spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / net / ethernet / sun / sungem.c
blobd14a011580c6bde900be92b85f7a6cf200a2ad38
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/sched.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
41 #include <linux/mm.h>
42 #include <linux/gfp.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/byteorder.h>
47 #include <asm/uaccess.h>
48 #include <asm/irq.h>
50 #ifdef CONFIG_SPARC
51 #include <asm/idprom.h>
52 #include <asm/prom.h>
53 #endif
55 #ifdef CONFIG_PPC_PMAC
56 #include <asm/pci-bridge.h>
57 #include <asm/prom.h>
58 #include <asm/machdep.h>
59 #include <asm/pmac_feature.h>
60 #endif
62 #include <linux/sungem_phy.h>
63 #include "sungem.h"
65 /* Stripping FCS is causing problems, disabled for now */
66 #undef STRIP_FCS
68 #define DEFAULT_MSG (NETIF_MSG_DRV | \
69 NETIF_MSG_PROBE | \
70 NETIF_MSG_LINK)
72 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
73 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
74 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
75 SUPPORTED_Pause | SUPPORTED_Autoneg)
77 #define DRV_NAME "sungem"
78 #define DRV_VERSION "1.0"
79 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
81 static char version[] __devinitdata =
82 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
84 MODULE_AUTHOR(DRV_AUTHOR);
85 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
86 MODULE_LICENSE("GPL");
88 #define GEM_MODULE_NAME "gem"
90 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
91 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
92 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
94 /* These models only differ from the original GEM in
95 * that their tx/rx fifos are of a different size and
96 * they only support 10/100 speeds. -DaveM
98 * Apple's GMAC does support gigabit on machines with
99 * the BCM54xx PHYs. -BenH
101 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
102 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
103 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
104 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
105 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
106 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
107 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
108 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
109 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
110 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
111 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
112 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
113 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
114 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
115 {0, }
118 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
120 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
122 u32 cmd;
123 int limit = 10000;
125 cmd = (1 << 30);
126 cmd |= (2 << 28);
127 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
128 cmd |= (reg << 18) & MIF_FRAME_REGAD;
129 cmd |= (MIF_FRAME_TAMSB);
130 writel(cmd, gp->regs + MIF_FRAME);
132 while (--limit) {
133 cmd = readl(gp->regs + MIF_FRAME);
134 if (cmd & MIF_FRAME_TALSB)
135 break;
137 udelay(10);
140 if (!limit)
141 cmd = 0xffff;
143 return cmd & MIF_FRAME_DATA;
146 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
148 struct gem *gp = netdev_priv(dev);
149 return __phy_read(gp, mii_id, reg);
152 static inline u16 phy_read(struct gem *gp, int reg)
154 return __phy_read(gp, gp->mii_phy_addr, reg);
157 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
159 u32 cmd;
160 int limit = 10000;
162 cmd = (1 << 30);
163 cmd |= (1 << 28);
164 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
165 cmd |= (reg << 18) & MIF_FRAME_REGAD;
166 cmd |= (MIF_FRAME_TAMSB);
167 cmd |= (val & MIF_FRAME_DATA);
168 writel(cmd, gp->regs + MIF_FRAME);
170 while (limit--) {
171 cmd = readl(gp->regs + MIF_FRAME);
172 if (cmd & MIF_FRAME_TALSB)
173 break;
175 udelay(10);
179 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
181 struct gem *gp = netdev_priv(dev);
182 __phy_write(gp, mii_id, reg, val & 0xffff);
185 static inline void phy_write(struct gem *gp, int reg, u16 val)
187 __phy_write(gp, gp->mii_phy_addr, reg, val);
190 static inline void gem_enable_ints(struct gem *gp)
192 /* Enable all interrupts but TXDONE */
193 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
196 static inline void gem_disable_ints(struct gem *gp)
198 /* Disable all interrupts, including TXDONE */
199 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
200 (void)readl(gp->regs + GREG_IMASK); /* write posting */
203 static void gem_get_cell(struct gem *gp)
205 BUG_ON(gp->cell_enabled < 0);
206 gp->cell_enabled++;
207 #ifdef CONFIG_PPC_PMAC
208 if (gp->cell_enabled == 1) {
209 mb();
210 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
211 udelay(10);
213 #endif /* CONFIG_PPC_PMAC */
216 /* Turn off the chip's clock */
217 static void gem_put_cell(struct gem *gp)
219 BUG_ON(gp->cell_enabled <= 0);
220 gp->cell_enabled--;
221 #ifdef CONFIG_PPC_PMAC
222 if (gp->cell_enabled == 0) {
223 mb();
224 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
225 udelay(10);
227 #endif /* CONFIG_PPC_PMAC */
230 static inline void gem_netif_stop(struct gem *gp)
232 gp->dev->trans_start = jiffies; /* prevent tx timeout */
233 napi_disable(&gp->napi);
234 netif_tx_disable(gp->dev);
237 static inline void gem_netif_start(struct gem *gp)
239 /* NOTE: unconditional netif_wake_queue is only
240 * appropriate so long as all callers are assured to
241 * have free tx slots.
243 netif_wake_queue(gp->dev);
244 napi_enable(&gp->napi);
247 static void gem_schedule_reset(struct gem *gp)
249 gp->reset_task_pending = 1;
250 schedule_work(&gp->reset_task);
253 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
255 if (netif_msg_intr(gp))
256 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
259 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
261 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
262 u32 pcs_miistat;
264 if (netif_msg_intr(gp))
265 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
266 gp->dev->name, pcs_istat);
268 if (!(pcs_istat & PCS_ISTAT_LSC)) {
269 netdev_err(dev, "PCS irq but no link status change???\n");
270 return 0;
273 /* The link status bit latches on zero, so you must
274 * read it twice in such a case to see a transition
275 * to the link being up.
277 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
278 if (!(pcs_miistat & PCS_MIISTAT_LS))
279 pcs_miistat |=
280 (readl(gp->regs + PCS_MIISTAT) &
281 PCS_MIISTAT_LS);
283 if (pcs_miistat & PCS_MIISTAT_ANC) {
284 /* The remote-fault indication is only valid
285 * when autoneg has completed.
287 if (pcs_miistat & PCS_MIISTAT_RF)
288 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
289 else
290 netdev_info(dev, "PCS AutoNEG complete\n");
293 if (pcs_miistat & PCS_MIISTAT_LS) {
294 netdev_info(dev, "PCS link is now up\n");
295 netif_carrier_on(gp->dev);
296 } else {
297 netdev_info(dev, "PCS link is now down\n");
298 netif_carrier_off(gp->dev);
299 /* If this happens and the link timer is not running,
300 * reset so we re-negotiate.
302 if (!timer_pending(&gp->link_timer))
303 return 1;
306 return 0;
309 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
311 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
313 if (netif_msg_intr(gp))
314 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
315 gp->dev->name, txmac_stat);
317 /* Defer timer expiration is quite normal,
318 * don't even log the event.
320 if ((txmac_stat & MAC_TXSTAT_DTE) &&
321 !(txmac_stat & ~MAC_TXSTAT_DTE))
322 return 0;
324 if (txmac_stat & MAC_TXSTAT_URUN) {
325 netdev_err(dev, "TX MAC xmit underrun\n");
326 dev->stats.tx_fifo_errors++;
329 if (txmac_stat & MAC_TXSTAT_MPE) {
330 netdev_err(dev, "TX MAC max packet size error\n");
331 dev->stats.tx_errors++;
334 /* The rest are all cases of one of the 16-bit TX
335 * counters expiring.
337 if (txmac_stat & MAC_TXSTAT_NCE)
338 dev->stats.collisions += 0x10000;
340 if (txmac_stat & MAC_TXSTAT_ECE) {
341 dev->stats.tx_aborted_errors += 0x10000;
342 dev->stats.collisions += 0x10000;
345 if (txmac_stat & MAC_TXSTAT_LCE) {
346 dev->stats.tx_aborted_errors += 0x10000;
347 dev->stats.collisions += 0x10000;
350 /* We do not keep track of MAC_TXSTAT_FCE and
351 * MAC_TXSTAT_PCE events.
353 return 0;
356 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
357 * so we do the following.
359 * If any part of the reset goes wrong, we return 1 and that causes the
360 * whole chip to be reset.
362 static int gem_rxmac_reset(struct gem *gp)
364 struct net_device *dev = gp->dev;
365 int limit, i;
366 u64 desc_dma;
367 u32 val;
369 /* First, reset & disable MAC RX. */
370 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
371 for (limit = 0; limit < 5000; limit++) {
372 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
373 break;
374 udelay(10);
376 if (limit == 5000) {
377 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
378 return 1;
381 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
382 gp->regs + MAC_RXCFG);
383 for (limit = 0; limit < 5000; limit++) {
384 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
385 break;
386 udelay(10);
388 if (limit == 5000) {
389 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
390 return 1;
393 /* Second, disable RX DMA. */
394 writel(0, gp->regs + RXDMA_CFG);
395 for (limit = 0; limit < 5000; limit++) {
396 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
397 break;
398 udelay(10);
400 if (limit == 5000) {
401 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
402 return 1;
405 udelay(5000);
407 /* Execute RX reset command. */
408 writel(gp->swrst_base | GREG_SWRST_RXRST,
409 gp->regs + GREG_SWRST);
410 for (limit = 0; limit < 5000; limit++) {
411 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
412 break;
413 udelay(10);
415 if (limit == 5000) {
416 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
417 return 1;
420 /* Refresh the RX ring. */
421 for (i = 0; i < RX_RING_SIZE; i++) {
422 struct gem_rxd *rxd = &gp->init_block->rxd[i];
424 if (gp->rx_skbs[i] == NULL) {
425 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
426 return 1;
429 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
431 gp->rx_new = gp->rx_old = 0;
433 /* Now we must reprogram the rest of RX unit. */
434 desc_dma = (u64) gp->gblock_dvma;
435 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
436 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
437 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
438 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
439 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
440 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
441 writel(val, gp->regs + RXDMA_CFG);
442 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
443 writel(((5 & RXDMA_BLANK_IPKTS) |
444 ((8 << 12) & RXDMA_BLANK_ITIME)),
445 gp->regs + RXDMA_BLANK);
446 else
447 writel(((5 & RXDMA_BLANK_IPKTS) |
448 ((4 << 12) & RXDMA_BLANK_ITIME)),
449 gp->regs + RXDMA_BLANK);
450 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
451 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
452 writel(val, gp->regs + RXDMA_PTHRESH);
453 val = readl(gp->regs + RXDMA_CFG);
454 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
455 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
456 val = readl(gp->regs + MAC_RXCFG);
457 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
459 return 0;
462 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
464 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
465 int ret = 0;
467 if (netif_msg_intr(gp))
468 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
469 gp->dev->name, rxmac_stat);
471 if (rxmac_stat & MAC_RXSTAT_OFLW) {
472 u32 smac = readl(gp->regs + MAC_SMACHINE);
474 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
475 dev->stats.rx_over_errors++;
476 dev->stats.rx_fifo_errors++;
478 ret = gem_rxmac_reset(gp);
481 if (rxmac_stat & MAC_RXSTAT_ACE)
482 dev->stats.rx_frame_errors += 0x10000;
484 if (rxmac_stat & MAC_RXSTAT_CCE)
485 dev->stats.rx_crc_errors += 0x10000;
487 if (rxmac_stat & MAC_RXSTAT_LCE)
488 dev->stats.rx_length_errors += 0x10000;
490 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
491 * events.
