spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / net / ethernet / neterion / vxge / vxge-config.c
blob98e2c10ae08ba724b5743dc75b1fc48996b0f5b1
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/pci.h>
17 #include <linux/pci_hotplug.h>
18 #include <linux/slab.h>
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
22 #include "vxge-main.h"
24 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) { \
25 status = __vxge_hw_vpath_stats_access(vpath, \
26 VXGE_HW_STATS_OP_READ, \
27 offset, \
28 &val64); \
29 if (status != VXGE_HW_OK) \
30 return status; \
33 static void
34 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem *vp_reg)
36 u64 val64;
38 val64 = readq(&vp_reg->rxmac_vcfg0);
39 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
40 writeq(val64, &vp_reg->rxmac_vcfg0);
41 val64 = readq(&vp_reg->rxmac_vcfg0);
45 * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
47 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id)
49 struct vxge_hw_vpath_reg __iomem *vp_reg;
50 struct __vxge_hw_virtualpath *vpath;
51 u64 val64, rxd_count, rxd_spat;
52 int count = 0, total_count = 0;
54 vpath = &hldev->virtual_paths[vp_id];
55 vp_reg = vpath->vp_reg;
57 vxge_hw_vpath_set_zero_rx_frm_len(vp_reg);
59 /* Check that the ring controller for this vpath has enough free RxDs
60 * to send frames to the host. This is done by reading the
61 * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
62 * RXD_SPAT value for the vpath.
64 val64 = readq(&vp_reg->prc_cfg6);
65 rxd_spat = VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64) + 1;
66 /* Use a factor of 2 when comparing rxd_count against rxd_spat for some
67 * leg room.
69 rxd_spat *= 2;
71 do {
72 mdelay(1);
74 rxd_count = readq(&vp_reg->prc_rxd_doorbell);
76 /* Check that the ring controller for this vpath does
77 * not have any frame in its pipeline.
79 val64 = readq(&vp_reg->frm_in_progress_cnt);
80 if ((rxd_count <= rxd_spat) || (val64 > 0))
81 count = 0;
82 else
83 count++;
84 total_count++;
85 } while ((count < VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT) &&
86 (total_count < VXGE_HW_MAX_POLLING_COUNT));
88 if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
89 printk(KERN_ALERT "%s: Still Receiving traffic. Abort wait\n",
90 __func__);
92 return total_count;
95 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
96 * stored in the frame buffer for each vpath assigned to the given
97 * function (hldev) have been sent to the host.
99 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev)
101 int i, total_count = 0;
103 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
104 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
105 continue;
107 total_count += vxge_hw_vpath_wait_receive_idle(hldev, i);
108 if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
109 break;
114 * __vxge_hw_device_register_poll
115 * Will poll certain register for specified amount of time.
116 * Will poll until masked bit is not cleared.
118 static enum vxge_hw_status
119 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
121 u64 val64;
122 u32 i = 0;
123 enum vxge_hw_status ret = VXGE_HW_FAIL;
125 udelay(10);
127 do {
128 val64 = readq(reg);
129 if (!(val64 & mask))
130 return VXGE_HW_OK;
131 udelay(100);
132 } while (++i <= 9);
134 i = 0;
135 do {
136 val64 = readq(reg);
137 if (!(val64 & mask))
138 return VXGE_HW_OK;
139 mdelay(1);
140 } while (++i <= max_millis);
142 return ret;
145 static inline enum vxge_hw_status
146 __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
147 u64 mask, u32 max_millis)
149 __vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
150 wmb();
151 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
152 wmb();
154 return __vxge_hw_device_register_poll(addr, mask, max_millis);
157 static enum vxge_hw_status
158 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath *vpath, u32 action,
159 u32 fw_memo, u32 offset, u64 *data0, u64 *data1,
160 u64 *steer_ctrl)
162 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
163 enum vxge_hw_status status;
164 u64 val64;
165 u32 retry = 0, max_retry = 3;
167 spin_lock(&vpath->lock);
168 if (!vpath->vp_open) {
169 spin_unlock(&vpath->lock);
170 max_retry = 100;
173 writeq(*data0, &vp_reg->rts_access_steer_data0);
174 writeq(*data1, &vp_reg->rts_access_steer_data1);
175 wmb();
177 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
178 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) |
179 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) |
180 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
181 *steer_ctrl;
183 status = __vxge_hw_pio_mem_write64(val64,
184 &vp_reg->rts_access_steer_ctrl,
185 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
186 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
188 /* The __vxge_hw_device_register_poll can udelay for a significant
189 * amount of time, blocking other process from the CPU. If it delays
190 * for ~5secs, a NMI error can occur. A way around this is to give up
191 * the processor via msleep, but this is not allowed is under lock.
192 * So, only allow it to sleep for ~4secs if open. Otherwise, delay for
193 * 1sec and sleep for 10ms until the firmware operation has completed
194 * or timed-out.
196 while ((status != VXGE_HW_OK) && retry++ < max_retry) {
197 if (!vpath->vp_open)
198 msleep(20);
199 status = __vxge_hw_device_register_poll(
200 &vp_reg->rts_access_steer_ctrl,
201 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
202 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
205 if (status != VXGE_HW_OK)
206 goto out;
208 val64 = readq(&vp_reg->rts_access_steer_ctrl);
209 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
210 *data0 = readq(&vp_reg->rts_access_steer_data0);
211 *data1 = readq(&vp_reg->rts_access_steer_data1);
212 *steer_ctrl = val64;
213 } else
214 status = VXGE_HW_FAIL;
216 out:
217 if (vpath->vp_open)
218 spin_unlock(&vpath->lock);
219 return status;
222 enum vxge_hw_status
223 vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major,
224 u32 *minor, u32 *build)
226 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
227 struct __vxge_hw_virtualpath *vpath;
228 enum vxge_hw_status status;
230 vpath = &hldev->virtual_paths[hldev->first_vp_id];
232 status = vxge_hw_vpath_fw_api(vpath,
233 VXGE_HW_FW_UPGRADE_ACTION,
234 VXGE_HW_FW_UPGRADE_MEMO,
235 VXGE_HW_FW_UPGRADE_OFFSET_READ,
236 &data0, &data1, &steer_ctrl);
237 if (status != VXGE_HW_OK)
238 return status;
240 *major = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
241 *minor = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
242 *build = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
244 return status;
247 enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev)
249 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
250 struct __vxge_hw_virtualpath *vpath;
251 enum vxge_hw_status status;
252 u32 ret;
254 vpath = &hldev->virtual_paths[hldev->first_vp_id];
256 status = vxge_hw_vpath_fw_api(vpath,
257 VXGE_HW_FW_UPGRADE_ACTION,
258 VXGE_HW_FW_UPGRADE_MEMO,
259 VXGE_HW_FW_UPGRADE_OFFSET_COMMIT,
260 &data0, &data1, &steer_ctrl);
261 if (status != VXGE_HW_OK) {
262 vxge_debug_init(VXGE_ERR, "%s: FW upgrade failed", __func__);
263 goto exit;
266 ret = VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl) & 0x7F;
267 if (ret != 1) {
268 vxge_debug_init(VXGE_ERR, "%s: FW commit failed with error %d",
269 __func__, ret);
270 status = VXGE_HW_FAIL;
273 exit:
274 return status;
277 enum vxge_hw_status
278 vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *fwdata, int size)
280 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
281 struct __vxge_hw_virtualpath *vpath;
282 enum vxge_hw_status status;
283 int ret_code, sec_code;
285 vpath = &hldev->virtual_paths[hldev->first_vp_id];
287 /* send upgrade start command */
288 status = vxge_hw_vpath_fw_api(vpath,
289 VXGE_HW_FW_UPGRADE_ACTION,
290 VXGE_HW_FW_UPGRADE_MEMO,
291 VXGE_HW_FW_UPGRADE_OFFSET_START,
292 &data0, &data1, &steer_ctrl);
293 if (status != VXGE_HW_OK) {
294 vxge_debug_init(VXGE_ERR, " %s: Upgrade start cmd failed",
295 __func__);
296 return status;
299 /* Transfer fw image to adapter 16 bytes at a time */
300 for (; size > 0; size -= VXGE_HW_FW_UPGRADE_BLK_SIZE) {
301 steer_ctrl = 0;
303 /* The next 128bits of fwdata to be loaded onto the adapter */
304 data0 = *((u64 *)fwdata);
305 data1 = *((u64 *)fwdata + 1);
307 status = vxge_hw_vpath_fw_api(vpath,
308 VXGE_HW_FW_UPGRADE_ACTION,
309 VXGE_HW_FW_UPGRADE_MEMO,
310 VXGE_HW_FW_UPGRADE_OFFSET_SEND,
311 &data0, &data1, &steer_ctrl);
312 if (status != VXGE_HW_OK) {
313 vxge_debug_init(VXGE_ERR, "%s: Upgrade send failed",
314 __func__);
315 goto out;
318 ret_code = VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0);
319 switch (ret_code) {
320 case VXGE_HW_FW_UPGRADE_OK:
321 /* All OK, send next 16 bytes. */
322 break;
323 case VXGE_FW_UPGRADE_BYTES2SKIP:
324 /* skip bytes in the stream */
325 fwdata += (data0 >> 8) & 0xFFFFFFFF;
326 break;
327 case VXGE_HW_FW_UPGRADE_DONE:
328 goto out;
329 case VXGE_HW_FW_UPGRADE_ERR:
330 sec_code = VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0);
331 switch (sec_code) {
332 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1:
333 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7:
334 printk(KERN_ERR
335 "corrupted data from .ncf file\n");
336 break;
337 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3:
338 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4:
339 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5:
340 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6:
341 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8:
342 printk(KERN_ERR "invalid .ncf file\n");
343 break;
344 case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW:
345 printk(KERN_ERR "buffer overflow\n");
346 break;
347 case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH:
348 printk(KERN_ERR "failed to flash the image\n");
349 break;
350 case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN:
351 printk(KERN_ERR
352 "generic error. Unknown error type\n");
353 break;
354 default:
355 printk(KERN_ERR "Unknown error of type %d\n",
356 sec_code);
357 break;
359 status = VXGE_HW_FAIL;
360 goto out;
361 default:
362 printk(KERN_ERR "Unknown FW error: %d\n", ret_code);
363 status = VXGE_HW_FAIL;
364 goto out;
366 /* point to next 16 bytes */
367 fwdata += VXGE_HW_FW_UPGRADE_BLK_SIZE;
369 out:
370 return status;
373 enum vxge_hw_status
374 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev,
375 struct eprom_image *img)
377 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
378 struct __vxge_hw_virtualpath *vpath;
379 enum vxge_hw_status status;
380 int i;
382 vpath = &hldev->virtual_paths[hldev->first_vp_id];
384 for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) {
385 data0 = VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i);
386 data1 = steer_ctrl = 0;
388 status = vxge_hw_vpath_fw_api(vpath,
389 VXGE_HW_FW_API_GET_EPROM_REV,
390 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
391 0, &data0, &data1, &steer_ctrl);
392 if (status != VXGE_HW_OK)
393 break;
395 img[i].is_valid = VXGE_HW_GET_EPROM_IMAGE_VALID(data0);
396 img[i].index = VXGE_HW_GET_EPROM_IMAGE_INDEX(data0);
397 img[i].type = VXGE_HW_GET_EPROM_IMAGE_TYPE(data0);
398 img[i].version = VXGE_HW_GET_EPROM_IMAGE_REV(data0);
401 return status;
405 * __vxge_hw_channel_free - Free memory allocated for channel
406 * This function deallocates memory from the channel and various arrays
407 * in the channel
409 static void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
411 kfree(channel->work_arr);
412 kfree(channel->free_arr);
413 kfree(channel->reserve_arr);
414 kfree(channel->orig_arr);
415 kfree(channel);
419 * __vxge_hw_channel_initialize - Initialize a channel
420 * This function initializes a channel by properly setting the
421 * various references
423 static enum vxge_hw_status
424 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
426 u32 i;
427 struct __vxge_hw_virtualpath *vpath;
429 vpath = channel->vph->vpath;
431 if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
432 for (i = 0; i < channel->length; i++)
433 channel->orig_arr[i] = channel->reserve_arr[i];
436 switch (channel->type) {
437 case VXGE_HW_CHANNEL_TYPE_FIFO:
438 vpath->fifoh = (struct __vxge_hw_fifo *)channel;
439 channel->stats = &((struct __vxge_hw_fifo *)
440 channel)->stats->common_stats;
441 break;
442 case VXGE_HW_CHANNEL_TYPE_RING:
443 vpath->ringh = (struct __vxge_hw_ring *)channel;
444 channel->stats = &((struct __vxge_hw_ring *)
445 channel)->stats->common_stats;
446 break;
447 default:
448 break;
451 return VXGE_HW_OK;
455 * __vxge_hw_channel_reset - Resets a channel
456 * This function resets a channel by properly setting the various references
458 static enum vxge_hw_status
459 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
461 u32 i;
463 for (i = 0; i < channel->length; i++) {
464 if (channel->reserve_arr != NULL)
465 channel->reserve_arr[i] = channel->orig_arr[i];
466 if (channel->free_arr != NULL)
467 channel->free_arr[i] = NULL;
468 if (channel->work_arr != NULL)
469 channel->work_arr[i] = NULL;
471 channel->free_ptr = channel->length;
472 channel->reserve_ptr = channel->length;
473 channel->reserve_top = 0;
474 channel->post_index = 0;
475 channel->compl_index = 0;
477 return VXGE_HW_OK;
481 * __vxge_hw_device_pci_e_init
482 * Initialize certain PCI/PCI-X configuration registers
483 * with recommended values. Save config space for future hw resets.
485 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
487 u16 cmd = 0;
489 /* Set the PErr Repconse bit and SERR in PCI command register. */
490 pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
491 cmd |= 0x140;
492 pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
494 pci_save_state(hldev->pdev);
497 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
498 * in progress
499 * This routine checks the vpath reset in progress register is turned zero
501 static enum vxge_hw_status
502 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
504 enum vxge_hw_status status;
505 status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
506 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
507 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
508 return status;
512 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
513 * Set the swapper bits appropriately for the lagacy section.
515 static enum vxge_hw_status
516 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
518 u64 val64;
519 enum vxge_hw_status status = VXGE_HW_OK;
521 val64 = readq(&legacy_reg->toc_swapper_fb);
523 wmb();
525 switch (val64) {
526 case VXGE_HW_SWAPPER_INITIAL_VALUE:
527 return status;
529 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
530 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
531 &legacy_reg->pifm_rd_swap_en);
532 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
533 &legacy_reg->pifm_rd_flip_en);
534 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
535 &legacy_reg->pifm_wr_swap_en);
536 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
537 &legacy_reg->pifm_wr_flip_en);
538 break;
540 case VXGE_HW_SWAPPER_BYTE_SWAPPED:
541 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
542 &legacy_reg->pifm_rd_swap_en);
543 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
544 &legacy_reg->pifm_wr_swap_en);
545 break;
547 case VXGE_HW_SWAPPER_BIT_FLIPPED:
548 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
549 &legacy_reg->pifm_rd_flip_en);
550 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
551 &legacy_reg->pifm_wr_flip_en);
552 break;
555 wmb();
557 val64 = readq(&legacy_reg->toc_swapper_fb);
559 if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
560 status = VXGE_HW_ERR_SWAPPER_CTRL;
562 return status;
566 * __vxge_hw_device_toc_get
567 * This routine sets the swapper and reads the toc pointer and returns the
568 * memory mapped address of the toc
570 static struct vxge_hw_toc_reg __iomem *
571 __vxge_hw_device_toc_get(void __iomem *bar0)
573 u64 val64;
574 struct vxge_hw_toc_reg __iomem *toc = NULL;
575 enum vxge_hw_status status;
577 struct vxge_hw_legacy_reg __iomem *legacy_reg =
578 (struct vxge_hw_legacy_reg __iomem *)bar0;
580 status = __vxge_hw_legacy_swapper_set(legacy_reg);
581 if (status != VXGE_HW_OK)
582 goto exit;
584 val64 = readq(&legacy_reg->toc_first_pointer);
585 toc = bar0 + val64;
586 exit:
587 return toc;
591 * __vxge_hw_device_reg_addr_get
592 * This routine sets the swapper and reads the toc pointer and initializes the
593 * register location pointers in the device object. It waits until the ric is
594 * completed initializing registers.
