2 * Davicom DM9000 Fast Ethernet driver for Linux.
3 * Copyright (C) 1997 Sten Wang
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
17 * Additional updates, Copyright:
18 * Ben Dooks <ben@simtec.co.uk>
19 * Sascha Hauer <s.hauer@pengutronix.de>
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/crc32.h>
31 #include <linux/mii.h>
32 #include <linux/ethtool.h>
33 #include <linux/dm9000.h>
34 #include <linux/delay.h>
35 #include <linux/platform_device.h>
36 #include <linux/irq.h>
37 #include <linux/slab.h>
39 #include <asm/delay.h>
45 /* Board/System/Debug information/definition ---------------- */
47 #define DM9000_PHY 0x40 /* PHY address 0x01 */
49 #define CARDNAME "dm9000"
50 #define DRV_VERSION "1.31"
53 * Transmit timeout, default 5 seconds.
55 static int watchdog
= 5000;
56 module_param(watchdog
, int, 0400);
57 MODULE_PARM_DESC(watchdog
, "transmit timeout in milliseconds");
60 * Debug messages level
63 module_param(debug
, int, 0644);
64 MODULE_PARM_DESC(debug
, "dm9000 debug level (0-4)");
66 /* DM9000 register address locking.
68 * The DM9000 uses an address register to control where data written
69 * to the data register goes. This means that the address register
70 * must be preserved over interrupts or similar calls.
72 * During interrupt and other critical calls, a spinlock is used to
73 * protect the system, but the calls themselves save the address
74 * in the address register in case they are interrupting another
75 * access to the device.
77 * For general accesses a lock is provided so that calls which are
78 * allowed to sleep are serialised so that the address register does
79 * not need to be saved. This lock also serves to serialise access
80 * to the EEPROM and PHY access registers which are shared between
84 /* The driver supports the original DM9000E, and now the two newer
85 * devices, DM9000A and DM9000B.
89 TYPE_DM9000E
, /* original DM9000 */
94 /* Structure/enum declaration ------------------------------- */
95 typedef struct board_info
{
97 void __iomem
*io_addr
; /* Register I/O base address */
98 void __iomem
*io_data
; /* Data I/O address */
103 u16 queue_start_addr
;
106 u8 io_mode
; /* 0:word, 2:byte */
111 unsigned int in_suspend
:1;
112 unsigned int wake_supported
:1;
114 enum dm9000_type type
;
116 void (*inblk
)(void __iomem
*port
, void *data
, int length
);
117 void (*outblk
)(void __iomem
*port
, void *data
, int length
);
118 void (*dumpblk
)(void __iomem
*port
, int length
);
120 struct device
*dev
; /* parent device */
122 struct resource
*addr_res
; /* resources found */
123 struct resource
*data_res
;
124 struct resource
*addr_req
; /* resources requested */
125 struct resource
*data_req
;
126 struct resource
*irq_res
;
130 struct mutex addr_lock
; /* phy and eeprom access lock */
132 struct delayed_work phy_poll
;
133 struct net_device
*ndev
;
137 struct mii_if_info mii
;
146 #define dm9000_dbg(db, lev, msg...) do { \
147 if ((lev) < debug) { \
148 dev_dbg(db->dev, msg); \
152 static inline board_info_t
*to_dm9000_board(struct net_device
*dev
)
154 return netdev_priv(dev
);
157 /* DM9000 network board routine ---------------------------- */
160 dm9000_reset(board_info_t
* db
)
162 dev_dbg(db
->dev
, "resetting device\n");
165 writeb(DM9000_NCR
, db
->io_addr
);
167 writeb(NCR_RST
, db
->io_data
);
172 * Read a byte from I/O port
175 ior(board_info_t
* db
, int reg
)
177 writeb(reg
, db
->io_addr
);
178 return readb(db
->io_data
);
182 * Write a byte to I/O port
186 iow(board_info_t
* db
, int reg
, int value
)
188 writeb(reg
, db
->io_addr
);
189 writeb(value
, db
->io_data
);
192 /* routines for sending block to chip */
194 static void dm9000_outblk_8bit(void __iomem
*reg
, void *data
, int count
)
196 writesb(reg
, data
, count
);
199 static void dm9000_outblk_16bit(void __iomem
*reg
, void *data
, int count
)
201 writesw(reg
, data
, (count
+1) >> 1);
204 static void dm9000_outblk_32bit(void __iomem
*reg
, void *data
, int count
)
206 writesl(reg
, data
, (count
+3) >> 2);
209 /* input block from chip to memory */
211 static void dm9000_inblk_8bit(void __iomem
*reg
, void *data
, int count
)
213 readsb(reg
, data
, count
);
217 static void dm9000_inblk_16bit(void __iomem
*reg
, void *data
, int count
)
219 readsw(reg
, data
, (count
+1) >> 1);
222 static void dm9000_inblk_32bit(void __iomem
*reg
, void *data
, int count
)
224 readsl(reg
, data
, (count
+3) >> 2);
227 /* dump block from chip to null */
229 static void dm9000_dumpblk_8bit(void __iomem
*reg
, int count
)
234 for (i
= 0; i
< count
; i
++)
238 static void dm9000_dumpblk_16bit(void __iomem
*reg
, int count
)
243 count
= (count
+ 1) >> 1;
245 for (i
= 0; i
< count
; i
++)
249 static void dm9000_dumpblk_32bit(void __iomem
*reg
, int count
)
254 count
= (count
+ 3) >> 2;
256 for (i
= 0; i
< count
; i
++)
262 * select the specified set of io routines to use with the
266 static void dm9000_set_io(struct board_info
*db
, int byte_width
)
268 /* use the size of the data resource to work out what IO
269 * routines we want to use
272 switch (byte_width
) {
274 db
->dumpblk
= dm9000_dumpblk_8bit
;
275 db
->outblk
= dm9000_outblk_8bit
;
276 db
->inblk
= dm9000_inblk_8bit
;
281 dev_dbg(db
->dev
, ": 3 byte IO, falling back to 16bit\n");
283 db
->dumpblk
= dm9000_dumpblk_16bit
;
284 db
->outblk
= dm9000_outblk_16bit
;
285 db
->inblk
= dm9000_inblk_16bit
;
290 db
->dumpblk
= dm9000_dumpblk_32bit
;
291 db
->outblk
= dm9000_outblk_32bit
;
292 db
->inblk
= dm9000_inblk_32bit
;
297 static void dm9000_schedule_poll(board_info_t
*db
)
299 if (db
->type
== TYPE_DM9000E
)
300 schedule_delayed_work(&db
->phy_poll
, HZ
* 2);
303 static int dm9000_ioctl(struct net_device
*dev
, struct ifreq
*req
, int cmd
)
305 board_info_t
*dm
= to_dm9000_board(dev
);
307 if (!netif_running(dev
))
310 return generic_mii_ioctl(&dm
->mii
, if_mii(req
), cmd
, NULL
);
314 dm9000_read_locked(board_info_t
*db
, int reg
)
319 spin_lock_irqsave(&db
->lock
, flags
);
321 spin_unlock_irqrestore(&db
->lock
, flags
);
326 static int dm9000_wait_eeprom(board_info_t
*db
)
329 int timeout
= 8; /* wait max 8msec */
331 /* The DM9000 data sheets say we should be able to
332 * poll the ERRE bit in EPCR to wait for the EEPROM
333 * operation. From testing several chips, this bit
334 * does not seem to work.
