2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/hardirq.h>
49 #include <linux/netdevice.h>
50 #include <linux/cache.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
53 #include <linux/slab.h>
54 #include <linux/etherdevice.h>
55 #include <linux/nl80211.h>
57 #include <net/ieee80211_radiotap.h>
59 #include <asm/unaligned.h>
68 #define CREATE_TRACE_POINTS
71 bool ath5k_modparam_nohwcrypt
;
72 module_param_named(nohwcrypt
, ath5k_modparam_nohwcrypt
, bool, S_IRUGO
);
73 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
75 static bool modparam_all_channels
;
76 module_param_named(all_channels
, modparam_all_channels
, bool, S_IRUGO
);
77 MODULE_PARM_DESC(all_channels
, "Expose all channels the device can use.");
79 static bool modparam_fastchanswitch
;
80 module_param_named(fastchanswitch
, modparam_fastchanswitch
, bool, S_IRUGO
);
81 MODULE_PARM_DESC(fastchanswitch
, "Enable fast channel switching for AR2413/AR5413 radios.");
83 static int ath5k_modparam_no_hw_rfkill_switch
;
84 module_param_named(no_hw_rfkill_switch
, ath5k_modparam_no_hw_rfkill_switch
,
86 MODULE_PARM_DESC(no_hw_rfkill_switch
, "Ignore the GPIO RFKill switch state");
90 MODULE_AUTHOR("Jiri Slaby");
91 MODULE_AUTHOR("Nick Kossifidis");
92 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
94 MODULE_LICENSE("Dual BSD/GPL");
96 static int ath5k_init(struct ieee80211_hw
*hw
);
97 static int ath5k_reset(struct ath5k_hw
*ah
, struct ieee80211_channel
*chan
,
101 static const struct ath5k_srev_name srev_names
[] = {
102 #ifdef CONFIG_ATHEROS_AR231X
103 { "5312", AR5K_VERSION_MAC
, AR5K_SREV_AR5312_R2
},
104 { "5312", AR5K_VERSION_MAC
, AR5K_SREV_AR5312_R7
},
105 { "2313", AR5K_VERSION_MAC
, AR5K_SREV_AR2313_R8
},
106 { "2315", AR5K_VERSION_MAC
, AR5K_SREV_AR2315_R6
},
107 { "2315", AR5K_VERSION_MAC
, AR5K_SREV_AR2315_R7
},
108 { "2317", AR5K_VERSION_MAC
, AR5K_SREV_AR2317_R1
},
109 { "2317", AR5K_VERSION_MAC
, AR5K_SREV_AR2317_R2
},
111 { "5210", AR5K_VERSION_MAC
, AR5K_SREV_AR5210
},
112 { "5311", AR5K_VERSION_MAC
, AR5K_SREV_AR5311
},
113 { "5311A", AR5K_VERSION_MAC
, AR5K_SREV_AR5311A
},
114 { "5311B", AR5K_VERSION_MAC
, AR5K_SREV_AR5311B
},
115 { "5211", AR5K_VERSION_MAC
, AR5K_SREV_AR5211
},
116 { "5212", AR5K_VERSION_MAC
, AR5K_SREV_AR5212
},
117 { "5213", AR5K_VERSION_MAC
, AR5K_SREV_AR5213
},
118 { "5213A", AR5K_VERSION_MAC
, AR5K_SREV_AR5213A
},
119 { "2413", AR5K_VERSION_MAC
, AR5K_SREV_AR2413
},
120 { "2414", AR5K_VERSION_MAC
, AR5K_SREV_AR2414
},
121 { "5424", AR5K_VERSION_MAC
, AR5K_SREV_AR5424
},
122 { "5413", AR5K_VERSION_MAC
, AR5K_SREV_AR5413
},
123 { "5414", AR5K_VERSION_MAC
, AR5K_SREV_AR5414
},
124 { "2415", AR5K_VERSION_MAC
, AR5K_SREV_AR2415
},
125 { "5416", AR5K_VERSION_MAC
, AR5K_SREV_AR5416
},
126 { "5418", AR5K_VERSION_MAC
, AR5K_SREV_AR5418
},
127 { "2425", AR5K_VERSION_MAC
, AR5K_SREV_AR2425
},
128 { "2417", AR5K_VERSION_MAC
, AR5K_SREV_AR2417
},
130 { "xxxxx", AR5K_VERSION_MAC
, AR5K_SREV_UNKNOWN
},
131 { "5110", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5110
},
132 { "5111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111
},
133 { "5111A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5111A
},
134 { "2111", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2111
},
135 { "5112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112
},
136 { "5112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112A
},
137 { "5112B", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5112B
},
138 { "2112", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112
},
139 { "2112A", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112A
},
140 { "2112B", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2112B
},
141 { "2413", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2413
},
142 { "5413", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5413
},
143 { "5424", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5424
},
144 { "5133", AR5K_VERSION_RAD
, AR5K_SREV_RAD_5133
},
145 #ifdef CONFIG_ATHEROS_AR231X
146 { "2316", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2316
},
147 { "2317", AR5K_VERSION_RAD
, AR5K_SREV_RAD_2317
},
149 { "xxxxx", AR5K_VERSION_RAD
, AR5K_SREV_UNKNOWN
},
152 static const struct ieee80211_rate ath5k_rates
[] = {
154 .hw_value
= ATH5K_RATE_CODE_1M
, },
156 .hw_value
= ATH5K_RATE_CODE_2M
,
157 .hw_value_short
= ATH5K_RATE_CODE_2M
| AR5K_SET_SHORT_PREAMBLE
,
158 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
160 .hw_value
= ATH5K_RATE_CODE_5_5M
,
161 .hw_value_short
= ATH5K_RATE_CODE_5_5M
| AR5K_SET_SHORT_PREAMBLE
,
162 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
164 .hw_value
= ATH5K_RATE_CODE_11M
,
165 .hw_value_short
= ATH5K_RATE_CODE_11M
| AR5K_SET_SHORT_PREAMBLE
,
166 .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
168 .hw_value
= ATH5K_RATE_CODE_6M
,
171 .hw_value
= ATH5K_RATE_CODE_9M
,
174 .hw_value
= ATH5K_RATE_CODE_12M
,
177 .hw_value
= ATH5K_RATE_CODE_18M
,
180 .hw_value
= ATH5K_RATE_CODE_24M
,
183 .hw_value
= ATH5K_RATE_CODE_36M
,
186 .hw_value
= ATH5K_RATE_CODE_48M
,
189 .hw_value
= ATH5K_RATE_CODE_54M
,
193 static inline u64
ath5k_extend_tsf(struct ath5k_hw
*ah
, u32 rstamp
)
195 u64 tsf
= ath5k_hw_get_tsf64(ah
);
197 if ((tsf
& 0x7fff) < rstamp
)
200 return (tsf
& ~0x7fff) | rstamp
;
204 ath5k_chip_name(enum ath5k_srev_type type
, u_int16_t val
)
206 const char *name
= "xxxxx";
209 for (i
= 0; i
< ARRAY_SIZE(srev_names
); i
++) {
210 if (srev_names
[i
].sr_type
!= type
)
213 if ((val
& 0xf0) == srev_names
[i
].sr_val
)
214 name
= srev_names
[i
].sr_name
;
216 if ((val
& 0xff) == srev_names
[i
].sr_val
) {
217 name
= srev_names
[i
].sr_name
;
224 static unsigned int ath5k_ioread32(void *hw_priv
, u32 reg_offset
)
226 struct ath5k_hw
*ah
= (struct ath5k_hw
*) hw_priv
;
227 return ath5k_hw_reg_read(ah
, reg_offset
);
230 static void ath5k_iowrite32(void *hw_priv
, u32 val
, u32 reg_offset
)
232 struct ath5k_hw
*ah
= (struct ath5k_hw
*) hw_priv
;
233 ath5k_hw_reg_write(ah
, val
, reg_offset
);
236 static const struct ath_ops ath5k_common_ops
= {
237 .read
= ath5k_ioread32
,
238 .write
= ath5k_iowrite32
,
241 /***********************\
242 * Driver Initialization *
243 \***********************/
245 static int ath5k_reg_notifier(struct wiphy
*wiphy
, struct regulatory_request
*request
)
247 struct ieee80211_hw
*hw
= wiphy_to_ieee80211_hw(wiphy
);
248 struct ath5k_hw
*ah
= hw
->priv
;
249 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(ah
);
251 return ath_reg_notifier_apply(wiphy
, request
, regulatory
);
254 /********************\
255 * Channel/mode setup *
256 \********************/
259 * Returns true for the channel numbers used without all_channels modparam.
261 static bool ath5k_is_standard_channel(short chan
, enum ieee80211_band band
)
263 if (band
== IEEE80211_BAND_2GHZ
&& chan
<= 14)
266 return /* UNII 1,2 */
267 (((chan
& 3) == 0 && chan
>= 36 && chan
<= 64) ||
269 ((chan
& 3) == 0 && chan
>= 100 && chan
<= 140) ||
271 ((chan
& 3) == 1 && chan
>= 149 && chan
<= 165) ||
272 /* 802.11j 5.030-5.080 GHz (20MHz) */
273 (chan
== 8 || chan
== 12 || chan
== 16) ||
274 /* 802.11j 4.9GHz (20MHz) */
275 (chan
== 184 || chan
== 188 || chan
== 192 || chan
== 196));
279 ath5k_setup_channels(struct ath5k_hw
*ah
, struct ieee80211_channel
*channels
,
280 unsigned int mode
, unsigned int max
)
282 unsigned int count
, size
, freq
, ch
;
283 enum ieee80211_band band
;
287 /* 1..220, but 2GHz frequencies are filtered by check_channel */
289 band
= IEEE80211_BAND_5GHZ
;
294 band
= IEEE80211_BAND_2GHZ
;
297 ATH5K_WARN(ah
, "bad mode, not copying channels\n");
302 for (ch
= 1; ch
<= size
&& count
< max
; ch
++) {
303 freq
= ieee80211_channel_to_frequency(ch
, band
);
305 if (freq
== 0) /* mapping failed - not a standard channel */
308 /* Write channel info, needed for ath5k_channel_ok() */
309 channels
[count
].center_freq
= freq
;
310 channels
[count
].band
= band
;
311 channels
[count
].hw_value
= mode
;
313 /* Check if channel is supported by the chipset */
314 if (!ath5k_channel_ok(ah
, &channels
[count
]))
317 if (!modparam_all_channels
&&
318 !ath5k_is_standard_channel(ch
, band
))
328 ath5k_setup_rate_idx(struct ath5k_hw
*ah
, struct ieee80211_supported_band
*b
)
332 for (i
= 0; i
< AR5K_MAX_RATES
; i
++)
333 ah
->rate_idx
[b
->band
][i
] = -1;
335 for (i
= 0; i
< b
->n_bitrates
; i
++) {
336 ah
->rate_idx
[b
->band
][b
->bitrates
[i
].hw_value
] = i
;
337 if (b
->bitrates
[i
].hw_value_short
)
338 ah
->rate_idx
[b
->band
][b
->bitrates
[i
].hw_value_short
] = i
;
343 ath5k_setup_bands(struct ieee80211_hw
*hw
)
345 struct ath5k_hw
*ah
= hw
->priv
;
346 struct ieee80211_supported_band
*sband
;
347 int max_c
, count_c
= 0;
350 BUILD_BUG_ON(ARRAY_SIZE(ah
->sbands
) < IEEE80211_NUM_BANDS
);
351 max_c
= ARRAY_SIZE(ah
->channels
);
354 sband
= &ah
->sbands
[IEEE80211_BAND_2GHZ
];
355 sband
->band
= IEEE80211_BAND_2GHZ
;
356 sband
->bitrates
= &ah
->rates
[IEEE80211_BAND_2GHZ
][0];
358 if (test_bit(AR5K_MODE_11G
, ah
->ah_capabilities
.cap_mode
)) {
360 memcpy(sband
->bitrates
, &ath5k_rates
[0],
361 sizeof(struct ieee80211_rate
) * 12);
362 sband
->n_bitrates
= 12;
364 sband
->channels
= ah
->channels
;
365 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
366 AR5K_MODE_11G
, max_c
);
368 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = sband
;
369 count_c
= sband
->n_channels
;
371 } else if (test_bit(AR5K_MODE_11B
, ah
->ah_capabilities
.cap_mode
)) {
373 memcpy(sband
->bitrates
, &ath5k_rates
[0],
374 sizeof(struct ieee80211_rate
) * 4);
375 sband
->n_bitrates
= 4;
377 /* 5211 only supports B rates and uses 4bit rate codes
378 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
381 if (ah
->ah_version
== AR5K_AR5211
) {
382 for (i
= 0; i
< 4; i
++) {
383 sband
->bitrates
[i
].hw_value
=
384 sband
->bitrates
[i
].hw_value
& 0xF;
385 sband
->bitrates
[i
].hw_value_short
=
386 sband
->bitrates
[i
].hw_value_short
& 0xF;
390 sband
->channels
= ah
->channels
;
391 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
392 AR5K_MODE_11B
, max_c
);
394 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = sband
;
395 count_c
= sband
->n_channels
;
398 ath5k_setup_rate_idx(ah
, sband
);
400 /* 5GHz band, A mode */
401 if (test_bit(AR5K_MODE_11A
, ah
->ah_capabilities
.cap_mode
)) {
402 sband
= &ah
->sbands
[IEEE80211_BAND_5GHZ
];
403 sband
->band
= IEEE80211_BAND_5GHZ
;
404 sband
->bitrates
= &ah
->rates
[IEEE80211_BAND_5GHZ
][0];
406 memcpy(sband
->bitrates
, &ath5k_rates
[4],
407 sizeof(struct ieee80211_rate
) * 8);
408 sband
->n_bitrates
= 8;
410 sband
->channels
= &ah
->channels
[count_c
];
411 sband
->n_channels
= ath5k_setup_channels(ah
, sband
->channels
,
412 AR5K_MODE_11A
, max_c
);
414 hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] = sband
;
416 ath5k_setup_rate_idx(ah
, sband
);
418 ath5k_debug_dump_bands(ah
);
424 * Set/change channels. We always reset the chip.