596 static enum vxge_hw_status
597 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
599 u64 val64;
600 u32 i;
601 enum vxge_hw_status status = VXGE_HW_OK;
603 hldev->legacy_reg = hldev->bar0;
605 hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
606 if (hldev->toc_reg == NULL) {
607 status = VXGE_HW_FAIL;
608 goto exit;
611 val64 = readq(&hldev->toc_reg->toc_common_pointer);
612 hldev->common_reg = hldev->bar0 + val64;
614 val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
615 hldev->mrpcim_reg = hldev->bar0 + val64;
617 for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
618 val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
619 hldev->srpcim_reg[i] = hldev->bar0 + val64;
622 for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
623 val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
624 hldev->vpmgmt_reg[i] = hldev->bar0 + val64;
627 for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
628 val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
629 hldev->vpath_reg[i] = hldev->bar0 + val64;
632 val64 = readq(&hldev->toc_reg->toc_kdfc);
634 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
635 case 0:
636 hldev->kdfc = hldev->bar0 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64) ;
637 break;
638 default:
639 break;
642 status = __vxge_hw_device_vpath_reset_in_prog_check(
643 (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
644 exit:
645 return status;
649 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
650 * This routine returns the Access Rights of the driver
652 static u32
653 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
655 u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
657 switch (host_type) {
658 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
659 if (func_id == 0) {
660 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
661 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
663 break;
664 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
665 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
666 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
667 break;
668 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
669 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
670 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
671 break;
672 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
673 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
674 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
675 break;
676 case VXGE_HW_SR_VH_FUNCTION0:
677 case VXGE_HW_VH_NORMAL_FUNCTION:
678 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
679 break;
682 return access_rights;
685 * __vxge_hw_device_is_privilaged
686 * This routine checks if the device function is privilaged or not
689 enum vxge_hw_status
690 __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
692 if (__vxge_hw_device_access_rights_get(host_type,
693 func_id) &
694 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
695 return VXGE_HW_OK;
696 else
697 return VXGE_HW_ERR_PRIVILAGED_OPEARATION;
701 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
702 * Returns the function number of the vpath.
704 static u32
705 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
707 u64 val64;
709 val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
711 return
712 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
716 * __vxge_hw_device_host_info_get
717 * This routine returns the host type assignments
719 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
721 u64 val64;
722 u32 i;
724 val64 = readq(&hldev->common_reg->host_type_assignments);
726 hldev->host_type =
727 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
729 hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
731 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
732 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
733 continue;
735 hldev->func_id =
736 __vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]);
738 hldev->access_rights = __vxge_hw_device_access_rights_get(
739 hldev->host_type, hldev->func_id);
741 hldev->virtual_paths[i].vp_open = VXGE_HW_VP_NOT_OPEN;
742 hldev->virtual_paths[i].vp_reg = hldev->vpath_reg[i];
744 hldev->first_vp_id = i;
745 break;
750 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
751 * link width and signalling rate.
753 static enum vxge_hw_status
754 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
756 struct pci_dev *dev = hldev->pdev;
757 u16 lnk;
759 /* Get the negotiated link width and speed from PCI config space */
760 pci_read_config_word(dev, dev->pcie_cap + PCI_EXP_LNKSTA, &lnk);
762 if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
763 return VXGE_HW_ERR_INVALID_PCI_INFO;
765 switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
766 case PCIE_LNK_WIDTH_RESRV:
767 case PCIE_LNK_X1:
768 case PCIE_LNK_X2:
769 case PCIE_LNK_X4:
770 case PCIE_LNK_X8:
771 break;
772 default:
773 return VXGE_HW_ERR_INVALID_PCI_INFO;
776 return VXGE_HW_OK;
780 * __vxge_hw_device_initialize
781 * Initialize Titan-V hardware.
783 static enum vxge_hw_status
784 __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
786 enum vxge_hw_status status = VXGE_HW_OK;
788 if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
789 hldev->func_id)) {
790 /* Validate the pci-e link width and speed */
791 status = __vxge_hw_verify_pci_e_info(hldev);
792 if (status != VXGE_HW_OK)
793 goto exit;
796 exit:
797 return status;
801 * __vxge_hw_vpath_fw_ver_get - Get the fw version
802 * Returns FW Version
804 static enum vxge_hw_status
805 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath *vpath,
806 struct vxge_hw_device_hw_info *hw_info)
808 struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
809 struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
810 struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
811 struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
812 u64 data0, data1 = 0, steer_ctrl = 0;
813 enum vxge_hw_status status;
815 status = vxge_hw_vpath_fw_api(vpath,
816 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
817 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
818 0, &data0, &data1, &steer_ctrl);
819 if (status != VXGE_HW_OK)
820 goto exit;
822 fw_date->day =
823 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0);
824 fw_date->month =
825 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0);
826 fw_date->year =
827 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0);
829 snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
830 fw_date->month, fw_date->day, fw_date->year);
832 fw_version->major =
833 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
834 fw_version->minor =
835 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
836 fw_version->build =
837 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
839 snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
840 fw_version->major, fw_version->minor, fw_version->build);
842 flash_date->day =
843 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1);
844 flash_date->month =
845 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1);
846 flash_date->year =
847 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1);
849 snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
850 flash_date->month, flash_date->day, flash_date->year);
852 flash_version->major =
853 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1);
854 flash_version->minor =
855 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1);
856 flash_version->build =
857 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1);
859 snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
860 flash_version->major, flash_version->minor,
861 flash_version->build);
863 exit:
864 return status;
868 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
869 * part number and product description.
871 static enum vxge_hw_status
872 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath *vpath,
873 struct vxge_hw_device_hw_info *hw_info)
875 enum vxge_hw_status status;
876 u64 data0, data1 = 0, steer_ctrl = 0;
877 u8 *serial_number = hw_info->serial_number;
878 u8 *part_number = hw_info->part_number;
879 u8 *product_desc = hw_info->product_desc;
880 u32 i, j = 0;
882 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER;
884 status = vxge_hw_vpath_fw_api(vpath,
885 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
886 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
887 0, &data0, &data1, &steer_ctrl);
888 if (status != VXGE_HW_OK)
889 return status;
891 ((u64 *)serial_number)[0] = be64_to_cpu(data0);
892 ((u64 *)serial_number)[1] = be64_to_cpu(data1);
894 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER;
895 data1 = steer_ctrl = 0;
897 status = vxge_hw_vpath_fw_api(vpath,
898 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
899 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
900 0, &data0, &data1, &steer_ctrl);
901 if (status != VXGE_HW_OK)
902 return status;
904 ((u64 *)part_number)[0] = be64_to_cpu(data0);
905 ((u64 *)part_number)[1] = be64_to_cpu(data1);
907 for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
908 i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
909 data0 = i;
910 data1 = steer_ctrl = 0;
912 status = vxge_hw_vpath_fw_api(vpath,
913 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
914 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
915 0, &data0, &data1, &steer_ctrl);
916 if (status != VXGE_HW_OK)
917 return status;
919 ((u64 *)product_desc)[j++] = be64_to_cpu(data0);
920 ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
923 return status;
927 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
928 * Returns pci function mode
930 static enum vxge_hw_status
931 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath *vpath,
932 struct vxge_hw_device_hw_info *hw_info)
934 u64 data0, data1 = 0, steer_ctrl = 0;
935 enum vxge_hw_status status;
937 data0 = 0;
939 status = vxge_hw_vpath_fw_api(vpath,
940 VXGE_HW_FW_API_GET_FUNC_MODE,
941 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
942 0, &data0, &data1, &steer_ctrl);
943 if (status != VXGE_HW_OK)
944 return status;
946 hw_info->function_mode = VXGE_HW_GET_FUNC_MODE_VAL(data0);
947 return status;
951 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
952 * from MAC address table.
954 static enum vxge_hw_status
955 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath *vpath,
956 u8 *macaddr, u8 *macaddr_mask)
958 u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
959 data0 = 0, data1 = 0, steer_ctrl = 0;
960 enum vxge_hw_status status;
961 int i;
963 do {
964 status = vxge_hw_vpath_fw_api(vpath, action,
965 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
966 0, &data0, &data1, &steer_ctrl);
967 if (status != VXGE_HW_OK)
968 goto exit;
970 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0);
971 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
972 data1);
974 for (i = ETH_ALEN; i > 0; i--) {
975 macaddr[i - 1] = (u8) (data0 & 0xFF);
976 data0 >>= 8;
978 macaddr_mask[i - 1] = (u8) (data1 & 0xFF);
979 data1 >>= 8;
982 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY;
983 data0 = 0, data1 = 0, steer_ctrl = 0;
985 } while (!is_valid_ether_addr(macaddr));
986 exit:
987 return status;
991 * vxge_hw_device_hw_info_get - Get the hw information
992 * Returns the vpath mask that has the bits set for each vpath allocated
993 * for the driver, FW version information, and the first mac address for
994 * each vpath
996 enum vxge_hw_status __devinit
997 vxge_hw_device_hw_info_get(void __iomem *bar0,
998 struct vxge_hw_device_hw_info *hw_info)
1000 u32 i;
1001 u64 val64;
1002 struct vxge_hw_toc_reg __iomem *toc;
1003 struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
1004 struct vxge_hw_common_reg __iomem *common_reg;
1005 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
1006 enum vxge_hw_status status;
1007 struct __vxge_hw_virtualpath vpath;
1009 memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
1011 toc = __vxge_hw_device_toc_get(bar0);
1012 if (toc == NULL) {
1013 status = VXGE_HW_ERR_CRITICAL;
1014 goto exit;
1017 val64 = readq(&toc->toc_common_pointer);
1018 common_reg = bar0 + val64;
1020 status = __vxge_hw_device_vpath_reset_in_prog_check(
1021 (u64 __iomem *)&common_reg->vpath_rst_in_prog);
1022 if (status != VXGE_HW_OK)
1023 goto exit;
1025 hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
1027 val64 = readq(&common_reg->host_type_assignments);
1029 hw_info->host_type =
1030 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
1032 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1033 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1034 continue;
1036 val64 = readq(&toc->toc_vpmgmt_pointer[i]);
1038 vpmgmt_reg = bar0 + val64;
1040 hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg);
1041 if (__vxge_hw_device_access_rights_get(hw_info->host_type,
1042 hw_info->func_id) &
1043 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
1045 val64 = readq(&toc->toc_mrpcim_pointer);
1047 mrpcim_reg = bar0 + val64;
1049 writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
1050 wmb();
1053 val64 = readq(&toc->toc_vpath_pointer[i]);
1055 spin_lock_init(&vpath.lock);
1056 vpath.vp_reg = bar0 + val64;
1057 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1059 status = __vxge_hw_vpath_pci_func_mode_get(&vpath, hw_info);
1060 if (status != VXGE_HW_OK)
1061 goto exit;
1063 status = __vxge_hw_vpath_fw_ver_get(&vpath, hw_info);
1064 if (status != VXGE_HW_OK)
1065 goto exit;
1067 status = __vxge_hw_vpath_card_info_get(&vpath, hw_info);
1068 if (status != VXGE_HW_OK)
1069 goto exit;
1071 break;
1074 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1075 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1076 continue;
1078 val64 = readq(&toc->toc_vpath_pointer[i]);
1079 vpath.vp_reg = bar0 + val64;
1080 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1082 status = __vxge_hw_vpath_addr_get(&vpath,
1083 hw_info->mac_addrs[i],
1084 hw_info->mac_addr_masks[i]);
1085 if (status != VXGE_HW_OK)
1086 goto exit;
1088 exit:
1089 return status;
1093 * __vxge_hw_blockpool_destroy - Deallocates the block pool
1095 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
1097 struct __vxge_hw_device *hldev;
1098 struct list_head *p, *n;
1099 u16 ret;
1101 if (blockpool == NULL) {
1102 ret = 1;
1103 goto exit;
1106 hldev = blockpool->hldev;
1108 list_for_each_safe(p, n, &blockpool->free_block_list) {
1109 pci_unmap_single(hldev->pdev,
1110 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
1111 ((struct __vxge_hw_blockpool_entry *)p)->length,
1112 PCI_DMA_BIDIRECTIONAL);
1114 vxge_os_dma_free(hldev->pdev,
1115 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
1116 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
1118 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1119 kfree(p);
1120 blockpool->pool_size--;
1123 list_for_each_safe(p, n, &blockpool->free_entry_list) {
1124 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1125 kfree((void *)p);
1127 ret = 0;
1128 exit:
1129 return;
1133 * __vxge_hw_blockpool_create - Create block pool
1135 static enum vxge_hw_status
1136 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
1137 struct __vxge_hw_blockpool *blockpool,
1138 u32 pool_size,
1139 u32 pool_max)
1141 u32 i;
1142 struct __vxge_hw_blockpool_entry *entry = NULL;
1143 void *memblock;
1144 dma_addr_t dma_addr;
1145 struct pci_dev *dma_handle;
1146 struct pci_dev *acc_handle;
1147 enum vxge_hw_status status = VXGE_HW_OK;
1149 if (blockpool == NULL) {
1150 status = VXGE_HW_FAIL;
1151 goto blockpool_create_exit;
1154 blockpool->hldev = hldev;
1155 blockpool->block_size = VXGE_HW_BLOCK_SIZE;
1156 blockpool->pool_size = 0;
1157 blockpool->pool_max = pool_max;
1158 blockpool->req_out = 0;
1160 INIT_LIST_HEAD(&blockpool->free_block_list);
1161 INIT_LIST_HEAD(&blockpool->free_entry_list);
1163 for (i = 0; i < pool_size + pool_max; i++) {
1164 entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1165 GFP_KERNEL);
1166 if (entry == NULL) {
1167 __vxge_hw_blockpool_destroy(blockpool);
1168 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1169 goto blockpool_create_exit;
1171 list_add(&entry->item, &blockpool->free_entry_list);
1174 for (i = 0; i < pool_size; i++) {
1175 memblock = vxge_os_dma_malloc(
1176 hldev->pdev,
1177 VXGE_HW_BLOCK_SIZE,
1178 &dma_handle,
1179 &acc_handle);
1180 if (memblock == NULL) {
1181 __vxge_hw_blockpool_destroy(blockpool);
1182 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1183 goto blockpool_create_exit;
1186 dma_addr = pci_map_single(hldev->pdev, memblock,
1187 VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
1188 if (unlikely(pci_dma_mapping_error(hldev->pdev,
1189 dma_addr))) {
1190 vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
1191 __vxge_hw_blockpool_destroy(blockpool);
1192 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1193 goto blockpool_create_exit;
1196 if (!list_empty(&blockpool->free_entry_list))
1197 entry = (struct __vxge_hw_blockpool_entry *)
1198 list_first_entry(&blockpool->free_entry_list,
1199 struct __vxge_hw_blockpool_entry,
1200 item);
1202 if (entry == NULL)
1203 entry =
1204 kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1205 GFP_KERNEL);
1206 if (entry != NULL) {
1207 list_del(&entry->item);
1208 entry->length = VXGE_HW_BLOCK_SIZE;
1209 entry->memblock = memblock;
1210 entry->dma_addr = dma_addr;
1211 entry->acc_handle = acc_handle;
1212 entry->dma_handle = dma_handle;
1213 list_add(&entry->item,
1214 &blockpool->free_block_list);
1215 blockpool->pool_size++;
1216 } else {
1217 __vxge_hw_blockpool_destroy(blockpool);
1218 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1219 goto blockpool_create_exit;
1223 blockpool_create_exit:
1224 return status;
1228 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1229 * Check the fifo configuration
1231 static enum vxge_hw_status
1232 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1234 if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1235 (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1236 return VXGE_HW_BADCFG_FIFO_BLOCKS;
1238 return VXGE_HW_OK;
1242 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1243 * Check the vpath configuration
1245 static enum vxge_hw_status
1246 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1248 enum vxge_hw_status status;
1250 if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1251 (vp_config->min_bandwidth > VXGE_HW_VPATH_BANDWIDTH_MAX))
1252 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1254 status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1255 if (status != VXGE_HW_OK)
1256 return status;
1258 if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1259 ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1260 (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1261 return VXGE_HW_BADCFG_VPATH_MTU;
1263 if ((vp_config->rpa_strip_vlan_tag !=
1264 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1265 (vp_config->rpa_strip_vlan_tag !=
1266 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1267 (vp_config->rpa_strip_vlan_tag !=
1268 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1269 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1271 return VXGE_HW_OK;
1275 * __vxge_hw_device_config_check - Check device configuration.
