2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 #include <linux/bitops.h>
42 #include <linux/irq.h>
43 #include <linux/clk.h>
44 #include <linux/platform_device.h>
45 #include <linux/phy.h>
46 #include <linux/fec.h>
48 #include <linux/of_device.h>
49 #include <linux/of_gpio.h>
50 #include <linux/of_net.h>
52 #include <asm/cacheflush.h>
55 #include <asm/coldfire.h>
56 #include <asm/mcfsim.h>
61 #if defined(CONFIG_ARM)
62 #define FEC_ALIGNMENT 0xf
64 #define FEC_ALIGNMENT 0x3
67 #define DRIVER_NAME "fec"
69 /* Controller is ENET-MAC */
70 #define FEC_QUIRK_ENET_MAC (1 << 0)
71 /* Controller needs driver to swap frame */
72 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
73 /* Controller uses gasket */
74 #define FEC_QUIRK_USE_GASKET (1 << 2)
75 /* Controller has GBIT support */
76 #define FEC_QUIRK_HAS_GBIT (1 << 3)
78 static struct platform_device_id fec_devtype
[] = {
80 /* keep it for coldfire */
85 .driver_data
= FEC_QUIRK_USE_GASKET
,
91 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_SWAP_FRAME
,
94 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_GBIT
,
99 MODULE_DEVICE_TABLE(platform
, fec_devtype
);
102 IMX25_FEC
= 1, /* runs on i.mx25/50/53 */
103 IMX27_FEC
, /* runs on i.mx27/35/51 */
108 static const struct of_device_id fec_dt_ids
[] = {
109 { .compatible
= "fsl,imx25-fec", .data
= &fec_devtype
[IMX25_FEC
], },
110 { .compatible
= "fsl,imx27-fec", .data
= &fec_devtype
[IMX27_FEC
], },
111 { .compatible
= "fsl,imx28-fec", .data
= &fec_devtype
[IMX28_FEC
], },
112 { .compatible
= "fsl,imx6q-fec", .data
= &fec_devtype
[IMX6Q_FEC
], },
115 MODULE_DEVICE_TABLE(of
, fec_dt_ids
);
117 static unsigned char macaddr
[ETH_ALEN
];
118 module_param_array(macaddr
, byte
, NULL
, 0);
119 MODULE_PARM_DESC(macaddr
, "FEC Ethernet MAC address");
121 #if defined(CONFIG_M5272)
123 * Some hardware gets it MAC address out of local flash memory.
124 * if this is non-zero then assume it is the address to get MAC from.
126 #if defined(CONFIG_NETtel)
127 #define FEC_FLASHMAC 0xf0006006
128 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
129 #define FEC_FLASHMAC 0xf0006000
130 #elif defined(CONFIG_CANCam)
131 #define FEC_FLASHMAC 0xf0020000
132 #elif defined (CONFIG_M5272C3)
133 #define FEC_FLASHMAC (0xffe04000 + 4)
134 #elif defined(CONFIG_MOD5272)
135 #define FEC_FLASHMAC 0xffc0406b
137 #define FEC_FLASHMAC 0
139 #endif /* CONFIG_M5272 */
141 /* The number of Tx and Rx buffers. These are allocated from the page
142 * pool. The code may assume these are power of two, so it it best
143 * to keep them that size.
144 * We don't need to allocate pages for the transmitter. We just use
145 * the skbuffer directly.
147 #define FEC_ENET_RX_PAGES 8
148 #define FEC_ENET_RX_FRSIZE 2048
149 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
150 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
151 #define FEC_ENET_TX_FRSIZE 2048
152 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
153 #define TX_RING_SIZE 16 /* Must be power of two */
154 #define TX_RING_MOD_MASK 15 /* for this to work */
156 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
157 #error "FEC: descriptor ring size constants too large"
160 /* Interrupt events/masks. */
161 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
162 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
163 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
164 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
165 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
166 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
167 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
168 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
169 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
170 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
172 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
174 /* The FEC stores dest/src/type, data, and checksum for receive packets.
176 #define PKT_MAXBUF_SIZE 1518
177 #define PKT_MINBUF_SIZE 64
178 #define PKT_MAXBLR_SIZE 1520
180 /* This device has up to three irqs on some platforms */
181 #define FEC_IRQ_NUM 3
184 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
185 * size bits. Other FEC hardware does not, so we need to take that into
186 * account when setting it.
188 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
189 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
190 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
192 #define OPT_FRAME_SIZE 0
195 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
196 * tx_bd_base always point to the base of the buffer descriptors. The
197 * cur_rx and cur_tx point to the currently available buffer.
198 * The dirty_tx tracks the current buffer that is being sent by the
199 * controller. The cur_tx and dirty_tx are equal under both completely
200 * empty and completely full conditions. The empty/ready indicator in
201 * the buffer descriptor determines the actual condition.