493 return ret;
496 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
498 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
500 if (netif_msg_intr(gp))
501 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
502 gp->dev->name, mac_cstat);
504 /* This interrupt is just for pause frame and pause
505 * tracking. It is useful for diagnostics and debug
506 * but probably by default we will mask these events.
508 if (mac_cstat & MAC_CSTAT_PS)
509 gp->pause_entered++;
511 if (mac_cstat & MAC_CSTAT_PRCV)
512 gp->pause_last_time_recvd = (mac_cstat >> 16);
514 return 0;
517 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
519 u32 mif_status = readl(gp->regs + MIF_STATUS);
520 u32 reg_val, changed_bits;
522 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
523 changed_bits = (mif_status & MIF_STATUS_STAT);
525 gem_handle_mif_event(gp, reg_val, changed_bits);
527 return 0;
530 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
532 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
534 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
535 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
536 netdev_err(dev, "PCI error [%04x]", pci_estat);
538 if (pci_estat & GREG_PCIESTAT_BADACK)
539 pr_cont(" <No ACK64# during ABS64 cycle>");
540 if (pci_estat & GREG_PCIESTAT_DTRTO)
541 pr_cont(" <Delayed transaction timeout>");
542 if (pci_estat & GREG_PCIESTAT_OTHER)
543 pr_cont(" <other>");
544 pr_cont("\n");
545 } else {
546 pci_estat |= GREG_PCIESTAT_OTHER;
547 netdev_err(dev, "PCI error\n");
550 if (pci_estat & GREG_PCIESTAT_OTHER) {
551 u16 pci_cfg_stat;
553 /* Interrogate PCI config space for the
554 * true cause.
556 pci_read_config_word(gp->pdev, PCI_STATUS,
557 &pci_cfg_stat);
558 netdev_err(dev, "Read PCI cfg space status [%04x]\n",
559 pci_cfg_stat);
560 if (pci_cfg_stat & PCI_STATUS_PARITY)
561 netdev_err(dev, "PCI parity error detected\n");
562 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
563 netdev_err(dev, "PCI target abort\n");
564 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
565 netdev_err(dev, "PCI master acks target abort\n");
566 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
567 netdev_err(dev, "PCI master abort\n");
568 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
569 netdev_err(dev, "PCI system error SERR#\n");
570 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
571 netdev_err(dev, "PCI parity error\n");
573 /* Write the error bits back to clear them. */
574 pci_cfg_stat &= (PCI_STATUS_PARITY |
575 PCI_STATUS_SIG_TARGET_ABORT |
576 PCI_STATUS_REC_TARGET_ABORT |
577 PCI_STATUS_REC_MASTER_ABORT |
578 PCI_STATUS_SIG_SYSTEM_ERROR |
579 PCI_STATUS_DETECTED_PARITY);
580 pci_write_config_word(gp->pdev,
581 PCI_STATUS, pci_cfg_stat);
584 /* For all PCI errors, we should reset the chip. */
585 return 1;
588 /* All non-normal interrupt conditions get serviced here.
589 * Returns non-zero if we should just exit the interrupt
590 * handler right now (ie. if we reset the card which invalidates
591 * all of the other original irq status bits).
593 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
595 if (gem_status & GREG_STAT_RXNOBUF) {
596 /* Frame arrived, no free RX buffers available. */
597 if (netif_msg_rx_err(gp))
598 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
599 gp->dev->name);
600 dev->stats.rx_dropped++;
603 if (gem_status & GREG_STAT_RXTAGERR) {
604 /* corrupt RX tag framing */
605 if (netif_msg_rx_err(gp))
606 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
607 gp->dev->name);
608 dev->stats.rx_errors++;
610 return 1;
613 if (gem_status & GREG_STAT_PCS) {
614 if (gem_pcs_interrupt(dev, gp, gem_status))
615 return 1;
618 if (gem_status & GREG_STAT_TXMAC) {
619 if (gem_txmac_interrupt(dev, gp, gem_status))
620 return 1;
623 if (gem_status & GREG_STAT_RXMAC) {
624 if (gem_rxmac_interrupt(dev, gp, gem_status))
625 return 1;
628 if (gem_status & GREG_STAT_MAC) {
629 if (gem_mac_interrupt(dev, gp, gem_status))
630 return 1;
633 if (gem_status & GREG_STAT_MIF) {
634 if (gem_mif_interrupt(dev, gp, gem_status))
635 return 1;
638 if (gem_status & GREG_STAT_PCIERR) {
639 if (gem_pci_interrupt(dev, gp, gem_status))
640 return 1;
643 return 0;
646 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
648 int entry, limit;
650 entry = gp->tx_old;
651 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
652 while (entry != limit) {
653 struct sk_buff *skb;
654 struct gem_txd *txd;
655 dma_addr_t dma_addr;
656 u32 dma_len;
657 int frag;
659 if (netif_msg_tx_done(gp))
660 printk(KERN_DEBUG "%s: tx done, slot %d\n",
661 gp->dev->name, entry);
662 skb = gp->tx_skbs[entry];
663 if (skb_shinfo(skb)->nr_frags) {
664 int last = entry + skb_shinfo(skb)->nr_frags;
665 int walk = entry;
666 int incomplete = 0;
668 last &= (TX_RING_SIZE - 1);
669 for (;;) {
670 walk = NEXT_TX(walk);
671 if (walk == limit)
672 incomplete = 1;
673 if (walk == last)
674 break;
676 if (incomplete)
677 break;
679 gp->tx_skbs[entry] = NULL;
680 dev->stats.tx_bytes += skb->len;
682 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
683 txd = &gp->init_block->txd[entry];
685 dma_addr = le64_to_cpu(txd->buffer);
686 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
688 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
689 entry = NEXT_TX(entry);
692 dev->stats.tx_packets++;
693 dev_kfree_skb(skb);
695 gp->tx_old = entry;
697 /* Need to make the tx_old update visible to gem_start_xmit()
698 * before checking for netif_queue_stopped(). Without the
699 * memory barrier, there is a small possibility that gem_start_xmit()
700 * will miss it and cause the queue to be stopped forever.
702 smp_mb();
704 if (unlikely(netif_queue_stopped(dev) &&
705 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
706 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
708 __netif_tx_lock(txq, smp_processor_id());
709 if (netif_queue_stopped(dev) &&
710 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
711 netif_wake_queue(dev);
712 __netif_tx_unlock(txq);
716 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
718 int cluster_start, curr, count, kick;
720 cluster_start = curr = (gp->rx_new & ~(4 - 1));
721 count = 0;
722 kick = -1;
723 wmb();
724 while (curr != limit) {
725 curr = NEXT_RX(curr);
726 if (++count == 4) {
727 struct gem_rxd *rxd =
728 &gp->init_block->rxd[cluster_start];
729 for (;;) {
730 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
731 rxd++;
732 cluster_start = NEXT_RX(cluster_start);
733 if (cluster_start == curr)
734 break;
736 kick = curr;
737 count = 0;
740 if (kick >= 0) {
741 mb();
742 writel(kick, gp->regs + RXDMA_KICK);
746 #define ALIGNED_RX_SKB_ADDR(addr) \
747 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
748 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
749 gfp_t gfp_flags)
751 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
753 if (likely(skb)) {
754 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
755 skb_reserve(skb, offset);
756 skb->dev = dev;
758 return skb;
761 static int gem_rx(struct gem *gp, int work_to_do)
763 struct net_device *dev = gp->dev;
764 int entry, drops, work_done = 0;
765 u32 done;
766 __sum16 csum;
768 if (netif_msg_rx_status(gp))
769 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
770 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
772 entry = gp->rx_new;
773 drops = 0;
774 done = readl(gp->regs + RXDMA_DONE);
775 for (;;) {
776 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
777 struct sk_buff *skb;
778 u64 status = le64_to_cpu(rxd->status_word);
779 dma_addr_t dma_addr;
780 int len;
782 if ((status & RXDCTRL_OWN) != 0)
783 break;
785 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
786 break;
788 /* When writing back RX descriptor, GEM writes status
789 * then buffer address, possibly in separate transactions.
790 * If we don't wait for the chip to write both, we could
791 * post a new buffer to this descriptor then have GEM spam
792 * on the buffer address. We sync on the RX completion
793 * register to prevent this from happening.