1276 * Check the device configuration
1278 static enum vxge_hw_status
1279 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1281 u32 i;
1282 enum vxge_hw_status status;
1284 if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1285 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1286 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1287 (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1288 return VXGE_HW_BADCFG_INTR_MODE;
1290 if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1291 (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1292 return VXGE_HW_BADCFG_RTS_MAC_EN;
1294 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1295 status = __vxge_hw_device_vpath_config_check(
1296 &new_config->vp_config[i]);
1297 if (status != VXGE_HW_OK)
1298 return status;
1301 return VXGE_HW_OK;
1305 * vxge_hw_device_initialize - Initialize Titan device.
1306 * Initialize Titan device. Note that all the arguments of this public API
1307 * are 'IN', including @hldev. Driver cooperates with
1308 * OS to find new Titan device, locate its PCI and memory spaces.
1310 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1311 * to enable the latter to perform Titan hardware initialization.
1313 enum vxge_hw_status __devinit
1314 vxge_hw_device_initialize(
1315 struct __vxge_hw_device **devh,
1316 struct vxge_hw_device_attr *attr,
1317 struct vxge_hw_device_config *device_config)
1319 u32 i;
1320 u32 nblocks = 0;
1321 struct __vxge_hw_device *hldev = NULL;
1322 enum vxge_hw_status status = VXGE_HW_OK;
1324 status = __vxge_hw_device_config_check(device_config);
1325 if (status != VXGE_HW_OK)
1326 goto exit;
1328 hldev = vzalloc(sizeof(struct __vxge_hw_device));
1329 if (hldev == NULL) {
1330 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1331 goto exit;
1334 hldev->magic = VXGE_HW_DEVICE_MAGIC;
1336 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
1338 /* apply config */
1339 memcpy(&hldev->config, device_config,
1340 sizeof(struct vxge_hw_device_config));
1342 hldev->bar0 = attr->bar0;
1343 hldev->pdev = attr->pdev;
1345 hldev->uld_callbacks = attr->uld_callbacks;
1347 __vxge_hw_device_pci_e_init(hldev);
1349 status = __vxge_hw_device_reg_addr_get(hldev);
1350 if (status != VXGE_HW_OK) {
1351 vfree(hldev);
1352 goto exit;
1355 __vxge_hw_device_host_info_get(hldev);
1357 /* Incrementing for stats blocks */
1358 nblocks++;
1360 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1361 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
1362 continue;
1364 if (device_config->vp_config[i].ring.enable ==
1365 VXGE_HW_RING_ENABLE)
1366 nblocks += device_config->vp_config[i].ring.ring_blocks;
1368 if (device_config->vp_config[i].fifo.enable ==
1369 VXGE_HW_FIFO_ENABLE)
1370 nblocks += device_config->vp_config[i].fifo.fifo_blocks;
1371 nblocks++;
1374 if (__vxge_hw_blockpool_create(hldev,
1375 &hldev->block_pool,
1376 device_config->dma_blockpool_initial + nblocks,
1377 device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
1379 vxge_hw_device_terminate(hldev);
1380 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1381 goto exit;
1384 status = __vxge_hw_device_initialize(hldev);
1385 if (status != VXGE_HW_OK) {
1386 vxge_hw_device_terminate(hldev);
1387 goto exit;
1390 *devh = hldev;
1391 exit:
1392 return status;
1396 * vxge_hw_device_terminate - Terminate Titan device.
1397 * Terminate HW device.
1399 void
1400 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
1402 vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
1404 hldev->magic = VXGE_HW_DEVICE_DEAD;
1405 __vxge_hw_blockpool_destroy(&hldev->block_pool);
1406 vfree(hldev);
1410 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1411 * and offset and perform an operation
1413 static enum vxge_hw_status
1414 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
1415 u32 operation, u32 offset, u64 *stat)
1417 u64 val64;
1418 enum vxge_hw_status status = VXGE_HW_OK;
1419 struct vxge_hw_vpath_reg __iomem *vp_reg;
1421 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1422 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1423 goto vpath_stats_access_exit;
1426 vp_reg = vpath->vp_reg;
1428 val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
1429 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
1430 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
1432 status = __vxge_hw_pio_mem_write64(val64,
1433 &vp_reg->xmac_stats_access_cmd,
1434 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
1435 vpath->hldev->config.device_poll_millis);
1436 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1437 *stat = readq(&vp_reg->xmac_stats_access_data);
1438 else
1439 *stat = 0;
1441 vpath_stats_access_exit:
1442 return status;
1446 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1448 static enum vxge_hw_status
1449 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
1450 struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
1452 u64 *val64;
1453 int i;
1454 u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
1455 enum vxge_hw_status status = VXGE_HW_OK;
1457 val64 = (u64 *)vpath_tx_stats;
1459 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1460 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1461 goto exit;
1464 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
1465 status = __vxge_hw_vpath_stats_access(vpath,
1466 VXGE_HW_STATS_OP_READ,
1467 offset, val64);
1468 if (status != VXGE_HW_OK)
1469 goto exit;
1470 offset++;
1471 val64++;
1473 exit:
1474 return status;
1478 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1480 static enum vxge_hw_status
1481 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
1482 struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
1484 u64 *val64;
1485 enum vxge_hw_status status = VXGE_HW_OK;
1486 int i;
1487 u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
1488 val64 = (u64 *) vpath_rx_stats;
1490 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1491 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1492 goto exit;
1494 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
1495 status = __vxge_hw_vpath_stats_access(vpath,
1496 VXGE_HW_STATS_OP_READ,
1497 offset >> 3, val64);
1498 if (status != VXGE_HW_OK)
1499 goto exit;
1501 offset += 8;
1502 val64++;
1504 exit:
1505 return status;
1509 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1511 static enum vxge_hw_status
1512 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
1513 struct vxge_hw_vpath_stats_hw_info *hw_stats)
1515 u64 val64;
1516 enum vxge_hw_status status = VXGE_HW_OK;
1517 struct vxge_hw_vpath_reg __iomem *vp_reg;
1519 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1520 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1521 goto exit;
1523 vp_reg = vpath->vp_reg;
1525 val64 = readq(&vp_reg->vpath_debug_stats0);
1526 hw_stats->ini_num_mwr_sent =
1527 (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
1529 val64 = readq(&vp_reg->vpath_debug_stats1);
1530 hw_stats->ini_num_mrd_sent =
1531 (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
1533 val64 = readq(&vp_reg->vpath_debug_stats2);
1534 hw_stats->ini_num_cpl_rcvd =
1535 (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
1537 val64 = readq(&vp_reg->vpath_debug_stats3);
1538 hw_stats->ini_num_mwr_byte_sent =
1539 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
1541 val64 = readq(&vp_reg->vpath_debug_stats4);
1542 hw_stats->ini_num_cpl_byte_rcvd =
1543 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
1545 val64 = readq(&vp_reg->vpath_debug_stats5);
1546 hw_stats->wrcrdtarb_xoff =
1547 (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
1549 val64 = readq(&vp_reg->vpath_debug_stats6);
1550 hw_stats->rdcrdtarb_xoff =
1551 (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
1553 val64 = readq(&vp_reg->vpath_genstats_count01);
1554 hw_stats->vpath_genstats_count0 =
1555 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1556 val64);
1558 val64 = readq(&vp_reg->vpath_genstats_count01);
1559 hw_stats->vpath_genstats_count1 =
1560 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1561 val64);
1563 val64 = readq(&vp_reg->vpath_genstats_count23);
1564 hw_stats->vpath_genstats_count2 =
1565 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1566 val64);
1568 val64 = readq(&vp_reg->vpath_genstats_count01);
1569 hw_stats->vpath_genstats_count3 =
1570 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1571 val64);
1573 val64 = readq(&vp_reg->vpath_genstats_count4);
1574 hw_stats->vpath_genstats_count4 =
1575 (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1576 val64);
1578 val64 = readq(&vp_reg->vpath_genstats_count5);
1579 hw_stats->vpath_genstats_count5 =
1580 (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1581 val64);
1583 status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
1584 if (status != VXGE_HW_OK)
1585 goto exit;
1587 status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
1588 if (status != VXGE_HW_OK)
1589 goto exit;
1591 VXGE_HW_VPATH_STATS_PIO_READ(
1592 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
1594 hw_stats->prog_event_vnum0 =
1595 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
1597 hw_stats->prog_event_vnum1 =
1598 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
1600 VXGE_HW_VPATH_STATS_PIO_READ(
1601 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
1603 hw_stats->prog_event_vnum2 =
1604 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
1606 hw_stats->prog_event_vnum3 =
1607 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
1609 val64 = readq(&vp_reg->rx_multi_cast_stats);
1610 hw_stats->rx_multi_cast_frame_discard =
1611 (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
1613 val64 = readq(&vp_reg->rx_frm_transferred);
1614 hw_stats->rx_frm_transferred =
1615 (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
1617 val64 = readq(&vp_reg->rxd_returned);
1618 hw_stats->rxd_returned =
1619 (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
1621 val64 = readq(&vp_reg->dbg_stats_rx_mpa);
1622 hw_stats->rx_mpa_len_fail_frms =
1623 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
1624 hw_stats->rx_mpa_mrk_fail_frms =
1625 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
1626 hw_stats->rx_mpa_crc_fail_frms =
1627 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
1629 val64 = readq(&vp_reg->dbg_stats_rx_fau);
1630 hw_stats->rx_permitted_frms =
1631 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
1632 hw_stats->rx_vp_reset_discarded_frms =
1633 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
1634 hw_stats->rx_wol_frms =
1635 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
1637 val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
1638 hw_stats->tx_vp_reset_discarded_frms =
1639 (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1640 val64);
1641 exit:
1642 return status;
1646 * vxge_hw_device_stats_get - Get the device hw statistics.
1647 * Returns the vpath h/w stats for the device.
1649 enum vxge_hw_status
1650 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
1651 struct vxge_hw_device_stats_hw_info *hw_stats)
1653 u32 i;
1654 enum vxge_hw_status status = VXGE_HW_OK;
1656 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1657 if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
1658 (hldev->virtual_paths[i].vp_open ==
1659 VXGE_HW_VP_NOT_OPEN))
1660 continue;
1662 memcpy(hldev->virtual_paths[i].hw_stats_sav,
1663 hldev->virtual_paths[i].hw_stats,
1664 sizeof(struct vxge_hw_vpath_stats_hw_info));
1666 status = __vxge_hw_vpath_stats_get(
1667 &hldev->virtual_paths[i],
1668 hldev->virtual_paths[i].hw_stats);
1671 memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
1672 sizeof(struct vxge_hw_device_stats_hw_info));
1674 return status;
1678 * vxge_hw_driver_stats_get - Get the device sw statistics.
1679 * Returns the vpath s/w stats for the device.
1681 enum vxge_hw_status vxge_hw_driver_stats_get(
1682 struct __vxge_hw_device *hldev,
1683 struct vxge_hw_device_stats_sw_info *sw_stats)
1685 enum vxge_hw_status status = VXGE_HW_OK;
1687 memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
1688 sizeof(struct vxge_hw_device_stats_sw_info));
1690 return status;
1694 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1695 * and offset and perform an operation
1696 * Get the statistics from the given location and offset.
1698 enum vxge_hw_status
1699 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
1700 u32 operation, u32 location, u32 offset, u64 *stat)
1702 u64 val64;
1703 enum vxge_hw_status status = VXGE_HW_OK;
1705 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1706 hldev->func_id);
1707 if (status != VXGE_HW_OK)
1708 goto exit;
1710 val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
1711 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
1712 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
1713 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
1715 status = __vxge_hw_pio_mem_write64(val64,
1716 &hldev->mrpcim_reg->xmac_stats_sys_cmd,
1717 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
1718 hldev->config.device_poll_millis);
1720 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1721 *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
1722 else
1723 *stat = 0;
1724 exit:
1725 return status;
1729 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1730 * Get the Statistics on aggregate port
1732 static enum vxge_hw_status
1733 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
1734 struct vxge_hw_xmac_aggr_stats *aggr_stats)
1736 u64 *val64;
1737 int i;
1738 u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
1739 enum vxge_hw_status status = VXGE_HW_OK;
1741 val64 = (u64 *)aggr_stats;
1743 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1744 hldev->func_id);
1745 if (status != VXGE_HW_OK)
1746 goto exit;
1748 for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
1749 status = vxge_hw_mrpcim_stats_access(hldev,
1750 VXGE_HW_STATS_OP_READ,
1751 VXGE_HW_STATS_LOC_AGGR,
1752 ((offset + (104 * port)) >> 3), val64);
1753 if (status != VXGE_HW_OK)
1754 goto exit;
1756 offset += 8;
1757 val64++;
1759 exit:
1760 return status;
1764 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1765 * Get the Statistics on port
1767 static enum vxge_hw_status
1768 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
1769 struct vxge_hw_xmac_port_stats *port_stats)
1771 u64 *val64;
1772 enum vxge_hw_status status = VXGE_HW_OK;
1773 int i;
1774 u32 offset = 0x0;
1775 val64 = (u64 *) port_stats;
1777 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1778 hldev->func_id);
1779 if (status != VXGE_HW_OK)
1780 goto exit;
1782 for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1783 status = vxge_hw_mrpcim_stats_access(hldev,
1784 VXGE_HW_STATS_OP_READ,
1785 VXGE_HW_STATS_LOC_AGGR,
1786 ((offset + (608 * port)) >> 3), val64);
1787 if (status != VXGE_HW_OK)
1788 goto exit;
1790 offset += 8;
1791 val64++;
1794 exit:
1795 return status;
1799 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1800 * Get the XMAC Statistics
1802 enum vxge_hw_status
1803 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1804 struct vxge_hw_xmac_stats *xmac_stats)
1806 enum vxge_hw_status status = VXGE_HW_OK;
1807 u32 i;
1809 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1810 0, &xmac_stats->aggr_stats[0]);
1811 if (status != VXGE_HW_OK)
1812 goto exit;
1814 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1815 1, &xmac_stats->aggr_stats[1]);
1816 if (status != VXGE_HW_OK)
1817 goto exit;
1819 for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1821 status = vxge_hw_device_xmac_port_stats_get(hldev,
1822 i, &xmac_stats->port_stats[i]);
1823 if (status != VXGE_HW_OK)
1824 goto exit;
1827 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1829 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1830 continue;
1832 status = __vxge_hw_vpath_xmac_tx_stats_get(
1833 &hldev->virtual_paths[i],
1834 &xmac_stats->vpath_tx_stats[i]);
1835 if (status != VXGE_HW_OK)
1836 goto exit;
1838 status = __vxge_hw_vpath_xmac_rx_stats_get(
1839 &hldev->virtual_paths[i],
1840 &xmac_stats->vpath_rx_stats[i]);
1841 if (status != VXGE_HW_OK)
1842 goto exit;
1844 exit:
1845 return status;
1849 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1850 * This routine is used to dynamically change the debug output
1852 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1853 enum vxge_debug_level level, u32 mask)
1855 if (hldev == NULL)
1856 return;
1858 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1859 defined(VXGE_DEBUG_ERR_MASK)
1860 hldev->debug_module_mask = mask;
1861 hldev->debug_level = level;
1862 #endif
1864 #if defined(VXGE_DEBUG_ERR_MASK)
1865 hldev->level_err = level & VXGE_ERR;
1866 #endif
1868 #if defined(VXGE_DEBUG_TRACE_MASK)
1869 hldev->level_trace = level & VXGE_TRACE;
1870 #endif
1874 * vxge_hw_device_error_level_get - Get the error level
1875 * This routine returns the current error level set
1877 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1879 #if defined(VXGE_DEBUG_ERR_MASK)
1880 if (hldev == NULL)
1881 return VXGE_ERR;
1882 else
1883 return hldev->level_err;
1884 #else
1885 return 0;
1886 #endif
1890 * vxge_hw_device_trace_level_get - Get the trace level
1891 * This routine returns the current trace level set
1893 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1895 #if defined(VXGE_DEBUG_TRACE_MASK)
1896 if (hldev == NULL)
1897 return VXGE_TRACE;
1898 else
1899 return hldev->level_trace;
1900 #else
1901 return 0;
1902 #endif
1906 * vxge_hw_getpause_data -Pause frame frame generation and reception.