425 * To accomplish this we must first cleanup any pending DMA,
426 * then restart stuff after a la ath5k_init.
428 * Called with ah->lock.
431 ath5k_chan_set(struct ath5k_hw
*ah
, struct ieee80211_channel
*chan
)
433 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
434 "channel set, resetting (%u -> %u MHz)\n",
435 ah
->curchan
->center_freq
, chan
->center_freq
);
438 * To switch channels clear any pending DMA operations;
439 * wait long enough for the RX fifo to drain, reset the
440 * hardware at the new frequency, and then re-enable
441 * the relevant bits of the h/w.
443 return ath5k_reset(ah
, chan
, true);
446 void ath5k_vif_iter(void *data
, u8
*mac
, struct ieee80211_vif
*vif
)
448 struct ath5k_vif_iter_data
*iter_data
= data
;
450 struct ath5k_vif
*avf
= (void *)vif
->drv_priv
;
452 if (iter_data
->hw_macaddr
)
453 for (i
= 0; i
< ETH_ALEN
; i
++)
454 iter_data
->mask
[i
] &=
455 ~(iter_data
->hw_macaddr
[i
] ^ mac
[i
]);
457 if (!iter_data
->found_active
) {
458 iter_data
->found_active
= true;
459 memcpy(iter_data
->active_mac
, mac
, ETH_ALEN
);
462 if (iter_data
->need_set_hw_addr
&& iter_data
->hw_macaddr
)
463 if (compare_ether_addr(iter_data
->hw_macaddr
, mac
) == 0)
464 iter_data
->need_set_hw_addr
= false;
466 if (!iter_data
->any_assoc
) {
468 iter_data
->any_assoc
= true;
471 /* Calculate combined mode - when APs are active, operate in AP mode.
472 * Otherwise use the mode of the new interface. This can currently
473 * only deal with combinations of APs and STAs. Only one ad-hoc
474 * interfaces is allowed.
476 if (avf
->opmode
== NL80211_IFTYPE_AP
)
477 iter_data
->opmode
= NL80211_IFTYPE_AP
;
479 if (avf
->opmode
== NL80211_IFTYPE_STATION
)
481 if (iter_data
->opmode
== NL80211_IFTYPE_UNSPECIFIED
)
482 iter_data
->opmode
= avf
->opmode
;
487 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw
*ah
,
488 struct ieee80211_vif
*vif
)
490 struct ath_common
*common
= ath5k_hw_common(ah
);
491 struct ath5k_vif_iter_data iter_data
;
495 * Use the hardware MAC address as reference, the hardware uses it
496 * together with the BSSID mask when matching addresses.
498 iter_data
.hw_macaddr
= common
->macaddr
;
499 memset(&iter_data
.mask
, 0xff, ETH_ALEN
);
500 iter_data
.found_active
= false;
501 iter_data
.need_set_hw_addr
= true;
502 iter_data
.opmode
= NL80211_IFTYPE_UNSPECIFIED
;
503 iter_data
.n_stas
= 0;
506 ath5k_vif_iter(&iter_data
, vif
->addr
, vif
);
508 /* Get list of all active MAC addresses */
509 ieee80211_iterate_active_interfaces_atomic(ah
->hw
, ath5k_vif_iter
,
511 memcpy(ah
->bssidmask
, iter_data
.mask
, ETH_ALEN
);
513 ah
->opmode
= iter_data
.opmode
;
514 if (ah
->opmode
== NL80211_IFTYPE_UNSPECIFIED
)
515 /* Nothing active, default to station mode */
516 ah
->opmode
= NL80211_IFTYPE_STATION
;
518 ath5k_hw_set_opmode(ah
, ah
->opmode
);
519 ATH5K_DBG(ah
, ATH5K_DEBUG_MODE
, "mode setup opmode %d (%s)\n",
520 ah
->opmode
, ath_opmode_to_string(ah
->opmode
));
522 if (iter_data
.need_set_hw_addr
&& iter_data
.found_active
)
523 ath5k_hw_set_lladdr(ah
, iter_data
.active_mac
);
525 if (ath5k_hw_hasbssidmask(ah
))
526 ath5k_hw_set_bssid_mask(ah
, ah
->bssidmask
);
528 /* Set up RX Filter */
529 if (iter_data
.n_stas
> 1) {
530 /* If you have multiple STA interfaces connected to
531 * different APs, ARPs are not received (most of the time?)
532 * Enabling PROMISC appears to fix that problem.
534 ah
->filter_flags
|= AR5K_RX_FILTER_PROM
;
537 rfilt
= ah
->filter_flags
;
538 ath5k_hw_set_rx_filter(ah
, rfilt
);
539 ATH5K_DBG(ah
, ATH5K_DEBUG_MODE
, "RX filter 0x%x\n", rfilt
);
543 ath5k_hw_to_driver_rix(struct ath5k_hw
*ah
, int hw_rix
)
547 /* return base rate on errors */
548 if (WARN(hw_rix
< 0 || hw_rix
>= AR5K_MAX_RATES
,
549 "hw_rix out of bounds: %x\n", hw_rix
))
552 rix
= ah
->rate_idx
[ah
->curchan
->band
][hw_rix
];
553 if (WARN(rix
< 0, "invalid hw_rix: %x\n", hw_rix
))
564 struct sk_buff
*ath5k_rx_skb_alloc(struct ath5k_hw
*ah
, dma_addr_t
*skb_addr
)
566 struct ath_common
*common
= ath5k_hw_common(ah
);
570 * Allocate buffer with headroom_needed space for the
571 * fake physical layer header at the start.
573 skb
= ath_rxbuf_alloc(common
,
578 ATH5K_ERR(ah
, "can't alloc skbuff of size %u\n",
583 *skb_addr
= dma_map_single(ah
->dev
,
584 skb
->data
, common
->rx_bufsize
,
587 if (unlikely(dma_mapping_error(ah
->dev
, *skb_addr
))) {
588 ATH5K_ERR(ah
, "%s: DMA mapping failed\n", __func__
);
596 ath5k_rxbuf_setup(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
598 struct sk_buff
*skb
= bf
->skb
;
599 struct ath5k_desc
*ds
;
603 skb
= ath5k_rx_skb_alloc(ah
, &bf
->skbaddr
);
610 * Setup descriptors. For receive we always terminate
611 * the descriptor list with a self-linked entry so we'll
612 * not get overrun under high load (as can happen with a
613 * 5212 when ANI processing enables PHY error frames).
615 * To ensure the last descriptor is self-linked we create
616 * each descriptor as self-linked and add it to the end. As
617 * each additional descriptor is added the previous self-linked
618 * entry is "fixed" naturally. This should be safe even
619 * if DMA is happening. When processing RX interrupts we
620 * never remove/process the last, self-linked, entry on the
621 * descriptor list. This ensures the hardware always has
622 * someplace to write a new frame.
625 ds
->ds_link
= bf
->daddr
; /* link to self */
626 ds
->ds_data
= bf
->skbaddr
;
627 ret
= ath5k_hw_setup_rx_desc(ah
, ds
, ah
->common
.rx_bufsize
, 0);
629 ATH5K_ERR(ah
, "%s: could not setup RX desc\n", __func__
);
633 if (ah
->rxlink
!= NULL
)
634 *ah
->rxlink
= bf
->daddr
;
635 ah
->rxlink
= &ds
->ds_link
;
639 static enum ath5k_pkt_type
get_hw_packet_type(struct sk_buff
*skb
)
641 struct ieee80211_hdr
*hdr
;
642 enum ath5k_pkt_type htype
;
645 hdr
= (struct ieee80211_hdr
*)skb
->data
;
646 fc
= hdr
->frame_control
;
648 if (ieee80211_is_beacon(fc
))
649 htype
= AR5K_PKT_TYPE_BEACON
;
650 else if (ieee80211_is_probe_resp(fc
))
651 htype
= AR5K_PKT_TYPE_PROBE_RESP
;
652 else if (ieee80211_is_atim(fc
))
653 htype
= AR5K_PKT_TYPE_ATIM
;
654 else if (ieee80211_is_pspoll(fc
))
655 htype
= AR5K_PKT_TYPE_PSPOLL
;
657 htype
= AR5K_PKT_TYPE_NORMAL
;
663 ath5k_txbuf_setup(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
,
664 struct ath5k_txq
*txq
, int padsize
)
666 struct ath5k_desc
*ds
= bf
->desc
;
667 struct sk_buff
*skb
= bf
->skb
;
668 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
669 unsigned int pktlen
, flags
, keyidx
= AR5K_TXKEYIX_INVALID
;
670 struct ieee80211_rate
*rate
;
671 unsigned int mrr_rate
[3], mrr_tries
[3];
678 flags
= AR5K_TXDESC_INTREQ
| AR5K_TXDESC_CLRDMASK
;
681 bf
->skbaddr
= dma_map_single(ah
->dev
, skb
->data
, skb
->len
,
684 rate
= ieee80211_get_tx_rate(ah
->hw
, info
);
690 if (info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
691 flags
|= AR5K_TXDESC_NOACK
;
693 rc_flags
= info
->control
.rates
[0].flags
;
694 hw_rate
= (rc_flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
) ?