336 * We attempt to use the bit, but fall back to the
337 * timeout (which is why we do not return an error
338 * on expiry) to say that the EEPROM operation has
343 status
= dm9000_read_locked(db
, DM9000_EPCR
);
345 if ((status
& EPCR_ERRE
) == 0)
351 dev_dbg(db
->dev
, "timeout waiting EEPROM\n");
360 * Read a word data from EEPROM
363 dm9000_read_eeprom(board_info_t
*db
, int offset
, u8
*to
)
367 if (db
->flags
& DM9000_PLATF_NO_EEPROM
) {
373 mutex_lock(&db
->addr_lock
);
375 spin_lock_irqsave(&db
->lock
, flags
);
377 iow(db
, DM9000_EPAR
, offset
);
378 iow(db
, DM9000_EPCR
, EPCR_ERPRR
);
380 spin_unlock_irqrestore(&db
->lock
, flags
);
382 dm9000_wait_eeprom(db
);
384 /* delay for at-least 150uS */
387 spin_lock_irqsave(&db
->lock
, flags
);
389 iow(db
, DM9000_EPCR
, 0x0);
391 to
[0] = ior(db
, DM9000_EPDRL
);
392 to
[1] = ior(db
, DM9000_EPDRH
);
394 spin_unlock_irqrestore(&db
->lock
, flags
);
396 mutex_unlock(&db
->addr_lock
);
400 * Write a word data to SROM
403 dm9000_write_eeprom(board_info_t
*db
, int offset
, u8
*data
)
407 if (db
->flags
& DM9000_PLATF_NO_EEPROM
)
410 mutex_lock(&db
->addr_lock
);
412 spin_lock_irqsave(&db
->lock
, flags
);
413 iow(db
, DM9000_EPAR
, offset
);
414 iow(db
, DM9000_EPDRH
, data
[1]);
415 iow(db
, DM9000_EPDRL
, data
[0]);
416 iow(db
, DM9000_EPCR
, EPCR_WEP
| EPCR_ERPRW
);
417 spin_unlock_irqrestore(&db
->lock
, flags
);
419 dm9000_wait_eeprom(db
);
421 mdelay(1); /* wait at least 150uS to clear */
423 spin_lock_irqsave(&db
->lock
, flags
);
424 iow(db
, DM9000_EPCR
, 0);
425 spin_unlock_irqrestore(&db
->lock
, flags
);
427 mutex_unlock(&db
->addr_lock
);
432 static void dm9000_get_drvinfo(struct net_device
*dev
,
433 struct ethtool_drvinfo
*info
)
435 board_info_t
*dm
= to_dm9000_board(dev
);
437 strcpy(info
->driver
, CARDNAME
);
438 strcpy(info
->version
, DRV_VERSION
);
439 strcpy(info
->bus_info
, to_platform_device(dm
->dev
)->name
);
442 static u32
dm9000_get_msglevel(struct net_device
*dev
)
444 board_info_t
*dm
= to_dm9000_board(dev
);
446 return dm
->msg_enable
;
449 static void dm9000_set_msglevel(struct net_device
*dev
, u32 value
)
451 board_info_t
*dm
= to_dm9000_board(dev
);
453 dm
->msg_enable
= value
;
456 static int dm9000_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
458 board_info_t
*dm
= to_dm9000_board(dev
);
460 mii_ethtool_gset(&dm
->mii
, cmd
);
464 static int dm9000_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
466 board_info_t
*dm
= to_dm9000_board(dev
);
468 return mii_ethtool_sset(&dm
->mii
, cmd
);
471 static int dm9000_nway_reset(struct net_device
*dev
)
473 board_info_t
*dm
= to_dm9000_board(dev
);
474 return mii_nway_restart(&dm
->mii
);
477 static int dm9000_set_features(struct net_device
*dev
,
478 netdev_features_t features
)
480 board_info_t
*dm
= to_dm9000_board(dev
);
481 netdev_features_t changed
= dev
->features
^ features
;
484 if (!(changed
& NETIF_F_RXCSUM
))
487 spin_lock_irqsave(&dm
->lock
, flags
);
488 iow(dm
, DM9000_RCSR
, (features
& NETIF_F_RXCSUM
) ? RCSR_CSUM
: 0);
489 spin_unlock_irqrestore(&dm
->lock
, flags
);
494 static u32
dm9000_get_link(struct net_device
*dev
)
496 board_info_t
*dm
= to_dm9000_board(dev
);
499 if (dm
->flags
& DM9000_PLATF_EXT_PHY
)
500 ret
= mii_link_ok(&dm
->mii
);
502 ret
= dm9000_read_locked(dm
, DM9000_NSR
) & NSR_LINKST
? 1 : 0;
507 #define DM_EEPROM_MAGIC (0x444D394B)
509 static int dm9000_get_eeprom_len(struct net_device
*dev
)
514 static int dm9000_get_eeprom(struct net_device
*dev
,
515 struct ethtool_eeprom
*ee
, u8
*data
)
517 board_info_t
*dm
= to_dm9000_board(dev
);
518 int offset
= ee
->offset
;
522 /* EEPROM access is aligned to two bytes */
524 if ((len
& 1) != 0 || (offset
& 1) != 0)
527 if (dm
->flags
& DM9000_PLATF_NO_EEPROM
)
530 ee
->magic
= DM_EEPROM_MAGIC
;
532 for (i
= 0; i
< len
; i
+= 2)
533 dm9000_read_eeprom(dm
, (offset