1907 * Returns the Pause frame generation and reception capability of the NIC.
1909 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1910 u32 port, u32 *tx, u32 *rx)
1912 u64 val64;
1913 enum vxge_hw_status status = VXGE_HW_OK;
1915 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1916 status = VXGE_HW_ERR_INVALID_DEVICE;
1917 goto exit;
1920 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1921 status = VXGE_HW_ERR_INVALID_PORT;
1922 goto exit;
1925 if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1926 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
1927 goto exit;
1930 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1931 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1932 *tx = 1;
1933 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1934 *rx = 1;
1935 exit:
1936 return status;
1940 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1941 * It can be used to set or reset Pause frame generation or reception
1942 * support of the NIC.
1944 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1945 u32 port, u32 tx, u32 rx)
1947 u64 val64;
1948 enum vxge_hw_status status = VXGE_HW_OK;
1950 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1951 status = VXGE_HW_ERR_INVALID_DEVICE;
1952 goto exit;
1955 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1956 status = VXGE_HW_ERR_INVALID_PORT;
1957 goto exit;
1960 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1961 hldev->func_id);
1962 if (status != VXGE_HW_OK)
1963 goto exit;
1965 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1966 if (tx)
1967 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1968 else
1969 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1970 if (rx)
1971 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1972 else
1973 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1975 writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1976 exit:
1977 return status;
1980 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1982 struct pci_dev *dev = hldev->pdev;
1983 u16 lnk;
1985 pci_read_config_word(dev, dev->pcie_cap + PCI_EXP_LNKSTA, &lnk);
1986 return (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1990 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1991 * This function returns the index of memory block
1993 static inline u32
1994 __vxge_hw_ring_block_memblock_idx(u8 *block)
1996 return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
2000 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
2001 * This function sets index to a memory block
2003 static inline void
2004 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
2006 *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
2010 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2011 * in RxD block
2012 * Sets the next block pointer in RxD block
2014 static inline void
2015 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
2017 *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
2021 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2022 * first block
2023 * Returns the dma address of the first RxD block
2025 static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
2027 struct vxge_hw_mempool_dma *dma_object;
2029 dma_object = ring->mempool->memblocks_dma_arr;
2030 vxge_assert(dma_object != NULL);
2032 return dma_object->addr;
2036 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2037 * This function returns the dma address of a given item
2039 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
2040 void *item)
2042 u32 memblock_idx;
2043 void *memblock;
2044 struct vxge_hw_mempool_dma *memblock_dma_object;
2045 ptrdiff_t dma_item_offset;
2047 /* get owner memblock index */
2048 memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
2050 /* get owner memblock by memblock index */
2051 memblock = mempoolh->memblocks_arr[memblock_idx];
2053 /* get memblock DMA object by memblock index */
2054 memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
2056 /* calculate offset in the memblock of this item */
2057 dma_item_offset = (u8 *)item - (u8 *)memblock;
2059 return memblock_dma_object->addr + dma_item_offset;
2063 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2064 * This function returns the dma address of a given item
2066 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
2067 struct __vxge_hw_ring *ring, u32 from,
2068 u32 to)
2070 u8 *to_item , *from_item;
2071 dma_addr_t to_dma;
2073 /* get "from" RxD block */
2074 from_item = mempoolh->items_arr[from];
2075 vxge_assert(from_item);
2077 /* get "to" RxD block */
2078 to_item = mempoolh->items_arr[to];
2079 vxge_assert(to_item);
2081 /* return address of the beginning of previous RxD block */
2082 to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
2084 /* set next pointer for this RxD block to point on
2085 * previous item's DMA start address */
2086 __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
2090 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2091 * block callback
2092 * This function is callback passed to __vxge_hw_mempool_create to create memory
2093 * pool for RxD block
2095 static void
2096 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
2097 u32 memblock_index,
2098 struct vxge_hw_mempool_dma *dma_object,
2099 u32 index, u32 is_last)
2101 u32 i;
2102 void *item = mempoolh->items_arr[index];
2103 struct __vxge_hw_ring *ring =
2104 (struct __vxge_hw_ring *)mempoolh->userdata;
2106 /* format rxds array */
2107 for (i = 0; i < ring->rxds_per_block; i++) {
2108 void *rxdblock_priv;
2109 void *uld_priv;
2110 struct vxge_hw_ring_rxd_1 *rxdp;
2112 u32 reserve_index = ring->channel.reserve_ptr -
2113 (index * ring->rxds_per_block + i + 1);
2114 u32 memblock_item_idx;
2116 ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
2117 i * ring->rxd_size;
2119 /* Note: memblock_item_idx is index of the item within
2120 * the memblock. For instance, in case of three RxD-blocks
2121 * per memblock this value can be 0, 1 or 2. */
2122 rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
2123 memblock_index, item,
2124 &memblock_item_idx);
2126 rxdp = ring->channel.reserve_arr[reserve_index];
2128 uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
2130 /* pre-format Host_Control */
2131 rxdp->host_control = (u64)(size_t)uld_priv;
2134 __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
2136 if (is_last) {
2137 /* link last one with first one */
2138 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
2141 if (index > 0) {
2142 /* link this RxD block with previous one */
2143 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
2148 * __vxge_hw_ring_replenish - Initial replenish of RxDs
2149 * This function replenishes the RxDs from reserve array to work array
2151 enum vxge_hw_status
2152 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
2154 void *rxd;
2155 struct __vxge_hw_channel *channel;
2156 enum vxge_hw_status status = VXGE_HW_OK;
2158 channel = &ring->channel;
2160 while (vxge_hw_channel_dtr_count(channel) > 0) {
2162 status = vxge_hw_ring_rxd_reserve(ring, &rxd);
2164 vxge_assert(status == VXGE_HW_OK);
2166 if (ring->rxd_init) {
2167 status = ring->rxd_init(rxd, channel->userdata);
2168 if (status != VXGE_HW_OK) {
2169 vxge_hw_ring_rxd_free(ring, rxd);
2170 goto exit;
2174 vxge_hw_ring_rxd_post(ring, rxd);
2176 status = VXGE_HW_OK;
2177 exit:
2178 return status;
2182 * __vxge_hw_channel_allocate - Allocate memory for channel
2183 * This function allocates required memory for the channel and various arrays
2184 * in the channel
2186 static struct __vxge_hw_channel *
2187 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
2188 enum __vxge_hw_channel_type type,
2189 u32 length, u32 per_dtr_space,
2190 void *userdata)
2192 struct __vxge_hw_channel *channel;
2193 struct __vxge_hw_device *hldev;
2194 int size = 0;
2195 u32 vp_id;
2197 hldev = vph->vpath->hldev;
2198 vp_id = vph->vpath->vp_id;
2200 switch (type) {
2201 case VXGE_HW_CHANNEL_TYPE_FIFO:
2202 size = sizeof(struct __vxge_hw_fifo);
2203 break;
2204 case VXGE_HW_CHANNEL_TYPE_RING:
2205 size = sizeof(struct __vxge_hw_ring);
2206 break;
2207 default:
2208 break;
2211 channel = kzalloc(size, GFP_KERNEL);
2212 if (channel == NULL)
2213 goto exit0;
2214 INIT_LIST_HEAD(&channel->item);
2216 channel->common_reg = hldev->common_reg;
2217 channel->first_vp_id = hldev->first_vp_id;
2218 channel->type = type;
2219 channel->devh = hldev;
2220 channel->vph = vph;
2221 channel->userdata = userdata;
2222 channel->per_dtr_space = per_dtr_space;
2223 channel->length = length;
2224 channel->vp_id = vp_id;
2226 channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2227 if (channel->work_arr == NULL)
2228 goto exit1;
2230 channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2231 if (channel->free_arr == NULL)
2232 goto exit1;
2233 channel->free_ptr = length;
2235 channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2236 if (channel->reserve_arr == NULL)
2237 goto exit1;
2238 channel->reserve_ptr = length;
2239 channel->reserve_top = 0;
2241 channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
2242 if (channel->orig_arr == NULL)
2243 goto exit1;
2245 return channel;
2246 exit1:
2247 __vxge_hw_channel_free(channel);
2249 exit0:
2250 return NULL;
2254 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2255 * Adds a block to block pool
2257 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
2258 void *block_addr,
2259 u32 length,
2260 struct pci_dev *dma_h,
2261 struct pci_dev *acc_handle)
2263 struct __vxge_hw_blockpool *blockpool;
2264 struct __vxge_hw_blockpool_entry *entry = NULL;
2265 dma_addr_t dma_addr;
2266 enum vxge_hw_status status = VXGE_HW_OK;
2267 u32 req_out;
2269 blockpool = &devh->block_pool;
2271 if (block_addr == NULL) {
2272 blockpool->req_out--;
2273 status = VXGE_HW_FAIL;
2274 goto exit;
2277 dma_addr = pci_map_single(devh->pdev, block_addr, length,
2278 PCI_DMA_BIDIRECTIONAL);
2280 if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
2281 vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
2282 blockpool->req_out--;
2283 status = VXGE_HW_FAIL;
2284 goto exit;
2287 if (!list_empty(&blockpool->free_entry_list))
2288 entry = (struct __vxge_hw_blockpool_entry *)
2289 list_first_entry(&blockpool->free_entry_list,
2290 struct __vxge_hw_blockpool_entry,
2291 item);
2293 if (entry == NULL)
2294 entry = vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
2295 else
2296 list_del(&entry->item);
2298 if (entry != NULL) {
2299 entry->length = length;
2300 entry->memblock = block_addr;
2301 entry->dma_addr = dma_addr;
2302 entry->acc_handle = acc_handle;
2303 entry->dma_handle = dma_h;
2304 list_add(&entry->item, &blockpool->free_block_list);
2305 blockpool->pool_size++;
2306 status = VXGE_HW_OK;
2307 } else
2308 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2310 blockpool->req_out--;
2312 req_out = blockpool->req_out;
2313 exit:
2314 return;
2317 static inline void
2318 vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh, unsigned long size)
2320 gfp_t flags;
2321 void *vaddr;
2323 if (in_interrupt())
2324 flags = GFP_ATOMIC | GFP_DMA;
2325 else
2326 flags = GFP_KERNEL | GFP_DMA;
2328 vaddr = kmalloc((size), flags);
2330 vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
2334 * __vxge_hw_blockpool_blocks_add - Request additional blocks
2336 static
2337 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
2339 u32 nreq = 0, i;
2341 if ((blockpool->pool_size + blockpool->req_out) <
2342 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
2343 nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
2344 blockpool->req_out += nreq;
2347 for (i = 0; i < nreq; i++)
2348 vxge_os_dma_malloc_async(
2349 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
2350 blockpool->hldev, VXGE_HW_BLOCK_SIZE);
2354 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2355 * Allocates a block of memory of given size, either from block pool
2356 * or by calling vxge_os_dma_malloc()
2358 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
2359 struct vxge_hw_mempool_dma *dma_object)
2361 struct __vxge_hw_blockpool_entry *entry = NULL;
2362 struct __vxge_hw_blockpool *blockpool;
2363 void *memblock = NULL;
2364 enum vxge_hw_status status = VXGE_HW_OK;
2366 blockpool = &devh->block_pool;
2368 if (size != blockpool->block_size) {
2370 memblock = vxge_os_dma_malloc(devh->pdev, size,
2371 &dma_object->handle,
2372 &dma_object->acc_handle);
2374 if (memblock == NULL) {
2375 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2376 goto exit;
2379 dma_object->addr = pci_map_single(devh->pdev, memblock, size,
2380 PCI_DMA_BIDIRECTIONAL);
2382 if (unlikely(pci_dma_mapping_error(devh->pdev,
2383 dma_object->addr))) {
2384 vxge_os_dma_free(devh->pdev, memblock,
2385 &dma_object->acc_handle);
2386 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2387 goto exit;
2390 } else {
2392 if (!list_empty(&blockpool->free_block_list))
2393 entry = (struct __vxge_hw_blockpool_entry *)
2394 list_first_entry(&blockpool->free_block_list,
2395 struct __vxge_hw_blockpool_entry,
2396 item);
2398 if (entry != NULL) {
2399 list_del(&entry->item);
2400 dma_object->addr = entry->dma_addr;
2401 dma_object->handle = entry->dma_handle;
2402 dma_object->acc_handle = entry->acc_handle;
2403 memblock = entry->memblock;
2405 list_add(&entry->item,
2406 &blockpool->free_entry_list);
2407 blockpool->pool_size--;
2410 if (memblock != NULL)
2411 __vxge_hw_blockpool_blocks_add(blockpool);
2413 exit:
2414 return memblock;
2418 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2420 static void
2421 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
2423 struct list_head *p, *n;
2425 list_for_each_safe(p, n, &blockpool->free_block_list) {
2427 if (blockpool->pool_size < blockpool->pool_max)
2428 break;
2430 pci_unmap_single(
2431 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
2432 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
2433 ((struct __vxge_hw_blockpool_entry *)p)->length,
2434 PCI_DMA_BIDIRECTIONAL);
2436 vxge_os_dma_free(
2437 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
2438 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
2439 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
2441 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
2443 list_add(p, &blockpool->free_entry_list);
2445 blockpool->pool_size--;
2451 * __vxge_hw_blockpool_free - Frees the memory allcoated with
2452 * __vxge_hw_blockpool_malloc
2454 static void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
2455 void *memblock, u32 size,
2456 struct vxge_hw_mempool_dma *dma_object)
2458 struct __vxge_hw_blockpool_entry *entry = NULL;
2459 struct __vxge_hw_blockpool *blockpool;
2460 enum vxge_hw_status status = VXGE_HW_OK;
2462 blockpool = &devh->block_pool;
2464 if (size != blockpool->block_size) {
2465 pci_unmap_single(devh->pdev, dma_object->addr, size,
2466 PCI_DMA_BIDIRECTIONAL);
2467 vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
2468 } else {
2470 if (!list_empty(&blockpool->free_entry_list))
2471 entry = (struct __vxge_hw_blockpool_entry *)
2472 list_first_entry(&blockpool->free_entry_list,
2473 struct __vxge_hw_blockpool_entry,
2474 item);
2476 if (entry == NULL)
2477 entry = vmalloc(sizeof(
2478 struct __vxge_hw_blockpool_entry));
2479 else
2480 list_del(&entry->item);
2482 if (entry != NULL) {
2483 entry->length = size;
2484 entry->memblock = memblock;
2485 entry->dma_addr = dma_object->addr;
2486 entry->acc_handle = dma_object->acc_handle;
2487 entry->dma_handle = dma_object->handle;
2488 list_add(&entry->item,
2489 &blockpool->free_block_list);
2490 blockpool->pool_size++;
2491 status = VXGE_HW_OK;
2492 } else
2493 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2495 if (status == VXGE_HW_OK)
2496 __vxge_hw_blockpool_blocks_remove(blockpool);
2501 * vxge_hw_mempool_destroy
2503 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
2505 u32 i, j;
2506 struct __vxge_hw_device *devh = mempool->devh;
2508 for (i = 0; i < mempool->memblocks_allocated; i++) {
2509 struct vxge_hw_mempool_dma *dma_object;
2511 vxge_assert(mempool->memblocks_arr[i]);
2512 vxge_assert(mempool->memblocks_dma_arr + i);
2514 dma_object = mempool->memblocks_dma_arr + i;
2516 for (j = 0; j < mempool->items_per_memblock; j++) {
2517 u32 index = i * mempool->items_per_memblock + j;
2519 /* to skip last partially filled(if any) memblock */
2520 if (index >= mempool->items_current)
2521 break;
2524 vfree(mempool->memblocks_priv_arr[i]);
2526 __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
2527 mempool->memblock_size, dma_object);
2530 vfree(mempool->items_arr);
2531 vfree(mempool->memblocks_dma_arr);
2532 vfree(mempool->memblocks_priv_arr);
2533 vfree(mempool->memblocks_arr);
2534 vfree(mempool);
2538 * __vxge_hw_mempool_grow
2539 * Will resize mempool up to %num_allocate value.