695 rate
->hw_value_short
: rate
->hw_value
;
699 /* FIXME: If we are in g mode and rate is a CCK rate
700 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
701 * from tx power (value is in dB units already) */
702 if (info
->control
.hw_key
) {
703 keyidx
= info
->control
.hw_key
->hw_key_idx
;
704 pktlen
+= info
->control
.hw_key
->icv_len
;
706 if (rc_flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
707 flags
|= AR5K_TXDESC_RTSENA
;
708 cts_rate
= ieee80211_get_rts_cts_rate(ah
->hw
, info
)->hw_value
;
709 duration
= le16_to_cpu(ieee80211_rts_duration(ah
->hw
,
710 info
->control
.vif
, pktlen
, info
));
712 if (rc_flags
& IEEE80211_TX_RC_USE_CTS_PROTECT
) {
713 flags
|= AR5K_TXDESC_CTSENA
;
714 cts_rate
= ieee80211_get_rts_cts_rate(ah
->hw
, info
)->hw_value
;
715 duration
= le16_to_cpu(ieee80211_ctstoself_duration(ah
->hw
,
716 info
->control
.vif
, pktlen
, info
));
718 ret
= ah
->ah_setup_tx_desc(ah
, ds
, pktlen
,
719 ieee80211_get_hdrlen_from_skb(skb
), padsize
,
720 get_hw_packet_type(skb
),
721 (ah
->power_level
* 2),
723 info
->control
.rates
[0].count
, keyidx
, ah
->ah_tx_ant
, flags
,
728 /* Set up MRR descriptor */
729 if (ah
->ah_capabilities
.cap_has_mrr_support
) {
730 memset(mrr_rate
, 0, sizeof(mrr_rate
));
731 memset(mrr_tries
, 0, sizeof(mrr_tries
));
732 for (i
= 0; i
< 3; i
++) {
733 rate
= ieee80211_get_alt_retry_rate(ah
->hw
, info
, i
);
737 mrr_rate
[i
] = rate
->hw_value
;
738 mrr_tries
[i
] = info
->control
.rates
[i
+ 1].count
;
741 ath5k_hw_setup_mrr_tx_desc(ah
, ds
,
742 mrr_rate
[0], mrr_tries
[0],
743 mrr_rate
[1], mrr_tries
[1],
744 mrr_rate
[2], mrr_tries
[2]);
748 ds
->ds_data
= bf
->skbaddr
;
750 spin_lock_bh(&txq
->lock
);
751 list_add_tail(&bf
->list
, &txq
->q
);
753 if (txq
->link
== NULL
) /* is this first packet? */
754 ath5k_hw_set_txdp(ah
, txq
->qnum
, bf
->daddr
);
755 else /* no, so only link it */
756 *txq
->link
= bf
->daddr
;
758 txq
->link
= &ds
->ds_link
;
759 ath5k_hw_start_tx_dma(ah
, txq
->qnum
);
761 spin_unlock_bh(&txq
->lock
);
765 dma_unmap_single(ah
->dev
, bf
->skbaddr
, skb
->len
, DMA_TO_DEVICE
);
769 /*******************\
770 * Descriptors setup *
771 \*******************/
774 ath5k_desc_alloc(struct ath5k_hw
*ah
)
776 struct ath5k_desc
*ds
;
777 struct ath5k_buf
*bf
;
782 /* allocate descriptors */
783 ah
->desc_len
= sizeof(struct ath5k_desc
) *
784 (ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
+ 1);
786 ah
->desc
= dma_alloc_coherent(ah
->dev
, ah
->desc_len
,
787 &ah
->desc_daddr
, GFP_KERNEL
);
788 if (ah
->desc
== NULL
) {
789 ATH5K_ERR(ah
, "can't allocate descriptors\n");
795 ATH5K_DBG(ah
, ATH5K_DEBUG_ANY
, "DMA map: %p (%zu) -> %llx\n",
796 ds
, ah
->desc_len
, (unsigned long long)ah
->desc_daddr
);
798 bf
= kcalloc(1 + ATH_TXBUF
+ ATH_RXBUF
+ ATH_BCBUF
,
799 sizeof(struct ath5k_buf
), GFP_KERNEL
);
801 ATH5K_ERR(ah
, "can't allocate bufptr\n");
807 INIT_LIST_HEAD(&ah
->rxbuf
);
808 for (i
= 0; i
< ATH_RXBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
811 list_add_tail(&bf
->list
, &ah
->rxbuf
);
814 INIT_LIST_HEAD(&ah
->txbuf
);
815 ah
->txbuf_len
= ATH_TXBUF
;
816 for (i
= 0; i
< ATH_TXBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
819 list_add_tail(&bf
->list
, &ah
->txbuf
);
823 INIT_LIST_HEAD(&ah
->bcbuf
);
824 for (i
= 0; i
< ATH_BCBUF
; i
++, bf
++, ds
++, da
+= sizeof(*ds
)) {
827 list_add_tail(&bf
->list
, &ah
->bcbuf
);
832 dma_free_coherent(ah
->dev
, ah
->desc_len
, ah
->desc
, ah
->desc_daddr
);
839 ath5k_txbuf_free_skb(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
844 dma_unmap_single(ah
->dev
, bf
->skbaddr
, bf
->skb
->len
,
846 dev_kfree_skb_any(bf
->skb
);
849 bf
->desc
->ds_data
= 0;
853 ath5k_rxbuf_free_skb(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
855 struct ath_common
*common
= ath5k_hw_common(ah
);
860 dma_unmap_single(ah
->dev
, bf
->skbaddr
, common
->rx_bufsize
,
862 dev_kfree_skb_any(bf
->skb
);
865 bf
->desc
->ds_data
= 0;
869 ath5k_desc_free(struct ath5k_hw
*ah
)
871 struct ath5k_buf
*bf
;
873 list_for_each_entry(bf
, &ah
->txbuf
, list
)
874 ath5k_txbuf_free_skb(ah
, bf
);
875 list_for_each_entry(bf
, &ah
->rxbuf
, list
)
876 ath5k_rxbuf_free_skb(ah
, bf
);
877 list_for_each_entry(bf
, &ah
->bcbuf
, list
)
878 ath5k_txbuf_free_skb(ah
, bf
);
880 /* Free memory associated with all descriptors */
881 dma_free_coherent(ah
->dev
, ah
->desc_len
, ah
->desc
, ah
->desc_daddr
);
894 static struct ath5k_txq
*
895 ath5k_txq_setup(struct ath5k_hw
*ah
,
896 int qtype
, int subtype
)
898 struct ath5k_txq
*txq
;
899 struct ath5k_txq_info qi
= {
900 .tqi_subtype
= subtype
,
901 /* XXX: default values not correct for B and XR channels,
903 .tqi_aifs
= AR5K_TUNE_AIFS
,
904 .tqi_cw_min
= AR5K_TUNE_CWMIN
,
905 .tqi_cw_max
= AR5K_TUNE_CWMAX
910 * Enable interrupts only for EOL and DESC conditions.
911 * We mark tx descriptors to receive a DESC interrupt
912 * when a tx queue gets deep; otherwise we wait for the
913 * EOL to reap descriptors. Note that this is done to
914 * reduce interrupt load and this only defers reaping
915 * descriptors, never transmitting frames. Aside from
916 * reducing interrupts this also permits more concurrency.
917 * The only potential downside is if the tx queue backs
918 * up in which case the top half of the kernel may backup
919 * due to a lack of tx descriptors.
921 qi
.tqi_flags
= AR5K_TXQ_FLAG_TXEOLINT_ENABLE
|
922 AR5K_TXQ_FLAG_TXDESCINT_ENABLE
;
923 qnum
= ath5k_hw_setup_tx_queue(ah
, qtype
, &qi
);
926 * NB: don't print a message, this happens
927 * normally on parts with too few tx queues
929 return ERR_PTR(qnum
);
931 txq
= &ah
->txqs
[qnum
];
935 INIT_LIST_HEAD(&txq
->q
);
936 spin_lock_init(&txq
->lock
);
939 txq
->txq_max
= ATH5K_TXQ_LEN_MAX
;
940 txq
->txq_poll_mark
= false;
943 return &ah
->txqs
[qnum
];
947 ath5k_beaconq_setup(struct ath5k_hw
*ah
)
949 struct ath5k_txq_info qi
= {
950 /* XXX: default values not correct for B and XR channels,
952 .tqi_aifs
= AR5K_TUNE_AIFS
,
953 .tqi_cw_min
= AR5K_TUNE_CWMIN
,
954 .tqi_cw_max
= AR5K_TUNE_CWMAX
,
955 /* NB: for dynamic turbo, don't enable any other interrupts */
956 .tqi_flags
= AR5K_TXQ_FLAG_TXDESCINT_ENABLE
959 return ath5k_hw_setup_tx_queue(ah
, AR5K_TX_QUEUE_BEACON
, &qi
);
963 ath5k_beaconq_config(struct ath5k_hw
*ah
)
965 struct ath5k_txq_info qi
;
968 ret
= ath5k_hw_get_tx_queueprops(ah
, ah
->bhalq
, &qi
);
972 if (ah
->opmode
== NL80211_IFTYPE_AP
||
973 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
975 * Always burst out beacon and CAB traffic
976 * (aifs = cwmin = cwmax = 0)
981 } else if (ah
->opmode
== NL80211_IFTYPE_ADHOC
) {
983 * Adhoc mode; backoff between 0 and (2 * cw_min).
987 qi
.tqi_cw_max
= 2 * AR5K_TUNE_CWMIN
;
990 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
991 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
992 qi
.tqi_aifs
, qi
.tqi_cw_min
, qi
.tqi_cw_max
);
994 ret
= ath5k_hw_set_tx_queueprops(ah
, ah
->bhalq
, &qi
);
996 ATH5K_ERR(ah
, "%s: unable to update parameters for beacon "
997 "hardware queue!\n", __func__
);
1000 ret
= ath5k_hw_reset_tx_queue(ah
, ah
->bhalq
); /* push to h/w */
1004 /* reconfigure cabq with ready time to 80% of beacon_interval */
1005 ret
= ath5k_hw_get_tx_queueprops(ah
, AR5K_TX_QUEUE_ID_CAB
, &qi
);
1009 qi
.tqi_ready_time
= (ah
->bintval
* 80) / 100;
1010 ret
= ath5k_hw_set_tx_queueprops(ah
, AR5K_TX_QUEUE_ID_CAB
, &qi
);
1014 ret
= ath5k_hw_reset_tx_queue(ah
, AR5K_TX_QUEUE_ID_CAB
);
1020 * ath5k_drain_tx_buffs - Empty tx buffers
1022 * @ah The &struct ath5k_hw
1024 * Empty tx buffers from all queues in preparation
1025 * of a reset or during shutdown.
1027 * NB: this assumes output has been stopped and
1028 * we do not need to block ath5k_tx_tasklet
1031 ath5k_drain_tx_buffs(struct ath5k_hw
*ah
)
1033 struct ath5k_txq
*txq
;
1034 struct ath5k_buf
*bf
, *bf0
;
1037 for (i
= 0; i
< ARRAY_SIZE(ah
->txqs
); i
++) {
1038 if (ah
->txqs
[i
].setup
) {
1040 spin_lock_bh(&txq
->lock
);
1041 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1042 ath5k_debug_printtxbuf(ah
, bf
);
1044 ath5k_txbuf_free_skb(ah
, bf
);
1046 spin_lock_bh(&ah
->txbuflock
);
1047 list_move_tail(&bf
->list
, &ah
->txbuf
);
1050 spin_unlock_bh(&ah
->txbuflock
);
1053 txq
->txq_poll_mark
= false;
1054 spin_unlock_bh(&txq
->lock
);
1060 ath5k_txq_release(struct ath5k_hw
*ah
)
1062 struct ath5k_txq
*txq
= ah
->txqs
;
1065 for (i
= 0; i
< ARRAY_SIZE(ah
->txqs
); i
++, txq
++)
1067 ath5k_hw_release_tx_queue(ah
, txq
->qnum
);
1078 * Enable the receive h/w following a reset.