+ i
) / 2, data
+ i
);
538 static int dm9000_set_eeprom(struct net_device
*dev
,
539 struct ethtool_eeprom
*ee
, u8
*data
)
541 board_info_t
*dm
= to_dm9000_board(dev
);
542 int offset
= ee
->offset
;
546 /* EEPROM access is aligned to two bytes */
548 if (dm
->flags
& DM9000_PLATF_NO_EEPROM
)
551 if (ee
->magic
!= DM_EEPROM_MAGIC
)
555 if (len
& 1 || offset
& 1) {
556 int which
= offset
& 1;
559 dm9000_read_eeprom(dm
, offset
/ 2, tmp
);
561 dm9000_write_eeprom(dm
, offset
/ 2, tmp
);
565 dm9000_write_eeprom(dm
, offset
/ 2, data
);
577 static void dm9000_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*w
)
579 board_info_t
*dm
= to_dm9000_board(dev
);
581 memset(w
, 0, sizeof(struct ethtool_wolinfo
));
583 /* note, we could probably support wake-phy too */
584 w
->supported
= dm
->wake_supported
? WAKE_MAGIC
: 0;
585 w
->wolopts
= dm
->wake_state
;
588 static int dm9000_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*w
)
590 board_info_t
*dm
= to_dm9000_board(dev
);
592 u32 opts
= w
->wolopts
;
595 if (!dm
->wake_supported
)
598 if (opts
& ~WAKE_MAGIC
)
601 if (opts
& WAKE_MAGIC
)
604 mutex_lock(&dm
->addr_lock
);
606 spin_lock_irqsave(&dm
->lock
, flags
);
607 iow(dm
, DM9000_WCR
, wcr
);
608 spin_unlock_irqrestore(&dm
->lock
, flags
);
610 mutex_unlock(&dm
->addr_lock
);
612 if (dm
->wake_state
!= opts
) {
613 /* change in wol state, update IRQ state */
616 irq_set_irq_wake(dm
->irq_wake
, 1);
617 else if (dm
->wake_state
&& !opts
)
618 irq_set_irq_wake(dm
->irq_wake
, 0);
621 dm
->wake_state
= opts
;
625 static const struct ethtool_ops dm9000_ethtool_ops
= {
626 .get_drvinfo
= dm9000_get_drvinfo
,
627 .get_settings
= dm9000_get_settings
,
628 .set_settings
= dm9000_set_settings
,
629 .get_msglevel
= dm9000_get_msglevel
,
630 .set_msglevel
= dm9000_set_msglevel
,
631 .nway_reset
= dm9000_nway_reset
,
632 .get_link
= dm9000_get_link
,
633 .get_wol
= dm9000_get_wol
,
634 .set_wol
= dm9000_set_wol
,
635 .get_eeprom_len
= dm9000_get_eeprom_len
,
636 .get_eeprom
= dm9000_get_eeprom
,
637 .set_eeprom
= dm9000_set_eeprom
,
640 static void dm9000_show_carrier(board_info_t
*db
,
641 unsigned carrier
, unsigned nsr
)
643 struct net_device
*ndev
= db
->ndev
;
644 unsigned ncr
= dm9000_read_locked(db
, DM9000_NCR
);
647 dev_info(db
->dev
, "%s: link up, %dMbps, %s-duplex, no LPA\n",
648 ndev
->name
, (nsr
& NSR_SPEED
) ? 10 : 100,
649 (ncr
& NCR_FDX
) ? "full" : "half");
651 dev_info(db
->dev
, "%s: link down\n", ndev
->name
);
655 dm9000_poll_work(struct work_struct
*w
)
657 struct delayed_work
*dw
= to_delayed_work(w
);
658 board_info_t
*db
= container_of(dw
, board_info_t
, phy_poll
);
659 struct net_device
*ndev
= db
->ndev
;
661 if (db
->flags
& DM9000_PLATF_SIMPLE_PHY
&&
662 !(db
->flags
& DM9000_PLATF_EXT_PHY
)) {
663 unsigned nsr
= dm9000_read_locked(db
, DM9000_NSR
);
664 unsigned old_carrier
= netif_carrier_ok(ndev
) ? 1 : 0;
665 unsigned new_carrier
;
667 new_carrier
= (nsr
& NSR_LINKST
) ? 1 : 0;
669 if (old_carrier
!= new_carrier
) {
670 if (netif_msg_link(db
))
671 dm9000_show_carrier(db
, new_carrier
, nsr
);
674 netif_carrier_off(ndev
);
676 netif_carrier_on(ndev
);
679 mii_check_media(&db
->mii
, netif_msg_link(db
), 0);
681 if (netif_running(ndev
))
682 dm9000_schedule_poll(db
);
685 /* dm9000_release_board
687 * release a board, and any mapped resources
691 dm9000_release_board(struct platform_device
*pdev
, struct board_info
*db
)
693 /* unmap our resources */
695 iounmap(db
->io_addr
);
696 iounmap(db
->io_data
);
698 /* release the resources */
700 release_resource(db
->data_req
);
703 release_resource(db
->addr_req
);
707 static unsigned char dm9000_type_to_char(enum dm9000_type type
)
710 case TYPE_DM9000E
: return 'e';
711 case TYPE_DM9000A
: return 'a';
712 case TYPE_DM9000B
: return 'b';
719 * Set DM9000 multicast address
722 dm9000_hash_table_unlocked(struct net_device