795 if (entry == done) {
796 done = readl(gp->regs + RXDMA_DONE);
797 if (entry == done)
798 break;
801 /* We can now account for the work we're about to do */
802 work_done++;
804 skb = gp->rx_skbs[entry];
806 len = (status & RXDCTRL_BUFSZ) >> 16;
807 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
808 dev->stats.rx_errors++;
809 if (len < ETH_ZLEN)
810 dev->stats.rx_length_errors++;
811 if (len & RXDCTRL_BAD)
812 dev->stats.rx_crc_errors++;
814 /* We'll just return it to GEM. */
815 drop_it:
816 dev->stats.rx_dropped++;
817 goto next;
820 dma_addr = le64_to_cpu(rxd->buffer);
821 if (len > RX_COPY_THRESHOLD) {
822 struct sk_buff *new_skb;
824 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
825 if (new_skb == NULL) {
826 drops++;
827 goto drop_it;
829 pci_unmap_page(gp->pdev, dma_addr,
830 RX_BUF_ALLOC_SIZE(gp),
831 PCI_DMA_FROMDEVICE);
832 gp->rx_skbs[entry] = new_skb;
833 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
834 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
835 virt_to_page(new_skb->data),
836 offset_in_page(new_skb->data),
837 RX_BUF_ALLOC_SIZE(gp),
838 PCI_DMA_FROMDEVICE));
839 skb_reserve(new_skb, RX_OFFSET);
841 /* Trim the original skb for the netif. */
842 skb_trim(skb, len);
843 } else {
844 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
846 if (copy_skb == NULL) {
847 drops++;
848 goto drop_it;
851 skb_reserve(copy_skb, 2);
852 skb_put(copy_skb, len);
853 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
854 skb_copy_from_linear_data(skb, copy_skb->data, len);
855 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
857 /* We'll reuse the original ring buffer. */
858 skb = copy_skb;
861 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
862 skb->csum = csum_unfold(csum);
863 skb->ip_summed = CHECKSUM_COMPLETE;
864 skb->protocol = eth_type_trans(skb, gp->dev);
866 napi_gro_receive(&gp->napi, skb);
868 dev->stats.rx_packets++;
869 dev->stats.rx_bytes += len;
871 next:
872 entry = NEXT_RX(entry);
875 gem_post_rxds(gp, entry);
877 gp->rx_new = entry;
879 if (drops)
880 netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
882 return work_done;
885 static int gem_poll(struct napi_struct *napi, int budget)
887 struct gem *gp = container_of(napi, struct gem, napi);
888 struct net_device *dev = gp->dev;
889 int work_done;
891 work_done = 0;
892 do {
893 /* Handle anomalies */
894 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
895 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
896 int reset;
898 /* We run the abnormal interrupt handling code with
899 * the Tx lock. It only resets the Rx portion of the
900 * chip, but we need to guard it against DMA being
901 * restarted by the link poll timer
903 __netif_tx_lock(txq, smp_processor_id());
904 reset = gem_abnormal_irq(dev, gp, gp->status);
905 __netif_tx_unlock(txq);
906 if (reset) {
907 gem_schedule_reset(gp);
908 napi_complete(napi);
909 return work_done;
913 /* Run TX completion thread */
914 gem_tx(dev, gp, gp->status);
916 /* Run RX thread. We don't use any locking here,
917 * code willing to do bad things - like cleaning the
918 * rx ring - must call napi_disable(), which
919 * schedule_timeout()'s if polling is already disabled.
921 work_done += gem_rx(gp, budget - work_done);
923 if (work_done >= budget)
924 return work_done;
926 gp->status = readl(gp->regs + GREG_STAT);
927 } while (gp->status & GREG_STAT_NAPI);
929 napi_complete(napi);
930 gem_enable_ints(gp);
932 return work_done;
935 static irqreturn_t gem_interrupt(int irq, void *dev_id)
937 struct net_device *dev = dev_id;
938 struct gem *gp = netdev_priv(dev);
940 if (napi_schedule_prep(&gp->napi)) {
941 u32 gem_status = readl(gp->regs + GREG_STAT);
943 if (unlikely(gem_status == 0)) {
944 napi_enable(&gp->napi);
945 return IRQ_NONE;
947 if (netif_msg_intr(gp))
948 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
949 gp->dev->name, gem_status);
951 gp->status = gem_status;
952 gem_disable_ints(gp);
953 __napi_schedule(&gp->napi);
956 /* If polling was disabled at the time we received that
957 * interrupt, we may return IRQ_HANDLED here while we
958 * should return IRQ_NONE. No big deal...
960 return IRQ_HANDLED;
963 #ifdef CONFIG_NET_POLL_CONTROLLER
964 static void gem_poll_controller(struct net_device *dev)
966 struct gem *gp = netdev_priv(dev);
968 disable_irq(gp->pdev->irq);
969 gem_interrupt(gp->pdev->irq, dev);
970 enable_irq(gp->pdev->irq);
972 #endif
974 static void gem_tx_timeout(struct net_device *dev)
976 struct gem *gp = netdev_priv(dev);
978 netdev_err(dev, "transmit timed out, resetting\n");
980 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
981 readl(gp->regs + TXDMA_CFG),
982 readl(gp->regs + MAC_TXSTAT),
983 readl(gp->regs + MAC_TXCFG));
984 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
985 readl(gp->regs + RXDMA_CFG),
986 readl(gp->regs + MAC_RXSTAT),
987 readl(gp->regs + MAC_RXCFG));
989 gem_schedule_reset(gp);
992 static __inline__ int gem_intme(int entry)
994 /* Algorithm: IRQ every 1/2 of descriptors. */
995 if (!(entry & ((TX_RING_SIZE>>1)-1)))
996 return 1;
998 return 0;
1001 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
1002 struct net_device *dev)
1004 struct gem *gp = netdev_priv(dev);
1005 int entry;
1006 u64 ctrl;
1008 ctrl = 0;
1009 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1010 const u64 csum_start_off = skb_checksum_start_offset(skb);
1011 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1013 ctrl = (TXDCTRL_CENAB |
1014 (csum_start_off << 15) |
1015 (csum_stuff_off << 21));
1018 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1019 /* This is a hard error, log it. */
1020 if (!netif_queue_stopped(dev)) {
1021 netif_stop_queue(dev);
1022 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1024 return NETDEV_TX_BUSY;
1027 entry = gp->tx_new;
1028 gp->tx_skbs[entry] = skb;
1030 if (skb_shinfo(skb)->nr_frags == 0) {
1031 struct gem_txd *txd = &gp->init_block->txd[entry];
1032 dma_addr_t mapping;
1033 u32 len;
1035 len = skb->len;
1036 mapping = pci_map_page(gp->pdev,
1037 virt_to_page(skb->data),
1038 offset_in_page(skb->data),
1039 len, PCI_DMA_TODEVICE);
1040 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1041 if (gem_intme(entry))
1042 ctrl |= TXDCTRL_INTME;
1043 txd->buffer = cpu_to_le64(mapping);
1044 wmb();
1045 txd->control_word = cpu_to_le64(ctrl);
1046 entry = NEXT_TX(entry);
1047 } else {
1048 struct gem_txd *txd;
1049 u32 first_len;
1050 u64 intme;
1051 dma_addr_t first_mapping;
1052 int frag, first_entry = entry;
1054 intme = 0;
1055 if (gem_intme(entry))
1056 intme |= TXDCTRL_INTME;
1058 /* We must give this initial chunk to the device last.
1059 * Otherwise we could race with the device.
1061 first_len = skb_headlen(skb);
1062 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1063 offset_in_page(skb->data),
1064 first_len, PCI_DMA_TODEVICE);
1065 entry = NEXT_TX(entry);
1067 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1068 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1069 u32 len;
1070 dma_addr_t mapping;
1071 u64 this_ctrl;
1073 len = skb_frag_size(this_frag);
1074 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1075 0, len, DMA_TO_DEVICE);
1076 this_ctrl = ctrl;
1077 if (frag == skb_shinfo(skb)->nr_frags - 1)
1078 this_ctrl |= TXDCTRL_EOF;
1080 txd = &gp->init_block->txd[entry];
1081 txd->buffer = cpu_to_le64(mapping);
1082 wmb();
1083 txd->control_word = cpu_to_le64(this_ctrl | len);
1085 if (gem_intme(entry))
1086 intme |= TXDCTRL_INTME;
1088 entry = NEXT_TX(entry);
1090 txd = &gp->init_block->txd[first_entry];
1091 txd->buffer = cpu_to_le64(first_mapping);
1092 wmb();
1093 txd->control_word =
1094 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1097 gp->tx_new = entry;
1098 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1099 netif_stop_queue(dev);
1101 /* netif_stop_queue() must be done before checking
1102 * checking tx index in TX_BUFFS_AVAIL() below, because
1103 * in gem_tx(), we update tx_old before checking for
1104 * netif_queue_stopped().
1106 smp_mb();
1107 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1108 netif_wake_queue(dev);
1110 if (netif_msg_tx_queued(gp))
1111 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1112 dev->name, entry, skb->len);
1113 mb();
1114 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1116 return NETDEV_TX_OK;
1119 static void gem_pcs_reset(struct gem *gp)
1121 int limit;
1122 u32 val;
1124 /* Reset PCS unit. */
1125 val = readl(gp->regs + PCS_MIICTRL);
1126 val |= PCS_MIICTRL_RST;
1127 writel(val, gp->regs + PCS_MIICTRL);
1129 limit = 32;
1130 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1131 udelay(100);
1132 if (limit-- <= 0)
1133 break;
1135 if (limit < 0)
1136 netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1139 static void gem_pcs_reinit_adv(struct gem *gp)
1141 u32 val;
1143 /* Make sure PCS is disabled while changing advertisement
1144 * configuration.
1146 val = readl(gp->regs + PCS_CFG);
1147 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1148 writel(val, gp->regs + PCS_CFG);
1150 /* Advertise all capabilities except asymmetric
1151 * pause.
1153 val = readl(gp->regs + PCS_MIIADV);
1154 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1155 PCS_MIIADV_SP | PCS_MIIADV_AP);
1156 writel(val, gp->regs + PCS_MIIADV);
1158 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1159 * and re-enable PCS.
1161 val = readl(gp->regs + PCS_MIICTRL);
1162 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1163 val &= ~PCS_MIICTRL_WB;
1164 writel(val, gp->regs + PCS_MIICTRL);
1166 val = readl(gp->regs + PCS_CFG);
1167 val |= PCS_CFG_ENABLE;
1168 writel(val, gp->regs + PCS_CFG);
1170 /* Make sure serialink loopback is off. The meaning
1171 * of this bit is logically inverted based upon whether
1172 * you are in Serialink or SERDES mode.
1174 val = readl(gp->regs + PCS_SCTRL);
1175 if (gp->phy_type == phy_serialink)
1176 val &= ~PCS_SCTRL_LOOP;
1177 else
1178 val |= PCS_SCTRL_LOOP;
1179 writel(val, gp->regs + PCS_SCTRL);
1182 #define STOP_TRIES 32
1184 static void gem_reset(struct gem *gp)
1186 int limit;
1187 u32 val;
1189 /* Make sure we won't get any more interrupts */
1190 writel(0xffffffff, gp->regs + GREG_IMASK);
1192 /* Reset the chip */
1193 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1194 gp->regs + GREG_SWRST);
1196 limit = STOP_TRIES;
1198 do {
1199 udelay(20);
1200 val = readl(gp->regs + GREG_SWRST);
1201 if (limit-- <= 0)
1202 break;
1203 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1205 if (limit < 0)
1206 netdev_err(gp->dev, "SW reset is ghetto\n");
1208 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1209 gem_pcs_reinit_adv(gp);
1212 static void gem_start_dma(struct gem *gp)
1214 u32 val;
1216 /* We are ready to rock, turn everything on. */
1217 val = readl(gp->regs + TXDMA_CFG);
1218 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1219 val = readl(gp->regs + RXDMA_CFG);
1220 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1221 val = readl(gp->regs + MAC_TXCFG);
1222 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1223 val = readl(gp->regs + MAC_RXCFG);
1224 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1226 (void) readl(gp->regs + MAC_RXCFG);
1227 udelay(100);
1229 gem_enable_ints(gp);
1231 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1234 /* DMA won't be actually stopped before about 4ms tho ...