1081 ath5k_rx_start(struct ath5k_hw
*ah
)
1083 struct ath_common
*common
= ath5k_hw_common(ah
);
1084 struct ath5k_buf
*bf
;
1087 common
->rx_bufsize
= roundup(IEEE80211_MAX_FRAME_LEN
, common
->cachelsz
);
1089 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "cachelsz %u rx_bufsize %u\n",
1090 common
->cachelsz
, common
->rx_bufsize
);
1092 spin_lock_bh(&ah
->rxbuflock
);
1094 list_for_each_entry(bf
, &ah
->rxbuf
, list
) {
1095 ret
= ath5k_rxbuf_setup(ah
, bf
);
1097 spin_unlock_bh(&ah
->rxbuflock
);
1101 bf
= list_first_entry(&ah
->rxbuf
, struct ath5k_buf
, list
);
1102 ath5k_hw_set_rxdp(ah
, bf
->daddr
);
1103 spin_unlock_bh(&ah
->rxbuflock
);
1105 ath5k_hw_start_rx_dma(ah
); /* enable recv descriptors */
1106 ath5k_update_bssid_mask_and_opmode(ah
, NULL
); /* set filters, etc. */
1107 ath5k_hw_start_rx_pcu(ah
); /* re-enable PCU/DMA engine */
1115 * Disable the receive logic on PCU (DRU)
1116 * In preparation for a shutdown.
1118 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1122 ath5k_rx_stop(struct ath5k_hw
*ah
)
1125 ath5k_hw_set_rx_filter(ah
, 0); /* clear recv filter */
1126 ath5k_hw_stop_rx_pcu(ah
); /* disable PCU */
1128 ath5k_debug_printrxbuffs(ah
);
1132 ath5k_rx_decrypted(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1133 struct ath5k_rx_status
*rs
)
1135 struct ath_common
*common
= ath5k_hw_common(ah
);
1136 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
1137 unsigned int keyix
, hlen
;
1139 if (!(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1140 rs
->rs_keyix
!= AR5K_RXKEYIX_INVALID
)
1141 return RX_FLAG_DECRYPTED
;
1143 /* Apparently when a default key is used to decrypt the packet
1144 the hw does not set the index used to decrypt. In such cases
1145 get the index from the packet. */
1146 hlen
= ieee80211_hdrlen(hdr
->frame_control
);
1147 if (ieee80211_has_protected(hdr
->frame_control
) &&
1148 !(rs
->rs_status
& AR5K_RXERR_DECRYPT
) &&
1149 skb
->len
>= hlen
+ 4) {
1150 keyix
= skb
->data
[hlen
+ 3] >> 6;
1152 if (test_bit(keyix
, common
->keymap
))
1153 return RX_FLAG_DECRYPTED
;
1161 ath5k_check_ibss_tsf(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1162 struct ieee80211_rx_status
*rxs
)
1164 struct ath_common
*common
= ath5k_hw_common(ah
);
1167 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*)skb
->data
;
1169 if (ieee80211_is_beacon(mgmt
->frame_control
) &&
1170 le16_to_cpu(mgmt
->u
.beacon
.capab_info
) & WLAN_CAPABILITY_IBSS
&&
1171 memcmp(mgmt
->bssid
, common
->curbssid
, ETH_ALEN
) == 0) {
1173 * Received an IBSS beacon with the same BSSID. Hardware *must*
1174 * have updated the local TSF. We have to work around various
1175 * hardware bugs, though...
1177 tsf
= ath5k_hw_get_tsf64(ah
);
1178 bc_tstamp
= le64_to_cpu(mgmt
->u
.beacon
.timestamp
);
1179 hw_tu
= TSF_TO_TU(tsf
);
1181 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1182 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1183 (unsigned long long)bc_tstamp
,
1184 (unsigned long long)rxs
->mactime
,
1185 (unsigned long long)(rxs
->mactime
- bc_tstamp
),
1186 (unsigned long long)tsf
);
1189 * Sometimes the HW will give us a wrong tstamp in the rx
1190 * status, causing the timestamp extension to go wrong.
1191 * (This seems to happen especially with beacon frames bigger
1192 * than 78 byte (incl. FCS))
1193 * But we know that the receive timestamp must be later than the
1194 * timestamp of the beacon since HW must have synced to that.
1196 * NOTE: here we assume mactime to be after the frame was
1197 * received, not like mac80211 which defines it at the start.
1199 if (bc_tstamp
> rxs
->mactime
) {
1200 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1201 "fixing mactime from %llx to %llx\n",
1202 (unsigned long long)rxs
->mactime
,
1203 (unsigned long long)tsf
);
1208 * Local TSF might have moved higher than our beacon timers,
1209 * in that case we have to update them to continue sending
1210 * beacons. This also takes care of synchronizing beacon sending
1211 * times with other stations.
1213 if (hw_tu
>= ah
->nexttbtt
)
1214 ath5k_beacon_update_timers(ah
, bc_tstamp
);
1216 /* Check if the beacon timers are still correct, because a TSF
1217 * update might have created a window between them - for a
1218 * longer description see the comment of this function: */
1219 if (!ath5k_hw_check_beacon_timers(ah
, ah
->bintval
)) {
1220 ath5k_beacon_update_timers(ah
, bc_tstamp
);
1221 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1222 "fixed beacon timers after beacon receive\n");
1228 ath5k_update_beacon_rssi(struct ath5k_hw
*ah
, struct sk_buff
*skb
, int rssi
)
1230 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*)skb
->data
;
1231 struct ath_common
*common
= ath5k_hw_common(ah
);
1233 /* only beacons from our BSSID */
1234 if (!ieee80211_is_beacon(mgmt
->frame_control
) ||
1235 memcmp(mgmt
->bssid
, common
->curbssid
, ETH_ALEN
) != 0)
1238 ewma_add(&ah
->ah_beacon_rssi_avg
, rssi
);
1240 /* in IBSS mode we should keep RSSI statistics per neighbour */
1241 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1245 * Compute padding position. skb must contain an IEEE 802.11 frame
1247 static int ath5k_common_padpos(struct sk_buff
*skb
)
1249 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1250 __le16 frame_control
= hdr
->frame_control
;
1253 if (ieee80211_has_a4(frame_control
))
1256 if (ieee80211_is_data_qos(frame_control
))
1257 padpos
+= IEEE80211_QOS_CTL_LEN
;
1263 * This function expects an 802.11 frame and returns the number of
1264 * bytes added, or -1 if we don't have enough header room.
1266 static int ath5k_add_padding(struct sk_buff
*skb
)
1268 int padpos
= ath5k_common_padpos(skb
);
1269 int padsize
= padpos
& 3;
1271 if (padsize
&& skb
->len
> padpos
) {
1273 if (skb_headroom(skb
) < padsize
)
1276 skb_push(skb
, padsize
);
1277 memmove(skb
->data
, skb
->data
+ padsize
, padpos
);
1285 * The MAC header is padded to have 32-bit boundary if the
1286 * packet payload is non-zero. The general calculation for
1287 * padsize would take into account odd header lengths:
1288 * padsize = 4 - (hdrlen & 3); however, since only
1289 * even-length headers are used, padding can only be 0 or 2
1290 * bytes and we can optimize this a bit. We must not try to
1291 * remove padding from short control frames that do not have a
1294 * This function expects an 802.11 frame and returns the number of
1297 static int ath5k_remove_padding(struct sk_buff
*skb
)
1299 int padpos
= ath5k_common_padpos(skb
);
1300 int padsize
= padpos
& 3;
1302 if (padsize
&& skb
->len
>= padpos
+ padsize
) {
1303 memmove(skb
->data
+ padsize
, skb
->data
, padpos
);
1304 skb_pull(skb
, padsize
);
1312 ath5k_receive_frame(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1313 struct ath5k_rx_status
*rs
)
1315 struct ieee80211_rx_status
*rxs
;
1317 ath5k_remove_padding(skb
);
1319 rxs
= IEEE80211_SKB_RXCB(skb
);
1322 if (unlikely(rs
->rs_status
& AR5K_RXERR_MIC
))
1323 rxs
->flag
|= RX_FLAG_MMIC_ERROR
;
1326 * always extend the mac timestamp, since this information is
1327 * also needed for proper IBSS merging.
1329 * XXX: it might be too late to do it here, since rs_tstamp is
1330 * 15bit only. that means TSF extension has to be done within
1331 * 32768usec (about 32ms). it might be necessary to move this to
1332 * the interrupt handler, like it is done in madwifi.
1334 * Unfortunately we don't know when the hardware takes the rx
1335 * timestamp (beginning of phy frame, data frame, end of rx?).
1336 * The only thing we know is that it is hardware specific...
1337 * On AR5213 it seems the rx timestamp is at the end of the
1338 * frame, but I'm not sure.
1340 * NOTE: mac80211 defines mactime at the beginning of the first
1341 * data symbol. Since we don't have any time references it's
1342 * impossible to comply to that. This affects IBSS merge only
1343 * right now, so it's not too bad...
1345 rxs
->mactime
= ath5k_extend_tsf(ah
, rs
->rs_tstamp
);
1346 rxs
->flag
|= RX_FLAG_MACTIME_MPDU
;
1348 rxs
->freq
= ah
->curchan
->center_freq
;
1349 rxs
->band
= ah
->curchan
->band
;
1351 rxs
->signal
= ah
->ah_noise_floor
+ rs
->rs_rssi
;
1353 rxs
->antenna
= rs
->rs_antenna
;
1355 if (rs
->rs_antenna
> 0 && rs
->rs_antenna
< 5)
1356 ah
->stats
.antenna_rx
[rs
->rs_antenna
]++;
1358 ah
->stats
.antenna_rx
[0]++; /* invalid */
1360 rxs
->rate_idx
= ath5k_hw_to_driver_rix(ah
, rs
->rs_rate
);
1361 rxs
->flag
|= ath5k_rx_decrypted(ah
, skb
, rs
);
1363 if (rxs
->rate_idx
>= 0 && rs
->rs_rate
==
1364 ah
->sbands
[ah
->curchan
->band
].bitrates
[rxs
->rate_idx
].hw_value_short
)
1365 rxs
->flag
|= RX_FLAG_SHORTPRE
;
1367 trace_ath5k_rx(ah
, skb
);
1369 ath5k_update_beacon_rssi(ah
, skb
, rs
->rs_rssi
);
1371 /* check beacons in IBSS mode */
1372 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
)
1373 ath5k_check_ibss_tsf(ah
, skb
, rxs
);
1375 ieee80211_rx(ah
->hw
, skb
);
1378 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1380 * Check if we want to further process this frame or not. Also update
1381 * statistics. Return true if we want this frame, false if not.