203 struct fec_enet_private
{
204 /* Hardware registers of the FEC device */
207 struct net_device
*netdev
;
211 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
212 unsigned char *tx_bounce
[TX_RING_SIZE
];
213 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
214 struct sk_buff
* rx_skbuff
[RX_RING_SIZE
];
218 /* CPM dual port RAM relative addresses */
220 /* Address of Rx and Tx buffers */
221 struct bufdesc
*rx_bd_base
;
222 struct bufdesc
*tx_bd_base
;
223 /* The next free ring entry */
224 struct bufdesc
*cur_rx
, *cur_tx
;
225 /* The ring entries to be free()ed */
226 struct bufdesc
*dirty_tx
;
229 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
232 struct platform_device
*pdev
;
237 /* Phylib and MDIO interface */
238 struct mii_bus
*mii_bus
;
239 struct phy_device
*phy_dev
;
242 phy_interface_t phy_interface
;
245 struct completion mdio_done
;
246 int irq
[FEC_IRQ_NUM
];
249 /* FEC MII MMFR bits definition */
250 #define FEC_MMFR_ST (1 << 30)
251 #define FEC_MMFR_OP_READ (2 << 28)
252 #define FEC_MMFR_OP_WRITE (1 << 28)
253 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
254 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
255 #define FEC_MMFR_TA (2 << 16)
256 #define FEC_MMFR_DATA(v) (v & 0xffff)
258 #define FEC_MII_TIMEOUT 30000 /* us */
260 /* Transmitter timeout */
261 #define TX_TIMEOUT (2 * HZ)
265 static void *swap_buffer(void *bufaddr
, int len
)
268 unsigned int *buf
= bufaddr
;
270 for (i
= 0; i
< (len
+ 3) / 4; i
++, buf
++)
271 *buf
= cpu_to_be32(*buf
);
277 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
279 struct fec_enet_private
*fep
= netdev_priv(ndev
);
280 const struct platform_device_id
*id_entry
=
281 platform_get_device_id(fep
->pdev
);
284 unsigned short status
;
288 /* Link is down or autonegotiation is in progress. */
289 return NETDEV_TX_BUSY
;
292 spin_lock_irqsave(&fep
->hw_lock
, flags
);
293 /* Fill in a Tx ring entry */
296 status
= bdp
->cbd_sc
;
298 if (status
& BD_ENET_TX_READY
) {
299 /* Ooops. All transmit buffers are full. Bail out.
300 * This should not happen, since ndev->tbusy should be set.
302 printk("%s: tx queue full!.\n", ndev
->name
);
303 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
304 return NETDEV_TX_BUSY
;
307 /* Clear all of the status flags */
308 status
&= ~BD_ENET_TX_STATS
;
310 /* Set buffer length and buffer pointer */
312 bdp
->cbd_datlen
= skb
->len
;
315 * On some FEC implementations data must be aligned on
316 * 4-byte boundaries. Use bounce buffers to copy data
317 * and get it aligned. Ugh.
319 if (((unsigned long) bufaddr
) & FEC_ALIGNMENT
) {
321 index
= bdp
- fep
->tx_bd_base
;
322 memcpy(fep
->tx_bounce
[index
], skb
->data
, skb
->len
);
323 bufaddr
= fep
->tx_bounce
[index
];
327 * Some design made an incorrect assumption on endian mode of
328 * the system that it's running on. As the result, driver has to
329 * swap every frame going to and coming from the controller.
331 if (id_entry
->driver_data
& FEC_QUIRK_SWAP_FRAME
)
332 swap_buffer(bufaddr
, skb
->len
);
334 /* Save skb pointer */
335 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
337 ndev
->stats
.tx_bytes
+= skb
->len
;
338 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
340 /* Push the data cache so the CPM does not get stale memory
343 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, bufaddr
,
344 FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
346 /* Send it on its way. Tell FEC it's ready, interrupt when done,
347 * it's the last BD of the frame, and to put the CRC on the end.
349 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
350 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
351 bdp
->cbd_sc
= status
;
353 /* Trigger transmission start */
354 writel(0, fep
->hwp
+ FEC_X_DES_ACTIVE
);
356 /* If this was the last BD in the ring, start at the beginning again. */
357 if (status
& BD_ENET_TX_WRAP
)
358 bdp
= fep
->tx_bd_base
;
362 if (bdp
== fep
->dirty_tx
) {
364 netif_stop_queue(ndev
);
369 skb_tx_timestamp(skb
);
371 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
376 /* This function is called to start or restart the FEC during a link
377 * change. This only happens when switching between half and full
381 fec_restart(struct net_device
*ndev
, int duplex
)
383 struct fec_enet_private
*fep
= netdev_priv(ndev
);
384 const struct platform_device_id
*id_entry
=
385 platform_get_device_id(fep
->pdev
);
388 u32 rcntl
= OPT_FRAME_SIZE
| 0x04;
389 u32 ecntl
= 0x2; /* ETHEREN */
391 /* Whack a reset. We should wait for this. */
392 writel(1, fep
->hwp
+ FEC_ECNTRL
);
396 * enet-mac reset will reset mac address registers too,
397 * so need to reconfigure it.
399 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
400 memcpy(&temp_mac
, ndev
->dev_addr
, ETH_ALEN
);
401 writel(cpu_to_be32(temp_mac
[0]), fep
->hwp
+ FEC_ADDR_LOW
);
402 writel(cpu_to_be32(temp_mac
[1]), fep
->hwp
+ FEC_ADDR_HIGH
);
405 /* Clear any outstanding interrupt. */
406 writel(0xffc00000, fep
->hwp
+ FEC_IEVENT
);
408 /* Reset all multicast. */
409 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
410 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
412 writel(0, fep
->hwp
+ FEC_HASH_TABLE_HIGH
);
413 writel(0, fep
->hwp
+ FEC_HASH_TABLE_LOW
);
416 /* Set maximum receive buffer size. */
417 writel(PKT_MAXBLR_SIZE
, fep
->hwp
+ FEC_R_BUFF_SIZE
);
419 /* Set receive and transmit descriptor base. */
420 writel(fep
->bd_dma
, fep
->hwp
+ FEC_R_DES_START
);
421 writel((unsigned long)fep
->bd_dma
+ sizeof(struct bufdesc
) * RX_RING_SIZE
,
422 fep
->hwp
+ FEC_X_DES_START
);
424 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
425 fep
->cur_rx
= fep
->rx_bd_base
;
427 /* Reset SKB transmit buffers. */
428 fep
->skb_cur
= fep
->skb_dirty
= 0;
429 for (i
= 0; i
<= TX_RING_MOD_MASK
; i
++) {
430 if (fep
->tx_skbuff
[i
]) {
431 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
432 fep
->tx_skbuff
[i
] = NULL
;
436 /* Enable MII mode */
439 writel(0x04, fep
->hwp
+ FEC_X_CNTRL
);
443 writel(0x0, fep
->hwp
+ FEC_X_CNTRL
);
446 fep
->full_duplex
= duplex
;
449 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
452 * The phy interface and speed need to get configured
453 * differently on enet-mac.