2541 static enum vxge_hw_status
2542 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
2543 u32 *num_allocated)
2545 u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
2546 u32 n_items = mempool->items_per_memblock;
2547 u32 start_block_idx = mempool->memblocks_allocated;
2548 u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
2549 enum vxge_hw_status status = VXGE_HW_OK;
2551 *num_allocated = 0;
2553 if (end_block_idx > mempool->memblocks_max) {
2554 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2555 goto exit;
2558 for (i = start_block_idx; i < end_block_idx; i++) {
2559 u32 j;
2560 u32 is_last = ((end_block_idx - 1) == i);
2561 struct vxge_hw_mempool_dma *dma_object =
2562 mempool->memblocks_dma_arr + i;
2563 void *the_memblock;
2565 /* allocate memblock's private part. Each DMA memblock
2566 * has a space allocated for item's private usage upon
2567 * mempool's user request. Each time mempool grows, it will
2568 * allocate new memblock and its private part at once.
2569 * This helps to minimize memory usage a lot. */
2570 mempool->memblocks_priv_arr[i] =
2571 vzalloc(mempool->items_priv_size * n_items);
2572 if (mempool->memblocks_priv_arr[i] == NULL) {
2573 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2574 goto exit;
2577 /* allocate DMA-capable memblock */
2578 mempool->memblocks_arr[i] =
2579 __vxge_hw_blockpool_malloc(mempool->devh,
2580 mempool->memblock_size, dma_object);
2581 if (mempool->memblocks_arr[i] == NULL) {
2582 vfree(mempool->memblocks_priv_arr[i]);
2583 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2584 goto exit;
2587 (*num_allocated)++;
2588 mempool->memblocks_allocated++;
2590 memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
2592 the_memblock = mempool->memblocks_arr[i];
2594 /* fill the items hash array */
2595 for (j = 0; j < n_items; j++) {
2596 u32 index = i * n_items + j;
2598 if (first_time && index >= mempool->items_initial)
2599 break;
2601 mempool->items_arr[index] =
2602 ((char *)the_memblock + j*mempool->item_size);
2604 /* let caller to do more job on each item */
2605 if (mempool->item_func_alloc != NULL)
2606 mempool->item_func_alloc(mempool, i,
2607 dma_object, index, is_last);
2609 mempool->items_current = index + 1;
2612 if (first_time && mempool->items_current ==
2613 mempool->items_initial)
2614 break;
2616 exit:
2617 return status;
2621 * vxge_hw_mempool_create
2622 * This function will create memory pool object. Pool may grow but will
2623 * never shrink. Pool consists of number of dynamically allocated blocks
2624 * with size enough to hold %items_initial number of items. Memory is
2625 * DMA-able but client must map/unmap before interoperating with the device.
2627 static struct vxge_hw_mempool *
2628 __vxge_hw_mempool_create(struct __vxge_hw_device *devh,
2629 u32 memblock_size,
2630 u32 item_size,
2631 u32 items_priv_size,
2632 u32 items_initial,
2633 u32 items_max,
2634 const struct vxge_hw_mempool_cbs *mp_callback,
2635 void *userdata)
2637 enum vxge_hw_status status = VXGE_HW_OK;
2638 u32 memblocks_to_allocate;
2639 struct vxge_hw_mempool *mempool = NULL;
2640 u32 allocated;
2642 if (memblock_size < item_size) {
2643 status = VXGE_HW_FAIL;
2644 goto exit;
2647 mempool = vzalloc(sizeof(struct vxge_hw_mempool));
2648 if (mempool == NULL) {
2649 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2650 goto exit;
2653 mempool->devh = devh;
2654 mempool->memblock_size = memblock_size;
2655 mempool->items_max = items_max;
2656 mempool->items_initial = items_initial;
2657 mempool->item_size = item_size;
2658 mempool->items_priv_size = items_priv_size;
2659 mempool->item_func_alloc = mp_callback->item_func_alloc;
2660 mempool->userdata = userdata;
2662 mempool->memblocks_allocated = 0;
2664 mempool->items_per_memblock = memblock_size / item_size;
2666 mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
2667 mempool->items_per_memblock;
2669 /* allocate array of memblocks */
2670 mempool->memblocks_arr =
2671 vzalloc(sizeof(void *) * mempool->memblocks_max);
2672 if (mempool->memblocks_arr == NULL) {
2673 __vxge_hw_mempool_destroy(mempool);
2674 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2675 mempool = NULL;
2676 goto exit;
2679 /* allocate array of private parts of items per memblocks */
2680 mempool->memblocks_priv_arr =
2681 vzalloc(sizeof(void *) * mempool->memblocks_max);
2682 if (mempool->memblocks_priv_arr == NULL) {
2683 __vxge_hw_mempool_destroy(mempool);
2684 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2685 mempool = NULL;
2686 goto exit;
2689 /* allocate array of memblocks DMA objects */
2690 mempool->memblocks_dma_arr =
2691 vzalloc(sizeof(struct vxge_hw_mempool_dma) *
2692 mempool->memblocks_max);
2693 if (mempool->memblocks_dma_arr == NULL) {
2694 __vxge_hw_mempool_destroy(mempool);
2695 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2696 mempool = NULL;
2697 goto exit;
2700 /* allocate hash array of items */
2701 mempool->items_arr = vzalloc(sizeof(void *) * mempool->items_max);
2702 if (mempool->items_arr == NULL) {
2703 __vxge_hw_mempool_destroy(mempool);
2704 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2705 mempool = NULL;
2706 goto exit;
2709 /* calculate initial number of memblocks */
2710 memblocks_to_allocate = (mempool->items_initial +
2711 mempool->items_per_memblock - 1) /
2712 mempool->items_per_memblock;
2714 /* pre-allocate the mempool */
2715 status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
2716 &allocated);
2717 if (status != VXGE_HW_OK) {
2718 __vxge_hw_mempool_destroy(mempool);
2719 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2720 mempool = NULL;
2721 goto exit;
2724 exit:
2725 return mempool;
2729 * __vxge_hw_ring_abort - Returns the RxD
2730 * This function terminates the RxDs of ring
2732 static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
2734 void *rxdh;
2735 struct __vxge_hw_channel *channel;
2737 channel = &ring->channel;
2739 for (;;) {
2740 vxge_hw_channel_dtr_try_complete(channel, &rxdh);
2742 if (rxdh == NULL)
2743 break;
2745 vxge_hw_channel_dtr_complete(channel);
2747 if (ring->rxd_term)
2748 ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
2749 channel->userdata);
2751 vxge_hw_channel_dtr_free(channel, rxdh);
2754 return VXGE_HW_OK;
2758 * __vxge_hw_ring_reset - Resets the ring
2759 * This function resets the ring during vpath reset operation
2761 static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
2763 enum vxge_hw_status status = VXGE_HW_OK;
2764 struct __vxge_hw_channel *channel;
2766 channel = &ring->channel;
2768 __vxge_hw_ring_abort(ring);
2770 status = __vxge_hw_channel_reset(channel);
2772 if (status != VXGE_HW_OK)
2773 goto exit;
2775 if (ring->rxd_init) {
2776 status = vxge_hw_ring_replenish(ring);
2777 if (status != VXGE_HW_OK)
2778 goto exit;
2780 exit:
2781 return status;
2785 * __vxge_hw_ring_delete - Removes the ring
2786 * This function freeup the memory pool and removes the ring
2788 static enum vxge_hw_status
2789 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
2791 struct __vxge_hw_ring *ring = vp->vpath->ringh;
2793 __vxge_hw_ring_abort(ring);
2795 if (ring->mempool)
2796 __vxge_hw_mempool_destroy(ring->mempool);
2798 vp->vpath->ringh = NULL;
2799 __vxge_hw_channel_free(&ring->channel);
2801 return VXGE_HW_OK;
2805 * __vxge_hw_ring_create - Create a Ring
2806 * This function creates Ring and initializes it.
2808 static enum vxge_hw_status
2809 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
2810 struct vxge_hw_ring_attr *attr)
2812 enum vxge_hw_status status = VXGE_HW_OK;
2813 struct __vxge_hw_ring *ring;
2814 u32 ring_length;
2815 struct vxge_hw_ring_config *config;
2816 struct __vxge_hw_device *hldev;
2817 u32 vp_id;
2818 static const struct vxge_hw_mempool_cbs ring_mp_callback = {
2819 .item_func_alloc = __vxge_hw_ring_mempool_item_alloc,
2822 if ((vp == NULL) || (attr == NULL)) {
2823 status = VXGE_HW_FAIL;
2824 goto exit;
2827 hldev = vp->vpath->hldev;
2828 vp_id = vp->vpath->vp_id;
2830 config = &hldev->config.vp_config[vp_id].ring;
2832 ring_length = config->ring_blocks *
2833 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2835 ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
2836 VXGE_HW_CHANNEL_TYPE_RING,
2837 ring_length,
2838 attr->per_rxd_space,
2839 attr->userdata);
2840 if (ring == NULL) {
2841 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2842 goto exit;
2845 vp->vpath->ringh = ring;
2846 ring->vp_id = vp_id;
2847 ring->vp_reg = vp->vpath->vp_reg;
2848 ring->common_reg = hldev->common_reg;
2849 ring->stats = &vp->vpath->sw_stats->ring_stats;
2850 ring->config = config;
2851 ring->callback = attr->callback;
2852 ring->rxd_init = attr->rxd_init;
2853 ring->rxd_term = attr->rxd_term;
2854 ring->buffer_mode = config->buffer_mode;
2855 ring->tim_rti_cfg1_saved = vp->vpath->tim_rti_cfg1_saved;
2856 ring->tim_rti_cfg3_saved = vp->vpath->tim_rti_cfg3_saved;
2857 ring->rxds_limit = config->rxds_limit;
2859 ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
2860 ring->rxd_priv_size =
2861 sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
2862 ring->per_rxd_space = attr->per_rxd_space;
2864 ring->rxd_priv_size =
2865 ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2866 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2868 /* how many RxDs can fit into one block. Depends on configured
2869 * buffer_mode. */
2870 ring->rxds_per_block =
2871 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2873 /* calculate actual RxD block private size */
2874 ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
2875 ring->mempool = __vxge_hw_mempool_create(hldev,
2876 VXGE_HW_BLOCK_SIZE,
2877 VXGE_HW_BLOCK_SIZE,
2878 ring->rxdblock_priv_size,
2879 ring->config->ring_blocks,
2880 ring->config->ring_blocks,
2881 &ring_mp_callback,
2882 ring);
2883 if (ring->mempool == NULL) {
2884 __vxge_hw_ring_delete(vp);
2885 return VXGE_HW_ERR_OUT_OF_MEMORY;
2888 status = __vxge_hw_channel_initialize(&ring->channel);
2889 if (status != VXGE_HW_OK) {
2890 __vxge_hw_ring_delete(vp);
2891 goto exit;
2894 /* Note:
2895 * Specifying rxd_init callback means two things:
2896 * 1) rxds need to be initialized by driver at channel-open time;
2897 * 2) rxds need to be posted at channel-open time
2898 * (that's what the initial_replenish() below does)
2899 * Currently we don't have a case when the 1) is done without the 2).
2901 if (ring->rxd_init) {
2902 status = vxge_hw_ring_replenish(ring);
2903 if (status != VXGE_HW_OK) {
2904 __vxge_hw_ring_delete(vp);
2905 goto exit;
2909 /* initial replenish will increment the counter in its post() routine,
2910 * we have to reset it */
2911 ring->stats->common_stats.usage_cnt = 0;
2912 exit:
2913 return status;
2917 * vxge_hw_device_config_default_get - Initialize device config with defaults.
2918 * Initialize Titan device config with default values.
2920 enum vxge_hw_status __devinit
2921 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
2923 u32 i;
2925 device_config->dma_blockpool_initial =
2926 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
2927 device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
2928 device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
2929 device_config->rth_en = VXGE_HW_RTH_DEFAULT;
2930 device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
2931 device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
2932 device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
2934 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
2935 device_config->vp_config[i].vp_id = i;
2937 device_config->vp_config[i].min_bandwidth =
2938 VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
2940 device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
2942 device_config->vp_config[i].ring.ring_blocks =
2943 VXGE_HW_DEF_RING_BLOCKS;
2945 device_config->vp_config[i].ring.buffer_mode =
2946 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
2948 device_config->vp_config[i].ring.scatter_mode =
2949 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
2951 device_config->vp_config[i].ring.rxds_limit =
2952 VXGE_HW_DEF_RING_RXDS_LIMIT;
2954 device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
2956 device_config->vp_config[i].fifo.fifo_blocks =
2957 VXGE_HW_MIN_FIFO_BLOCKS;
2959 device_config->vp_config[i].fifo.max_frags =
2960 VXGE_HW_MAX_FIFO_FRAGS;
2962 device_config->vp_config[i].fifo.memblock_size =
2963 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
2965 device_config->vp_config[i].fifo.alignment_size =
2966 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
2968 device_config->vp_config[i].fifo.intr =
2969 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
2971 device_config->vp_config[i].fifo.no_snoop_bits =
2972 VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
2973 device_config->vp_config[i].tti.intr_enable =
2974 VXGE_HW_TIM_INTR_DEFAULT;
2976 device_config->vp_config[i].tti.btimer_val =
2977 VXGE_HW_USE_FLASH_DEFAULT;
2979 device_config->vp_config[i].tti.timer_ac_en =
2980 VXGE_HW_USE_FLASH_DEFAULT;
2982 device_config->vp_config[i].tti.timer_ci_en =
2983 VXGE_HW_USE_FLASH_DEFAULT;
2985 device_config->vp_config[i].tti.timer_ri_en =
2986 VXGE_HW_USE_FLASH_DEFAULT;
2988 device_config->vp_config[i].tti.rtimer_val =
2989 VXGE_HW_USE_FLASH_DEFAULT;
2991 device_config->vp_config[i].tti.util_sel =
2992 VXGE_HW_USE_FLASH_DEFAULT;
2994 device_config->vp_config[i].tti.ltimer_val =
2995 VXGE_HW_USE_FLASH_DEFAULT;
2997 device_config->vp_config[i].tti.urange_a =
2998 VXGE_HW_USE_FLASH_DEFAULT;
3000 device_config->vp_config[i].tti.uec_a =
3001 VXGE_HW_USE_FLASH_DEFAULT;
3003 device_config->vp_config[i].tti.urange_b =
3004 VXGE_HW_USE_FLASH_DEFAULT;
3006 device_config->vp_config[i].tti.uec_b =
3007 VXGE_HW_USE_FLASH_DEFAULT;
3009 device_config->vp_config[i].tti.urange_c =
3010 VXGE_HW_USE_FLASH_DEFAULT;
3012 device_config->vp_config[i].tti.uec_c =
3013 VXGE_HW_USE_FLASH_DEFAULT;
3015 device_config->vp_config[i].tti.uec_d =
3016 VXGE_HW_USE_FLASH_DEFAULT;
3018 device_config->vp_config[i].rti.intr_enable =
3019 VXGE_HW_TIM_INTR_DEFAULT;
3021 device_config->vp_config[i].rti.btimer_val =
3022 VXGE_HW_USE_FLASH_DEFAULT;
3024 device_config->vp_config[i].rti.timer_ac_en =
3025 VXGE_HW_USE_FLASH_DEFAULT;
3027 device_config->vp_config[i].rti.timer_ci_en =
3028 VXGE_HW_USE_FLASH_DEFAULT;
3030 device_config->vp_config[i].rti.timer_ri_en =
3031 VXGE_HW_USE_FLASH_DEFAULT;
3033 device_config->vp_config[i].rti.rtimer_val =
3034 VXGE_HW_USE_FLASH_DEFAULT;
3036 device_config->vp_config[i].rti.util_sel =
3037 VXGE_HW_USE_FLASH_DEFAULT;
3039 device_config->vp_config[i].rti.ltimer_val =
3040 VXGE_HW_USE_FLASH_DEFAULT;
3042 device_config->vp_config[i].rti.urange_a =
3043 VXGE_HW_USE_FLASH_DEFAULT;
3045 device_config->vp_config[i].rti.uec_a =
3046 VXGE_HW_USE_FLASH_DEFAULT;
3048 device_config->vp_config[i].rti.urange_b =
3049 VXGE_HW_USE_FLASH_DEFAULT;
3051 device_config->vp_config[i].rti.uec_b =
3052 VXGE_HW_USE_FLASH_DEFAULT;
3054 device_config->vp_config[i].rti.urange_c =
3055 VXGE_HW_USE_FLASH_DEFAULT;
3057 device_config->vp_config[i].rti.uec_c =
3058 VXGE_HW_USE_FLASH_DEFAULT;
3060 device_config->vp_config[i].rti.uec_d =
3061 VXGE_HW_USE_FLASH_DEFAULT;
3063 device_config->vp_config[i].mtu =
3064 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
3066 device_config->vp_config[i].rpa_strip_vlan_tag =
3067 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
3070 return VXGE_HW_OK;
3074 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3075 * Set the swapper bits appropriately for the vpath.