1236 static void gem_stop_dma(struct gem *gp)
1238 u32 val;
1240 /* We are done rocking, turn everything off. */
1241 val = readl(gp->regs + TXDMA_CFG);
1242 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1243 val = readl(gp->regs + RXDMA_CFG);
1244 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1245 val = readl(gp->regs + MAC_TXCFG);
1246 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1247 val = readl(gp->regs + MAC_RXCFG);
1248 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1250 (void) readl(gp->regs + MAC_RXCFG);
1252 /* Need to wait a bit ... done by the caller */
1256 // XXX dbl check what that function should do when called on PCS PHY
1257 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1259 u32 advertise, features;
1260 int autoneg;
1261 int speed;
1262 int duplex;
1264 if (gp->phy_type != phy_mii_mdio0 &&
1265 gp->phy_type != phy_mii_mdio1)
1266 goto non_mii;
1268 /* Setup advertise */
1269 if (found_mii_phy(gp))
1270 features = gp->phy_mii.def->features;
1271 else
1272 features = 0;
1274 advertise = features & ADVERTISE_MASK;
1275 if (gp->phy_mii.advertising != 0)
1276 advertise &= gp->phy_mii.advertising;
1278 autoneg = gp->want_autoneg;
1279 speed = gp->phy_mii.speed;
1280 duplex = gp->phy_mii.duplex;
1282 /* Setup link parameters */
1283 if (!ep)
1284 goto start_aneg;
1285 if (ep->autoneg == AUTONEG_ENABLE) {
1286 advertise = ep->advertising;
1287 autoneg = 1;
1288 } else {
1289 autoneg = 0;
1290 speed = ethtool_cmd_speed(ep);
1291 duplex = ep->duplex;
1294 start_aneg:
1295 /* Sanitize settings based on PHY capabilities */
1296 if ((features & SUPPORTED_Autoneg) == 0)
1297 autoneg = 0;
1298 if (speed == SPEED_1000 &&
1299 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1300 speed = SPEED_100;
1301 if (speed == SPEED_100 &&
1302 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1303 speed = SPEED_10;
1304 if (duplex == DUPLEX_FULL &&
1305 !(features & (SUPPORTED_1000baseT_Full |
1306 SUPPORTED_100baseT_Full |
1307 SUPPORTED_10baseT_Full)))
1308 duplex = DUPLEX_HALF;
1309 if (speed == 0)
1310 speed = SPEED_10;
1312 /* If we are asleep, we don't try to actually setup the PHY, we
1313 * just store the settings
1315 if (!netif_device_present(gp->dev)) {
1316 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1317 gp->phy_mii.speed = speed;
1318 gp->phy_mii.duplex = duplex;
1319 return;
1322 /* Configure PHY & start aneg */
1323 gp->want_autoneg = autoneg;
1324 if (autoneg) {
1325 if (found_mii_phy(gp))
1326 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1327 gp->lstate = link_aneg;
1328 } else {
1329 if (found_mii_phy(gp))
1330 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1331 gp->lstate = link_force_ok;
1334 non_mii:
1335 gp->timer_ticks = 0;
1336 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1339 /* A link-up condition has occurred, initialize and enable the
1340 * rest of the chip.
1342 static int gem_set_link_modes(struct gem *gp)
1344 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1345 int full_duplex, speed, pause;
1346 u32 val;
1348 full_duplex = 0;
1349 speed = SPEED_10;
1350 pause = 0;
1352 if (found_mii_phy(gp)) {
1353 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1354 return 1;
1355 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1356 speed = gp->phy_mii.speed;
1357 pause = gp->phy_mii.pause;
1358 } else if (gp->phy_type == phy_serialink ||
1359 gp->phy_type == phy_serdes) {
1360 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1362 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1363 full_duplex = 1;
1364 speed = SPEED_1000;
1367 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1368 speed, (full_duplex ? "full" : "half"));
1371 /* We take the tx queue lock to avoid collisions between
1372 * this code, the tx path and the NAPI-driven error path
1374 __netif_tx_lock(txq, smp_processor_id());
1376 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1377 if (full_duplex) {
1378 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1379 } else {
1380 /* MAC_TXCFG_NBO must be zero. */
1382 writel(val, gp->regs + MAC_TXCFG);
1384 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1385 if (!full_duplex &&
1386 (gp->phy_type == phy_mii_mdio0 ||
1387 gp->phy_type == phy_mii_mdio1)) {
1388 val |= MAC_XIFCFG_DISE;
1389 } else if (full_duplex) {
1390 val |= MAC_XIFCFG_FLED;
1393 if (speed == SPEED_1000)
1394 val |= (MAC_XIFCFG_GMII);
1396 writel(val, gp->regs + MAC_XIFCFG);
1398 /* If gigabit and half-duplex, enable carrier extension
1399 * mode. Else, disable it.
1401 if (speed == SPEED_1000 && !full_duplex) {
1402 val = readl(gp->regs + MAC_TXCFG);
1403 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1405 val = readl(gp->regs + MAC_RXCFG);
1406 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1407 } else {
1408 val = readl(gp->regs + MAC_TXCFG);
1409 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1411 val = readl(gp->regs + MAC_RXCFG);
1412 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1415 if (gp->phy_type == phy_serialink ||
1416 gp->phy_type == phy_serdes) {
1417 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1419 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1420 pause = 1;
1423 if (!full_duplex)
1424 writel(512, gp->regs + MAC_STIME);
1425 else
1426 writel(64, gp->regs + MAC_STIME);
1427 val = readl(gp->regs + MAC_MCCFG);
1428 if (pause)
1429 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1430 else
1431 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1432 writel(val, gp->regs + MAC_MCCFG);
1434 gem_start_dma(gp);
1436 __netif_tx_unlock(txq);
1438 if (netif_msg_link(gp)) {
1439 if (pause) {
1440 netdev_info(gp->dev,
1441 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1442 gp->rx_fifo_sz,
1443 gp->rx_pause_off,
1444 gp->rx_pause_on);
1445 } else {
1446 netdev_info(gp->dev, "Pause is disabled\n");
1450 return 0;
1453 static int gem_mdio_link_not_up(struct gem *gp)
1455 switch (gp->lstate) {
1456 case link_force_ret:
1457 netif_info(gp, link, gp->dev,
1458 "Autoneg failed again, keeping forced mode\n");
1459 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1460 gp->last_forced_speed, DUPLEX_HALF);
1461 gp->timer_ticks = 5;
1462 gp->lstate = link_force_ok;
1463 return 0;
1464 case link_aneg:
1465 /* We try forced modes after a failed aneg only on PHYs that don't
1466 * have "magic_aneg" bit set, which means they internally do the
1467 * while forced-mode thingy. On these, we just restart aneg
1469 if (gp->phy_mii.def->magic_aneg)
1470 return 1;
1471 netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1472 /* Try forced modes. */
1473 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1474 DUPLEX_HALF);
1475 gp->timer_ticks = 5;
1476 gp->lstate = link_force_try;
1477 return 0;
1478 case link_force_try:
1479 /* Downgrade from 100 to 10 Mbps if necessary.
1480 * If already at 10Mbps, warn user about the
1481 * situation every 10 ticks.
1483 if (gp->phy_mii.speed == SPEED_100) {
1484 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1485 DUPLEX_HALF);
1486 gp->timer_ticks = 5;
1487 netif_info(gp, link, gp->dev,
1488 "switching to forced 10bt\n");
1489 return 0;
1490 } else
1491 return 1;
1492 default:
1493 return 0;
1497 static void gem_link_timer(unsigned long data)
1499 struct gem *gp = (struct gem *) data;
1500 struct net_device *dev = gp->dev;
1501 int restart_aneg = 0;
1503 /* There's no point doing anything if we're going to be reset */
1504 if (gp->reset_task_pending)
1505 return;
1507 if (gp->phy_type == phy_serialink ||
1508 gp->phy_type == phy_serdes) {
1509 u32 val = readl(gp->regs + PCS_MIISTAT);
1511 if (!(val & PCS_MIISTAT_LS))
1512 val = readl(gp->regs + PCS_MIISTAT);
1514 if ((val & PCS_MIISTAT_LS) != 0) {
1515 if (gp->lstate == link_up)
1516 goto restart;
1518 gp->lstate = link_up;
1519 netif_carrier_on(dev);
1520 (void)gem_set_link_modes(gp);
1522 goto restart;
1524 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1525 /* Ok, here we got a link. If we had it due to a forced
1526 * fallback, and we were configured for autoneg, we do
1527 * retry a short autoneg pass. If you know your hub is
1528 * broken, use ethtool ;)
1530 if (gp->lstate == link_force_try && gp->want_autoneg) {
1531 gp->lstate = link_force_ret;
1532 gp->last_forced_speed = gp->phy_mii.speed;
1533 gp->timer_ticks = 5;
1534 if (netif_msg_link(gp))
1535 netdev_info(dev,
1536 "Got link after fallback, retrying autoneg once...\n");
1537 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1538 } else if (gp->lstate != link_up) {
1539 gp->lstate = link_up;
1540 netif_carrier_on(dev);
1541 if (gem_set_link_modes(gp))
1542 restart_aneg = 1;
1544 } else {
1545 /* If the link was previously up, we restart the
1546 * whole process
1548 if (gp->lstate == link_up) {
1549 gp->lstate = link_down;
1550 netif_info(gp, link, dev, "Link down\n");
1551 netif_carrier_off(dev);
1552 gem_schedule_reset(gp);
1553 /* The reset task will restart the timer */
1554 return;
1555 } else if (++gp->timer_ticks > 10) {
1556 if (found_mii_phy(gp))
1557 restart_aneg = gem_mdio_link_not_up(gp);
1558 else
1559 restart_aneg = 1;
1562 if (restart_aneg) {
1563 gem_begin_auto_negotiation(gp, NULL);
1564 return;
1566 restart:
1567 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1570 static void gem_clean_rings(struct gem *gp)
1572 struct gem_init_block *gb = gp->init_block;
1573 struct sk_buff *skb;
1574 int i;
1575 dma_addr_t dma_addr;
1577 for (i = 0; i < RX_RING_SIZE; i++) {
1578 struct gem_rxd *rxd;
1580 rxd = &gb->rxd[i];
1581 if (gp->rx_skbs[i] != NULL) {
1582 skb = gp->rx_skbs[i];
1583 dma_addr = le64_to_cpu(rxd->buffer);
1584 pci_unmap_page(gp->pdev, dma_addr,
1585 RX_BUF_ALLOC_SIZE(gp),
1586 PCI_DMA_FROMDEVICE);
1587 dev_kfree_skb_any(skb);
1588 gp->rx_skbs[i] = NULL;
1590 rxd->status_word = 0;
1591 wmb();
1592 rxd->buffer = 0;
1595 for (i = 0; i < TX_RING_SIZE; i++) {
1596 if (gp->tx_skbs[i] != NULL) {
1597 struct gem_txd *txd;
1598 int frag;
1600 skb = gp->tx_skbs[i];
1601 gp->tx_skbs[i] = NULL;