455 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
456 /* Enable flow control and length check */
457 rcntl
|= 0x40000000 | 0x00000020;
459 /* RGMII, RMII or MII */
460 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII
)
462 else if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
467 /* 1G, 100M or 10M */
469 if (fep
->phy_dev
->speed
== SPEED_1000
)
471 else if (fep
->phy_dev
->speed
== SPEED_100
)
477 #ifdef FEC_MIIGSK_ENR
478 if (id_entry
->driver_data
& FEC_QUIRK_USE_GASKET
) {
480 /* disable the gasket and wait */
481 writel(0, fep
->hwp
+ FEC_MIIGSK_ENR
);
482 while (readl(fep
->hwp
+ FEC_MIIGSK_ENR
) & 4)
486 * configure the gasket:
487 * RMII, 50 MHz, no loopback, no echo
488 * MII, 25 MHz, no loopback, no echo
490 cfgr
= (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
491 ? BM_MIIGSK_CFGR_RMII
: BM_MIIGSK_CFGR_MII
;
492 if (fep
->phy_dev
&& fep
->phy_dev
->speed
== SPEED_10
)
493 cfgr
|= BM_MIIGSK_CFGR_FRCONT_10M
;
494 writel(cfgr
, fep
->hwp
+ FEC_MIIGSK_CFGR
);
496 /* re-enable the gasket */
497 writel(2, fep
->hwp
+ FEC_MIIGSK_ENR
);
501 writel(rcntl
, fep
->hwp
+ FEC_R_CNTRL
);
503 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
504 /* enable ENET endian swap */
506 /* enable ENET store and forward mode */
507 writel(1 << 8, fep
->hwp
+ FEC_X_WMRK
);
510 /* And last, enable the transmit and receive processing */
511 writel(ecntl
, fep
->hwp
+ FEC_ECNTRL
);
512 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
514 /* Enable interrupts we wish to service */
515 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
519 fec_stop(struct net_device
*ndev
)
521 struct fec_enet_private
*fep
= netdev_priv(ndev
);
522 const struct platform_device_id
*id_entry
=
523 platform_get_device_id(fep
->pdev
);
524 u32 rmii_mode
= readl(fep
->hwp
+ FEC_R_CNTRL
) & (1 << 8);
526 /* We cannot expect a graceful transmit stop without link !!! */
528 writel(1, fep
->hwp
+ FEC_X_CNTRL
); /* Graceful transmit stop */
530 if (!(readl(fep
->hwp
+ FEC_IEVENT
) & FEC_ENET_GRA
))
531 printk("fec_stop : Graceful transmit stop did not complete !\n");
534 /* Whack a reset. We should wait for this. */
535 writel(1, fep
->hwp
+ FEC_ECNTRL
);
537 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
538 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
540 /* We have to keep ENET enabled to have MII interrupt stay working */
541 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
542 writel(2, fep
->hwp
+ FEC_ECNTRL
);
543 writel(rmii_mode
, fep
->hwp
+ FEC_R_CNTRL
);
549 fec_timeout(struct net_device
*ndev
)
551 struct fec_enet_private
*fep
= netdev_priv(ndev
);
553 ndev
->stats
.tx_errors
++;
555 fec_restart(ndev
, fep
->full_duplex
);
556 netif_wake_queue(ndev
);
560 fec_enet_tx(struct net_device
*ndev
)
562 struct fec_enet_private
*fep
;
564 unsigned short status
;
567 fep
= netdev_priv(ndev
);
568 spin_lock(&fep
->hw_lock
);
571 while (((status
= bdp
->cbd_sc
) & BD_ENET_TX_READY
) == 0) {
572 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0)
575 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
576 FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
577 bdp
->cbd_bufaddr
= 0;
579 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
580 /* Check for errors. */
581 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
582 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
584 ndev
->stats
.tx_errors
++;
585 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
586 ndev
->stats
.tx_heartbeat_errors
++;
587 if (status
& BD_ENET_TX_LC
) /* Late collision */
588 ndev
->stats
.tx_window_errors
++;
589 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
590 ndev
->stats
.tx_aborted_errors
++;
591 if (status
& BD_ENET_TX_UN
) /* Underrun */
592 ndev
->stats
.tx_fifo_errors
++;
593 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
594 ndev
->stats
.tx_carrier_errors
++;
596 ndev
->stats
.tx_packets
++;
599 if (status
& BD_ENET_TX_READY
)
600 printk("HEY! Enet xmit interrupt and TX_READY.\n");
602 /* Deferred means some collisions occurred during transmit,
603 * but we eventually sent the packet OK.
605 if (status
& BD_ENET_TX_DEF
)
606 ndev
->stats
.collisions
++;
608 /* Free the sk buffer associated with this last transmit */
609 dev_kfree_skb_any(skb
);
610 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
611 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
613 /* Update pointer to next buffer descriptor to be transmitted */
614 if (status
& BD_ENET_TX_WRAP
)
615 bdp
= fep
->tx_bd_base
;
619 /* Since we have freed up a buffer, the ring is no longer full
623 if (netif_queue_stopped(ndev
))
624 netif_wake_queue(ndev
);
628 spin_unlock(&fep
->hw_lock
);
632 /* During a receive, the cur_rx points to the current incoming buffer.
633 * When we update through the ring, if the next incoming buffer has
634 * not been given to the system, we just set the empty indicator,
635 * effectively tossing the packet.
638 fec_enet_rx(struct net_device
*ndev
)
640 struct fec_enet_private
*fep
= netdev_priv(ndev
);
641 const struct platform_device_id
*id_entry
=
642 platform_get_device_id(fep
->pdev
);
644 unsigned short status
;
653 spin_lock(&fep
->hw_lock
);
655 /* First, grab all of the stats for the incoming packet.
656 * These get messed up if we get called due to a busy condition.