1384 ath5k_receive_frame_ok(struct ath5k_hw
*ah
, struct ath5k_rx_status
*rs
)
1386 ah
->stats
.rx_all_count
++;
1387 ah
->stats
.rx_bytes_count
+= rs
->rs_datalen
;
1389 if (unlikely(rs
->rs_status
)) {
1390 if (rs
->rs_status
& AR5K_RXERR_CRC
)
1391 ah
->stats
.rxerr_crc
++;
1392 if (rs
->rs_status
& AR5K_RXERR_FIFO
)
1393 ah
->stats
.rxerr_fifo
++;
1394 if (rs
->rs_status
& AR5K_RXERR_PHY
) {
1395 ah
->stats
.rxerr_phy
++;
1396 if (rs
->rs_phyerr
> 0 && rs
->rs_phyerr
< 32)
1397 ah
->stats
.rxerr_phy_code
[rs
->rs_phyerr
]++;
1400 if (rs
->rs_status
& AR5K_RXERR_DECRYPT
) {
1402 * Decrypt error. If the error occurred
1403 * because there was no hardware key, then
1404 * let the frame through so the upper layers
1405 * can process it. This is necessary for 5210
1406 * parts which have no way to setup a ``clear''
1409 * XXX do key cache faulting
1411 ah
->stats
.rxerr_decrypt
++;
1412 if (rs
->rs_keyix
== AR5K_RXKEYIX_INVALID
&&
1413 !(rs
->rs_status
& AR5K_RXERR_CRC
))
1416 if (rs
->rs_status
& AR5K_RXERR_MIC
) {
1417 ah
->stats
.rxerr_mic
++;
1421 /* reject any frames with non-crypto errors */
1422 if (rs
->rs_status
& ~(AR5K_RXERR_DECRYPT
))
1426 if (unlikely(rs
->rs_more
)) {
1427 ah
->stats
.rxerr_jumbo
++;
1434 ath5k_set_current_imask(struct ath5k_hw
*ah
)
1436 enum ath5k_int imask
;
1437 unsigned long flags
;
1439 spin_lock_irqsave(&ah
->irqlock
, flags
);
1442 imask
&= ~AR5K_INT_RX_ALL
;
1444 imask
&= ~AR5K_INT_TX_ALL
;
1445 ath5k_hw_set_imr(ah
, imask
);
1446 spin_unlock_irqrestore(&ah
->irqlock
, flags
);
1450 ath5k_tasklet_rx(unsigned long data
)
1452 struct ath5k_rx_status rs
= {};
1453 struct sk_buff
*skb
, *next_skb
;
1454 dma_addr_t next_skb_addr
;
1455 struct ath5k_hw
*ah
= (void *)data
;
1456 struct ath_common
*common
= ath5k_hw_common(ah
);
1457 struct ath5k_buf
*bf
;
1458 struct ath5k_desc
*ds
;
1461 spin_lock(&ah
->rxbuflock
);
1462 if (list_empty(&ah
->rxbuf
)) {
1463 ATH5K_WARN(ah
, "empty rx buf pool\n");
1467 bf
= list_first_entry(&ah
->rxbuf
, struct ath5k_buf
, list
);
1468 BUG_ON(bf
->skb
== NULL
);
1472 /* bail if HW is still using self-linked descriptor */
1473 if (ath5k_hw_get_rxdp(ah
) == bf
->daddr
)
1476 ret
= ah
->ah_proc_rx_desc(ah
, ds
, &rs
);
1477 if (unlikely(ret
== -EINPROGRESS
))
1479 else if (unlikely(ret
)) {
1480 ATH5K_ERR(ah
, "error in processing rx descriptor\n");
1481 ah
->stats
.rxerr_proc
++;
1485 if (ath5k_receive_frame_ok(ah
, &rs
)) {
1486 next_skb
= ath5k_rx_skb_alloc(ah
, &next_skb_addr
);
1489 * If we can't replace bf->skb with a new skb under
1490 * memory pressure, just skip this packet
1495 dma_unmap_single(ah
->dev
, bf
->skbaddr
,
1499 skb_put(skb
, rs
.rs_datalen
);
1501 ath5k_receive_frame(ah
, skb
, &rs
);
1504 bf
->skbaddr
= next_skb_addr
;
1507 list_move_tail(&bf
->list
, &ah
->rxbuf
);
1508 } while (ath5k_rxbuf_setup(ah
, bf
) == 0);
1510 spin_unlock(&ah
->rxbuflock
);
1511 ah
->rx_pending
= false;
1512 ath5k_set_current_imask(ah
);
1521 ath5k_tx_queue(struct ieee80211_hw
*hw
, struct sk_buff
*skb
,
1522 struct ath5k_txq
*txq
)
1524 struct ath5k_hw
*ah
= hw
->priv
;
1525 struct ath5k_buf
*bf
;
1526 unsigned long flags
;
1529 trace_ath5k_tx(ah
, skb
, txq
);
1532 * The hardware expects the header padded to 4 byte boundaries.
1533 * If this is not the case, we add the padding after the header.
1535 padsize
= ath5k_add_padding(skb
);
1537 ATH5K_ERR(ah
, "tx hdrlen not %%4: not enough"
1538 " headroom to pad");
1542 if (txq
->txq_len
>= txq
->txq_max
&&
1543 txq
->qnum
<= AR5K_TX_QUEUE_ID_DATA_MAX
)
1544 ieee80211_stop_queue(hw
, txq
->qnum
);
1546 spin_lock_irqsave(&ah
->txbuflock
, flags
);
1547 if (list_empty(&ah
->txbuf
)) {
1548 ATH5K_ERR(ah
, "no further txbuf available, dropping packet\n");
1549 spin_unlock_irqrestore(&ah
->txbuflock
, flags
);
1550 ieee80211_stop_queues(hw
);
1553 bf
= list_first_entry(&ah
->txbuf
, struct ath5k_buf
, list
);
1554 list_del(&bf
->list
);
1556 if (list_empty(&ah
->txbuf
))
1557 ieee80211_stop_queues(hw
);
1558 spin_unlock_irqrestore(&ah
->txbuflock
, flags
);
1562 if (ath5k_txbuf_setup(ah
, bf
, txq
, padsize
)) {
1564 spin_lock_irqsave(&ah
->txbuflock
, flags
);
1565 list_add_tail(&bf
->list
, &ah
->txbuf
);
1567 spin_unlock_irqrestore(&ah
->txbuflock
, flags
);
1573 dev_kfree_skb_any(skb
);
1577 ath5k_tx_frame_completed(struct ath5k_hw
*ah
, struct sk_buff
*skb
,
1578 struct ath5k_txq
*txq
, struct ath5k_tx_status
*ts
)
1580 struct ieee80211_tx_info
*info
;
1584 ah
->stats
.tx_all_count
++;
1585 ah
->stats
.tx_bytes_count
+= skb
->len
;
1586 info
= IEEE80211_SKB_CB(skb
);
1588 tries
[0] = info
->status
.rates
[0].count
;
1589 tries
[1] = info
->status
.rates
[1].count
;
1590 tries
[2] = info
->status
.rates
[2].count
;
1592 ieee80211_tx_info_clear_status(info
);
1594 for (i
= 0; i
< ts
->ts_final_idx
; i
++) {
1595 struct ieee80211_tx_rate
*r
=
1596 &info
->status
.rates
[i
];
1598 r
->count
= tries
[i
];
1601 info
->status
.rates
[ts
->ts_final_idx
].count
= ts
->ts_final_retry
;
1602 info
->status
.rates
[ts
->ts_final_idx
+ 1].idx
= -1;
1604 if (unlikely(ts
->ts_status
)) {
1605 ah
->stats
.ack_fail
++;
1606 if (ts
->ts_status
& AR5K_TXERR_FILT
) {
1607 info
->flags
|= IEEE80211_TX_STAT_TX_FILTERED
;
1608 ah
->stats
.txerr_filt
++;
1610 if (ts
->ts_status
& AR5K_TXERR_XRETRY
)
1611 ah
->stats
.txerr_retry
++;
1612 if (ts
->ts_status
& AR5K_TXERR_FIFO
)
1613 ah
->stats
.txerr_fifo
++;
1615 info
->flags
|= IEEE80211_TX_STAT_ACK
;
1616 info
->status
.ack_signal
= ts
->ts_rssi
;
1618 /* count the successful attempt as well */
1619 info
->status
.rates
[ts
->ts_final_idx
].count
++;
1623 * Remove MAC header padding before giving the frame
1626 ath5k_remove_padding(skb
);
1628 if (ts
->ts_antenna
> 0 && ts
->ts_antenna
< 5)
1629 ah
->stats
.antenna_tx
[ts
->ts_antenna
]++;
1631 ah
->stats
.antenna_tx
[0]++; /* invalid */
1633 trace_ath5k_tx_complete(ah
, skb
, txq
, ts
);
1634 ieee80211_tx_status(ah
->hw
, skb
);
1638 ath5k_tx_processq(struct ath5k_hw
*ah
, struct ath5k_txq
*txq
)
1640 struct ath5k_tx_status ts
= {};
1641 struct ath5k_buf
*bf
, *bf0
;
1642 struct ath5k_desc
*ds
;
1643 struct sk_buff
*skb
;
1646 spin_lock(&txq
->lock
);
1647 list_for_each_entry_safe(bf
, bf0
, &txq
->q
, list
) {
1649 txq
->txq_poll_mark
= false;
1651 /* skb might already have been processed last time. */
1652 if (bf
->skb
!= NULL
) {
1655 ret
= ah
->ah_proc_tx_desc(ah
, ds
, &ts
);
1656 if (unlikely(ret
== -EINPROGRESS
))
1658 else if (unlikely(ret
)) {
1660 "error %d while processing "
1661 "queue %u\n", ret
, txq
->qnum
);
1668 dma_unmap_single(ah
->dev
, bf
->skbaddr
, skb
->len
,
1670 ath5k_tx_frame_completed(ah
, skb
, txq
, &ts
);
1674 * It's possible that the hardware can say the buffer is
1675 * completed when it hasn't yet loaded the ds_link from
1676 * host memory and moved on.
1677 * Always keep the last descriptor to avoid HW races...
1679 if (ath5k_hw_get_txdp(ah
, txq
->qnum
) != bf
->daddr
) {
1680 spin_lock(&ah
->txbuflock
);
1681 list_move_tail(&bf
->list
, &ah
->txbuf
);
1684 spin_unlock(&ah
->txbuflock
);
1687 spin_unlock(&txq
->lock
);
1688 if (txq
->txq_len
< ATH5K_TXQ_LEN_LOW
&& txq
->qnum
< 4)
1689 ieee80211_wake_queue(ah
->hw
, txq
->qnum
);
1693 ath5k_tasklet_tx(unsigned long data
)
1696 struct ath5k_hw
*ah
= (void *)data
;
1698 for (i
= 0; i
< AR5K_NUM_TX_QUEUES
; i
++)
1699 if (ah
->txqs
[i
].setup
&& (ah
->ah_txq_isr_txok_all
& BIT(i
)))
1700 ath5k_tx_processq(ah
, &ah
->txqs
[i
]);
1702 ah
->tx_pending
= false;
1703 ath5k_set_current_imask(ah
);
1712 * Setup the beacon frame for transmit.
1715 ath5k_beacon_setup(struct ath5k_hw
*ah
, struct ath5k_buf
*bf
)
1717 struct sk_buff
*skb
= bf
->skb
;
1718 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
1719 struct ath5k_desc
*ds
;
1723 const int padsize
= 0;
1725 bf
->skbaddr
= dma_map_single(ah
->dev
, skb
->data
, skb
->len
,
1727 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
, "skb %p [data %p len %u] "
1728 "skbaddr %llx\n", skb
, skb
->data
, skb
->len
,
1729 (unsigned long long)bf
->skbaddr
);
1731 if (dma_mapping_error(ah
->dev
, bf
->skbaddr
)) {
1732 ATH5K_ERR(ah
, "beacon DMA mapping failed\n");
1733 dev_kfree_skb_any(skb
);
1739 antenna
= ah
->ah_tx_ant
;
1741 flags
= AR5K_TXDESC_NOACK
;
1742 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
&& ath5k_hw_hasveol(ah
)) {
1743 ds
->ds_link
= bf
->daddr
; /* self-linked */
1744 flags
|= AR5K_TXDESC_VEOL
;
1749 * If we use multiple antennas on AP and use
1750 * the Sectored AP scenario, switch antenna every
1751 * 4 beacons to make sure everybody hears our AP.
1752 * When a client tries to associate, hw will keep
1753 * track of the tx antenna to be used for this client
1754 * automatically, based on ACKed packets.
1756 * Note: AP still listens and transmits RTS on the
1757 * default antenna which is supposed to be an omni.