1603 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1604 int ent = i & (TX_RING_SIZE - 1);
1606 txd = &gb->txd[ent];
1607 dma_addr = le64_to_cpu(txd->buffer);
1608 pci_unmap_page(gp->pdev, dma_addr,
1609 le64_to_cpu(txd->control_word) &
1610 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1612 if (frag != skb_shinfo(skb)->nr_frags)
1613 i++;
1615 dev_kfree_skb_any(skb);
1620 static void gem_init_rings(struct gem *gp)
1622 struct gem_init_block *gb = gp->init_block;
1623 struct net_device *dev = gp->dev;
1624 int i;
1625 dma_addr_t dma_addr;
1627 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1629 gem_clean_rings(gp);
1631 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1632 (unsigned)VLAN_ETH_FRAME_LEN);
1634 for (i = 0; i < RX_RING_SIZE; i++) {
1635 struct sk_buff *skb;
1636 struct gem_rxd *rxd = &gb->rxd[i];
1638 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1639 if (!skb) {
1640 rxd->buffer = 0;
1641 rxd->status_word = 0;
1642 continue;
1645 gp->rx_skbs[i] = skb;
1646 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1647 dma_addr = pci_map_page(gp->pdev,
1648 virt_to_page(skb->data),
1649 offset_in_page(skb->data),
1650 RX_BUF_ALLOC_SIZE(gp),
1651 PCI_DMA_FROMDEVICE);
1652 rxd->buffer = cpu_to_le64(dma_addr);
1653 wmb();
1654 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1655 skb_reserve(skb, RX_OFFSET);
1658 for (i = 0; i < TX_RING_SIZE; i++) {
1659 struct gem_txd *txd = &gb->txd[i];
1661 txd->control_word = 0;
1662 wmb();
1663 txd->buffer = 0;
1665 wmb();
1668 /* Init PHY interface and start link poll state machine */
1669 static void gem_init_phy(struct gem *gp)
1671 u32 mifcfg;
1673 /* Revert MIF CFG setting done on stop_phy */
1674 mifcfg = readl(gp->regs + MIF_CFG);
1675 mifcfg &= ~MIF_CFG_BBMODE;
1676 writel(mifcfg, gp->regs + MIF_CFG);
1678 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1679 int i;
1681 /* Those delay sucks, the HW seem to love them though, I'll
1682 * serisouly consider breaking some locks here to be able
1683 * to schedule instead
1685 for (i = 0; i < 3; i++) {
1686 #ifdef CONFIG_PPC_PMAC
1687 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1688 msleep(20);
1689 #endif
1690 /* Some PHYs used by apple have problem getting back to us,
1691 * we do an additional reset here
1693 phy_write(gp, MII_BMCR, BMCR_RESET);
1694 msleep(20);
1695 if (phy_read(gp, MII_BMCR) != 0xffff)
1696 break;
1697 if (i == 2)
1698 netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1702 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1703 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1704 u32 val;
1706 /* Init datapath mode register. */
1707 if (gp->phy_type == phy_mii_mdio0 ||
1708 gp->phy_type == phy_mii_mdio1) {
1709 val = PCS_DMODE_MGM;
1710 } else if (gp->phy_type == phy_serialink) {
1711 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1712 } else {
1713 val = PCS_DMODE_ESM;
1716 writel(val, gp->regs + PCS_DMODE);
1719 if (gp->phy_type == phy_mii_mdio0 ||
1720 gp->phy_type == phy_mii_mdio1) {
1721 /* Reset and detect MII PHY */
1722 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1724 /* Init PHY */
1725 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1726 gp->phy_mii.def->ops->init(&gp->phy_mii);
1727 } else {
1728 gem_pcs_reset(gp);
1729 gem_pcs_reinit_adv(gp);
1732 /* Default aneg parameters */
1733 gp->timer_ticks = 0;
1734 gp->lstate = link_down;
1735 netif_carrier_off(gp->dev);
1737 /* Print things out */
1738 if (gp->phy_type == phy_mii_mdio0 ||
1739 gp->phy_type == phy_mii_mdio1)
1740 netdev_info(gp->dev, "Found %s PHY\n",
1741 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1743 gem_begin_auto_negotiation(gp, NULL);
1746 static void gem_init_dma(struct gem *gp)
1748 u64 desc_dma = (u64) gp->gblock_dvma;
1749 u32 val;
1751 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1752 writel(val, gp->regs + TXDMA_CFG);
1754 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1755 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1756 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1758 writel(0, gp->regs + TXDMA_KICK);
1760 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1761 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1762 writel(val, gp->regs + RXDMA_CFG);
1764 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1765 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1767 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1769 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1770 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1771 writel(val, gp->regs + RXDMA_PTHRESH);
1773 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1774 writel(((5 & RXDMA_BLANK_IPKTS) |
1775 ((8 << 12) & RXDMA_BLANK_ITIME)),
1776 gp->regs + RXDMA_BLANK);
1777 else
1778 writel(((5 & RXDMA_BLANK_IPKTS) |
1779 ((4 << 12) & RXDMA_BLANK_ITIME)),
1780 gp->regs + RXDMA_BLANK);
1783 static u32 gem_setup_multicast(struct gem *gp)
1785 u32 rxcfg = 0;
1786 int i;
1788 if ((gp->dev->flags & IFF_ALLMULTI) ||
1789 (netdev_mc_count(gp->dev) > 256)) {
1790 for (i=0; i<16; i++)
1791 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1792 rxcfg |= MAC_RXCFG_HFE;
1793 } else if (gp->dev->flags & IFF_PROMISC) {
1794 rxcfg |= MAC_RXCFG_PROM;
1795 } else {
1796 u16 hash_table[16];
1797 u32 crc;
1798 struct netdev_hw_addr *ha;
1799 int i;
1801 memset(hash_table, 0, sizeof(hash_table));
1802 netdev_for_each_mc_addr(ha, gp->dev) {
1803 crc = ether_crc_le(6, ha->addr);
1804 crc >>= 24;
1805 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1807 for (i=0; i<16; i++)
1808 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1809 rxcfg |= MAC_RXCFG_HFE;
1812 return rxcfg;
1815 static void gem_init_mac(struct gem *gp)
1817 unsigned char *e = &gp->dev->dev_addr[0];
1819 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1821 writel(0x00, gp->regs + MAC_IPG0);
1822 writel(0x08, gp->regs + MAC_IPG1);
1823 writel(0x04, gp->regs + MAC_IPG2);
1824 writel(0x40, gp->regs + MAC_STIME);
1825 writel(0x40, gp->regs + MAC_MINFSZ);
1827 /* Ethernet payload + header + FCS + optional VLAN tag. */
1828 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1830 writel(0x07, gp->regs + MAC_PASIZE);
1831 writel(0x04, gp->regs + MAC_JAMSIZE);
1832 writel(0x10, gp->regs + MAC_ATTLIM);
1833 writel(0x8808, gp->regs + MAC_MCTYPE);
1835 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1837 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1838 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1839 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1841 writel(0, gp->regs + MAC_ADDR3);
1842 writel(0, gp->regs + MAC_ADDR4);
1843 writel(0, gp->regs + MAC_ADDR5);
1845 writel(0x0001, gp->regs + MAC_ADDR6);
1846 writel(0xc200, gp->regs + MAC_ADDR7);
1847 writel(0x0180, gp->regs + MAC_ADDR8);
1849 writel(0, gp->regs + MAC_AFILT0);
1850 writel(0, gp->regs + MAC_AFILT1);
1851 writel(0, gp->regs + MAC_AFILT2);
1852 writel(0, gp->regs + MAC_AF21MSK);
1853 writel(0, gp->regs + MAC_AF0MSK);
1855 gp->mac_rx_cfg = gem_setup_multicast(gp);
1856 #ifdef STRIP_FCS
1857 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1858 #endif
1859 writel(0, gp->regs + MAC_NCOLL);
1860 writel(0, gp->regs + MAC_FASUCC);
1861 writel(0, gp->regs + MAC_ECOLL);
1862 writel(0, gp->regs + MAC_LCOLL);
1863 writel(0, gp->regs + MAC_DTIMER);
1864 writel(0, gp->regs + MAC_PATMPS);
1865 writel(0, gp->regs + MAC_RFCTR);
1866 writel(0, gp->regs + MAC_LERR);
1867 writel(0, gp->regs + MAC_AERR);
1868 writel(0, gp->regs + MAC_FCSERR);
1869 writel(0, gp->regs + MAC_RXCVERR);
1871 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1872 * them once a link is established.
1874 writel(0, gp->regs + MAC_TXCFG);
1875 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1876 writel(0, gp->regs + MAC_MCCFG);
1877 writel(0, gp->regs + MAC_XIFCFG);
1879 /* Setup MAC interrupts. We want to get all of the interesting
1880 * counter expiration events, but we do not want to hear about
1881 * normal rx/tx as the DMA engine tells us that.
1883 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1884 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1886 /* Don't enable even the PAUSE interrupts for now, we
1887 * make no use of those events other than to record them.
1889 writel(0xffffffff, gp->regs + MAC_MCMASK);
1891 /* Don't enable GEM's WOL in normal operations
1893 if (gp->has_wol)
1894 writel(0, gp->regs + WOL_WAKECSR);
1897 static void gem_init_pause_thresholds(struct gem *gp)
1899 u32 cfg;
1901 /* Calculate pause thresholds. Setting the OFF threshold to the
1902 * full RX fifo size effectively disables PAUSE generation which
1903 * is what we do for 10/100 only GEMs which have FIFOs too small
1904 * to make real gains from PAUSE.
1906 if (gp->rx_fifo_sz <= (2 * 1024)) {
1907 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1908 } else {
1909 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1910 int off = (gp->rx_fifo_sz - (max_frame * 2));
1911 int on = off - max_frame;
1913 gp->rx_pause_off = off;
1914 gp->rx_pause_on = on;
1918 /* Configure the chip "burst" DMA mode & enable some
1919 * HW bug fixes on Apple version
1921 cfg = 0;
1922 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1923 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1924 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1925 cfg |= GREG_CFG_IBURST;
1926 #endif
1927 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1928 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1929 writel(cfg, gp->regs + GREG_CFG);
1931 /* If Infinite Burst didn't stick, then use different
1932 * thresholds (and Apple bug fixes don't exist)
1934 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1935 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1936 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1937 writel(cfg, gp->regs + GREG_CFG);
1941 static int gem_check_invariants(struct gem *gp)
1943 struct pci_dev *pdev = gp->pdev;
1944 u32 mif_cfg;
1946 /* On Apple's sungem, we can't rely on registers as the chip
1947 * was been powered down by the firmware. The PHY is looked
1948 * up later on.