660 while (!((status
= bdp
->cbd_sc
) & BD_ENET_RX_EMPTY
)) {
662 /* Since we have allocated space to hold a complete frame,
663 * the last indicator should be set.
665 if ((status
& BD_ENET_RX_LAST
) == 0)
666 printk("FEC ENET: rcv is not +last\n");
669 goto rx_processing_done
;
671 /* Check for errors. */
672 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
673 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
674 ndev
->stats
.rx_errors
++;
675 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
676 /* Frame too long or too short. */
677 ndev
->stats
.rx_length_errors
++;
679 if (status
& BD_ENET_RX_NO
) /* Frame alignment */
680 ndev
->stats
.rx_frame_errors
++;
681 if (status
& BD_ENET_RX_CR
) /* CRC Error */
682 ndev
->stats
.rx_crc_errors
++;
683 if (status
& BD_ENET_RX_OV
) /* FIFO overrun */
684 ndev
->stats
.rx_fifo_errors
++;
687 /* Report late collisions as a frame error.
688 * On this error, the BD is closed, but we don't know what we
689 * have in the buffer. So, just drop this frame on the floor.
691 if (status
& BD_ENET_RX_CL
) {
692 ndev
->stats
.rx_errors
++;
693 ndev
->stats
.rx_frame_errors
++;
694 goto rx_processing_done
;
697 /* Process the incoming frame. */
698 ndev
->stats
.rx_packets
++;
699 pkt_len
= bdp
->cbd_datlen
;
700 ndev
->stats
.rx_bytes
+= pkt_len
;
701 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
703 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
704 FEC_ENET_TX_FRSIZE
, DMA_FROM_DEVICE
);
706 if (id_entry
->driver_data
& FEC_QUIRK_SWAP_FRAME
)
707 swap_buffer(data
, pkt_len
);
709 /* This does 16 byte alignment, exactly what we need.
710 * The packet length includes FCS, but we don't want to
711 * include that when passing upstream as it messes up
712 * bridging applications.
714 skb
= dev_alloc_skb(pkt_len
- 4 + NET_IP_ALIGN
);
716 if (unlikely(!skb
)) {
717 printk("%s: Memory squeeze, dropping packet.\n",
719 ndev
->stats
.rx_dropped
++;
721 skb_reserve(skb
, NET_IP_ALIGN
);
722 skb_put(skb
, pkt_len
- 4); /* Make room */
723 skb_copy_to_linear_data(skb
, data
, pkt_len
- 4);
724 skb
->protocol
= eth_type_trans(skb
, ndev
);
725 if (!skb_defer_rx_timestamp(skb
))
729 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, data
,
730 FEC_ENET_TX_FRSIZE
, DMA_FROM_DEVICE
);
732 /* Clear the status flags for this buffer */
733 status
&= ~BD_ENET_RX_STATS
;
735 /* Mark the buffer empty */
736 status
|= BD_ENET_RX_EMPTY
;
737 bdp
->cbd_sc
= status
;
739 /* Update BD pointer to next entry */
740 if (status
& BD_ENET_RX_WRAP
)
741 bdp
= fep
->rx_bd_base
;
744 /* Doing this here will keep the FEC running while we process
745 * incoming frames. On a heavily loaded network, we should be
746 * able to keep up at the expense of system resources.
748 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
752 spin_unlock(&fep
->hw_lock
);
756 fec_enet_interrupt(int irq
, void *dev_id
)
758 struct net_device
*ndev
= dev_id
;
759 struct fec_enet_private
*fep
= netdev_priv(ndev
);
761 irqreturn_t ret
= IRQ_NONE
;
764 int_events
= readl(fep
->hwp
+ FEC_IEVENT
);
765 writel(int_events
, fep
->hwp
+ FEC_IEVENT
);
767 if (int_events
& FEC_ENET_RXF
) {
772 /* Transmit OK, or non-fatal error. Update the buffer
773 * descriptors. FEC handles all errors, we just discover
774 * them as part of the transmit process.
776 if (int_events
& FEC_ENET_TXF
) {
781 if (int_events
& FEC_ENET_MII
) {
783 complete(&fep
->mdio_done
);
785 } while (int_events
);
792 /* ------------------------------------------------------------------------- */
793 static void __inline__
fec_get_mac(struct net_device
*ndev
)
795 struct fec_enet_private
*fep
= netdev_priv(ndev
);
796 struct fec_platform_data
*pdata
= fep
->pdev
->dev
.platform_data
;
797 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
800 * try to get mac address in following order:
802 * 1) module parameter via kernel command line in form
803 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
809 * 2) from device tree data
811 if (!is_valid_ether_addr(iap
)) {
812 struct device_node
*np
= fep
->pdev
->dev
.of_node
;
814 const char *mac
= of_get_mac_address(np
);
816 iap
= (unsigned char *) mac
;
822 * 3) from flash or fuse (via platform data)
824 if (!is_valid_ether_addr(iap
)) {
827 iap
= (unsigned char *)FEC_FLASHMAC
;
830 iap
= (unsigned char *)&pdata
->mac
;
835 * 4) FEC mac registers set by bootloader
837 if (!is_valid_ether_addr(iap
)) {
838 *((unsigned long *) &tmpaddr
[0]) =
839 be32_to_cpu(readl(fep
->hwp
+ FEC_ADDR_LOW
));
840 *((unsigned short *) &tmpaddr
[4]) =
841 be16_to_cpu(readl(fep
->hwp
+ FEC_ADDR_HIGH
) >> 16);
845 memcpy(ndev
->dev_addr
, iap
, ETH_ALEN
);
847 /* Adjust MAC if using macaddr */
849 ndev
->dev_addr
[ETH_ALEN
-1] = macaddr