1759 * Note2: On sectored scenarios it's possible to have
1760 * multiple antennas (1 omni -- the default -- and 14
1761 * sectors), so if we choose to actually support this
1762 * mode, we need to allow the user to set how many antennas
1763 * we have and tweak the code below to send beacons
1766 if (ah
->ah_ant_mode
== AR5K_ANTMODE_SECTOR_AP
)
1767 antenna
= ah
->bsent
& 4 ? 2 : 1;
1770 /* FIXME: If we are in g mode and rate is a CCK rate
1771 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1772 * from tx power (value is in dB units already) */
1773 ds
->ds_data
= bf
->skbaddr
;
1774 ret
= ah
->ah_setup_tx_desc(ah
, ds
, skb
->len
,
1775 ieee80211_get_hdrlen_from_skb(skb
), padsize
,
1776 AR5K_PKT_TYPE_BEACON
, (ah
->power_level
* 2),
1777 ieee80211_get_tx_rate(ah
->hw
, info
)->hw_value
,
1778 1, AR5K_TXKEYIX_INVALID
,
1779 antenna
, flags
, 0, 0);
1785 dma_unmap_single(ah
->dev
, bf
->skbaddr
, skb
->len
, DMA_TO_DEVICE
);
1790 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1791 * this is called only once at config_bss time, for AP we do it every
1792 * SWBA interrupt so that the TIM will reflect buffered frames.
1794 * Called with the beacon lock.
1797 ath5k_beacon_update(struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
)
1800 struct ath5k_hw
*ah
= hw
->priv
;
1801 struct ath5k_vif
*avf
= (void *)vif
->drv_priv
;
1802 struct sk_buff
*skb
;
1804 if (WARN_ON(!vif
)) {
1809 skb
= ieee80211_beacon_get(hw
, vif
);
1816 ath5k_txbuf_free_skb(ah
, avf
->bbuf
);
1817 avf
->bbuf
->skb
= skb
;
1818 ret
= ath5k_beacon_setup(ah
, avf
->bbuf
);
1824 * Transmit a beacon frame at SWBA. Dynamic updates to the
1825 * frame contents are done as needed and the slot time is
1826 * also adjusted based on current state.
1828 * This is called from software irq context (beacontq tasklets)
1829 * or user context from ath5k_beacon_config.
1832 ath5k_beacon_send(struct ath5k_hw
*ah
)
1834 struct ieee80211_vif
*vif
;
1835 struct ath5k_vif
*avf
;
1836 struct ath5k_buf
*bf
;
1837 struct sk_buff
*skb
;
1840 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
, "in beacon_send\n");
1843 * Check if the previous beacon has gone out. If
1844 * not, don't don't try to post another: skip this
1845 * period and wait for the next. Missed beacons
1846 * indicate a problem and should not occur. If we
1847 * miss too many consecutive beacons reset the device.
1849 if (unlikely(ath5k_hw_num_tx_pending(ah
, ah
->bhalq
) != 0)) {
1851 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1852 "missed %u consecutive beacons\n", ah
->bmisscount
);
1853 if (ah
->bmisscount
> 10) { /* NB: 10 is a guess */
1854 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1855 "stuck beacon time (%u missed)\n",
1857 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
1858 "stuck beacon, resetting\n");
1859 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
1863 if (unlikely(ah
->bmisscount
!= 0)) {
1864 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1865 "resume beacon xmit after %u misses\n",
1870 if ((ah
->opmode
== NL80211_IFTYPE_AP
&& ah
->num_ap_vifs
> 1) ||
1871 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
1872 u64 tsf
= ath5k_hw_get_tsf64(ah
);
1873 u32 tsftu
= TSF_TO_TU(tsf
);
1874 int slot
= ((tsftu
% ah
->bintval
) * ATH_BCBUF
) / ah
->bintval
;
1875 vif
= ah
->bslot
[(slot
+ 1) % ATH_BCBUF
];
1876 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
1877 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1878 (unsigned long long)tsf
, tsftu
, ah
->bintval
, slot
, vif
);
1879 } else /* only one interface */
1885 avf
= (void *)vif
->drv_priv
;
1889 * Stop any current dma and put the new frame on the queue.
1890 * This should never fail since we check above that no frames
1891 * are still pending on the queue.
1893 if (unlikely(ath5k_hw_stop_beacon_queue(ah
, ah
->bhalq
))) {
1894 ATH5K_WARN(ah
, "beacon queue %u didn't start/stop ?\n", ah
->bhalq
);
1895 /* NB: hw still stops DMA, so proceed */
1898 /* refresh the beacon for AP or MESH mode */
1899 if (ah
->opmode
== NL80211_IFTYPE_AP
||
1900 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
) {
1901 err
= ath5k_beacon_update(ah
->hw
, vif
);
1906 if (unlikely(bf
->skb
== NULL
|| ah
->opmode
== NL80211_IFTYPE_STATION
||
1907 ah
->opmode
== NL80211_IFTYPE_MONITOR
)) {
1908 ATH5K_WARN(ah
, "bf=%p bf_skb=%p\n", bf
, bf
->skb
);
1912 trace_ath5k_tx(ah
, bf
->skb
, &ah
->txqs
[ah
->bhalq
]);
1914 ath5k_hw_set_txdp(ah
, ah
->bhalq
, bf
->daddr
);
1915 ath5k_hw_start_tx_dma(ah
, ah
->bhalq
);
1916 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
, "TXDP[%u] = %llx (%p)\n",
1917 ah
->bhalq
, (unsigned long long)bf
->daddr
, bf
->desc
);
1919 skb
= ieee80211_get_buffered_bc(ah
->hw
, vif
);
1921 ath5k_tx_queue(ah
->hw
, skb
, ah
->cabq
);
1923 if (ah
->cabq
->txq_len
>= ah
->cabq
->txq_max
)
1926 skb
= ieee80211_get_buffered_bc(ah
->hw
, vif
);
1933 * ath5k_beacon_update_timers - update beacon timers
1935 * @ah: struct ath5k_hw pointer we are operating on
1936 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1937 * beacon timer update based on the current HW TSF.
1939 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1940 * of a received beacon or the current local hardware TSF and write it to the
1941 * beacon timer registers.
1943 * This is called in a variety of situations, e.g. when a beacon is received,
1944 * when a TSF update has been detected, but also when an new IBSS is created or
1945 * when we otherwise know we have to update the timers, but we keep it in this
1946 * function to have it all together in one place.
1949 ath5k_beacon_update_timers(struct ath5k_hw
*ah
, u64 bc_tsf
)
1951 u32 nexttbtt
, intval
, hw_tu
, bc_tu
;
1954 intval
= ah
->bintval
& AR5K_BEACON_PERIOD
;
1955 if (ah
->opmode
== NL80211_IFTYPE_AP
&& ah
->num_ap_vifs
> 1) {
1956 intval
/= ATH_BCBUF
; /* staggered multi-bss beacons */
1958 ATH5K_WARN(ah
, "intval %u is too low, min 15\n",
1961 if (WARN_ON(!intval
))
1964 /* beacon TSF converted to TU */
1965 bc_tu
= TSF_TO_TU(bc_tsf
);
1967 /* current TSF converted to TU */
1968 hw_tsf
= ath5k_hw_get_tsf64(ah
);
1969 hw_tu
= TSF_TO_TU(hw_tsf
);
1971 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1972 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1973 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1974 * configuration we need to make sure it is bigger than that. */
1978 * no beacons received, called internally.
1979 * just need to refresh timers based on HW TSF.
1981 nexttbtt
= roundup(hw_tu
+ FUDGE
, intval
);
1982 } else if (bc_tsf
== 0) {
1984 * no beacon received, probably called by ath5k_reset_tsf().
1985 * reset TSF to start with 0.
1988 intval
|= AR5K_BEACON_RESET_TSF
;
1989 } else if (bc_tsf
> hw_tsf
) {
1991 * beacon received, SW merge happened but HW TSF not yet updated.
1992 * not possible to reconfigure timers yet, but next time we
1993 * receive a beacon with the same BSSID, the hardware will
1994 * automatically update the TSF and then we need to reconfigure
1997 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
1998 "need to wait for HW TSF sync\n");
2002 * most important case for beacon synchronization between STA.
2004 * beacon received and HW TSF has been already updated by HW.
2005 * update next TBTT based on the TSF of the beacon, but make
2006 * sure it is ahead of our local TSF timer.
2008 nexttbtt
= bc_tu
+ roundup(hw_tu
+ FUDGE
- bc_tu
, intval
);
2012 ah
->nexttbtt
= nexttbtt
;
2014 intval
|= AR5K_BEACON_ENA
;
2015 ath5k_hw_init_beacon_timers(ah
, nexttbtt
, intval
);
2018 * debugging output last in order to preserve the time critical aspect
2022 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2023 "reconfigured timers based on HW TSF\n");
2024 else if (bc_tsf
== 0)
2025 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2026 "reset HW TSF and timers\n");
2028 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2029 "updated timers based on beacon TSF\n");
2031 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
,
2032 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2033 (unsigned long long) bc_tsf
,
2034 (unsigned long long) hw_tsf
, bc_tu
, hw_tu
, nexttbtt
);
2035 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_BEACON
, "intval %u %s %s\n",
2036 intval
& AR5K_BEACON_PERIOD
,
2037 intval
& AR5K_BEACON_ENA
? "AR5K_BEACON_ENA" : "",
2038 intval
& AR5K_BEACON_RESET_TSF
? "AR5K_BEACON_RESET_TSF" : "");
2042 * ath5k_beacon_config - Configure the beacon queues and interrupts
2044 * @ah: struct ath5k_hw pointer we are operating on
2046 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2047 * interrupts to detect TSF updates only.
2050 ath5k_beacon_config(struct ath5k_hw
*ah
)
2052 unsigned long flags
;
2054 spin_lock_irqsave(&ah
->block
, flags
);
2056 ah
->imask
&= ~(AR5K_INT_BMISS
| AR5K_INT_SWBA
);
2058 if (ah
->enable_beacon
) {
2060 * In IBSS mode we use a self-linked tx descriptor and let the
2061 * hardware send the beacons automatically. We have to load it
2063 * We use the SWBA interrupt only to keep track of the beacon
2064 * timers in order to detect automatic TSF updates.
2066 ath5k_beaconq_config(ah
);
2068 ah
->imask
|= AR5K_INT_SWBA
;
2070 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
) {
2071 if (ath5k_hw_hasveol(ah
))
2072 ath5k_beacon_send(ah
);
2074 ath5k_beacon_update_timers(ah
, -1);
2076 ath5k_hw_stop_beacon_queue(ah
, ah
->bhalq
);
2079 ath5k_hw_set_imr(ah
, ah
->imask
);
2081 spin_unlock_irqrestore(&ah
->block
, flags
);
2084 static void ath5k_tasklet_beacon(unsigned long data
)
2086 struct ath5k_hw
*ah
= (struct ath5k_hw
*) data
;
2089 * Software beacon alert--time to send a beacon.
2091 * In IBSS mode we use this interrupt just to
2092 * keep track of the next TBTT (target beacon
2093 * transmission time) in order to detect whether
2094 * automatic TSF updates happened.