3077 static enum vxge_hw_status
3078 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
3080 #ifndef __BIG_ENDIAN
3081 u64 val64;
3083 val64 = readq(&vpath_reg->vpath_general_cfg1);
3084 wmb();
3085 val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
3086 writeq(val64, &vpath_reg->vpath_general_cfg1);
3087 wmb();
3088 #endif
3089 return VXGE_HW_OK;
3093 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3094 * Set the swapper bits appropriately for the vpath.
3096 static enum vxge_hw_status
3097 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
3098 struct vxge_hw_vpath_reg __iomem *vpath_reg)
3100 u64 val64;
3102 val64 = readq(&legacy_reg->pifm_wr_swap_en);
3104 if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
3105 val64 = readq(&vpath_reg->kdfcctl_cfg0);
3106 wmb();
3108 val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
3109 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
3110 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
3112 writeq(val64, &vpath_reg->kdfcctl_cfg0);
3113 wmb();
3116 return VXGE_HW_OK;
3120 * vxge_hw_mgmt_reg_read - Read Titan register.
3122 enum vxge_hw_status
3123 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
3124 enum vxge_hw_mgmt_reg_type type,
3125 u32 index, u32 offset, u64 *value)
3127 enum vxge_hw_status status = VXGE_HW_OK;
3129 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3130 status = VXGE_HW_ERR_INVALID_DEVICE;
3131 goto exit;
3134 switch (type) {
3135 case vxge_hw_mgmt_reg_type_legacy:
3136 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3137 status = VXGE_HW_ERR_INVALID_OFFSET;
3138 break;
3140 *value = readq((void __iomem *)hldev->legacy_reg + offset);
3141 break;
3142 case vxge_hw_mgmt_reg_type_toc:
3143 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3144 status = VXGE_HW_ERR_INVALID_OFFSET;
3145 break;
3147 *value = readq((void __iomem *)hldev->toc_reg + offset);
3148 break;
3149 case vxge_hw_mgmt_reg_type_common:
3150 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3151 status = VXGE_HW_ERR_INVALID_OFFSET;
3152 break;
3154 *value = readq((void __iomem *)hldev->common_reg + offset);
3155 break;
3156 case vxge_hw_mgmt_reg_type_mrpcim:
3157 if (!(hldev->access_rights &
3158 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3159 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3160 break;
3162 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3163 status = VXGE_HW_ERR_INVALID_OFFSET;
3164 break;
3166 *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
3167 break;
3168 case vxge_hw_mgmt_reg_type_srpcim:
3169 if (!(hldev->access_rights &
3170 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3171 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3172 break;
3174 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3175 status = VXGE_HW_ERR_INVALID_INDEX;
3176 break;
3178 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3179 status = VXGE_HW_ERR_INVALID_OFFSET;
3180 break;
3182 *value = readq((void __iomem *)hldev->srpcim_reg[index] +
3183 offset);
3184 break;
3185 case vxge_hw_mgmt_reg_type_vpmgmt:
3186 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3187 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3188 status = VXGE_HW_ERR_INVALID_INDEX;
3189 break;
3191 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3192 status = VXGE_HW_ERR_INVALID_OFFSET;
3193 break;
3195 *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
3196 offset);
3197 break;
3198 case vxge_hw_mgmt_reg_type_vpath:
3199 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
3200 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3201 status = VXGE_HW_ERR_INVALID_INDEX;
3202 break;
3204 if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
3205 status = VXGE_HW_ERR_INVALID_INDEX;
3206 break;
3208 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3209 status = VXGE_HW_ERR_INVALID_OFFSET;
3210 break;
3212 *value = readq((void __iomem *)hldev->vpath_reg[index] +
3213 offset);
3214 break;
3215 default:
3216 status = VXGE_HW_ERR_INVALID_TYPE;
3217 break;
3220 exit:
3221 return status;
3225 * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3227 enum vxge_hw_status
3228 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
3230 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
3231 enum vxge_hw_status status = VXGE_HW_OK;
3232 int i = 0, j = 0;
3234 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3235 if (!((vpath_mask) & vxge_mBIT(i)))
3236 continue;
3237 vpmgmt_reg = hldev->vpmgmt_reg[i];
3238 for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
3239 if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
3240 & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
3241 return VXGE_HW_FAIL;
3244 return status;
3247 * vxge_hw_mgmt_reg_Write - Write Titan register.
3249 enum vxge_hw_status
3250 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
3251 enum vxge_hw_mgmt_reg_type type,
3252 u32 index, u32 offset, u64 value)
3254 enum vxge_hw_status status = VXGE_HW_OK;
3256 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3257 status = VXGE_HW_ERR_INVALID_DEVICE;
3258 goto exit;
3261 switch (type) {
3262 case vxge_hw_mgmt_reg_type_legacy:
3263 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3264 status = VXGE_HW_ERR_INVALID_OFFSET;
3265 break;
3267 writeq(value, (void __iomem *)hldev->legacy_reg + offset);
3268 break;
3269 case vxge_hw_mgmt_reg_type_toc:
3270 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3271 status = VXGE_HW_ERR_INVALID_OFFSET;
3272 break;
3274 writeq(value, (void __iomem *)hldev->toc_reg + offset);
3275 break;
3276 case vxge_hw_mgmt_reg_type_common:
3277 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3278 status = VXGE_HW_ERR_INVALID_OFFSET;
3279 break;
3281 writeq(value, (void __iomem *)hldev->common_reg + offset);
3282 break;
3283 case vxge_hw_mgmt_reg_type_mrpcim:
3284 if (!(hldev->access_rights &
3285 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3286 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3287 break;
3289 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3290 status = VXGE_HW_ERR_INVALID_OFFSET;
3291 break;
3293 writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
3294 break;
3295 case vxge_hw_mgmt_reg_type_srpcim:
3296 if (!(hldev->access_rights &
3297 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3298 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
3299 break;
3301 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3302 status = VXGE_HW_ERR_INVALID_INDEX;
3303 break;
3305 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3306 status = VXGE_HW_ERR_INVALID_OFFSET;
3307 break;
3309 writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
3310 offset);
3312 break;
3313 case vxge_hw_mgmt_reg_type_vpmgmt:
3314 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3315 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3316 status = VXGE_HW_ERR_INVALID_INDEX;
3317 break;
3319 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3320 status = VXGE_HW_ERR_INVALID_OFFSET;
3321 break;
3323 writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
3324 offset);
3325 break;
3326 case vxge_hw_mgmt_reg_type_vpath:
3327 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
3328 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3329 status = VXGE_HW_ERR_INVALID_INDEX;
3330 break;
3332 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3333 status = VXGE_HW_ERR_INVALID_OFFSET;
3334 break;
3336 writeq(value, (void __iomem *)hldev->vpath_reg[index] +
3337 offset);
3338 break;
3339 default:
3340 status = VXGE_HW_ERR_INVALID_TYPE;
3341 break;
3343 exit:
3344 return status;
3348 * __vxge_hw_fifo_abort - Returns the TxD
3349 * This function terminates the TxDs of fifo
3351 static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
3353 void *txdlh;
3355 for (;;) {
3356 vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
3358 if (txdlh == NULL)
3359 break;
3361 vxge_hw_channel_dtr_complete(&fifo->channel);
3363 if (fifo->txdl_term) {
3364 fifo->txdl_term(txdlh,
3365 VXGE_HW_TXDL_STATE_POSTED,
3366 fifo->channel.userdata);
3369 vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
3372 return VXGE_HW_OK;
3376 * __vxge_hw_fifo_reset - Resets the fifo
3377 * This function resets the fifo during vpath reset operation
3379 static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
3381 enum vxge_hw_status status = VXGE_HW_OK;
3383 __vxge_hw_fifo_abort(fifo);
3384 status = __vxge_hw_channel_reset(&fifo->channel);
3386 return status;
3390 * __vxge_hw_fifo_delete - Removes the FIFO
3391 * This function freeup the memory pool and removes the FIFO
3393 static enum vxge_hw_status
3394 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
3396 struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
3398 __vxge_hw_fifo_abort(fifo);
3400 if (fifo->mempool)
3401 __vxge_hw_mempool_destroy(fifo->mempool);
3403 vp->vpath->fifoh = NULL;
3405 __vxge_hw_channel_free(&fifo->channel);
3407 return VXGE_HW_OK;
3411 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3412 * list callback
3413 * This function is callback passed to __vxge_hw_mempool_create to create memory
3414 * pool for TxD list
3416 static void
3417 __vxge_hw_fifo_mempool_item_alloc(
3418 struct vxge_hw_mempool *mempoolh,
3419 u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
3420 u32 index, u32 is_last)
3422 u32 memblock_item_idx;
3423 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
3424 struct vxge_hw_fifo_txd *txdp =
3425 (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
3426 struct __vxge_hw_fifo *fifo =
3427 (struct __vxge_hw_fifo *)mempoolh->userdata;
3428 void *memblock = mempoolh->memblocks_arr[memblock_index];
3430 vxge_assert(txdp);
3432 txdp->host_control = (u64) (size_t)
3433 __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
3434 &memblock_item_idx);
3436 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
3438 vxge_assert(txdl_priv);
3440 fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
3442 /* pre-format HW's TxDL's private */
3443 txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
3444 txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
3445 txdl_priv->dma_handle = dma_object->handle;
3446 txdl_priv->memblock = memblock;
3447 txdl_priv->first_txdp = txdp;
3448 txdl_priv->next_txdl_priv = NULL;
3449 txdl_priv->alloc_frags = 0;
3453 * __vxge_hw_fifo_create - Create a FIFO
3454 * This function creates FIFO and initializes it.
3456 static enum vxge_hw_status
3457 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
3458 struct vxge_hw_fifo_attr *attr)
3460 enum vxge_hw_status status = VXGE_HW_OK;
3461 struct __vxge_hw_fifo *fifo;
3462 struct vxge_hw_fifo_config *config;
3463 u32 txdl_size, txdl_per_memblock;
3464 struct vxge_hw_mempool_cbs fifo_mp_callback;
3465 struct __vxge_hw_virtualpath *vpath;
3467 if ((vp == NULL) || (attr == NULL)) {
3468 status = VXGE_HW_ERR_INVALID_HANDLE;
3469 goto exit;
3471 vpath = vp->vpath;
3472 config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
3474 txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
3476 txdl_per_memblock = config->memblock_size / txdl_size;
3478 fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
3479 VXGE_HW_CHANNEL_TYPE_FIFO,
3480 config->fifo_blocks * txdl_per_memblock,
3481 attr->per_txdl_space, attr->userdata);
3483 if (fifo == NULL) {
3484 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3485 goto exit;
3488 vpath->fifoh = fifo;
3489 fifo->nofl_db = vpath->nofl_db;
3491 fifo->vp_id = vpath->vp_id;
3492 fifo->vp_reg = vpath->vp_reg;
3493 fifo->stats = &vpath->sw_stats->fifo_stats;
3495 fifo->config = config;
3497 /* apply "interrupts per txdl" attribute */
3498 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
3499 fifo->tim_tti_cfg1_saved = vpath->tim_tti_cfg1_saved;
3500 fifo->tim_tti_cfg3_saved = vpath->tim_tti_cfg3_saved;
3502 if (fifo->config->intr)
3503 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
3505 fifo->no_snoop_bits = config->no_snoop_bits;
3508 * FIFO memory management strategy:
3510 * TxDL split into three independent parts:
3511 * - set of TxD's
3512 * - TxD HW private part
3513 * - driver private part
3515 * Adaptative memory allocation used. i.e. Memory allocated on
3516 * demand with the size which will fit into one memory block.
3517 * One memory block may contain more than one TxDL.
3519 * During "reserve" operations more memory can be allocated on demand
3520 * for example due to FIFO full condition.
3522 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3523 * routine which will essentially stop the channel and free resources.
3526 /* TxDL common private size == TxDL private + driver private */
3527 fifo->priv_size =
3528 sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
3529 fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
3530 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
3532 fifo->per_txdl_space = attr->per_txdl_space;
3534 /* recompute txdl size to be cacheline aligned */
3535 fifo->txdl_size = txdl_size;
3536 fifo->txdl_per_memblock = txdl_per_memblock;
3538 fifo->txdl_term = attr->txdl_term;
3539 fifo->callback = attr->callback;
3541 if (fifo->txdl_per_memblock == 0) {
3542 __vxge_hw_fifo_delete(vp);
3543 status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
3544 goto exit;
3547 fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
3549 fifo->mempool =
3550 __vxge_hw_mempool_create(vpath->hldev,
3551 fifo->config->memblock_size,
3552 fifo->txdl_size,
3553 fifo->priv_size,
3554 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3555 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3556 &fifo_mp_callback,
3557 fifo);
3559 if (fifo->mempool == NULL) {
3560 __vxge_hw_fifo_delete(vp);
3561 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3562 goto exit;
3565 status = __vxge_hw_channel_initialize(&fifo->channel);
3566 if (status != VXGE_HW_OK) {
3567 __vxge_hw_fifo_delete(vp);
3568 goto exit;
3571 vxge_assert(fifo->channel.reserve_ptr);
3572 exit:
3573 return status;
3577 * __vxge_hw_vpath_pci_read - Read the content of given address
3578 * in pci config space.
3579 * Read from the vpath pci config space.
3581 static enum vxge_hw_status
3582 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
3583 u32 phy_func_0, u32 offset, u32 *val)
3585 u64 val64;
3586 enum vxge_hw_status status = VXGE_HW_OK;
3587 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
3589 val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
3591 if (phy_func_0)
3592 val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
3594 writeq(val64, &vp_reg->pci_config_access_cfg1);
3595 wmb();
3596 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
3597 &vp_reg->pci_config_access_cfg2);
3598 wmb();
3600 status = __vxge_hw_device_register_poll(
3601 &vp_reg->pci_config_access_cfg2,
3602 VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3604 if (status != VXGE_HW_OK)
3605 goto exit;
3607 val64 = readq(&vp_reg->pci_config_access_status);
3609 if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
3610 status = VXGE_HW_FAIL;
3611 *val = 0;
3612 } else
3613 *val = (u32)vxge_bVALn(val64, 32, 32);
3614 exit:
3615 return status;
3619 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3620 * @hldev: HW device.
3621 * @on_off: TRUE if flickering to be on, FALSE to be off
3623 * Flicker the link LED.