[ETH_ALEN
-1] + fep
->dev_id
;
852 /* ------------------------------------------------------------------------- */
857 static void fec_enet_adjust_link(struct net_device
*ndev
)
859 struct fec_enet_private
*fep
= netdev_priv(ndev
);
860 struct phy_device
*phy_dev
= fep
->phy_dev
;
863 int status_change
= 0;
865 spin_lock_irqsave(&fep
->hw_lock
, flags
);
867 /* Prevent a state halted on mii error */
868 if (fep
->mii_timeout
&& phy_dev
->state
== PHY_HALTED
) {
869 phy_dev
->state
= PHY_RESUMING
;
873 /* Duplex link change */
875 if (fep
->full_duplex
!= phy_dev
->duplex
) {
876 fec_restart(ndev
, phy_dev
->duplex
);
877 /* prevent unnecessary second fec_restart() below */
878 fep
->link
= phy_dev
->link
;
883 /* Link on or off change */
884 if (phy_dev
->link
!= fep
->link
) {
885 fep
->link
= phy_dev
->link
;
887 fec_restart(ndev
, phy_dev
->duplex
);
894 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
897 phy_print_status(phy_dev
);
900 static int fec_enet_mdio_read(struct mii_bus
*bus
, int mii_id
, int regnum
)
902 struct fec_enet_private
*fep
= bus
->priv
;
903 unsigned long time_left
;
905 fep
->mii_timeout
= 0;
906 init_completion(&fep
->mdio_done
);
908 /* start a read op */
909 writel(FEC_MMFR_ST
| FEC_MMFR_OP_READ
|
910 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
911 FEC_MMFR_TA
, fep
->hwp
+ FEC_MII_DATA
);
913 /* wait for end of transfer */
914 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
915 usecs_to_jiffies(FEC_MII_TIMEOUT
));
916 if (time_left
== 0) {
917 fep
->mii_timeout
= 1;
918 printk(KERN_ERR
"FEC: MDIO read timeout\n");
923 return FEC_MMFR_DATA(readl(fep
->hwp
+ FEC_MII_DATA
));
926 static int fec_enet_mdio_write(struct mii_bus
*bus
, int mii_id
, int regnum
,
929 struct fec_enet_private
*fep
= bus
->priv
;
930 unsigned long time_left
;
932 fep
->mii_timeout
= 0;
933 init_completion(&fep
->mdio_done
);
935 /* start a write op */
936 writel(FEC_MMFR_ST
| FEC_MMFR_OP_WRITE
|
937 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
938 FEC_MMFR_TA
| FEC_MMFR_DATA(value
),
939 fep
->hwp
+ FEC_MII_DATA
);
941 /* wait for end of transfer */
942 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
943 usecs_to_jiffies(FEC_MII_TIMEOUT
));
944 if (time_left
== 0) {
945 fep
->mii_timeout
= 1;
946 printk(KERN_ERR
"FEC: MDIO write timeout\n");
953 static int fec_enet_mdio_reset(struct mii_bus
*bus
)
958 static int fec_enet_mii_probe(struct net_device
*ndev
)
960 struct fec_enet_private
*fep
= netdev_priv(ndev
);
961 const struct platform_device_id
*id_entry
=
962 platform_get_device_id(fep
->pdev
);
963 struct phy_device
*phy_dev
= NULL
;
964 char mdio_bus_id
[MII_BUS_ID_SIZE
];
965 char phy_name
[MII_BUS_ID_SIZE
+ 3];
967 int dev_id
= fep
->dev_id
;
971 /* check for attached phy */
972 for (phy_id
= 0; (phy_id
< PHY_MAX_ADDR
); phy_id
++) {
973 if ((fep
->mii_bus
->phy_mask
& (1 << phy_id
)))
975 if (fep
->mii_bus
->phy_map
[phy_id
] == NULL
)
977 if (fep
->mii_bus
->phy_map
[phy_id
]->phy_id
== 0)
981 strncpy(mdio_bus_id
, fep
->mii_bus
->id
, MII_BUS_ID_SIZE
);
985 if (phy_id
>= PHY_MAX_ADDR
) {
987 "%s: no PHY, assuming direct connection to switch\n",
989 strncpy(mdio_bus_id
, "fixed-0", MII_BUS_ID_SIZE
);
993 snprintf(phy_name
, sizeof(phy_name
), PHY_ID_FMT
, mdio_bus_id
, phy_id
);
994 phy_dev
= phy_connect(ndev
, phy_name
, &fec_enet_adjust_link
, 0,
996 if (IS_ERR(phy_dev
)) {
997 printk(KERN_ERR
"%s: could not attach to PHY\n", ndev
->name
);
998 return PTR_ERR(phy_dev
);
1001 /* mask with MAC supported features */
1002 if (id_entry
->driver_data
& FEC_QUIRK_HAS_GBIT
)
1003 phy_dev
->supported
&= PHY_GBIT_FEATURES
;
1005 phy_dev
->supported
&= PHY_BASIC_FEATURES
;
1007 phy_dev
->advertising
= phy_dev
->supported
;
1009 fep
->phy_dev
= phy_dev
;
1011 fep
->full_duplex
= 0;
1014 "%s: Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1016 fep
->phy_dev
->drv
->name
, dev_name(&fep
->phy_dev
->dev
),
1022 static int fec_enet_mii_init(struct platform_device
*pdev
)
1024 static struct mii_bus
*fec0_mii_bus
;
1025 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1026 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1027 const struct platform_device_id
*id_entry
=
1028 platform_get_device_id(fep
->pdev
);
1029 int err
= -ENXIO
, i
;
1032 * The dual fec interfaces are not equivalent with enet-mac.
1033 * Here are the differences:
1035 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1036 * - fec0 acts as the 1588 time master while fec1 is slave
1037 * - external phys can only be configured by fec0
1039 * That is to say fec1 can not work independently. It only works
1040 * when fec0 is working. The reason behind this design is that the
1041 * second interface is added primarily for Switch mode.