*dev
)
724 board_info_t
*db
= netdev_priv(dev
);
725 struct netdev_hw_addr
*ha
;
729 u8 rcr
= RCR_DIS_LONG
| RCR_DIS_CRC
| RCR_RXEN
;
731 dm9000_dbg(db
, 1, "entering %s\n", __func__
);
733 for (i
= 0, oft
= DM9000_PAR
; i
< 6; i
++, oft
++)
734 iow(db
, oft
, dev
->dev_addr
[i
]);
736 /* Clear Hash Table */
737 for (i
= 0; i
< 4; i
++)
740 /* broadcast address */
741 hash_table
[3] = 0x8000;
743 if (dev
->flags
& IFF_PROMISC
)
746 if (dev
->flags
& IFF_ALLMULTI
)
749 /* the multicast address in Hash Table : 64 bits */
750 netdev_for_each_mc_addr(ha
, dev
) {
751 hash_val
= ether_crc_le(6, ha
->addr
) & 0x3f;
752 hash_table
[hash_val
/ 16] |= (u16
) 1 << (hash_val
% 16);
755 /* Write the hash table to MAC MD table */
756 for (i
= 0, oft
= DM9000_MAR
; i
< 4; i
++) {
757 iow(db
, oft
++, hash_table
[i
]);
758 iow(db
, oft
++, hash_table
[i
] >> 8);
761 iow(db
, DM9000_RCR
, rcr
);
765 dm9000_hash_table(struct net_device
*dev
)
767 board_info_t
*db
= netdev_priv(dev
);
770 spin_lock_irqsave(&db
->lock
, flags
);
771 dm9000_hash_table_unlocked(dev
);
772 spin_unlock_irqrestore(&db
->lock
, flags
);
776 * Initialize dm9000 board
779 dm9000_init_dm9000(struct net_device
*dev
)
781 board_info_t
*db
= netdev_priv(dev
);
785 dm9000_dbg(db
, 1, "entering %s\n", __func__
);
788 db
->io_mode
= ior(db
, DM9000_ISR
) >> 6; /* ISR bit7:6 keeps I/O mode */
791 if (dev
->hw_features
& NETIF_F_RXCSUM
)
793 (dev
->features
& NETIF_F_RXCSUM
) ? RCSR_CSUM
: 0);
795 iow(db
, DM9000_GPCR
, GPCR_GEP_CNTL
); /* Let GPIO0 output */
797 ncr
= (db
->flags
& DM9000_PLATF_EXT_PHY
) ? NCR_EXT_PHY
: 0;
799 /* if wol is needed, then always set NCR_WAKEEN otherwise we end
800 * up dumping the wake events if we disable this. There is already
801 * a wake-mask in DM9000_WCR */
802 if (db
->wake_supported
)
805 iow(db
, DM9000_NCR
, ncr
);
807 /* Program operating register */
808 iow(db
, DM9000_TCR
, 0); /* TX Polling clear */
809 iow(db
, DM9000_BPTR
, 0x3f); /* Less 3Kb, 200us */
810 iow(db
, DM9000_FCR
, 0xff); /* Flow Control */
811 iow(db
, DM9000_SMCR
, 0); /* Special Mode */
812 /* clear TX status */
813 iow(db
, DM9000_NSR
, NSR_WAKEST
| NSR_TX2END
| NSR_TX1END
);
814 iow(db
, DM9000_ISR
, ISR_CLR_STATUS
); /* Clear interrupt status */
816 /* Set address filter table */
817 dm9000_hash_table_unlocked(dev
);
819 imr
= IMR_PAR
| IMR_PTM
| IMR_PRM
;
820 if (db
->type
!= TYPE_DM9000E
)
825 /* Enable TX/RX interrupt mask */
826 iow(db
, DM9000_IMR
, imr
);
828 /* Init Driver variable */
830 db
->queue_pkt_len
= 0;
831 dev
->trans_start
= jiffies
;
834 /* Our watchdog timed out. Called by the networking layer */
835 static void dm9000_timeout(struct net_device
*dev
)
837 board_info_t
*db
= netdev_priv(dev
);
841 /* Save previous register address */
842 spin_lock_irqsave(&db
->lock
, flags
);
843 reg_save
= readb(db
->io_addr
);
845 netif_stop_queue(dev
);
847 dm9000_init_dm9000(dev
);
848 /* We can accept TX packets again */
849 dev
->trans_start
= jiffies
; /* prevent tx timeout */
850 netif_wake_queue(dev
);
852 /* Restore previous register address */
853 writeb(reg_save
, db
->io_addr
);
854 spin_unlock_irqrestore(&db
->lock
, flags
);
857 static void dm9000_send_packet(struct net_device
*dev
,
861 board_info_t
*dm
= to_dm9000_board(dev
);
863 /* The DM9000 is not smart enough to leave fragmented packets alone. */
864 if (dm
->ip_summed
!= ip_summed
) {
865 if (ip_summed
== CHECKSUM_NONE
)
866 iow(dm
, DM9000_TCCR
, 0);
868 iow(dm
, DM9000_TCCR
, TCCR_IP
| TCCR_UDP
| TCCR_TCP
);
869 dm
->ip_summed
= ip_summed
;
872 /* Set TX length to DM9000 */
873 iow(dm
, DM9000_TXPLL
, pkt_len
);
874 iow(dm
, DM9000_TXPLH
, pkt_len
>> 8);
876 /* Issue TX polling command */
877 iow(dm
, DM9000_TCR
, TCR_TXREQ
); /* Cleared after TX complete */
881 * Hardware start transmission.
882 * Send a packet to media from the upper layer.