2096 if (ah
->opmode
== NL80211_IFTYPE_ADHOC
) {
2097 /* XXX: only if VEOL supported */
2098 u64 tsf
= ath5k_hw_get_tsf64(ah
);
2099 ah
->nexttbtt
+= ah
->bintval
;
2100 ATH5K_DBG(ah
, ATH5K_DEBUG_BEACON
,
2101 "SWBA nexttbtt: %x hw_tu: %x "
2105 (unsigned long long) tsf
);
2107 spin_lock(&ah
->block
);
2108 ath5k_beacon_send(ah
);
2109 spin_unlock(&ah
->block
);
2114 /********************\
2115 * Interrupt handling *
2116 \********************/
2119 ath5k_intr_calibration_poll(struct ath5k_hw
*ah
)
2121 if (time_is_before_eq_jiffies(ah
->ah_cal_next_ani
) &&
2122 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
) &&
2123 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_SHORT
)) {
2125 /* Run ANI only when calibration is not active */
2127 ah
->ah_cal_next_ani
= jiffies
+
2128 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI
);
2129 tasklet_schedule(&ah
->ani_tasklet
);
2131 } else if (time_is_before_eq_jiffies(ah
->ah_cal_next_short
) &&
2132 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
) &&
2133 !(ah
->ah_cal_mask
& AR5K_CALIBRATION_SHORT
)) {
2135 /* Run calibration only when another calibration
2138 * Note: This is for both full/short calibration,
2139 * if it's time for a full one, ath5k_calibrate_work will deal
2142 ah
->ah_cal_next_short
= jiffies
+
2143 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT
);
2144 ieee80211_queue_work(ah
->hw
, &ah
->calib_work
);
2146 /* we could use SWI to generate enough interrupts to meet our
2147 * calibration interval requirements, if necessary:
2148 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2152 ath5k_schedule_rx(struct ath5k_hw
*ah
)
2154 ah
->rx_pending
= true;
2155 tasklet_schedule(&ah
->rxtq
);
2159 ath5k_schedule_tx(struct ath5k_hw
*ah
)
2161 ah
->tx_pending
= true;
2162 tasklet_schedule(&ah
->txtq
);
2166 ath5k_intr(int irq
, void *dev_id
)
2168 struct ath5k_hw
*ah
= dev_id
;
2169 enum ath5k_int status
;
2170 unsigned int counter
= 1000;
2174 * If hw is not ready (or detached) and we get an
2175 * interrupt, or if we have no interrupts pending
2176 * (that means it's not for us) skip it.
2178 * NOTE: Group 0/1 PCI interface registers are not
2179 * supported on WiSOCs, so we can't check for pending
2180 * interrupts (ISR belongs to another register group
2183 if (unlikely(test_bit(ATH_STAT_INVALID
, ah
->status
) ||
2184 ((ath5k_get_bus_type(ah
) != ATH_AHB
) &&
2185 !ath5k_hw_is_intr_pending(ah
))))
2190 ath5k_hw_get_isr(ah
, &status
); /* NB: clears IRQ too */
2192 ATH5K_DBG(ah
, ATH5K_DEBUG_INTR
, "status 0x%x/0x%x\n",
2196 * Fatal hw error -> Log and reset
2198 * Fatal errors are unrecoverable so we have to
2199 * reset the card. These errors include bus and
2202 if (unlikely(status
& AR5K_INT_FATAL
)) {
2204 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2205 "fatal int, resetting\n");
2206 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2209 * RX Overrun -> Count and reset if needed
2211 * Receive buffers are full. Either the bus is busy or
2212 * the CPU is not fast enough to process all received
2215 } else if (unlikely(status
& AR5K_INT_RXORN
)) {
2218 * Older chipsets need a reset to come out of this
2219 * condition, but we treat it as RX for newer chips.
2220 * We don't know exactly which versions need a reset
2221 * this guess is copied from the HAL.
2223 ah
->stats
.rxorn_intr
++;
2225 if (ah
->ah_mac_srev
< AR5K_SREV_AR5212
) {
2226 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2227 "rx overrun, resetting\n");
2228 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2230 ath5k_schedule_rx(ah
);
2234 /* Software Beacon Alert -> Schedule beacon tasklet */
2235 if (status
& AR5K_INT_SWBA
)
2236 tasklet_hi_schedule(&ah
->beacontq
);
2239 * No more RX descriptors -> Just count
2241 * NB: the hardware should re-read the link when
2242 * RXE bit is written, but it doesn't work at
2243 * least on older hardware revs.
2245 if (status
& AR5K_INT_RXEOL
)
2246 ah
->stats
.rxeol_intr
++;
2249 /* TX Underrun -> Bump tx trigger level */
2250 if (status
& AR5K_INT_TXURN
)
2251 ath5k_hw_update_tx_triglevel(ah
, true);
2253 /* RX -> Schedule rx tasklet */
2254 if (status
& (AR5K_INT_RXOK
| AR5K_INT_RXERR
))
2255 ath5k_schedule_rx(ah
);
2257 /* TX -> Schedule tx tasklet */
2258 if (status
& (AR5K_INT_TXOK
2262 ath5k_schedule_tx(ah
);
2264 /* Missed beacon -> TODO
2265 if (status & AR5K_INT_BMISS)
2268 /* MIB event -> Update counters and notify ANI */
2269 if (status
& AR5K_INT_MIB
) {
2270 ah
->stats
.mib_intr
++;
2271 ath5k_hw_update_mib_counters(ah
);
2272 ath5k_ani_mib_intr(ah
);
2275 /* GPIO -> Notify RFKill layer */
2276 if (status
& AR5K_INT_GPIO
)
2277 tasklet_schedule(&ah
->rf_kill
.toggleq
);
2281 if (ath5k_get_bus_type(ah
) == ATH_AHB
)
2284 } while (ath5k_hw_is_intr_pending(ah
) && --counter
> 0);
2287 * Until we handle rx/tx interrupts mask them on IMR
2289 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2290 * and unset after we 've handled the interrupts.
2292 if (ah
->rx_pending
|| ah
->tx_pending
)
2293 ath5k_set_current_imask(ah
);
2295 if (unlikely(!counter
))
2296 ATH5K_WARN(ah
, "too many interrupts, giving up for now\n");
2298 /* Fire up calibration poll */
2299 ath5k_intr_calibration_poll(ah
);
2305 * Periodically recalibrate the PHY to account
2306 * for temperature/environment changes.
2309 ath5k_calibrate_work(struct work_struct
*work
)
2311 struct ath5k_hw
*ah
= container_of(work
, struct ath5k_hw
,
2314 /* Should we run a full calibration ? */
2315 if (time_is_before_eq_jiffies(ah
->ah_cal_next_full
)) {
2317 ah
->ah_cal_next_full
= jiffies
+
2318 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL
);
2319 ah
->ah_cal_mask
|= AR5K_CALIBRATION_FULL
;
2321 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
2322 "running full calibration\n");
2324 if (ath5k_hw_gainf_calibrate(ah
) == AR5K_RFGAIN_NEED_CHANGE
) {
2326 * Rfgain is out of bounds, reset the chip
2327 * to load new gain values.
2329 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2330 "got new rfgain, resetting\n");
2331 ieee80211_queue_work(ah
->hw
, &ah
->reset_work
);
2334 /* TODO: On full calibration we should stop TX here,
2335 * so that it doesn't interfere (mostly due to gain_f
2336 * calibration that messes with tx packets -see phy.c).
2338 * NOTE: Stopping the queues from above is not enough
2339 * to stop TX but saves us from disconecting (at least
2340 * we don't lose packets). */
2341 ieee80211_stop_queues(ah
->hw
);
2343 ah
->ah_cal_mask
|= AR5K_CALIBRATION_SHORT
;
2346 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
, "channel %u/%x\n",
2347 ieee80211_frequency_to_channel(ah
->curchan
->center_freq
),
2348 ah
->curchan
->hw_value
);
2350 if (ath5k_hw_phy_calibrate(ah
, ah
->curchan
))
2351 ATH5K_ERR(ah
, "calibration of channel %u failed\n",
2352 ieee80211_frequency_to_channel(
2353 ah
->curchan
->center_freq
));
2355 /* Clear calibration flags */
2356 if (ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
) {
2357 ieee80211_wake_queues(ah
->hw
);
2358 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_FULL
;
2359 } else if (ah
->ah_cal_mask
& AR5K_CALIBRATION_SHORT
)
2360 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_SHORT
;
2365 ath5k_tasklet_ani(unsigned long data
)
2367 struct ath5k_hw
*ah
= (void *)data
;
2369 ah
->ah_cal_mask
|= AR5K_CALIBRATION_ANI
;
2370 ath5k_ani_calibration(ah
);
2371 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_ANI
;
2376 ath5k_tx_complete_poll_work(struct work_struct
*work
)
2378 struct ath5k_hw
*ah
= container_of(work
, struct ath5k_hw
,
2379 tx_complete_work
.work
);
2380 struct ath5k_txq
*txq
;
2382 bool needreset
= false;
2384 mutex_lock(&ah
->lock
);
2386 for (i
= 0; i
< ARRAY_SIZE(ah
->txqs
); i
++) {
2387 if (ah
->txqs
[i
].setup
) {
2389 spin_lock_bh(&txq
->lock
);
2390 if (txq
->txq_len
> 1) {
2391 if (txq
->txq_poll_mark
) {
2392 ATH5K_DBG(ah
, ATH5K_DEBUG_XMIT
,
2393 "TX queue stuck %d\n",
2397 spin_unlock_bh(&txq
->lock
);
2400 txq
->txq_poll_mark
= true;
2403 spin_unlock_bh(&txq
->lock
);
2408 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2409 "TX queues stuck, resetting\n");
2410 ath5k_reset(ah
, NULL
, true);
2413 mutex_unlock(&ah
->lock
);
2415 ieee80211_queue_delayed_work(ah
->hw
, &ah
->tx_complete_work
,
2416 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT
));
2420 /*************************\
2421 * Initialization routines *
2422 \*************************/
2425 ath5k_init_ah(struct ath5k_hw
*ah
, const struct ath_bus_ops
*bus_ops
)
2427 struct ieee80211_hw
*hw
= ah
->hw
;
2428 struct ath_common
*common
;
2432 /* Initialize driver private data */
2433 SET_IEEE80211_DEV(hw
, ah
->dev
);
2434 hw
->flags
= IEEE80211_HW_RX_INCLUDES_FCS
|
2435 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
2436 IEEE80211_HW_SIGNAL_DBM
|
2437 IEEE80211_HW_REPORTS_TX_ACK_STATUS
;
2439 hw
->wiphy
->interface_modes
=
2440 BIT(NL80211_IFTYPE_AP
) |
2441 BIT(NL80211_IFTYPE_STATION
) |
2442 BIT(NL80211_IFTYPE_ADHOC
) |
2443 BIT(NL80211_IFTYPE_MESH_POINT
);
2445 /* both antennas can be configured as RX or TX */
2446 hw
->wiphy
->available_antennas_tx
= 0x3;
2447 hw
->wiphy
->available_antennas_rx
= 0x3;
2449 hw
->extra_tx_headroom
= 2;
2450 hw
->channel_change_time
= 5000;
2453 * Mark the device as detached to avoid processing
2454 * interrupts until setup is complete.
2456 __set_bit(ATH_STAT_INVALID
, ah
->status
);
2458 ah
->opmode
= NL80211_IFTYPE_STATION
;
2460 mutex_init(&ah
->lock
);
2461 spin_lock_init(&ah
->rxbuflock
);
2462 spin_lock_init(&ah
->txbuflock
);
2463 spin_lock_init(&ah
->block
);
2464 spin_lock_init(&ah
->irqlock
);
2466 /* Setup interrupt handler */
2467 ret
= request_irq(ah
->irq
, ath5k_intr
, IRQF_SHARED
, "ath", ah
);
2469 ATH5K_ERR(ah
, "request_irq failed\n");
2473 common
= ath5k_hw_common(ah
);
2474 common
->ops
= &ath5k_common_ops
;
2475 common
->bus_ops
= bus_ops
;
2479 common
->clockrate
= 40;
2482 * Cache line size is used to size and align various
2483 * structures used to communicate with the hardware.