1043 * Because of the last point above, both phys are attached on fec0
1044 * mdio interface in board design, and need to be configured by
1047 if ((id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) && fep
->dev_id
> 0) {
1048 /* fec1 uses fec0 mii_bus */
1049 if (mii_cnt
&& fec0_mii_bus
) {
1050 fep
->mii_bus
= fec0_mii_bus
;
1057 fep
->mii_timeout
= 0;
1060 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1062 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1063 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1064 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1067 fep
->phy_speed
= DIV_ROUND_UP(clk_get_rate(fep
->clk
), 5000000);
1068 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
)
1070 fep
->phy_speed
<<= 1;
1071 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
1073 fep
->mii_bus
= mdiobus_alloc();
1074 if (fep
->mii_bus
== NULL
) {
1079 fep
->mii_bus
->name
= "fec_enet_mii_bus";
1080 fep
->mii_bus
->read
= fec_enet_mdio_read
;
1081 fep
->mii_bus
->write
= fec_enet_mdio_write
;
1082 fep
->mii_bus
->reset
= fec_enet_mdio_reset
;
1083 snprintf(fep
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%s-%x",
1084 pdev
->name
, fep
->dev_id
+ 1);
1085 fep
->mii_bus
->priv
= fep
;
1086 fep
->mii_bus
->parent
= &pdev
->dev
;
1088 fep
->mii_bus
->irq
= kmalloc(sizeof(int) * PHY_MAX_ADDR
, GFP_KERNEL
);
1089 if (!fep
->mii_bus
->irq
) {
1091 goto err_out_free_mdiobus
;
1094 for (i
= 0; i
< PHY_MAX_ADDR
; i
++)
1095 fep
->mii_bus
->irq
[i
] = PHY_POLL
;
1097 if (mdiobus_register(fep
->mii_bus
))
1098 goto err_out_free_mdio_irq
;
1102 /* save fec0 mii_bus */
1103 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
)
1104 fec0_mii_bus
= fep
->mii_bus
;
1108 err_out_free_mdio_irq
:
1109 kfree(fep
->mii_bus
->irq
);
1110 err_out_free_mdiobus
:
1111 mdiobus_free(fep
->mii_bus
);
1116 static void fec_enet_mii_remove(struct fec_enet_private
*fep
)
1118 if (--mii_cnt
== 0) {
1119 mdiobus_unregister(fep
->mii_bus
);
1120 kfree(fep
->mii_bus
->irq
);
1121 mdiobus_free(fep
->mii_bus
);
1125 static int fec_enet_get_settings(struct net_device
*ndev
,
1126 struct ethtool_cmd
*cmd
)
1128 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1129 struct phy_device
*phydev
= fep
->phy_dev
;
1134 return phy_ethtool_gset(phydev
, cmd
);
1137 static int fec_enet_set_settings(struct net_device
*ndev
,
1138 struct ethtool_cmd
*cmd
)
1140 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1141 struct phy_device
*phydev
= fep
->phy_dev
;
1146 return phy_ethtool_sset(phydev
, cmd
);
1149 static void fec_enet_get_drvinfo(struct net_device
*ndev
,
1150 struct ethtool_drvinfo
*info
)
1152 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1154 strcpy(info
->driver
, fep
->pdev
->dev
.driver
->name
);
1155 strcpy(info
->version
, "Revision: 1.0");
1156 strcpy(info
->bus_info
, dev_name(&ndev
->dev
));
1159 static const struct ethtool_ops fec_enet_ethtool_ops
= {
1160 .get_settings
= fec_enet_get_settings
,
1161 .set_settings
= fec_enet_set_settings
,
1162 .get_drvinfo
= fec_enet_get_drvinfo
,
1163 .get_link
= ethtool_op_get_link
,
1166 static int fec_enet_ioctl(struct net_device
*ndev
, struct ifreq
*rq
, int cmd
)
1168 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1169 struct phy_device
*phydev
= fep
->phy_dev
;
1171 if (!netif_running(ndev
))
1177 return phy_mii_ioctl(phydev
, rq
, cmd
);
1180 static void fec_enet_free_buffers(struct net_device
*ndev
)
1182 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1184 struct sk_buff
*skb
;
1185 struct bufdesc
*bdp
;
1187 bdp
= fep
->rx_bd_base
;
1188 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1189 skb
= fep
->rx_skbuff
[i
];
1191 if (bdp
->cbd_bufaddr
)
1192 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
1193 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
1199 bdp
= fep
->tx_bd_base
;
1200 for (i
= 0; i
< TX_RING_SIZE
; i
++)
1201 kfree(fep
->tx_bounce
[i
]);
1204 static int fec_enet_alloc_buffers(struct net_device
*ndev
)
1206 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1208 struct sk_buff
*skb
;
1209 struct bufdesc
*bdp
;
1211 bdp
= fep
->rx_bd_base
;
1212 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1213 skb
= dev_alloc_skb(FEC_ENET_RX_FRSIZE
);
1215 fec_enet_free_buffers(ndev
);
1218 fep
->rx_skbuff
[i
] = skb
;
1220 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, skb
->data
,
1221 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
1222 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
1226 /* Set the last buffer to wrap. */
1228 bdp
->cbd_sc
|= BD_SC_WRAP
;
1230 bdp
= fep
->tx_bd_base
;
1231 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1232 fep
->tx_bounce
[i
] = kmalloc(FEC_ENET_TX_FRSIZE
, GFP_KERNEL
);
1235 bdp
->cbd_bufaddr
= 0;
1239 /* Set the last buffer to wrap. */
1241 bdp
->cbd_sc
|= BD_SC_WRAP
;
1247 fec_enet_open(struct net_device
*ndev
)
1249 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1252 /* I should reset the ring buffers here, but I don't yet know
1253 * a simple way to do that.