885 dm9000_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
888 board_info_t
*db
= netdev_priv(dev
);
890 dm9000_dbg(db
, 3, "%s:\n", __func__
);
892 if (db
->tx_pkt_cnt
> 1)
893 return NETDEV_TX_BUSY
;
895 spin_lock_irqsave(&db
->lock
, flags
);
897 /* Move data to DM9000 TX RAM */
898 writeb(DM9000_MWCMD
, db
->io_addr
);
900 (db
->outblk
)(db
->io_data
, skb
->data
, skb
->len
);
901 dev
->stats
.tx_bytes
+= skb
->len
;
904 /* TX control: First packet immediately send, second packet queue */
905 if (db
->tx_pkt_cnt
== 1) {
906 dm9000_send_packet(dev
, skb
->ip_summed
, skb
->len
);
909 db
->queue_pkt_len
= skb
->len
;
910 db
->queue_ip_summed
= skb
->ip_summed
;
911 netif_stop_queue(dev
);
914 spin_unlock_irqrestore(&db
->lock
, flags
);
923 * DM9000 interrupt handler
924 * receive the packet to upper layer, free the transmitted packet
927 static void dm9000_tx_done(struct net_device
*dev
, board_info_t
*db
)
929 int tx_status
= ior(db
, DM9000_NSR
); /* Got TX status */
931 if (tx_status
& (NSR_TX2END
| NSR_TX1END
)) {
932 /* One packet sent complete */
934 dev
->stats
.tx_packets
++;
936 if (netif_msg_tx_done(db
))
937 dev_dbg(db
->dev
, "tx done, NSR %02x\n", tx_status
);
939 /* Queue packet check & send */
940 if (db
->tx_pkt_cnt
> 0)
941 dm9000_send_packet(dev
, db
->queue_ip_summed
,
943 netif_wake_queue(dev
);
947 struct dm9000_rxhdr
{
954 * Received a packet and pass to upper layer
957 dm9000_rx(struct net_device
*dev
)
959 board_info_t
*db
= netdev_priv(dev
);
960 struct dm9000_rxhdr rxhdr
;
966 /* Check packet ready or not */
968 ior(db
, DM9000_MRCMDX
); /* Dummy read */
970 /* Get most updated data */
971 rxbyte
= readb(db
->io_data
);
973 /* Status check: this byte must be 0 or 1 */
974 if (rxbyte
& DM9000_PKT_ERR
) {
975 dev_warn(db
->dev
, "status check fail: %d\n", rxbyte
);
976 iow(db
, DM9000_RCR
, 0x00); /* Stop Device */
977 iow(db
, DM9000_ISR
, IMR_PAR
); /* Stop INT request */
981 if (!(rxbyte
& DM9000_PKT_RDY
))
984 /* A packet ready now & Get status/length */
986 writeb(DM9000_MRCMD
, db
->io_addr
);
988 (db
->inblk
)(db
->io_data
, &rxhdr
, sizeof(rxhdr
));
990 RxLen
= le16_to_cpu(rxhdr
.RxLen
);
992 if (netif_msg_rx_status(db
))
993 dev_dbg(db
->dev
, "RX: status %02x, length %04x\n",
994 rxhdr
.RxStatus
, RxLen
);
996 /* Packet Status check */
999 if (netif_msg_rx_err(db
))
1000 dev_dbg(db
->dev
, "RX: Bad Packet (runt)\n");
1003 if (RxLen
> DM9000_PKT_MAX
) {
1004 dev_dbg(db
->dev
, "RST: RX Len:%x\n", RxLen
);
1007 /* rxhdr.RxStatus is identical to RSR register. */
1008 if (rxhdr
.RxStatus
& (RSR_FOE
| RSR_CE
| RSR_AE
|
1009 RSR_PLE
| RSR_RWTO
|
1010 RSR_LCS
| RSR_RF
)) {
1012 if (rxhdr
.RxStatus
& RSR_FOE
) {
1013 if (netif_msg_rx_err(db
))
1014 dev_dbg(db
->dev
, "fifo error\n");
1015 dev
->stats
.rx_fifo_errors
++;
1017 if (rxhdr
.RxStatus
& RSR_CE
) {
1018 if (netif_msg_rx_err(db
))
1019 dev_dbg(db
->dev
, "crc error\n");
1020 dev
->stats
.rx_crc_errors
++;
1022 if (rxhdr
.RxStatus
& RSR_RF
) {
1023 if (netif_msg_rx_err(db
))
1024 dev_dbg(db
->dev
, "length error\n");
1025 dev
->stats
.rx_length_errors
++;
1029 /* Move data from DM9000 */
1031 ((skb
= dev_alloc_skb(RxLen
+ 4)) != NULL
)) {
1032 skb_reserve(skb
, 2);
1033 rdptr
= (u8
*) skb_put(skb
, RxLen
- 4);
1035 /* Read received packet from RX SRAM */
1037 (db
->inblk
)(db
->io_data
, rdptr
, RxLen
);
1038 dev
->stats
.rx_bytes
+= RxLen
;
1040 /* Pass to upper layer */
1041 skb
->protocol
= eth_type_trans(skb
, dev
);
1042 if (dev
->features
& NETIF_F_RXCSUM
) {
1043 if ((((rxbyte
& 0x1c) << 3) & rxbyte
) == 0)
1044 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1046 skb_checksum_none_assert(skb
);
1049 dev
->stats
.rx_packets
++;
1052 /* need to dump the packet's data */
1054 (db
->dumpblk
)(db
->io_data
, RxLen
);
1056 } while (rxbyte
& DM9000_PKT_RDY
);
1059 static irqreturn_t
dm9000_interrupt(int irq
, void *dev_id
)
1061 struct net_device
*dev
= dev_id
;
1062 board_info_t
*db
= netdev_priv(dev
);
1064 unsigned long flags
;
1067 dm9000_dbg(db
, 3, "entering %s\n", __func__
);
1069 /* A real interrupt coming */
1071 /* holders of db->lock must always block IRQs */
1072 spin_lock_irqsave(&db
->lock
, flags
);
1074 /* Save previous register address */
1075 reg_save
= readb(db
->io_addr
);
1077 /* Disable all interrupts */
1078 iow(db
, DM9000_IMR
, IMR_PAR
);
1080 /* Got DM9000 interrupt status */
1081 int_status
= ior(db
, DM9000_ISR
); /* Got ISR */
1082 iow(db
, DM9000_ISR
, int_status
); /* Clear ISR status */
1084 if (netif_msg_intr(db
))
1085 dev_dbg(db
->dev
, "interrupt status %02x\n", int_status
);
1087 /* Received the coming packet */
1088 if (int_status
& ISR_PRS
)
1091 /* Trnasmit Interrupt check */
1092 if (int_status
& ISR_PTS
)
1093 dm9000_tx_done(dev
, db
);
1095 if (db
->type
!= TYPE_DM9000E
) {
1096 if (int_status
& ISR_LNKCHNG
) {
1097 /* fire a link-change request */
1098 schedule_delayed_work(&db
->phy_poll
, 1);
1102 /* Re-enable interrupt mask */
1103 iow(db
, DM9000_IMR
, db
->imr_all
);
1105 /* Restore previous register address */
1106 writeb(reg_save
, db
->io_addr
);
1108 spin_unlock_irqrestore(&db
->lock
, flags
);
1113 static irqreturn_t
dm9000_wol_interrupt(int irq
, void *dev_id
)
1115 struct net_device
*dev
= dev_id
;
1116 board_info_t
*db
= netdev_priv(dev
);
1117 unsigned long flags
;
1120 spin_lock_irqsave(&db
->lock
, flags
);
1122 nsr
= ior(db
, DM9000_NSR
);
1123 wcr
= ior(db
, DM9000_WCR
);
1125 dev_dbg(db
->dev
, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__
, nsr
, wcr
);
1127 if (nsr
& NSR_WAKEST
) {
1128 /* clear, so we can avoid */
1129 iow(db
, DM9000_NSR
, NSR_WAKEST
);
1131 if (wcr
& WCR_LINKST
)
1132 dev_info(db
->dev
, "wake by link status change\n");
1133 if (wcr
& WCR_SAMPLEST
)
1134 dev_info(db
->dev
, "wake by sample packet\n");
1135 if (wcr
& WCR_MAGICST
)
1136 dev_info(db
->dev
, "wake by magic packet\n");
1137 if (!(wcr
& (WCR_LINKST
| WCR_SAMPLEST
| WCR_MAGICST
)))
1138 dev_err(db
->dev
, "wake signalled with no reason? "
1139 "NSR=0x%02x, WSR=0x%02x\n", nsr
, wcr
);
1143 spin_unlock_irqrestore(&db
->lock
, flags
);
1145 return (nsr
& NSR_WAKEST
) ? IRQ_HANDLED
: IRQ_NONE
;
1148 #ifdef CONFIG_NET_POLL_CONTROLLER
1152 static void dm9000_poll_controller(struct net_device
*dev
)
1154 disable_irq(dev
->irq
);
1155 dm9000_interrupt(dev
->irq
, dev
);
1156 enable_irq(dev
->irq
);
1161 * Open the interface.