1950 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1951 gp->phy_type = phy_mii_mdio0;
1952 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1953 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1954 gp->swrst_base = 0;
1956 mif_cfg = readl(gp->regs + MIF_CFG);
1957 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1958 mif_cfg |= MIF_CFG_MDI0;
1959 writel(mif_cfg, gp->regs + MIF_CFG);
1960 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1961 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1963 /* We hard-code the PHY address so we can properly bring it out of
1964 * reset later on, we can't really probe it at this point, though
1965 * that isn't an issue.
1967 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1968 gp->mii_phy_addr = 1;
1969 else
1970 gp->mii_phy_addr = 0;
1972 return 0;
1975 mif_cfg = readl(gp->regs + MIF_CFG);
1977 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1978 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1979 /* One of the MII PHYs _must_ be present
1980 * as this chip has no gigabit PHY.
1982 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1983 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1984 mif_cfg);
1985 return -1;
1989 /* Determine initial PHY interface type guess. MDIO1 is the
1990 * external PHY and thus takes precedence over MDIO0.
1993 if (mif_cfg & MIF_CFG_MDI1) {
1994 gp->phy_type = phy_mii_mdio1;
1995 mif_cfg |= MIF_CFG_PSELECT;
1996 writel(mif_cfg, gp->regs + MIF_CFG);
1997 } else if (mif_cfg & MIF_CFG_MDI0) {
1998 gp->phy_type = phy_mii_mdio0;
1999 mif_cfg &= ~MIF_CFG_PSELECT;
2000 writel(mif_cfg, gp->regs + MIF_CFG);
2001 } else {
2002 #ifdef CONFIG_SPARC
2003 const char *p;
2005 p = of_get_property(gp->of_node, "shared-pins", NULL);
2006 if (p && !strcmp(p, "serdes"))
2007 gp->phy_type = phy_serdes;
2008 else
2009 #endif
2010 gp->phy_type = phy_serialink;
2012 if (gp->phy_type == phy_mii_mdio1 ||
2013 gp->phy_type == phy_mii_mdio0) {
2014 int i;
2016 for (i = 0; i < 32; i++) {
2017 gp->mii_phy_addr = i;
2018 if (phy_read(gp, MII_BMCR) != 0xffff)
2019 break;
2021 if (i == 32) {
2022 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2023 pr_err("RIO MII phy will not respond\n");
2024 return -1;
2026 gp->phy_type = phy_serdes;
2030 /* Fetch the FIFO configurations now too. */
2031 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2032 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2034 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2035 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2036 if (gp->tx_fifo_sz != (9 * 1024) ||
2037 gp->rx_fifo_sz != (20 * 1024)) {
2038 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2039 gp->tx_fifo_sz, gp->rx_fifo_sz);
2040 return -1;
2042 gp->swrst_base = 0;
2043 } else {
2044 if (gp->tx_fifo_sz != (2 * 1024) ||
2045 gp->rx_fifo_sz != (2 * 1024)) {
2046 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2047 gp->tx_fifo_sz, gp->rx_fifo_sz);
2048 return -1;
2050 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2054 return 0;
2057 static void gem_reinit_chip(struct gem *gp)
2059 /* Reset the chip */
2060 gem_reset(gp);
2062 /* Make sure ints are disabled */
2063 gem_disable_ints(gp);
2065 /* Allocate & setup ring buffers */
2066 gem_init_rings(gp);
2068 /* Configure pause thresholds */
2069 gem_init_pause_thresholds(gp);
2071 /* Init DMA & MAC engines */
2072 gem_init_dma(gp);
2073 gem_init_mac(gp);
2077 static void gem_stop_phy(struct gem *gp, int wol)
2079 u32 mifcfg;
2081 /* Let the chip settle down a bit, it seems that helps
2082 * for sleep mode on some models
2084 msleep(10);
2086 /* Make sure we aren't polling PHY status change. We
2087 * don't currently use that feature though
2089 mifcfg = readl(gp->regs + MIF_CFG);
2090 mifcfg &= ~MIF_CFG_POLL;
2091 writel(mifcfg, gp->regs + MIF_CFG);
2093 if (wol && gp->has_wol) {
2094 unsigned char *e = &gp->dev->dev_addr[0];
2095 u32 csr;
2097 /* Setup wake-on-lan for MAGIC packet */
2098 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2099 gp->regs + MAC_RXCFG);
2100 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2101 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2102 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2104 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2105 csr = WOL_WAKECSR_ENABLE;
2106 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2107 csr |= WOL_WAKECSR_MII;
2108 writel(csr, gp->regs + WOL_WAKECSR);
2109 } else {
2110 writel(0, gp->regs + MAC_RXCFG);
2111 (void)readl(gp->regs + MAC_RXCFG);
2112 /* Machine sleep will die in strange ways if we
2113 * dont wait a bit here, looks like the chip takes
2114 * some time to really shut down
2116 msleep(10);
2119 writel(0, gp->regs + MAC_TXCFG);
2120 writel(0, gp->regs + MAC_XIFCFG);
2121 writel(0, gp->regs + TXDMA_CFG);
2122 writel(0, gp->regs + RXDMA_CFG);
2124 if (!wol) {
2125 gem_reset(gp);
2126 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2127 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2129 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2130 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2132 /* According to Apple, we must set the MDIO pins to this begnign
2133 * state or we may 1) eat more current, 2) damage some PHYs
2135 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2136 writel(0, gp->regs + MIF_BBCLK);
2137 writel(0, gp->regs + MIF_BBDATA);
2138 writel(0, gp->regs + MIF_BBOENAB);
2139 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2140 (void) readl(gp->regs + MAC_XIFCFG);
2144 static int gem_do_start(struct net_device *dev)
2146 struct gem *gp = netdev_priv(dev);
2147 int rc;
2149 /* Enable the cell */
2150 gem_get_cell(gp);
2152 /* Make sure PCI access and bus master are enabled */
2153 rc = pci_enable_device(gp->pdev);
2154 if (rc) {
2155 netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2157 /* Put cell and forget it for now, it will be considered as
2158 * still asleep, a new sleep cycle may bring it back
2160 gem_put_cell(gp);
2161 return -ENXIO;
2163 pci_set_master(gp->pdev);
2165 /* Init & setup chip hardware */
2166 gem_reinit_chip(gp);
2168 /* An interrupt might come in handy */
2169 rc = request_irq(gp->pdev->irq, gem_interrupt,
2170 IRQF_SHARED, dev->name, (void *)dev);
2171 if (rc) {
2172 netdev_err(dev, "failed to request irq !\n");
2174 gem_reset(gp);
2175 gem_clean_rings(gp);
2176 gem_put_cell(gp);
2177 return rc;
2180 /* Mark us as attached again if we come from resume(), this has
2181 * no effect if we weren't detatched and needs to be done now.
2183 netif_device_attach(dev);
2185 /* Restart NAPI & queues */
2186 gem_netif_start(gp);
2188 /* Detect & init PHY, start autoneg etc... this will
2189 * eventually result in starting DMA operations when
2190 * the link is up
2192 gem_init_phy(gp);
2194 return 0;
2197 static void gem_do_stop(struct net_device *dev, int wol)
2199 struct gem *gp = netdev_priv(dev);
2201 /* Stop NAPI and stop tx queue */
2202 gem_netif_stop(gp);
2204 /* Make sure ints are disabled. We don't care about
2205 * synchronizing as NAPI is disabled, thus a stray
2206 * interrupt will do nothing bad (our irq handler
2207 * just schedules NAPI)
2209 gem_disable_ints(gp);
2211 /* Stop the link timer */
2212 del_timer_sync(&gp->link_timer);
2214 /* We cannot cancel the reset task while holding the
2215 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2216 * if we did. This is not an issue however as the reset
2217 * task is synchronized vs. us (rtnl_lock) and will do
2218 * nothing if the device is down or suspended. We do
2219 * still clear reset_task_pending to avoid a spurrious
2220 * reset later on in case we do resume before it gets
2221 * scheduled.
2223 gp->reset_task_pending = 0;
2225 /* If we are going to sleep with WOL */
2226 gem_stop_dma(gp);
2227 msleep(10);
2228 if (!wol)
2229 gem_reset(gp);
2230 msleep(10);
2232 /* Get rid of rings */
2233 gem_clean_rings(gp);
2235 /* No irq needed anymore */
2236 free_irq(gp->pdev->irq, (void *) dev);
2238 /* Shut the PHY down eventually and setup WOL */
2239 gem_stop_phy(gp, wol);
2241 /* Make sure bus master is disabled */
2242 pci_disable_device(gp->pdev);
2244 /* Cell not needed neither if no WOL */
2245 if (!wol)
2246 gem_put_cell(gp);
2249 static void gem_reset_task(struct work_struct *work)
2251 struct gem *gp = container_of(work, struct gem, reset_task);
2253 /* Lock out the network stack (essentially shield ourselves
2254 * against a racing open, close, control call, or suspend
2256 rtnl_lock();
2258 /* Skip the reset task if suspended or closed, or if it's
2259 * been cancelled by gem_do_stop (see comment there)
2261 if (!netif_device_present(gp->dev) ||
2262 !netif_running(gp->dev) ||
2263 !gp->reset_task_pending) {
2264 rtnl_unlock();
2265 return;
2268 /* Stop the link timer */
2269 del_timer_sync(&gp->link_timer);
2271 /* Stop NAPI and tx */
2272 gem_netif_stop(gp);
2274 /* Reset the chip & rings */
2275 gem_reinit_chip(gp);
2276 if (gp->lstate == link_up)
2277 gem_set_link_modes(gp);
2279 /* Restart NAPI and Tx */
2280 gem_netif_start(gp);
2282 /* We are back ! */
2283 gp->reset_task_pending = 0;
2285 /* If the link is not up, restart autoneg, else restart the
2286 * polling timer
2288 if (gp->lstate != link_up)
2289 gem_begin_auto_negotiation(gp, NULL);
2290 else
2291 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2293 rtnl_unlock();
2296 static int gem_open(struct net_device *dev)
2298 /* We allow open while suspended, we just do nothing,
2299 * the chip will be initialized in resume()
2301 if (netif_device_present(dev))
2302 return gem_do_start(dev);
2303 return 0;
2306 static int gem_close(struct net_device *dev)
2308 if (netif_device_present(dev))
2309 gem_do_stop(dev, 0);
2311 return 0;
2314 #ifdef CONFIG_PM
2315 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2317 struct net_device *dev = pci_get_drvdata(pdev);
2318 struct gem *gp = netdev_priv(dev);
2320 /* Lock the network stack first to avoid racing with open/close,
2321 * reset task and setting calls
2323 rtnl_lock();
2325 /* Not running, mark ourselves non-present, no need for
2326 * a lock here
2328 if (!netif_running(dev)) {
2329 netif_device_detach(dev);
2330 rtnl_unlock();
2331 return 0;
2333 netdev_info(dev, "suspending, WakeOnLan %s\n",
2334 (gp->wake_on_lan && netif_running(dev)) ?
