adapter: the adapter
2200 * @txq: pointer to the new txq to be filled in
2201 * @devq: the network TX queue associated with the new txq
2202 * @iqid: the relative ingress queue ID to which events relating to
2203 * the new txq should be directed
2205 int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2206 struct net_device *dev, struct netdev_queue *devq,
2207 unsigned int iqid)
2209 int ret, nentries;
2210 struct fw_eq_eth_cmd cmd, rpl;
2211 struct port_info *pi = netdev_priv(dev);
2214 * Calculate the size of the hardware TX Queue (including the Status
2215 * Page on the end of the TX Queue) in units of TX Descriptors.
2217 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
2220 * Allocate the hardware ring for the TX ring (with space for its
2221 * status page) along with the associated software descriptor ring.
2223 txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2224 sizeof(struct tx_desc),
2225 sizeof(struct tx_sw_desc),
2226 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN);
2227 if (!txq->q.desc)
2228 return -ENOMEM;
2231 * Fill in the Egress Queue Command. Note: As with the direct use of
2232 * the firmware Ingress Queue COmmand above in our RXQ allocation
2233 * routine, ideally, this code would be in t4vf_hw.c. Again, we'll
2234 * have to see if there's some reasonable way to parameterize it
2235 * into the common code ...
2237 memset(&cmd, 0, sizeof(cmd));
2238 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
2239 FW_CMD_REQUEST |
2240 FW_CMD_WRITE |
2241 FW_CMD_EXEC);
2242 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC |
2243 FW_EQ_ETH_CMD_EQSTART |
2244 FW_LEN16(cmd));
2245 cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_VIID(pi->viid));
2246 cmd.fetchszm_to_iqid =
2247 cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE(SGE_HOSTFCMODE_STPG) |
2248 FW_EQ_ETH_CMD_PCIECHN(pi->port_id) |
2249 FW_EQ_ETH_CMD_IQID(iqid));
2250 cmd.dcaen_to_eqsize =
2251 cpu_to_be32(FW_EQ_ETH_CMD_FBMIN(SGE_FETCHBURSTMIN_64B) |
2252 FW_EQ_ETH_CMD_FBMAX(SGE_FETCHBURSTMAX_512B) |
2253 FW_EQ_ETH_CMD_CIDXFTHRESH(SGE_CIDXFLUSHTHRESH_32) |
2254 FW_EQ_ETH_CMD_EQSIZE(nentries));
2255 cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2258 * Issue the firmware Egress Queue Command and extract the results if
2259 * it completes successfully.
2261 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2262 if (ret) {
2264 * The girmware Ingress Queue Command failed for some reason.
2265 * Free up our partial allocation state and return the error.
2267 kfree(txq->q.sdesc);
2268 txq->q.sdesc = NULL;
2269 dma_free_coherent(adapter->pdev_dev,
2270 nentries * sizeof(struct tx_desc),
2271 txq->q.desc, txq->q.phys_addr);
2272 txq->q.desc = NULL;
2273 return ret;
2276 txq->q.in_use = 0;
2277 txq->q.cidx = 0;
2278 txq->q.pidx = 0;
2279 txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2280 txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_GET(be32_to_cpu(rpl.eqid_pkd));
2281 txq->q.abs_id =
2282 FW_EQ_ETH_CMD_PHYSEQID_GET(be32_to_cpu(rpl.physeqid_pkd));
2283 txq->txq = devq;
2284 txq->tso = 0;
2285 txq->tx_cso = 0;
2286 txq->vlan_ins = 0;
2287 txq->q.stops = 0;
2288 txq->q.restarts = 0;
2289 txq->mapping_err = 0;
2290 return 0;
2294 * Free the DMA map resources associated with a TX queue.
2296 static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2298 dma_free_coherent(adapter->pdev_dev,
2299 tq->size * sizeof(*tq->desc) + STAT_LEN,
2300 tq->desc, tq->phys_addr);
2301 tq->cntxt_id = 0;
2302 tq->sdesc = NULL;
2303 tq->desc = NULL;
2307 * Free the resources associated with a response queue (possibly including a
2308 * free list).