1162 * The interface is opened whenever "ifconfig" actives it.
1165 dm9000_open(struct net_device
*dev
)
1167 board_info_t
*db
= netdev_priv(dev
);
1168 unsigned long irqflags
= db
->irq_res
->flags
& IRQF_TRIGGER_MASK
;
1170 if (netif_msg_ifup(db
))
1171 dev_dbg(db
->dev
, "enabling %s\n", dev
->name
);
1173 /* If there is no IRQ type specified, default to something that
1174 * may work, and tell the user that this is a problem */
1176 if (irqflags
== IRQF_TRIGGER_NONE
)
1177 dev_warn(db
->dev
, "WARNING: no IRQ resource flags set.\n");
1179 irqflags
|= IRQF_SHARED
;
1181 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1182 iow(db
, DM9000_GPR
, 0); /* REG_1F bit0 activate phyxcer */
1183 mdelay(1); /* delay needs by DM9000B */
1185 /* Initialize DM9000 board */
1187 dm9000_init_dm9000(dev
);
1189 if (request_irq(dev
->irq
, dm9000_interrupt
, irqflags
, dev
->name
, dev
))
1192 /* Init driver variable */
1195 mii_check_media(&db
->mii
, netif_msg_link(db
), 1);
1196 netif_start_queue(dev
);
1198 dm9000_schedule_poll(db
);
1204 * Sleep, either by using msleep() or if we are suspending, then
1205 * use mdelay() to sleep.
1207 static void dm9000_msleep(board_info_t
*db
, unsigned int ms
)
1216 * Read a word from phyxcer
1219 dm9000_phy_read(struct net_device
*dev
, int phy_reg_unused
, int reg
)
1221 board_info_t
*db
= netdev_priv(dev
);
1222 unsigned long flags
;
1223 unsigned int reg_save
;
1226 mutex_lock(&db
->addr_lock
);
1228 spin_lock_irqsave(&db
->lock
,flags
);
1230 /* Save previous register address */
1231 reg_save
= readb(db
->io_addr
);
1233 /* Fill the phyxcer register into REG_0C */
1234 iow(db
, DM9000_EPAR
, DM9000_PHY
| reg
);
1236 iow(db
, DM9000_EPCR
, EPCR_ERPRR
| EPCR_EPOS
); /* Issue phyxcer read command */
1238 writeb(reg_save
, db
->io_addr
);
1239 spin_unlock_irqrestore(&db
->lock
,flags
);
1241 dm9000_msleep(db
, 1); /* Wait read complete */
1243 spin_lock_irqsave(&db
->lock
,flags
);
1244 reg_save
= readb(db
->io_addr
);
1246 iow(db
, DM9000_EPCR
, 0x0); /* Clear phyxcer read command */
1248 /* The read data keeps on REG_0D & REG_0E */
1249 ret
= (ior(db
, DM9000_EPDRH
) << 8) | ior(db
, DM9000_EPDRL
);
1251 /* restore the previous address */
1252 writeb(reg_save
, db
->io_addr
);
1253 spin_unlock_irqrestore(&db
->lock
,flags
);
1255 mutex_unlock(&db
->addr_lock
);
1257 dm9000_dbg(db
, 5, "phy_read[%02x] -> %04x\n", reg
, ret
);
1262 * Write a word to phyxcer
1265 dm9000_phy_write(struct net_device
*dev
,
1266 int phyaddr_unused
, int reg
, int value
)
1268 board_info_t
*db
= netdev_priv(dev
);
1269 unsigned long flags
;
1270 unsigned long reg_save
;
1272 dm9000_dbg(db
, 5, "phy_write[%02x] = %04x\n", reg
, value
);
1273 mutex_lock(&db
->addr_lock
);
1275 spin_lock_irqsave(&db
->lock
,flags
);
1277 /* Save previous register address */
1278 reg_save
= readb(db
->io_addr
);
1280 /* Fill the phyxcer register into REG_0C */
1281 iow(db
, DM9000_EPAR
, DM9000_PHY
| reg
);
1283 /* Fill the written data into REG_0D & REG_0E */
1284 iow(db
, DM9000_EPDRL
, value
);
1285 iow(db
, DM9000_EPDRH
, value
>> 8);
1287 iow(db
, DM9000_EPCR
, EPCR_EPOS
| EPCR_ERPRW
); /* Issue phyxcer write command */
1289 writeb(reg_save
, db
->io_addr
);
1290 spin_unlock_irqrestore(&db
->lock
, flags
);
1292 dm9000_msleep(db
, 1); /* Wait write complete */
1294 spin_lock_irqsave(&db
->lock
,flags
);
1295 reg_save
= readb(db
->io_addr
);
1297 iow(db
, DM9000_EPCR
, 0x0); /* Clear phyxcer write command */
1299 /* restore the previous address */
1300 writeb(reg_save
, db
->io_addr
);
1302 spin_unlock_irqrestore(&db
->lock
, flags
);
1303 mutex_unlock(&db
->addr_lock
);
1307 dm9000_shutdown(struct net_device
*dev
)
1309 board_info_t
*db
= netdev_priv(dev
);
1312 dm9000_phy_write(dev
, 0, MII_BMCR
, BMCR_RESET
); /* PHY RESET */
1313 iow(db
, DM9000_GPR
, 0x01); /* Power-Down PHY */
1314 iow(db
, DM9000_IMR
, IMR_PAR
); /* Disable all interrupt */
1315 iow(db
, DM9000_RCR
, 0x00); /* Disable RX */
1319 * Stop the interface.