2335 "enabled" : "disabled");
2337 /* Tell the network stack we're gone. gem_do_stop() below will
2338 * synchronize with TX, stop NAPI etc...
2340 netif_device_detach(dev);
2342 /* Switch off chip, remember WOL setting */
2343 gp->asleep_wol = !!gp->wake_on_lan;
2344 gem_do_stop(dev, gp->asleep_wol);
2346 /* Unlock the network stack */
2347 rtnl_unlock();
2349 return 0;
2352 static int gem_resume(struct pci_dev *pdev)
2354 struct net_device *dev = pci_get_drvdata(pdev);
2355 struct gem *gp = netdev_priv(dev);
2357 /* See locking comment in gem_suspend */
2358 rtnl_lock();
2360 /* Not running, mark ourselves present, no need for
2361 * a lock here
2363 if (!netif_running(dev)) {
2364 netif_device_attach(dev);
2365 rtnl_unlock();
2366 return 0;
2369 /* Restart chip. If that fails there isn't much we can do, we
2370 * leave things stopped.
2372 gem_do_start(dev);
2374 /* If we had WOL enabled, the cell clock was never turned off during
2375 * sleep, so we end up beeing unbalanced. Fix that here
2377 if (gp->asleep_wol)
2378 gem_put_cell(gp);
2380 /* Unlock the network stack */
2381 rtnl_unlock();
2383 return 0;
2385 #endif /* CONFIG_PM */
2387 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2389 struct gem *gp = netdev_priv(dev);
2391 /* I have seen this being called while the PM was in progress,
2392 * so we shield against this. Let's also not poke at registers
2393 * while the reset task is going on.
2395 * TODO: Move stats collection elsewhere (link timer ?) and
2396 * make this a nop to avoid all those synchro issues
2398 if (!netif_device_present(dev) || !netif_running(dev))
2399 goto bail;
2401 /* Better safe than sorry... */
2402 if (WARN_ON(!gp->cell_enabled))
2403 goto bail;
2405 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2406 writel(0, gp->regs + MAC_FCSERR);
2408 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2409 writel(0, gp->regs + MAC_AERR);
2411 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2412 writel(0, gp->regs + MAC_LERR);
2414 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2415 dev->stats.collisions +=
2416 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2417 writel(0, gp->regs + MAC_ECOLL);
2418 writel(0, gp->regs + MAC_LCOLL);
2419 bail:
2420 return &dev->stats;
2423 static int gem_set_mac_address(struct net_device *dev, void *addr)
2425 struct sockaddr *macaddr = (struct sockaddr *) addr;
2426 struct gem *gp = netdev_priv(dev);
2427 unsigned char *e = &dev->dev_addr[0];
2429 if (!is_valid_ether_addr(macaddr->sa_data))
2430 return -EADDRNOTAVAIL;
2432 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2434 /* We'll just catch it later when the device is up'd or resumed */
2435 if (!netif_running(dev) || !netif_device_present(dev))
2436 return 0;
2438 /* Better safe than sorry... */
2439 if (WARN_ON(!gp->cell_enabled))
2440 return 0;
2442 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2443 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2444 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2446 return 0;
2449 static void gem_set_multicast(struct net_device *dev)
2451 struct gem *gp = netdev_priv(dev);
2452 u32 rxcfg, rxcfg_new;
2453 int limit = 10000;
2455 if (!netif_running(dev) || !netif_device_present(dev))
2456 return;
2458 /* Better safe than sorry... */
2459 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2460 return;
2462 rxcfg = readl(gp->regs + MAC_RXCFG);
2463 rxcfg_new = gem_setup_multicast(gp);
2464 #ifdef STRIP_FCS
2465 rxcfg_new |= MAC_RXCFG_SFCS;
2466 #endif
2467 gp->mac_rx_cfg = rxcfg_new;
2469 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2470 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2471 if (!limit--)
2472 break;
2473 udelay(10);
2476 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2477 rxcfg |= rxcfg_new;
2479 writel(rxcfg, gp->regs + MAC_RXCFG);
2482 /* Jumbo-grams don't seem to work :-( */
2483 #define GEM_MIN_MTU 68
2484 #if 1
2485 #define GEM_MAX_MTU 1500
2486 #else
2487 #define GEM_MAX_MTU 9000
2488 #endif
2490 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2492 struct gem *gp = netdev_priv(dev);
2494 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2495 return -EINVAL;
2497 dev->mtu = new_mtu;
2499 /* We'll just catch it later when the device is up'd or resumed */
2500 if (!netif_running(dev) || !netif_device_present(dev))
2501 return 0;
2503 /* Better safe than sorry... */
2504 if (WARN_ON(!gp->cell_enabled))
2505 return 0;
2507 gem_netif_stop(gp);
2508 gem_reinit_chip(gp);
2509 if (gp->lstate == link_up)
2510 gem_set_link_modes(gp);
2511 gem_netif_start(gp);
2513 return 0;
2516 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2518 struct gem *gp = netdev_priv(dev);
2520 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2521 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2522 strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2525 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2527 struct gem *gp = netdev_priv(dev);
2529 if (gp->phy_type == phy_mii_mdio0 ||
2530 gp->phy_type == phy_mii_mdio1) {
2531 if (gp->phy_mii.def)
2532 cmd->supported = gp->phy_mii.def->features;
2533 else
2534 cmd->supported = (SUPPORTED_10baseT_Half |
2535 SUPPORTED_10baseT_Full);
2537 /* XXX hardcoded stuff for now */
2538 cmd->port = PORT_MII;
2539 cmd->transceiver = XCVR_EXTERNAL;
2540 cmd->phy_address = 0; /* XXX fixed PHYAD */
2542 /* Return current PHY settings */
2543 cmd->autoneg = gp->want_autoneg;
2544 ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
2545 cmd->duplex = gp->phy_mii.duplex;
2546 cmd->advertising = gp->phy_mii.advertising;
2548 /* If we started with a forced mode, we don't have a default
2549 * advertise set, we need to return something sensible so
2550 * userland can re-enable autoneg properly.
2552 if (cmd->advertising == 0)
2553 cmd->advertising = cmd->supported;
2554 } else { // XXX PCS ?
2555 cmd->supported =
2556 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2557 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2558 SUPPORTED_Autoneg);
2559 cmd->advertising = cmd->supported;
2560 ethtool_cmd_speed_set(cmd, 0);
2561 cmd->duplex = cmd->port = cmd->phy_address =
2562 cmd->transceiver = cmd->autoneg = 0;
2564 /* serdes means usually a Fibre connector, with most fixed */
2565 if (gp->phy_type == phy_serdes) {
2566 cmd->port = PORT_FIBRE;
2567 cmd->supported = (SUPPORTED_1000baseT_Half |
2568 SUPPORTED_1000baseT_Full |
2569 SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2570 SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2571 cmd->advertising = cmd->supported;
2572 cmd->transceiver = XCVR_INTERNAL;
2573 if (gp->lstate == link_up)
2574 ethtool_cmd_speed_set(cmd, SPEED_1000);
2575 cmd->duplex = DUPLEX_FULL;
2576 cmd->autoneg = 1;
2579 cmd->maxtxpkt = cmd->maxrxpkt = 0;
2581 return 0;
2584 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2586 struct gem *gp = netdev_priv(dev);
2587 u32 speed = ethtool_cmd_speed(cmd);
2589 /* Verify the settings we care about. */
2590 if (cmd->autoneg != AUTONEG_ENABLE &&
2591 cmd->autoneg != AUTONEG_DISABLE)
2592 return -EINVAL;
2594 if (cmd->autoneg == AUTONEG_ENABLE &&
2595 cmd->advertising == 0)
2596 return -EINVAL;
2598 if (cmd->autoneg == AUTONEG_DISABLE &&
2599 ((speed != SPEED_1000 &&
2600 speed != SPEED_100 &&
2601 speed != SPEED_10) ||
2602 (cmd->duplex != DUPLEX_HALF &&
2603 cmd->duplex != DUPLEX_FULL)))
2604 return -EINVAL;
2606 /* Apply settings and restart link process. */
2607 if (netif_device_present(gp->dev)) {
2608 del_timer_sync(&gp->link_timer);
2609 gem_begin_auto_negotiation(gp, cmd);
2612 return 0;
2615 static int gem_nway_reset(struct net_device *dev)
2617 struct gem *gp = netdev_priv(dev);
2619 if (!gp->want_autoneg)
2620 return -EINVAL;
2622 /* Restart link process */
2623 if (netif_device_present(gp->dev)) {
2624 del_timer_sync(&gp->link_timer);
2625 gem_begin_auto_negotiation(gp, NULL);
2628 return 0;
2631 static u32 gem_get_msglevel(struct net_device *dev)
2633 struct gem *gp = netdev_priv(dev);
2634 return gp->msg_enable;
2637 static void gem_set_msglevel(struct net_device *dev, u32 value)
2639 struct gem *gp = netdev_priv(dev);
2640 gp->msg_enable = value;
2644 /* Add more when I understand how to program the chip */
2645 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2647 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2649 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2651 struct gem *gp = netdev_priv(dev);
2653 /* Add more when I understand how to program the chip */
2654 if (gp->has_wol) {
2655 wol->supported = WOL_SUPPORTED_MASK;
2656 wol->wolopts = gp->wake_on_lan;
2657 } else {
2658 wol->supported = 0;
2659 wol->wolopts = 0;
2663 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2665 struct gem *gp = netdev_priv(dev);
2667 if (!gp->has_wol)
2668 return -EOPNOTSUPP;
2669 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2670 return 0;
2673 static const struct ethtool_ops gem_ethtool_ops = {
2674 .get_drvinfo = gem_get_drvinfo,
2675 .get_link = ethtool_op_get_link,
2676 .get_settings = gem_get_settings,
2677 .set_settings = gem_set_settings,
2678 .nway_reset = gem_nway_reset,
2679 .get_msglevel = gem_get_msglevel,
2680 .set_msglevel = gem_set_msglevel,
2681 .get_wol = gem_get_wol,
2682 .set_wol = gem_set_wol,
2685 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2687 struct gem *gp = netdev_priv(dev);