3625 enum vxge_hw_status
3626 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off)
3628 struct __vxge_hw_virtualpath *vpath;
3629 u64 data0, data1 = 0, steer_ctrl = 0;
3630 enum vxge_hw_status status;
3632 if (hldev == NULL) {
3633 status = VXGE_HW_ERR_INVALID_DEVICE;
3634 goto exit;
3637 vpath = &hldev->virtual_paths[hldev->first_vp_id];
3639 data0 = on_off;
3640 status = vxge_hw_vpath_fw_api(vpath,
3641 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL,
3642 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
3643 0, &data0, &data1, &steer_ctrl);
3644 exit:
3645 return status;
3649 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3651 enum vxge_hw_status
3652 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle *vp,
3653 u32 action, u32 rts_table, u32 offset,
3654 u64 *data0, u64 *data1)
3656 enum vxge_hw_status status;
3657 u64 steer_ctrl = 0;
3659 if (vp == NULL) {
3660 status = VXGE_HW_ERR_INVALID_HANDLE;
3661 goto exit;
3664 if ((rts_table ==
3665 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3666 (rts_table ==
3667 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3668 (rts_table ==
3669 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3670 (rts_table ==
3671 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3672 steer_ctrl = VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3675 status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3676 data0, data1, &steer_ctrl);
3677 if (status != VXGE_HW_OK)
3678 goto exit;
3680 if ((rts_table != VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) &&
3681 (rts_table !=
3682 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3683 *data1 = 0;
3684 exit:
3685 return status;
3689 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3691 enum vxge_hw_status
3692 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle *vp, u32 action,
3693 u32 rts_table, u32 offset, u64 steer_data0,
3694 u64 steer_data1)
3696 u64 data0, data1 = 0, steer_ctrl = 0;
3697 enum vxge_hw_status status;
3699 if (vp == NULL) {
3700 status = VXGE_HW_ERR_INVALID_HANDLE;
3701 goto exit;
3704 data0 = steer_data0;
3706 if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3707 (rts_table ==
3708 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3709 data1 = steer_data1;
3711 status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3712 &data0, &data1, &steer_ctrl);
3713 exit:
3714 return status;
3718 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3720 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3721 struct __vxge_hw_vpath_handle *vp,
3722 enum vxge_hw_rth_algoritms algorithm,
3723 struct vxge_hw_rth_hash_types *hash_type,
3724 u16 bucket_size)
3726 u64 data0, data1;
3727 enum vxge_hw_status status = VXGE_HW_OK;
3729 if (vp == NULL) {
3730 status = VXGE_HW_ERR_INVALID_HANDLE;
3731 goto exit;
3734 status = __vxge_hw_vpath_rts_table_get(vp,
3735 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3736 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3737 0, &data0, &data1);
3738 if (status != VXGE_HW_OK)
3739 goto exit;
3741 data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3742 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3744 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3745 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3746 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3748 if (hash_type->hash_type_tcpipv4_en)
3749 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3751 if (hash_type->hash_type_ipv4_en)
3752 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3754 if (hash_type->hash_type_tcpipv6_en)
3755 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3757 if (hash_type->hash_type_ipv6_en)
3758 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3760 if (hash_type->hash_type_tcpipv6ex_en)
3761 data0 |=
3762 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3764 if (hash_type->hash_type_ipv6ex_en)
3765 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3767 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3768 data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3769 else
3770 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3772 status = __vxge_hw_vpath_rts_table_set(vp,
3773 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3774 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3775 0, data0, 0);
3776 exit:
3777 return status;
3780 static void
3781 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3782 u16 flag, u8 *itable)
3784 switch (flag) {
3785 case 1:
3786 *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3787 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3788 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3789 itable[j]);
3790 case 2:
3791 *data0 |=
3792 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3793 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3794 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3795 itable[j]);
3796 case 3:
3797 *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3798 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3799 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3800 itable[j]);
3801 case 4:
3802 *data1 |=
3803 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3804 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3805 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3806 itable[j]);
3807 default:
3808 return;
3812 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3814 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3815 struct __vxge_hw_vpath_handle **vpath_handles,
3816 u32 vpath_count,
3817 u8 *mtable,
3818 u8 *itable,
3819 u32 itable_size)
3821 u32 i, j, action, rts_table;
3822 u64 data0;
3823 u64 data1;
3824 u32 max_entries;
3825 enum vxge_hw_status status = VXGE_HW_OK;
3826 struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3828 if (vp == NULL) {
3829 status = VXGE_HW_ERR_INVALID_HANDLE;
3830 goto exit;
3833 max_entries = (((u32)1) << itable_size);
3835 if (vp->vpath->hldev->config.rth_it_type
3836 == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3837 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3838 rts_table =
3839 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3841 for (j = 0; j < max_entries; j++) {
3843 data1 = 0;
3845 data0 =
3846 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3847 itable[j]);
3849 status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3850 action, rts_table, j, data0, data1);
3852 if (status != VXGE_HW_OK)
3853 goto exit;
3856 for (j = 0; j < max_entries; j++) {
3858 data1 = 0;
3860 data0 =
3861 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3862 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3863 itable[j]);
3865 status = __vxge_hw_vpath_rts_table_set(
3866 vpath_handles[mtable[itable[j]]], action,
3867 rts_table, j, data0, data1);
3869 if (status != VXGE_HW_OK)
3870 goto exit;
3872 } else {
3873 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3874 rts_table =
3875 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3876 for (i = 0; i < vpath_count; i++) {
3878 for (j = 0; j < max_entries;) {
3880 data0 = 0;
3881 data1 = 0;
3883 while (j < max_entries) {
3884 if (mtable[itable[j]] != i) {
3885 j++;
3886 continue;
3888 vxge_hw_rts_rth_data0_data1_get(j,
3889 &data0, &data1, 1, itable);
3890 j++;
3891 break;
3894 while (j < max_entries) {
3895 if (mtable[itable[j]] != i) {
3896 j++;
3897 continue;
3899 vxge_hw_rts_rth_data0_data1_get(j,
3900 &data0, &data1, 2, itable);
3901 j++;
3902 break;
3905 while (j < max_entries) {
3906 if (mtable[itable[j]] != i) {
3907 j++;
3908 continue;
3910 vxge_hw_rts_rth_data0_data1_get(j,
3911 &data0, &data1, 3, itable);
3912 j++;
3913 break;
3916 while (j < max_entries) {
3917 if (mtable[itable[j]] != i) {
3918 j++;
3919 continue;
3921 vxge_hw_rts_rth_data0_data1_get(j,
3922 &data0, &data1, 4, itable);
3923 j++;
3924 break;
3927 if (data0 != 0) {
3928 status = __vxge_hw_vpath_rts_table_set(
3929 vpath_handles[i],
3930 action, rts_table,
3931 0, data0, data1);
3933 if (status != VXGE_HW_OK)
3934 goto exit;
3939 exit:
3940 return status;
3944 * vxge_hw_vpath_check_leak - Check for memory leak
3945 * @ringh: Handle to the ring object used for receive
3947 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3948 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3949 * Returns: VXGE_HW_FAIL, if leak has occurred.
3952 enum vxge_hw_status
3953 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3955 enum vxge_hw_status status = VXGE_HW_OK;
3956 u64 rxd_new_count, rxd_spat;
3958 if (ring == NULL)
3959 return status;
3961 rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3962 rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3963 rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3965 if (rxd_new_count >= rxd_spat)
3966 status = VXGE_HW_FAIL;
3968 return status;
3972 * __vxge_hw_vpath_mgmt_read
3973 * This routine reads the vpath_mgmt registers
3975 static enum vxge_hw_status
3976 __vxge_hw_vpath_mgmt_read(
3977 struct __vxge_hw_device *hldev,
3978 struct __vxge_hw_virtualpath *vpath)
3980 u32 i, mtu = 0, max_pyld = 0;
3981 u64 val64;
3982 enum vxge_hw_status status = VXGE_HW_OK;
3984 for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3986 val64 = readq(&vpath->vpmgmt_reg->
3987 rxmac_cfg0_port_vpmgmt_clone[i]);
3988 max_pyld =
3989 (u32)
3990 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3991 (val64);
3992 if (mtu < max_pyld)
3993 mtu = max_pyld;
3996 vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3998 val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
4000 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
4001 if (val64 & vxge_mBIT(i))
4002 vpath->vsport_number = i;
4005 val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
4007 if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
4008 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
4009 else
4010 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
4012 return status;
4016 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
4017 * This routine checks the vpath_rst_in_prog register to see if
4018 * adapter completed the reset process for the vpath
4020 static enum vxge_hw_status
4021 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
4023 enum vxge_hw_status status;
4025 status = __vxge_hw_device_register_poll(
4026 &vpath->hldev->common_reg->vpath_rst_in_prog,
4027 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4028 1 << (16 - vpath->vp_id)),
4029 vpath->hldev->config.device_poll_millis);
4031 return status;
4035 * __vxge_hw_vpath_reset
4036 * This routine resets the vpath on the device
4038 static enum vxge_hw_status
4039 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4041 u64 val64;
4042 enum vxge_hw_status status = VXGE_HW_OK;
4044 val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
4046 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4047 &hldev->common_reg->cmn_rsthdlr_cfg0);
4049 return status;
4053 * __vxge_hw_vpath_sw_reset
4054 * This routine resets the vpath structures
4056 static enum vxge_hw_status
4057 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4059 enum vxge_hw_status status = VXGE_HW_OK;
4060 struct __vxge_hw_virtualpath *vpath;
4062 vpath = (struct __vxge_hw_virtualpath *)&hldev->virtual_paths[vp_id];
4064 if (vpath->ringh) {
4065 status = __vxge_hw_ring_reset(vpath->ringh);
4066 if (status != VXGE_HW_OK)
4067 goto exit;
4070 if (vpath->fifoh)
4071 status = __vxge_hw_fifo_reset(vpath->fifoh);
4072 exit:
4073 return status;
4077 * __vxge_hw_vpath_prc_configure
4078 * This routine configures the prc registers of virtual path using the config
4079 * passed
4081 static void
4082 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4084 u64 val64;
4085 struct __vxge_hw_virtualpath *vpath;
4086 struct vxge_hw_vp_config *vp_config;
4087 struct vxge_hw_vpath_reg __iomem *vp_reg;
4089 vpath = &hldev->virtual_paths[vp_id];
4090 vp_reg = vpath->vp_reg;
4091 vp_config = vpath->vp_config;
4093 if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
4094 return;
4096 val64 = readq(&vp_reg->prc_cfg1);
4097 val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
4098 writeq(val64, &vp_reg->prc_cfg1);
4100 val64 = readq(&vpath->vp_reg->prc_cfg6);
4101 val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
4102 writeq(val64, &vpath->vp_reg->prc_cfg6);
4104 val64 = readq(&vp_reg->prc_cfg7);
4106 if (vpath->vp_config->ring.scatter_mode !=
4107 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
4109 val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4111 switch (vpath->vp_config->ring.scatter_mode) {
4112 case VXGE_HW_RING_SCATTER_MODE_A:
4113 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4114 VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
4115 break;
4116 case VXGE_HW_RING_SCATTER_MODE_B:
4117 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4118 VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
4119 break;
4120 case VXGE_HW_RING_SCATTER_MODE_C:
4121 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4122 VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
4123 break;
4127 writeq(val64, &vp_reg->prc_cfg7);
4129 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4130 __vxge_hw_ring_first_block_address_get(
4131 vpath->ringh) >> 3), &vp_reg->prc_cfg5);
4133 val64 = readq(&vp_reg->prc_cfg4);
4134 val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
4135 val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4137 val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
4138 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
4140 if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
4141 val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
4142 else
4143 val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
4145 writeq(val64, &vp_reg->prc_cfg4);
4149 * __vxge_hw_vpath_kdfc_configure
4150 * This routine configures the kdfc registers of virtual path using the
4151 * config passed
4153 static enum vxge_hw_status
4154 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4156 u64 val64;
4157 u64 vpath_stride;
4158 enum vxge_hw_status status = VXGE_HW_OK;
4159 struct __vxge_hw_virtualpath *vpath;
4160 struct vxge_hw_vpath_reg __iomem *vp_reg;
4162 vpath = &hldev->virtual_paths[vp_id];
4163 vp_reg = vpath->vp_reg;
4164 status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
4166 if (status != VXGE_HW_OK)
4167 goto exit;
4169 val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
4171 vpath->max_kdfc_db =
4172 (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4173 val64+1)/2;
4175 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4177 vpath->max_nofl_db = vpath->max_kdfc_db;
4179 if (vpath->max_nofl_db <
4180 ((vpath->vp_config->fifo.memblock_size /
4181 (vpath->vp_config->fifo.max_frags *
4182 sizeof(struct vxge_hw_fifo_txd))) *
4183 vpath->vp_config->fifo.fifo_blocks)) {
4185 return VXGE_HW_BADCFG_FIFO_BLOCKS;
4187 val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4188 (vpath->max_nofl_db*2)-1);
4191 writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
4193 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
4194 &vp_reg->kdfc_fifo_trpl_ctrl);
4196 val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
4198 val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4199 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4201 val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4202 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
4203 #ifndef __BIG_ENDIAN
4204 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
4205 #endif
4206 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4208 writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
4209 writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
4210 wmb();
4211 vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
4213 vpath->nofl_db =
4214 (struct __vxge_hw_non_offload_db_wrapper __iomem *)
4215 (hldev->kdfc + (vp_id *
4216 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4217 vpath_stride)));
4218 exit:
4219 return status;
4223 * __vxge_hw_vpath_mac_configure
4224 * This routine configures the mac of virtual path using the config passed
4226 static enum vxge_hw_status
4227 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4229 u64 val64;
4230 enum vxge_hw_status status = VXGE_HW_OK;
4231 struct __vxge_hw_virtualpath *vpath;
4232 struct vxge_hw_vp_config *vp_config;
4233 struct vxge_hw_vpath_reg __iomem *vp_reg;
4235 vpath = &hldev->virtual_paths[vp_id];
4236 vp_reg = vpath->vp_reg;
4237 vp_config = vpath->vp_config;
4239 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4240 vpath->vsport_number), &vp_reg->xmac_vsport_choice);
4242 if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4244 val64 = readq(&vp_reg->xmac_rpa_vcfg);
4246 if (vp_config->rpa_strip_vlan_tag !=
4247 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
4248 if (vp_config->rpa_strip_vlan_tag)
4249 val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4250 else
4251 val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4254 writeq(val64, &vp_reg->xmac_rpa_vcfg);
4255 val64 = readq(&vp_reg->rxmac_vcfg0);
4257 if (vp_config->mtu !=
4258 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
4259 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4260 if ((vp_config->mtu +
4261 VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
4262 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4263 vp_config->mtu +
4264 VXGE_HW_MAC_HEADER_MAX_SIZE);
4265 else
4266 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4267 vpath->max_mtu);
4270 writeq(val64, &vp_reg->rxmac_vcfg0);
4272 val64 = readq(&vp_reg->rxmac_vcfg1);
4274 val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4275 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
4277 if (hldev->config.rth_it_type ==
4278 VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
4279 val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4280 0x2) |
4281 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
4284 writeq(val64, &vp_reg->rxmac_vcfg1);
4286 return status;
4290 * __vxge_hw_vpath_tim_configure
4291 * This routine configures the tim registers of virtual path using the config
4292 * passed
4294 static enum vxge_hw_status
4295 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4297 u64 val64;
4298 enum vxge_hw_status status = VXGE_HW_OK;
4299 struct __vxge_hw_virtualpath *vpath;
4300 struct vxge_hw_vpath_reg __iomem *vp_reg;
4301 struct vxge_hw_vp_config *config;
4303 vpath = &hldev->virtual_paths[vp_id];
4304 vp_reg = vpath->vp_reg;
4305 config = vpath->vp_config;
4307 writeq(0, &vp_reg->tim_dest_addr);
4308 writeq(0, &vp_reg->tim_vpath_map);
4309 writeq(0, &vp_reg->tim_bitmap);
4310 writeq(0, &vp_reg->tim_remap);
4312 if (config->ring.enable == VXGE_HW_RING_ENABLE)
4313 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4314 (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4315 VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
4317 val64 = readq(&vp_reg->tim_pci_cfg);
4318 val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
4319 writeq(val64, &vp_reg->tim_pci_cfg);
4321 if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4323 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4325 if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4326 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4327 0x3ffffff);
4328 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4329 config->tti.btimer_val);
4332 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4334 if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4335 if (config->tti.timer_ac_en)
4336 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4337 else
4338 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4341 if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4342 if (config->tti.timer_ci_en)
4343 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4344 else
4345 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4348 if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4349 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4350 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4351 config->tti.urange_a);
4354 if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4355 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4356 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4357 config->tti.urange_b);
4360 if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4361 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4362 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4363 config->tti.urange_c);
4366 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4367 vpath->tim_tti_cfg1_saved = val64;
4369 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4371 if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4372 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4373 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4374 config->tti.uec_a);
4377 if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4378 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4379 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4380 config->tti.uec_b);
4383 if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4384 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4385 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4386 config->tti.uec_c);
4389 if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4390 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4391 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4392 config->tti.uec_d);
4395 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4396 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4398 if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4399 if (config->tti.timer_ri_en)
4400 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4401 else
4402 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4405 if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4406 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4407 0x3ffffff);
4408 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4409 config->tti.rtimer_val);
4412 if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4413 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4414 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4417 if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4418 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4419 0x3ffffff);
4420 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4421 config->tti.ltimer_val);
4424 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4425 vpath->tim_tti_cfg3_saved = val64;
4428 if (config->ring.enable == VXGE_HW_RING_ENABLE) {
4430 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4432 if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4433 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4434 0x3ffffff);
4435 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4436 config->rti.btimer_val);
4439 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4441 if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4442 if (config->rti.timer_ac_en)
4443 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4444 else
4445 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4448 if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4449 if (config->rti.timer_ci_en)
4450 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4451 else
4452 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4455 if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4456 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4457 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4458 config->rti.urange_a);
4461 if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4462 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4463 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4464 config->rti.urange_b);
4467 if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4468 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4469 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4470 config->rti.urange_c);
4473 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4474 vpath->tim_rti_cfg1_saved = val64;
4476 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4478 if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4479 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4480 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4481 config->rti.uec_a);
4484 if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4485 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4486 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4487 config->rti.uec_b);
4490 if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4491 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4492 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4493 config->rti.uec_c);
4496 if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4497 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4498 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4499 config->rti.uec_d);
4502 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4503 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4505 if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4506 if (config->rti.timer_ri_en)
4507 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4508 else
4509 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4512 if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4513 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4514 0x3ffffff);
4515 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4516 config->rti.rtimer_val);
4519 if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4520 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4521 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4524 if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4525 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4526 0x3ffffff);
4527 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4528 config->rti.ltimer_val);
4531 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4532 vpath->tim_rti_cfg3_saved = val64;
4535 val64 = 0;
4536 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4537 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4538 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4539 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4540 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4541 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4543 val64 = VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4544 val64 |= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4545 val64 |= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4546 writeq(val64, &vp_reg->tim_wrkld_clc);
4548 return status;
4552 * __vxge_hw_vpath_initialize
4553 * This routine is the final phase of init which initializes the
4554 * registers of the vpath using the configuration passed.