1256 ret
= fec_enet_alloc_buffers(ndev
);
1260 /* Probe and connect to PHY when open the interface */
1261 ret
= fec_enet_mii_probe(ndev
);
1263 fec_enet_free_buffers(ndev
);
1266 phy_start(fep
->phy_dev
);
1267 netif_start_queue(ndev
);
1273 fec_enet_close(struct net_device
*ndev
)
1275 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1277 /* Don't know what to do yet. */
1279 netif_stop_queue(ndev
);
1283 phy_stop(fep
->phy_dev
);
1284 phy_disconnect(fep
->phy_dev
);
1287 fec_enet_free_buffers(ndev
);
1292 /* Set or clear the multicast filter for this adaptor.
1293 * Skeleton taken from sunlance driver.
1294 * The CPM Ethernet implementation allows Multicast as well as individual
1295 * MAC address filtering. Some of the drivers check to make sure it is
1296 * a group multicast address, and discard those that are not. I guess I
1297 * will do the same for now, but just remove the test if you want
1298 * individual filtering as well (do the upper net layers want or support
1299 * this kind of feature?).
1302 #define HASH_BITS 6 /* #bits in hash */
1303 #define CRC32_POLY 0xEDB88320
1305 static void set_multicast_list(struct net_device
*ndev
)
1307 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1308 struct netdev_hw_addr
*ha
;
1309 unsigned int i
, bit
, data
, crc
, tmp
;
1312 if (ndev
->flags
& IFF_PROMISC
) {
1313 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1315 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
1319 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1321 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
1323 if (ndev
->flags
& IFF_ALLMULTI
) {
1324 /* Catch all multicast addresses, so set the
1327 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1328 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1333 /* Clear filter and add the addresses in hash register
1335 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1336 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1338 netdev_for_each_mc_addr(ha
, ndev
) {
1339 /* calculate crc32 value of mac address */
1342 for (i
= 0; i
< ndev
->addr_len
; i
++) {
1344 for (bit
= 0; bit
< 8; bit
++, data
>>= 1) {
1346 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
1350 /* only upper 6 bits (HASH_BITS) are used
1351 * which point to specific bit in he hash registers
1353 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
1356 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1357 tmp
|= 1 << (hash
- 32);
1358 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1360 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1362 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1367 /* Set a MAC change in hardware. */
1369 fec_set_mac_address(struct net_device
*ndev
, void *p
)
1371 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1372 struct sockaddr
*addr
= p
;
1374 if (!is_valid_ether_addr(addr
->sa_data
))
1375 return -EADDRNOTAVAIL
;
1377 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
1379 writel(ndev
->dev_addr
[3] | (ndev
->dev_addr
[2] << 8) |
1380 (ndev
->dev_addr
[1] << 16) | (ndev
->dev_addr
[0] << 24),
1381 fep
->hwp
+ FEC_ADDR_LOW
);
1382 writel((ndev
->dev_addr
[5] << 16) | (ndev
->dev_addr
[4] << 24),
1383 fep
->hwp
+ FEC_ADDR_HIGH
);
1387 #ifdef CONFIG_NET_POLL_CONTROLLER
1389 * fec_poll_controller: FEC Poll controller function
1390 * @dev: The FEC network adapter
1392 * Polled functionality used by netconsole and others in non interrupt mode
1395 void fec_poll_controller(struct net_device
*dev
)
1398 struct fec_enet_private
*fep
= netdev_priv(dev
);
1400 for (i
= 0; i
< FEC_IRQ_NUM
; i
++) {
1401 if (fep
->irq
[i
] > 0) {
1402 disable_irq(fep
->irq
[i
]);
1403 fec_enet_interrupt(fep
->irq
[i
], dev
);
1404 enable_irq(fep
->irq
[i
]);
1410 static const struct net_device_ops fec_netdev_ops
= {
1411 .ndo_open
= fec_enet_open
,
1412 .ndo_stop
= fec_enet_close
,
1413 .ndo_start_xmit
= fec_enet_start_xmit
,
1414 .ndo_set_rx_mode
= set_multicast_list
,
1415 .ndo_change_mtu
= eth_change_mtu
,
1416 .ndo_validate_addr
= eth_validate_addr
,
1417 .ndo_tx_timeout
= fec_timeout
,
1418 .ndo_set_mac_address
= fec_set_mac_address
,
1419 .ndo_do_ioctl
= fec_enet_ioctl
,
1420 #ifdef CONFIG_NET_POLL_CONTROLLER
1421 .ndo_poll_controller
= fec_poll_controller
,
1426 * XXX: We need to clean up on failure exits here.