2688 struct mii_ioctl_data *data = if_mii(ifr);
2689 int rc = -EOPNOTSUPP;
2691 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2692 * netif_device_present() is true and holds rtnl_lock for us
2693 * so we have nothing to worry about
2696 switch (cmd) {
2697 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2698 data->phy_id = gp->mii_phy_addr;
2699 /* Fallthrough... */
2701 case SIOCGMIIREG: /* Read MII PHY register. */
2702 data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2703 data->reg_num & 0x1f);
2704 rc = 0;
2705 break;
2707 case SIOCSMIIREG: /* Write MII PHY register. */
2708 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2709 data->val_in);
2710 rc = 0;
2711 break;
2713 return rc;
2716 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2717 /* Fetch MAC address from vital product data of PCI ROM. */
2718 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2720 int this_offset;
2722 for (this_offset = 0x20; this_offset < len; this_offset++) {
2723 void __iomem *p = rom_base + this_offset;
2724 int i;
2726 if (readb(p + 0) != 0x90 ||
2727 readb(p + 1) != 0x00 ||
2728 readb(p + 2) != 0x09 ||
2729 readb(p + 3) != 0x4e ||
2730 readb(p + 4) != 0x41 ||
2731 readb(p + 5) != 0x06)
2732 continue;
2734 this_offset += 6;
2735 p += 6;
2737 for (i = 0; i < 6; i++)
2738 dev_addr[i] = readb(p + i);
2739 return 1;
2741 return 0;
2744 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2746 size_t size;
2747 void __iomem *p = pci_map_rom(pdev, &size);
2749 if (p) {
2750 int found;
2752 found = readb(p) == 0x55 &&
2753 readb(p + 1) == 0xaa &&
2754 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2755 pci_unmap_rom(pdev, p);
2756 if (found)
2757 return;
2760 /* Sun MAC prefix then 3 random bytes. */
2761 dev_addr[0] = 0x08;
2762 dev_addr[1] = 0x00;
2763 dev_addr[2] = 0x20;
2764 get_random_bytes(dev_addr + 3, 3);
2766 #endif /* not Sparc and not PPC */
2768 static int __devinit gem_get_device_address(struct gem *gp)
2770 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2771 struct net_device *dev = gp->dev;
2772 const unsigned char *addr;
2774 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2775 if (addr == NULL) {
2776 #ifdef CONFIG_SPARC
2777 addr = idprom->id_ethaddr;
2778 #else
2779 printk("\n");
2780 pr_err("%s: can't get mac-address\n", dev->name);
2781 return -1;
2782 #endif
2784 memcpy(dev->dev_addr, addr, 6);
2785 #else
2786 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2787 #endif
2788 return 0;
2791 static void gem_remove_one(struct pci_dev *pdev)
2793 struct net_device *dev = pci_get_drvdata(pdev);
2795 if (dev) {
2796 struct gem *gp = netdev_priv(dev);
2798 unregister_netdev(dev);
2800 /* Ensure reset task is truely gone */
2801 cancel_work_sync(&gp->reset_task);
2803 /* Free resources */
2804 pci_free_consistent(pdev,
2805 sizeof(struct gem_init_block),
2806 gp->init_block,
2807 gp->gblock_dvma);
2808 iounmap(gp->regs);
2809 pci_release_regions(pdev);
2810 free_netdev(dev);
2812 pci_set_drvdata(pdev, NULL);
2816 static const struct net_device_ops gem_netdev_ops = {
2817 .ndo_open = gem_open,
2818 .ndo_stop = gem_close,
2819 .ndo_start_xmit = gem_start_xmit,
2820 .ndo_get_stats = gem_get_stats,
2821 .ndo_set_rx_mode = gem_set_multicast,
2822 .ndo_do_ioctl = gem_ioctl,
2823 .ndo_tx_timeout = gem_tx_timeout,
2824 .ndo_change_mtu = gem_change_mtu,
2825 .ndo_validate_addr = eth_validate_addr,
2826 .ndo_set_mac_address = gem_set_mac_address,
2827 #ifdef CONFIG_NET_POLL_CONTROLLER
2828 .ndo_poll_controller = gem_poll_controller,
2829 #endif
2832 static int __devinit gem_init_one(struct pci_dev *pdev,
2833 const struct pci_device_id *ent)
2835 unsigned long gemreg_base, gemreg_len;
2836 struct net_device *dev;
2837 struct gem *gp;
2838 int err, pci_using_dac;
2840 printk_once(KERN_INFO "%s", version);
2842 /* Apple gmac note: during probe, the chip is powered up by
2843 * the arch code to allow the code below to work (and to let
2844 * the chip be probed on the config space. It won't stay powered
2845 * up until the interface is brought up however, so we can't rely
2846 * on register configuration done at this point.
2848 err = pci_enable_device(pdev);
2849 if (err) {
2850 pr_err("Cannot enable MMIO operation, aborting\n");
2851 return err;
2853 pci_set_master(pdev);
2855 /* Configure DMA attributes. */
2857 /* All of the GEM documentation states that 64-bit DMA addressing
2858 * is fully supported and should work just fine. However the
2859 * front end for RIO based GEMs is different and only supports
2860 * 32-bit addressing.
2862 * For now we assume the various PPC GEMs are 32-bit only as well.
2864 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2865 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2866 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2867 pci_using_dac = 1;
2868 } else {
2869 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2870 if (err) {
2871 pr_err("No usable DMA configuration, aborting\n");
2872 goto err_disable_device;
2874 pci_using_dac = 0;
2877 gemreg_base = pci_resource_start(pdev, 0);
2878 gemreg_len = pci_resource_len(pdev, 0);
2880 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2881 pr_err("Cannot find proper PCI device base address, aborting\n");
2882 err = -ENODEV;
2883 goto err_disable_device;
2886 dev = alloc_etherdev(sizeof(*gp));
2887 if (!dev) {
2888 pr_err("Etherdev alloc failed, aborting\n");
2889 err = -ENOMEM;
2890 goto err_disable_device;
2892 SET_NETDEV_DEV(dev, &pdev->dev);
2894 gp = netdev_priv(dev);
2896 err = pci_request_regions(pdev, DRV_NAME);
2897 if (err) {
2898 pr_err("Cannot obtain PCI resources, aborting\n");
2899 goto err_out_free_netdev;
2902 gp->pdev = pdev;
2903 dev->base_addr = (long) pdev;
2904 gp->dev = dev;
2906 gp->msg_enable = DEFAULT_MSG;
2908 init_timer(&gp->link_timer);
2909 gp->link_timer.function = gem_link_timer;
2910 gp->link_timer.data = (unsigned long) gp;
2912 INIT_WORK(&gp->reset_task, gem_reset_task);
2914 gp->lstate = link_down;
2915 gp->timer_ticks = 0;
2916 netif_carrier_off(dev);
2918 gp->regs = ioremap(gemreg_base, gemreg_len);
2919 if (!gp->regs) {
2920 pr_err("Cannot map device registers, aborting\n");
2921 err = -EIO;
2922 goto err_out_free_res;
2925 /* On Apple, we want a reference to the Open Firmware device-tree
2926 * node. We use it for clock control.
2928 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2929 gp->of_node = pci_device_to_OF_node(pdev);
2930 #endif
2932 /* Only Apple version supports WOL afaik */
2933 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2934 gp->has_wol = 1;
2936 /* Make sure cell is enabled */
2937 gem_get_cell(gp);
2939 /* Make sure everything is stopped and in init state */
2940 gem_reset(gp);
2942 /* Fill up the mii_phy structure (even if we won't use it) */
2943 gp->phy_mii.dev = dev;
2944 gp->phy_mii.mdio_read = _phy_read;
2945 gp->phy_mii.mdio_write = _phy_write;
2946 #ifdef CONFIG_PPC_PMAC
2947 gp->phy_mii.platform_data = gp->of_node;
2948 #endif
2949 /* By default, we start with autoneg */
2950 gp->want_autoneg = 1;
2952 /* Check fifo sizes, PHY type, etc... */
2953 if (gem_check_invariants(gp)) {
2954 err = -ENODEV;
2955 goto err_out_iounmap;
2958 /* It is guaranteed that the returned buffer will be at least
2959 * PAGE_SIZE aligned.
2961 gp->init_block = (struct gem_init_block *)
2962 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2963 &gp->gblock_dvma);
2964 if (!gp->init_block) {
2965 pr_err("Cannot allocate init block, aborting\n");
2966 err = -ENOMEM;
2967 goto err_out_iounmap;
2970 if (gem_get_device_address(gp))
2971 goto err_out_free_consistent;
2973 dev->netdev_ops = &gem_netdev_ops;
2974 netif_napi_add(dev, &gp->napi, gem_poll, 64);
2975 dev->ethtool_ops = &gem_ethtool_ops;
2976 dev->watchdog_timeo = 5 * HZ;
2977 dev->irq = pdev->irq;
2978 dev->dma = 0;
2980 /* Set that now, in case PM kicks in now */
2981 pci_set_drvdata(pdev, dev);
2983 /* We can do scatter/gather and HW checksum */
2984 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2985 dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2986 if (pci_using_dac)
2987 dev->features |= NETIF_F_HIGHDMA;
2989 /* Register with kernel */
2990 if (register_netdev(dev)) {
2991 pr_err("Cannot register net device, aborting\n");
2992 err = -ENOMEM;
2993 goto err_out_free_consistent;
2996 /* Undo the get_cell with appropriate locking (we could use
2997 * ndo_init/uninit but that would be even more clumsy imho)
2999 rtnl_lock();
3000 gem_put_cell(gp);
3001 rtnl_unlock();
3003 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3004 dev->dev_addr);
3005 return 0;
3007 err_out_free_consistent:
3008 gem_remove_one(pdev);
3009 err_out_iounmap:
3010 gem_put_cell(gp);
3011 iounmap(gp->regs);
3013 err_out_free_res:
3014 pci_release_regions(pdev);
3016 err_out_free_netdev:
3017 free_netdev(dev);
3018 err_disable_device:
3019 pci_disable_device(pdev);
3020 return err;
3025 static struct pci_driver gem_driver = {
3026 .name = GEM_MODULE_NAME,
3027 .id_table = gem_pci_tbl,
3028 .probe = gem_init_one,
3029 .remove = gem_remove_one,
3030 #ifdef CONFIG_PM
3031 .suspend = gem_suspend,
3032 .resume = gem_resume,
3033 #endif /* CONFIG_PM */
3036 static int __init gem_init(void)
3038 return pci_register_driver(&gem_driver);
3041 static void __exit gem_cleanup(void)
3043 pci_unregister_driver(&gem_driver);
3046 module_init(gem_init);
3047 module_exit(gem_cleanup);