2310 static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2311 struct sge_fl *fl)
2313 unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2315 t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2316 rspq->cntxt_id, flid, 0xffff);
2317 dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2318 rspq->desc, rspq->phys_addr);
2319 netif_napi_del(&rspq->napi);
2320 rspq->netdev = NULL;
2321 rspq->cntxt_id = 0;
2322 rspq->abs_id = 0;
2323 rspq->desc = NULL;
2325 if (fl) {
2326 free_rx_bufs(adapter, fl, fl->avail);
2327 dma_free_coherent(adapter->pdev_dev,
2328 fl->size * sizeof(*fl->desc) + STAT_LEN,
2329 fl->desc, fl->addr);
2330 kfree(fl->sdesc);
2331 fl->sdesc = NULL;
2332 fl->cntxt_id = 0;
2333 fl->desc = NULL;
2338 * t4vf_free_sge_resources - free SGE resources
2339 * @adapter: the adapter
2341 * Frees resources used by the SGE queue sets.
2343 void t4vf_free_sge_resources(struct adapter *adapter)
2345 struct sge *s = &adapter->sge;
2346 struct sge_eth_rxq *rxq = s->ethrxq;
2347 struct sge_eth_txq *txq = s->ethtxq;
2348 struct sge_rspq *evtq = &s->fw_evtq;
2349 struct sge_rspq *intrq = &s->intrq;
2350 int qs;
2352 for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2353 if (rxq->rspq.desc)
2354 free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2355 if (txq->q.desc) {
2356 t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2357 free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2358 kfree(txq->q.sdesc);
2359 free_txq(adapter, &txq->q);
2362 if (evtq->desc)
2363 free_rspq_fl(adapter, evtq, NULL);
2364 if (intrq->desc)
2365 free_rspq_fl(adapter, intrq, NULL);
2369 * t4vf_sge_start - enable SGE operation
2370 * @adapter: the adapter
2372 * Start tasklets and timers associated with the DMA engine.
2374 void t4vf_sge_start(struct adapter *adapter)
2376 adapter->sge.ethtxq_rover = 0;
2377 mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2378 mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2382 * t4vf_sge_stop - disable SGE operation
2383 * @adapter: the adapter
2385 * Stop tasklets and timers associated with the DMA engine. Note that
2386 * this is effective only if measures have been taken to disable any HW
2387 * events that may restart them.
2389 void t4vf_sge_stop(struct adapter *adapter)
2391 struct sge *s = &adapter->sge;
2393 if (s->rx_timer.function)
2394 del_timer_sync(&s->rx_timer);
2395 if (s->tx_timer.function)
2396 del_timer_sync(&s->tx_timer);
2400 * t4vf_sge_init - initialize SGE
2401 * @adapter: the adapter
2403 * Performs SGE initialization needed every time after a chip reset.
2404 * We do not initialize any of the queue sets here, instead the driver
2405 * top-level must request those individually. We also do not enable DMA
2406 * here, that should be done after the queues have been set up.
2408 int t4vf_sge_init(struct adapter *adapter)
2410 struct sge_params *sge_params = &adapter->params.sge;
2411 u32 fl0 = sge_params->sge_fl_buffer_size[0];
2412 u32 fl1 = sge_params->sge_fl_buffer_size[1];
2413 struct sge *s = &adapter->sge;
2416 * Start by vetting the basic SGE parameters which have been set up by
2417 * the Physical Function Driver. Ideally we should be able to deal
2418 * with _any_ configuration. Practice is different ...
2420 if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
2421 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2422 fl0, fl1);
2423 return -EINVAL;
2425 if ((sge_params->sge_control & RXPKTCPLMODE) == 0) {
2426 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2427 return -EINVAL;
2431 * Now translate the adapter parameters into our internal forms.
2433 if (fl1)
2434 FL_PG_ORDER = ilog2(fl1) - PAGE_SHIFT;
2435 STAT_LEN = ((sge_params->sge_control & EGRSTATUSPAGESIZE) ? 128 : 64);
2436 PKTSHIFT = PKTSHIFT_GET(sge_params->sge_control);
2437 FL_ALIGN = 1 << (INGPADBOUNDARY_GET(sge_params->sge_control) +
2438 SGE_INGPADBOUNDARY_SHIFT);
2441 * Set up tasklet timers.
2443 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
2444 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);
2447 * Initialize Forwarded Interrupt Queue lock.
2449 spin_lock_init(&s->intrq_lock);
2451 return 0;