4556 static enum vxge_hw_status
4557 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4559 u64 val64;
4560 u32 val32;
4561 enum vxge_hw_status status = VXGE_HW_OK;
4562 struct __vxge_hw_virtualpath *vpath;
4563 struct vxge_hw_vpath_reg __iomem *vp_reg;
4565 vpath = &hldev->virtual_paths[vp_id];
4567 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4568 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4569 goto exit;
4571 vp_reg = vpath->vp_reg;
4573 status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4574 if (status != VXGE_HW_OK)
4575 goto exit;
4577 status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
4578 if (status != VXGE_HW_OK)
4579 goto exit;
4581 status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4582 if (status != VXGE_HW_OK)
4583 goto exit;
4585 status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4586 if (status != VXGE_HW_OK)
4587 goto exit;
4589 val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4591 /* Get MRRS value from device control */
4592 status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4593 if (status == VXGE_HW_OK) {
4594 val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4595 val64 &=
4596 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4597 val64 |=
4598 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4600 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4603 val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4604 val64 |=
4605 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4606 VXGE_HW_MAX_PAYLOAD_SIZE_512);
4608 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4609 writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4611 exit:
4612 return status;
4616 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4617 * This routine closes all channels it opened and freeup memory
4619 static void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4621 struct __vxge_hw_virtualpath *vpath;
4623 vpath = &hldev->virtual_paths[vp_id];
4625 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4626 goto exit;
4628 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4629 vpath->hldev->tim_int_mask1, vpath->vp_id);
4630 hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4632 /* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
4633 * work after the interface is brought down.
4635 spin_lock(&vpath->lock);
4636 vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4637 spin_unlock(&vpath->lock);
4639 vpath->vpmgmt_reg = NULL;
4640 vpath->nofl_db = NULL;
4641 vpath->max_mtu = 0;
4642 vpath->vsport_number = 0;
4643 vpath->max_kdfc_db = 0;
4644 vpath->max_nofl_db = 0;
4645 vpath->ringh = NULL;
4646 vpath->fifoh = NULL;
4647 memset(&vpath->vpath_handles, 0, sizeof(struct list_head));
4648 vpath->stats_block = 0;
4649 vpath->hw_stats = NULL;
4650 vpath->hw_stats_sav = NULL;
4651 vpath->sw_stats = NULL;
4653 exit:
4654 return;
4658 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4659 * This routine is the initial phase of init which resets the vpath and
4660 * initializes the software support structures.
4662 static enum vxge_hw_status
4663 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4664 struct vxge_hw_vp_config *config)
4666 struct __vxge_hw_virtualpath *vpath;
4667 enum vxge_hw_status status = VXGE_HW_OK;
4669 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4670 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4671 goto exit;
4674 vpath = &hldev->virtual_paths[vp_id];
4676 spin_lock_init(&vpath->lock);
4677 vpath->vp_id = vp_id;
4678 vpath->vp_open = VXGE_HW_VP_OPEN;
4679 vpath->hldev = hldev;
4680 vpath->vp_config = config;
4681 vpath->vp_reg = hldev->vpath_reg[vp_id];
4682 vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4684 __vxge_hw_vpath_reset(hldev, vp_id);
4686 status = __vxge_hw_vpath_reset_check(vpath);
4687 if (status != VXGE_HW_OK) {
4688 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4689 goto exit;
4692 status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4693 if (status != VXGE_HW_OK) {
4694 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4695 goto exit;
4698 INIT_LIST_HEAD(&vpath->vpath_handles);
4700 vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4702 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4703 hldev->tim_int_mask1, vp_id);
4705 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4706 if (status != VXGE_HW_OK)
4707 __vxge_hw_vp_terminate(hldev, vp_id);
4708 exit:
4709 return status;
4713 * vxge_hw_vpath_mtu_set - Set MTU.
4714 * Set new MTU value. Example, to use jumbo frames:
4715 * vxge_hw_vpath_mtu_set(my_device, 9600);
4717 enum vxge_hw_status
4718 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4720 u64 val64;
4721 enum vxge_hw_status status = VXGE_HW_OK;
4722 struct __vxge_hw_virtualpath *vpath;
4724 if (vp == NULL) {
4725 status = VXGE_HW_ERR_INVALID_HANDLE;
4726 goto exit;
4728 vpath = vp->vpath;
4730 new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4732 if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4733 status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4735 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4737 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4738 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4740 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4742 vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4744 exit:
4745 return status;
4749 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4750 * Enable the DMA vpath statistics. The function is to be called to re-enable
4751 * the adapter to update stats into the host memory
4753 static enum vxge_hw_status
4754 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4756 enum vxge_hw_status status = VXGE_HW_OK;
4757 struct __vxge_hw_virtualpath *vpath;
4759 vpath = vp->vpath;
4761 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4762 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4763 goto exit;
4766 memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4767 sizeof(struct vxge_hw_vpath_stats_hw_info));
4769 status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4770 exit:
4771 return status;
4775 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4776 * This function allocates a block from block pool or from the system
4778 static struct __vxge_hw_blockpool_entry *
4779 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
4781 struct __vxge_hw_blockpool_entry *entry = NULL;
4782 struct __vxge_hw_blockpool *blockpool;
4784 blockpool = &devh->block_pool;
4786 if (size == blockpool->block_size) {
4788 if (!list_empty(&blockpool->free_block_list))
4789 entry = (struct __vxge_hw_blockpool_entry *)
4790 list_first_entry(&blockpool->free_block_list,
4791 struct __vxge_hw_blockpool_entry,
4792 item);
4794 if (entry != NULL) {
4795 list_del(&entry->item);
4796 blockpool->pool_size--;
4800 if (entry != NULL)
4801 __vxge_hw_blockpool_blocks_add(blockpool);
4803 return entry;
4807 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4808 * This function is used to open access to virtual path of an
4809 * adapter for offload, GRO operations. This function returns
4810 * synchronously.
4812 enum vxge_hw_status
4813 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4814 struct vxge_hw_vpath_attr *attr,
4815 struct __vxge_hw_vpath_handle **vpath_handle)
4817 struct __vxge_hw_virtualpath *vpath;
4818 struct __vxge_hw_vpath_handle *vp;
4819 enum vxge_hw_status status;
4821 vpath = &hldev->virtual_paths[attr->vp_id];
4823 if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4824 status = VXGE_HW_ERR_INVALID_STATE;
4825 goto vpath_open_exit1;
4828 status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4829 &hldev->config.vp_config[attr->vp_id]);
4830 if (status != VXGE_HW_OK)
4831 goto vpath_open_exit1;
4833 vp = vzalloc(sizeof(struct __vxge_hw_vpath_handle));
4834 if (vp == NULL) {
4835 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4836 goto vpath_open_exit2;
4839 vp->vpath = vpath;
4841 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4842 status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4843 if (status != VXGE_HW_OK)
4844 goto vpath_open_exit6;
4847 if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4848 status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4849 if (status != VXGE_HW_OK)
4850 goto vpath_open_exit7;
4852 __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4855 vpath->fifoh->tx_intr_num =
4856 (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4857 VXGE_HW_VPATH_INTR_TX;
4859 vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4860 VXGE_HW_BLOCK_SIZE);
4861 if (vpath->stats_block == NULL) {
4862 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4863 goto vpath_open_exit8;
4866 vpath->hw_stats = vpath->stats_block->memblock;
4867 memset(vpath->hw_stats, 0,
4868 sizeof(struct vxge_hw_vpath_stats_hw_info));
4870 hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4871 vpath->hw_stats;
4873 vpath->hw_stats_sav =
4874 &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4875 memset(vpath->hw_stats_sav, 0,
4876 sizeof(struct vxge_hw_vpath_stats_hw_info));
4878 writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4880 status = vxge_hw_vpath_stats_enable(vp);
4881 if (status != VXGE_HW_OK)
4882 goto vpath_open_exit8;
4884 list_add(&vp->item, &vpath->vpath_handles);
4886 hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4888 *vpath_handle = vp;
4890 attr->fifo_attr.userdata = vpath->fifoh;
4891 attr->ring_attr.userdata = vpath->ringh;
4893 return VXGE_HW_OK;
4895 vpath_open_exit8:
4896 if (vpath->ringh != NULL)
4897 __vxge_hw_ring_delete(vp);
4898 vpath_open_exit7:
4899 if (vpath->fifoh != NULL)
4900 __vxge_hw_fifo_delete(vp);
4901 vpath_open_exit6:
4902 vfree(vp);
4903 vpath_open_exit2:
4904 __vxge_hw_vp_terminate(hldev, attr->vp_id);
4905 vpath_open_exit1:
4907 return status;
4911 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4912 * (vpath) open
4913 * @vp: Handle got from previous vpath open
4915 * This function is used to close access to virtual path opened
4916 * earlier.
4918 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4920 struct __vxge_hw_virtualpath *vpath = vp->vpath;
4921 struct __vxge_hw_ring *ring = vpath->ringh;
4922 struct vxgedev *vdev = netdev_priv(vpath->hldev->ndev);
4923 u64 new_count, val64, val164;
4925 if (vdev->titan1) {
4926 new_count = readq(&vpath->vp_reg->rxdmem_size);
4927 new_count &= 0x1fff;
4928 } else
4929 new_count = ring->config->ring_blocks * VXGE_HW_BLOCK_SIZE / 8;
4931 val164 = VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count);
4933 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4934 &vpath->vp_reg->prc_rxd_doorbell);
4935 readl(&vpath->vp_reg->prc_rxd_doorbell);
4937 val164 /= 2;
4938 val64 = readq(&vpath->vp_reg->prc_cfg6);
4939 val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4940 val64 &= 0x1ff;
4943 * Each RxD is of 4 qwords
4945 new_count -= (val64 + 1);
4946 val64 = min(val164, new_count) / 4;
4948 ring->rxds_limit = min(ring->rxds_limit, val64);
4949 if (ring->rxds_limit < 4)
4950 ring->rxds_limit = 4;
4954 * __vxge_hw_blockpool_block_free - Frees a block from block pool
4955 * @devh: Hal device
4956 * @entry: Entry of block to be freed
4958 * This function frees a block from block pool
4960 static void
4961 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
4962 struct __vxge_hw_blockpool_entry *entry)
4964 struct __vxge_hw_blockpool *blockpool;
4966 blockpool = &devh->block_pool;
4968 if (entry->length == blockpool->block_size) {
4969 list_add(&entry->item, &blockpool->free_block_list);
4970 blockpool->pool_size++;
4973 __vxge_hw_blockpool_blocks_remove(blockpool);
4977 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4978 * This function is used to close access to virtual path opened
4979 * earlier.
4981 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4983 struct __vxge_hw_virtualpath *vpath = NULL;
4984 struct __vxge_hw_device *devh = NULL;
4985 u32 vp_id = vp->vpath->vp_id;
4986 u32 is_empty = TRUE;
4987 enum vxge_hw_status status = VXGE_HW_OK;
4989 vpath = vp->vpath;
4990 devh = vpath->hldev;
4992 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4993 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4994 goto vpath_close_exit;
4997 list_del(&vp->item);
4999 if (!list_empty(&vpath->vpath_handles)) {
5000 list_add(&vp->item, &vpath->vpath_handles);
5001 is_empty = FALSE;
5004 if (!is_empty) {
5005 status = VXGE_HW_FAIL;
5006 goto vpath_close_exit;
5009 devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
5011 if (vpath->ringh != NULL)
5012 __vxge_hw_ring_delete(vp);
5014 if (vpath->fifoh != NULL)
5015 __vxge_hw_fifo_delete(vp);
5017 if (vpath->stats_block != NULL)
5018 __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
5020 vfree(vp);
5022 __vxge_hw_vp_terminate(devh, vp_id);
5024 vpath_close_exit:
5025 return status;
5029 * vxge_hw_vpath_reset - Resets vpath
5030 * This function is used to request a reset of vpath
5032 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
5034 enum vxge_hw_status status;
5035 u32 vp_id;
5036 struct __vxge_hw_virtualpath *vpath = vp->vpath;
5038 vp_id = vpath->vp_id;
5040 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5041 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5042 goto exit;
5045 status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
5046 if (status == VXGE_HW_OK)
5047 vpath->sw_stats->soft_reset_cnt++;
5048 exit:
5049 return status;
5053 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5054 * This function poll's for the vpath reset completion and re initializes
5055 * the vpath.
5057 enum vxge_hw_status
5058 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
5060 struct __vxge_hw_virtualpath *vpath = NULL;
5061 enum vxge_hw_status status;
5062 struct __vxge_hw_device *hldev;
5063 u32 vp_id;
5065 vp_id = vp->vpath->vp_id;
5066 vpath = vp->vpath;
5067 hldev = vpath->hldev;
5069 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5070 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5071 goto exit;
5074 status = __vxge_hw_vpath_reset_check(vpath);
5075 if (status != VXGE_HW_OK)
5076 goto exit;
5078 status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
5079 if (status != VXGE_HW_OK)
5080 goto exit;
5082 status = __vxge_hw_vpath_initialize(hldev, vp_id);
5083 if (status != VXGE_HW_OK)
5084 goto exit;
5086 if (vpath->ringh != NULL)
5087 __vxge_hw_vpath_prc_configure(hldev, vp_id);
5089 memset(vpath->hw_stats, 0,
5090 sizeof(struct vxge_hw_vpath_stats_hw_info));
5092 memset(vpath->hw_stats_sav, 0,
5093 sizeof(struct vxge_hw_vpath_stats_hw_info));
5095 writeq(vpath->stats_block->dma_addr,
5096 &vpath->vp_reg->stats_cfg);
5098 status = vxge_hw_vpath_stats_enable(vp);
5100 exit:
5101 return status;
5105 * vxge_hw_vpath_enable - Enable vpath.
5106 * This routine clears the vpath reset thereby enabling a vpath
5107 * to start forwarding frames and generating interrupts.
5109 void
5110 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
5112 struct __vxge_hw_device *hldev;
5113 u64 val64;
5115 hldev = vp->vpath->hldev;
5117 val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5118 1 << (16 - vp->vpath->vp_id));
5120 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
5121 &hldev->common_reg->cmn_rsthdlr_cfg1);