1320 * The interface is stopped when it is brought.
1323 dm9000_stop(struct net_device
*ndev
)
1325 board_info_t
*db
= netdev_priv(ndev
);
1327 if (netif_msg_ifdown(db
))
1328 dev_dbg(db
->dev
, "shutting down %s\n", ndev
->name
);
1330 cancel_delayed_work_sync(&db
->phy_poll
);
1332 netif_stop_queue(ndev
);
1333 netif_carrier_off(ndev
);
1335 /* free interrupt */
1336 free_irq(ndev
->irq
, ndev
);
1338 dm9000_shutdown(ndev
);
1343 static const struct net_device_ops dm9000_netdev_ops
= {
1344 .ndo_open
= dm9000_open
,
1345 .ndo_stop
= dm9000_stop
,
1346 .ndo_start_xmit
= dm9000_start_xmit
,
1347 .ndo_tx_timeout
= dm9000_timeout
,
1348 .ndo_set_rx_mode
= dm9000_hash_table
,
1349 .ndo_do_ioctl
= dm9000_ioctl
,
1350 .ndo_change_mtu
= eth_change_mtu
,
1351 .ndo_set_features
= dm9000_set_features
,
1352 .ndo_validate_addr
= eth_validate_addr
,
1353 .ndo_set_mac_address
= eth_mac_addr
,
1354 #ifdef CONFIG_NET_POLL_CONTROLLER
1355 .ndo_poll_controller
= dm9000_poll_controller
,
1360 * Search DM9000 board, allocate space and register it
1362 static int __devinit
1363 dm9000_probe(struct platform_device
*pdev
)
1365 struct dm9000_plat_data
*pdata
= pdev
->dev
.platform_data
;
1366 struct board_info
*db
; /* Point a board information structure */
1367 struct net_device
*ndev
;
1368 const unsigned char *mac_src
;
1374 /* Init network device */
1375 ndev
= alloc_etherdev(sizeof(struct board_info
));
1377 dev_err(&pdev
->dev
, "could not allocate device.\n");
1381 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
1383 dev_dbg(&pdev
->dev
, "dm9000_probe()\n");
1385 /* setup board info structure */
1386 db
= netdev_priv(ndev
);
1388 db
->dev
= &pdev
->dev
;
1391 spin_lock_init(&db
->lock
);
1392 mutex_init(&db
->addr_lock
);
1394 INIT_DELAYED_WORK(&db
->phy_poll
, dm9000_poll_work
);
1396 db
->addr_res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1397 db
->data_res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1398 db
->irq_res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
1400 if (db
->addr_res
== NULL
|| db
->data_res
== NULL
||
1401 db
->irq_res
== NULL
) {
1402 dev_err(db
->dev
, "insufficient resources\n");
1407 db
->irq_wake
= platform_get_irq(pdev
, 1);
1408 if (db
->irq_wake
>= 0) {
1409 dev_dbg(db
->dev
, "wakeup irq %d\n", db
->irq_wake
);
1411 ret
= request_irq(db
->irq_wake
, dm9000_wol_interrupt
,
1412 IRQF_SHARED
, dev_name(db
->dev
), ndev
);
1414 dev_err(db
->dev
, "cannot get wakeup irq (%d)\n", ret
);
1417 /* test to see if irq is really wakeup capable */
1418 ret
= irq_set_irq_wake(db
->irq_wake
, 1);
1420 dev_err(db
->dev
, "irq %d cannot set wakeup (%d)\n",
1424 irq_set_irq_wake(db
->irq_wake
, 0);
1425 db
->wake_supported
= 1;
1430 iosize
= resource_size(db
->addr_res
);
1431 db
->addr_req
= request_mem_region(db
->addr_res
->start
, iosize
,
1434 if (db
->addr_req
== NULL
) {
1435 dev_err(db
->dev
, "cannot claim address reg area\n");
1440 db
->io_addr
= ioremap(db
->addr_res
->start
, iosize
);
1442 if (db
->io_addr
== NULL
) {
1443 dev_err(db
->dev
, "failed to ioremap address reg\n");
1448 iosize
= resource_size(db
->data_res
);
1449 db
->data_req
= request_mem_region(db
->data_res
->start
, iosize
,
1452 if (db
->data_req
== NULL
) {
1453 dev_err(db
->dev
, "cannot claim data reg area\n");
1458 db
->io_data
= ioremap(db
->data_res
->start
, iosize
);
1460 if (db
->io_data
== NULL
) {
1461 dev_err(db
->dev
, "failed to ioremap data reg\n");
1466 /* fill in parameters for net-dev structure */
1467 ndev
->base_addr
= (unsigned long)db
->io_addr
;
1468 ndev
->irq
= db
->irq_res
->start
;
1470 /* ensure at least we have a default set of IO routines */
1471 dm9000_set_io(db
, iosize
);
1473 /* check to see if anything is being over-ridden */
1474 if (pdata
!= NULL
) {
1475 /* check to see if the driver wants to over-ride the
1476 * default IO width */
1478 if (pdata
->flags
& DM9000_PLATF_8BITONLY
)
1479 dm9000_set_io(db
, 1);
1481 if (pdata
->flags
& DM9000_PLATF_16BITONLY
)
1482 dm9000_set_io(db
, 2);
1484 if (pdata
->flags
& DM9000_PLATF_32BITONLY
)
1485 dm9000_set_io(db
, 4);
1487 /* check to see if there are any IO routine
1490 if (pdata
->inblk
!= NULL
)
1491 db
->inblk
= pdata
->inblk
;
1493 if (pdata
->outblk
!= NULL
)
1494 db
->outblk
= pdata
->outblk
;
1496 if (pdata
->dumpblk
!= NULL
)
1497 db
->dumpblk
= pdata
->dumpblk
;
1499 db
->flags
= pdata
->flags
;
1502 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1503 db
->flags
|= DM9000_PLATF_SIMPLE_PHY
;
1508 /* try multiple times, DM9000 sometimes gets the read wrong */