1429 static int fec_enet_init(struct net_device
*ndev
)
1431 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1432 struct bufdesc
*cbd_base
;
1433 struct bufdesc
*bdp
;
1436 /* Allocate memory for buffer descriptors. */
1437 cbd_base
= dma_alloc_coherent(NULL
, PAGE_SIZE
, &fep
->bd_dma
,
1440 printk("FEC: allocate descriptor memory failed?\n");
1444 spin_lock_init(&fep
->hw_lock
);
1448 /* Get the Ethernet address */
1451 /* Set receive and transmit descriptor base. */
1452 fep
->rx_bd_base
= cbd_base
;
1453 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
1455 /* The FEC Ethernet specific entries in the device structure */
1456 ndev
->watchdog_timeo
= TX_TIMEOUT
;
1457 ndev
->netdev_ops
= &fec_netdev_ops
;
1458 ndev
->ethtool_ops
= &fec_enet_ethtool_ops
;
1460 /* Initialize the receive buffer descriptors. */
1461 bdp
= fep
->rx_bd_base
;
1462 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1464 /* Initialize the BD for every fragment in the page. */
1469 /* Set the last buffer to wrap */
1471 bdp
->cbd_sc
|= BD_SC_WRAP
;
1473 /* ...and the same for transmit */
1474 bdp
= fep
->tx_bd_base
;
1475 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1477 /* Initialize the BD for every fragment in the page. */
1479 bdp
->cbd_bufaddr
= 0;
1483 /* Set the last buffer to wrap */
1485 bdp
->cbd_sc
|= BD_SC_WRAP
;
1487 fec_restart(ndev
, 0);
1493 static int __devinit
fec_get_phy_mode_dt(struct platform_device
*pdev
)
1495 struct device_node
*np
= pdev
->dev
.of_node
;
1498 return of_get_phy_mode(np
);
1503 static void __devinit
fec_reset_phy(struct platform_device
*pdev
)
1506 struct device_node
*np
= pdev
->dev
.of_node
;
1511 phy_reset
= of_get_named_gpio(np
, "phy-reset-gpios", 0);
1512 err
= gpio_request_one(phy_reset
, GPIOF_OUT_INIT_LOW
, "phy-reset");
1514 pr_debug("FEC: failed to get gpio phy-reset: %d\n", err
);
1518 gpio_set_value(phy_reset
, 1);
1520 #else /* CONFIG_OF */
1521 static inline int fec_get_phy_mode_dt(struct platform_device
*pdev
)
1526 static inline void fec_reset_phy(struct platform_device
*pdev
)
1529 * In case of platform probe, the reset has been done
1533 #endif /* CONFIG_OF */
1535 static int __devinit
1536 fec_probe(struct platform_device
*pdev
)
1538 struct fec_enet_private
*fep
;
1539 struct fec_platform_data
*pdata
;
1540 struct net_device
*ndev
;
1541 int i
, irq
, ret
= 0;
1543 const struct of_device_id
*of_id
;
1546 of_id
= of_match_device(fec_dt_ids
, &pdev
->dev
);
1548 pdev
->id_entry
= of_id
->data
;
1550 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1554 r
= request_mem_region(r
->start
, resource_size(r
), pdev
->name
);
1558 /* Init network device */
1559 ndev
= alloc_etherdev(sizeof(struct fec_enet_private
));
1562 goto failed_alloc_etherdev
;
1565 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
1567 /* setup board info structure */
1568 fep
= netdev_priv(ndev
);
1570 fep
->hwp
= ioremap(r
->start
, resource_size(r
));
1572 fep
->dev_id
= dev_id
++;
1576 goto failed_ioremap
;
1579 platform_set_drvdata(pdev
, ndev
);
1581 ret
= fec_get_phy_mode_dt(pdev
);
1583 pdata
= pdev
->dev
.platform_data
;
1585 fep
->phy_interface
= pdata
->phy
;
1587 fep
->phy_interface
= PHY_INTERFACE_MODE_MII
;
1589 fep
->phy_interface
= ret
;
1592 fec_reset_phy(pdev
);
1594 for (i
= 0; i
< FEC_IRQ_NUM
; i
++) {
1595 irq
= platform_get_irq(pdev
, i
);
1602 ret
= request_irq(irq
, fec_enet_interrupt
, IRQF_DISABLED
, pdev
->name
, ndev
);
1605 irq
= platform_get_irq(pdev
, i
);
1606 free_irq(irq
, ndev
);
1612 fep
->clk
= clk_get(&pdev
->dev
, NULL
);
1613 if (IS_ERR(fep
->clk
)) {
1614 ret
= PTR_ERR(fep
->clk
);
1617 clk_prepare_enable(fep
->clk
);
1619 ret
= fec_enet_init(ndev
);
1623 ret
= fec_enet_mii_init(pdev
);
1625 goto failed_mii_init
;
1627 /* Carrier starts down, phylib will bring it up */
1628 netif_carrier_off(ndev
);
1630 ret
= register_netdev(ndev
);
1632 goto failed_register
;
1637 fec_enet_mii_remove(fep
);
1640 clk_disable_unprepare(fep
->clk
);
1643 for (i
= 0; i
< FEC_IRQ_NUM
; i
++) {
1644 irq
= platform_get_irq(pdev
, i
);
1646 free_irq(irq
, ndev
);
1652 failed_alloc_etherdev
:
1653 release_mem_region(r
->start
, resource_size(r
));
1658 static int __devexit
1659 fec_drv_remove(struct platform_device
*pdev
)
1661 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1662 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1666 unregister_netdev(ndev
);
1667 fec_enet_mii_remove(fep
);
1668 for (i
= 0; i
< FEC_IRQ_NUM
; i
++) {
1669 int irq
= platform_get_irq(pdev
, i
);
1671 free_irq(irq
, ndev
);
1673 clk_disable_unprepare(fep
->clk
);
1678 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1680 release_mem_region(r
->start
, resource_size(r
));
1682 platform_set_drvdata(pdev
, NULL
);
1689 fec_suspend(struct device
*dev
)
1691 struct net_device
*ndev
= dev_get_drvdata(dev
);
1692 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1694 if (netif_running(ndev
)) {
1696 netif_device_detach(ndev
);
1698 clk_disable_unprepare(fep
->clk
);
1704 fec_resume(struct device
*dev
)
1706 struct net_device
*ndev
= dev_get_drvdata(dev
);
1707 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1709 clk_prepare_enable(fep
->clk
);
1710 if (netif_running(ndev
)) {
1711 fec_restart(ndev
, fep
->full_duplex
);
1712 netif_device_attach(ndev
);
1718 static const struct dev_pm_ops fec_pm_ops
= {
1719 .suspend
= fec_suspend
,
1720 .resume
= fec_resume
,
1721 .freeze
= fec_suspend
,
1723 .poweroff
= fec_suspend
,
1724 .restore
= fec_resume
,
1728 static struct platform_driver fec_driver
= {
1730 .name
= DRIVER_NAME
,
1731 .owner
= THIS_MODULE
,
1735 .of_match_table
= fec_dt_ids
,
1737 .id_table
= fec_devtype
,
1739 .remove
= __devexit_p(fec_drv_remove
),
1743 fec_enet_module_init(void)
1745 printk(KERN_INFO
"FEC Ethernet Driver\n");
1747 return platform_driver_register(&fec_driver
);
1751 fec_enet_cleanup(void)
1753 platform_driver_unregister(&fec_driver
);
1756 module_exit(fec_enet_cleanup
);
1757 module_init(fec_enet_module_init
);
1759 MODULE_LICENSE("GPL");