1509 for (i
= 0; i
< 8; i
++) {
1510 id_val
= ior(db
, DM9000_VIDL
);
1511 id_val
|= (u32
)ior(db
, DM9000_VIDH
) << 8;
1512 id_val
|= (u32
)ior(db
, DM9000_PIDL
) << 16;
1513 id_val
|= (u32
)ior(db
, DM9000_PIDH
) << 24;
1515 if (id_val
== DM9000_ID
)
1517 dev_err(db
->dev
, "read wrong id 0x%08x\n", id_val
);
1520 if (id_val
!= DM9000_ID
) {
1521 dev_err(db
->dev
, "wrong id: 0x%08x\n", id_val
);
1526 /* Identify what type of DM9000 we are working on */
1528 id_val
= ior(db
, DM9000_CHIPR
);
1529 dev_dbg(db
->dev
, "dm9000 revision 0x%02x\n", id_val
);
1533 db
->type
= TYPE_DM9000A
;
1536 db
->type
= TYPE_DM9000B
;
1539 dev_dbg(db
->dev
, "ID %02x => defaulting to DM9000E\n", id_val
);
1540 db
->type
= TYPE_DM9000E
;
1543 /* dm9000a/b are capable of hardware checksum offload */
1544 if (db
->type
== TYPE_DM9000A
|| db
->type
== TYPE_DM9000B
) {
1545 ndev
->hw_features
= NETIF_F_RXCSUM
| NETIF_F_IP_CSUM
;
1546 ndev
->features
|= ndev
->hw_features
;
1549 /* from this point we assume that we have found a DM9000 */
1551 /* driver system function */
1554 ndev
->netdev_ops
= &dm9000_netdev_ops
;
1555 ndev
->watchdog_timeo
= msecs_to_jiffies(watchdog
);
1556 ndev
->ethtool_ops
= &dm9000_ethtool_ops
;
1558 db
->msg_enable
= NETIF_MSG_LINK
;
1559 db
->mii
.phy_id_mask
= 0x1f;
1560 db
->mii
.reg_num_mask
= 0x1f;
1561 db
->mii
.force_media
= 0;
1562 db
->mii
.full_duplex
= 0;
1564 db
->mii
.mdio_read
= dm9000_phy_read
;
1565 db
->mii
.mdio_write
= dm9000_phy_write
;
1569 /* try reading the node address from the attached EEPROM */
1570 for (i
= 0; i
< 6; i
+= 2)
1571 dm9000_read_eeprom(db
, i
/ 2, ndev
->dev_addr
+i
);
1573 if (!is_valid_ether_addr(ndev
->dev_addr
) && pdata
!= NULL
) {
1574 mac_src
= "platform data";
1575 memcpy(ndev
->dev_addr
, pdata
->dev_addr
, 6);
1578 if (!is_valid_ether_addr(ndev
->dev_addr
)) {
1579 /* try reading from mac */
1582 for (i
= 0; i
< 6; i
++)
1583 ndev
->dev_addr
[i
] = ior(db
, i
+DM9000_PAR
);
1586 if (!is_valid_ether_addr(ndev
->dev_addr
)) {
1587 dev_warn(db
->dev
, "%s: Invalid ethernet MAC address. Please "
1588 "set using ifconfig\n", ndev
->name
);
1590 random_ether_addr(ndev
->dev_addr
);
1595 platform_set_drvdata(pdev
, ndev
);
1596 ret
= register_netdev(ndev
);
1599 printk(KERN_INFO
"%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1600 ndev
->name
, dm9000_type_to_char(db
->type
),
1601 db
->io_addr
, db
->io_data
, ndev
->irq
,
1602 ndev
->dev_addr
, mac_src
);
1606 dev_err(db
->dev
, "not found (%d).\n", ret
);
1608 dm9000_release_board(pdev
, db
);
1615 dm9000_drv_suspend(struct device
*dev
)
1617 struct platform_device
*pdev
= to_platform_device(dev
);
1618 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1622 db
= netdev_priv(ndev
);
1625 if (!netif_running(ndev
))
1628 netif_device_detach(ndev
);
1630 /* only shutdown if not using WoL */
1631 if (!db
->wake_state
)
1632 dm9000_shutdown(ndev
);
1638 dm9000_drv_resume(struct device
*dev
)
1640 struct platform_device
*pdev
= to_platform_device(dev
);
1641 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1642 board_info_t
*db
= netdev_priv(ndev
);
1645 if (netif_running(ndev
)) {
1646 /* reset if we were not in wake mode to ensure if
1647 * the device was powered off it is in a known state */
1648 if (!db
->wake_state
) {
1650 dm9000_init_dm9000(ndev
);
1653 netif_device_attach(ndev
);
1661 static const struct dev_pm_ops dm9000_drv_pm_ops
= {
1662 .suspend
= dm9000_drv_suspend
,
1663 .resume
= dm9000_drv_resume
,
1666 static int __devexit
1667 dm9000_drv_remove(struct platform_device
*pdev
)
1669 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1671 platform_set_drvdata(pdev
, NULL
);
1673 unregister_netdev(ndev
);
1674 dm9000_release_board(pdev
, netdev_priv(ndev
));
1675 free_netdev(ndev
); /* free device structure */
1677 dev_dbg(&pdev
->dev
, "released and freed device\n");
1681 static struct platform_driver dm9000_driver
= {
1684 .owner
= THIS_MODULE
,
1685 .pm
= &dm9000_drv_pm_ops
,
1687 .probe
= dm9000_probe
,
1688 .remove
= __devexit_p(dm9000_drv_remove
),
1694 printk(KERN_INFO
"%s Ethernet Driver, V%s\n", CARDNAME
, DRV_VERSION
);
1696 return platform_driver_register(&dm9000_driver
);
1700 dm9000_cleanup(void)
1702 platform_driver_unregister(&dm9000_driver
);
1705 module_init(dm9000_init
);
1706 module_exit(dm9000_cleanup
);
1708 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1709 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1710 MODULE_LICENSE("GPL");
1711 MODULE_ALIAS("platform:dm9000");