2485 ath5k_read_cachesize(common
, &csz
);
2486 common
->cachelsz
= csz
<< 2; /* convert to bytes */
2488 spin_lock_init(&common
->cc_lock
);
2490 /* Initialize device */
2491 ret
= ath5k_hw_init(ah
);
2495 /* Set up multi-rate retry capabilities */
2496 if (ah
->ah_capabilities
.cap_has_mrr_support
) {
2498 hw
->max_rate_tries
= max(AR5K_INIT_RETRY_SHORT
,
2499 AR5K_INIT_RETRY_LONG
);
2502 hw
->vif_data_size
= sizeof(struct ath5k_vif
);
2504 /* Finish private driver data initialization */
2505 ret
= ath5k_init(hw
);
2509 ATH5K_INFO(ah
, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2510 ath5k_chip_name(AR5K_VERSION_MAC
, ah
->ah_mac_srev
),
2512 ah
->ah_phy_revision
);
2514 if (!ah
->ah_single_chip
) {
2515 /* Single chip radio (!RF5111) */
2516 if (ah
->ah_radio_5ghz_revision
&&
2517 !ah
->ah_radio_2ghz_revision
) {
2518 /* No 5GHz support -> report 2GHz radio */
2519 if (!test_bit(AR5K_MODE_11A
,
2520 ah
->ah_capabilities
.cap_mode
)) {
2521 ATH5K_INFO(ah
, "RF%s 2GHz radio found (0x%x)\n",
2522 ath5k_chip_name(AR5K_VERSION_RAD
,
2523 ah
->ah_radio_5ghz_revision
),
2524 ah
->ah_radio_5ghz_revision
);
2525 /* No 2GHz support (5110 and some
2526 * 5GHz only cards) -> report 5GHz radio */
2527 } else if (!test_bit(AR5K_MODE_11B
,
2528 ah
->ah_capabilities
.cap_mode
)) {
2529 ATH5K_INFO(ah
, "RF%s 5GHz radio found (0x%x)\n",
2530 ath5k_chip_name(AR5K_VERSION_RAD
,
2531 ah
->ah_radio_5ghz_revision
),
2532 ah
->ah_radio_5ghz_revision
);
2533 /* Multiband radio */
2535 ATH5K_INFO(ah
, "RF%s multiband radio found"
2537 ath5k_chip_name(AR5K_VERSION_RAD
,
2538 ah
->ah_radio_5ghz_revision
),
2539 ah
->ah_radio_5ghz_revision
);
2542 /* Multi chip radio (RF5111 - RF2111) ->
2543 * report both 2GHz/5GHz radios */
2544 else if (ah
->ah_radio_5ghz_revision
&&
2545 ah
->ah_radio_2ghz_revision
) {
2546 ATH5K_INFO(ah
, "RF%s 5GHz radio found (0x%x)\n",
2547 ath5k_chip_name(AR5K_VERSION_RAD
,
2548 ah
->ah_radio_5ghz_revision
),
2549 ah
->ah_radio_5ghz_revision
);
2550 ATH5K_INFO(ah
, "RF%s 2GHz radio found (0x%x)\n",
2551 ath5k_chip_name(AR5K_VERSION_RAD
,
2552 ah
->ah_radio_2ghz_revision
),
2553 ah
->ah_radio_2ghz_revision
);
2557 ath5k_debug_init_device(ah
);
2559 /* ready to process interrupts */
2560 __clear_bit(ATH_STAT_INVALID
, ah
->status
);
2564 ath5k_hw_deinit(ah
);
2566 free_irq(ah
->irq
, ah
);
2572 ath5k_stop_locked(struct ath5k_hw
*ah
)
2575 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "invalid %u\n",
2576 test_bit(ATH_STAT_INVALID
, ah
->status
));
2579 * Shutdown the hardware and driver:
2580 * stop output from above
2581 * disable interrupts
2583 * turn off the radio
2584 * clear transmit machinery
2585 * clear receive machinery
2586 * drain and release tx queues
2587 * reclaim beacon resources
2588 * power down hardware
2590 * Note that some of this work is not possible if the
2591 * hardware is gone (invalid).
2593 ieee80211_stop_queues(ah
->hw
);
2595 if (!test_bit(ATH_STAT_INVALID
, ah
->status
)) {
2597 ath5k_hw_set_imr(ah
, 0);
2598 synchronize_irq(ah
->irq
);
2600 ath5k_hw_dma_stop(ah
);
2601 ath5k_drain_tx_buffs(ah
);
2602 ath5k_hw_phy_disable(ah
);
2608 int ath5k_start(struct ieee80211_hw
*hw
)
2610 struct ath5k_hw
*ah
= hw
->priv
;
2611 struct ath_common
*common
= ath5k_hw_common(ah
);
2614 mutex_lock(&ah
->lock
);
2616 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "mode %d\n", ah
->opmode
);
2619 * Stop anything previously setup. This is safe
2620 * no matter this is the first time through or not.
2622 ath5k_stop_locked(ah
);
2625 * The basic interface to setting the hardware in a good
2626 * state is ``reset''. On return the hardware is known to
2627 * be powered up and with interrupts disabled. This must
2628 * be followed by initialization of the appropriate bits
2629 * and then setup of the interrupt mask.
2631 ah
->curchan
= ah
->hw
->conf
.channel
;
2632 ah
->imask
= AR5K_INT_RXOK
2642 ret
= ath5k_reset(ah
, NULL
, false);
2646 if (!ath5k_modparam_no_hw_rfkill_switch
)
2647 ath5k_rfkill_hw_start(ah
);
2650 * Reset the key cache since some parts do not reset the
2651 * contents on initial power up or resume from suspend.
2653 for (i
= 0; i
< common
->keymax
; i
++)
2654 ath_hw_keyreset(common
, (u16
) i
);
2656 /* Use higher rates for acks instead of base
2658 ah
->ah_ack_bitrate_high
= true;
2660 for (i
= 0; i
< ARRAY_SIZE(ah
->bslot
); i
++)
2661 ah
->bslot
[i
] = NULL
;
2666 mutex_unlock(&ah
->lock
);
2668 ieee80211_queue_delayed_work(ah
->hw
, &ah
->tx_complete_work
,
2669 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT
));
2674 static void ath5k_stop_tasklets(struct ath5k_hw
*ah
)
2676 ah
->rx_pending
= false;
2677 ah
->tx_pending
= false;
2678 tasklet_kill(&ah
->rxtq
);
2679 tasklet_kill(&ah
->txtq
);
2680 tasklet_kill(&ah
->beacontq
);
2681 tasklet_kill(&ah
->ani_tasklet
);
2685 * Stop the device, grabbing the top-level lock to protect
2686 * against concurrent entry through ath5k_init (which can happen
2687 * if another thread does a system call and the thread doing the
2688 * stop is preempted).
2690 void ath5k_stop(struct ieee80211_hw
*hw
)
2692 struct ath5k_hw
*ah
= hw
->priv
;
2695 mutex_lock(&ah
->lock
);
2696 ret
= ath5k_stop_locked(ah
);
2697 if (ret
== 0 && !test_bit(ATH_STAT_INVALID
, ah
->status
)) {
2699 * Don't set the card in full sleep mode!
2701 * a) When the device is in this state it must be carefully
2702 * woken up or references to registers in the PCI clock
2703 * domain may freeze the bus (and system). This varies
2704 * by chip and is mostly an issue with newer parts
2705 * (madwifi sources mentioned srev >= 0x78) that go to
2706 * sleep more quickly.
2708 * b) On older chips full sleep results a weird behaviour
2709 * during wakeup. I tested various cards with srev < 0x78
2710 * and they don't wake up after module reload, a second
2711 * module reload is needed to bring the card up again.
2713 * Until we figure out what's going on don't enable
2714 * full chip reset on any chip (this is what Legacy HAL
2715 * and Sam's HAL do anyway). Instead Perform a full reset
2716 * on the device (same as initial state after attach) and
2717 * leave it idle (keep MAC/BB on warm reset) */
2718 ret
= ath5k_hw_on_hold(ah
);
2720 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
,
2721 "putting device to sleep\n");
2725 mutex_unlock(&ah
->lock
);
2727 ath5k_stop_tasklets(ah
);
2729 cancel_delayed_work_sync(&ah
->tx_complete_work
);
2731 if (!ath5k_modparam_no_hw_rfkill_switch
)
2732 ath5k_rfkill_hw_stop(ah
);
2736 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2737 * and change to the given channel.
2739 * This should be called with ah->lock.
2742 ath5k_reset(struct ath5k_hw
*ah
, struct ieee80211_channel
*chan
,
2745 struct ath_common
*common
= ath5k_hw_common(ah
);
2749 ATH5K_DBG(ah
, ATH5K_DEBUG_RESET
, "resetting\n");
2751 ath5k_hw_set_imr(ah
, 0);
2752 synchronize_irq(ah
->irq
);
2753 ath5k_stop_tasklets(ah
);
2755 /* Save ani mode and disable ANI during
2756 * reset. If we don't we might get false
2757 * PHY error interrupts. */
2758 ani_mode
= ah
->ani_state
.ani_mode
;
2759 ath5k_ani_init(ah
, ATH5K_ANI_MODE_OFF
);
2761 /* We are going to empty hw queues
2762 * so we should also free any remaining
2764 ath5k_drain_tx_buffs(ah
);
2768 fast
= ((chan
!= NULL
) && modparam_fastchanswitch
) ? 1 : 0;
2770 ret
= ath5k_hw_reset(ah
, ah
->opmode
, ah
->curchan
, fast
, skip_pcu
);
2772 ATH5K_ERR(ah
, "can't reset hardware (%d)\n", ret
);
2776 ret
= ath5k_rx_start(ah
);
2778 ATH5K_ERR(ah
, "can't start recv logic\n");
2782 ath5k_ani_init(ah
, ani_mode
);
2785 * Set calibration intervals
2787 * Note: We don't need to run calibration imediately
2788 * since some initial calibration is done on reset
2789 * even for fast channel switching. Also on scanning
2790 * this will get set again and again and it won't get
2791 * executed unless we connect somewhere and spend some
2792 * time on the channel (that's what calibration needs
2793 * anyway to be accurate).
2795 ah
->ah_cal_next_full
= jiffies
+
2796 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL
);
2797 ah
->ah_cal_next_ani
= jiffies
+
2798 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI
);
2799 ah
->ah_cal_next_short
= jiffies
+
2800 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT
);
2802 ewma_init(&ah
->ah_beacon_rssi_avg
, 1024, 8);
2804 /* clear survey data and cycle counters */
2805 memset(&ah
->survey
, 0, sizeof(ah
->survey
));
2806 spin_lock_bh(&common
->cc_lock
);
2807 ath_hw_cycle_counters_update(common
);
2808 memset(&common
->cc_survey
, 0, sizeof(common
->cc_survey
));
2809 memset(&common
->cc_ani
, 0, sizeof(common
->cc_ani
));
2810 spin_unlock_bh(&common
->cc_lock
);
2813 * Change channels and update the h/w rate map if we're switching;
2814 * e.g. 11a to 11b/g.
2816 * We may be doing a reset in response to an ioctl that changes the
2817 * channel so update any state that might change as a result.
2821 /* ath5k_chan_change(ah, c); */
2823 ath5k_beacon_config(ah
);
2824 /* intrs are enabled by ath5k_beacon_config */
2826 ieee80211_wake_queues(ah
->hw
);
2833 static void ath5k_reset_work(struct work_struct
*work
)
2835 struct ath5k_hw
*ah
= container_of(work
, struct ath5k_hw
,
2838 mutex_lock(&ah
->lock
);
2839 ath5k_reset(ah
, NULL
, true);
2840 mutex_unlock(&ah
->lock
);
2843 static int __devinit
2844 ath5k_init(struct ieee80211_hw
*hw
)
2847 struct ath5k_hw
*ah
= hw
->priv
;
2848 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(ah
);
2849 struct ath5k_txq
*txq
;
2850 u8 mac
[ETH_ALEN
] = {};
2855 * Collect the channel list. The 802.11 layer
2856 * is responsible for filtering this list based
2857 * on settings like the phy mode and regulatory
2858 * domain restrictions.
2860 ret
= ath5k_setup_bands(hw
);
2862 ATH5K_ERR(ah
, "can't get channels\n");
2867 * Allocate tx+rx descriptors and populate the lists.
2869 ret
= ath5k_desc_alloc(ah
);
2871 ATH5K_ERR(ah
, "can't allocate descriptors\n");
2876 * Allocate hardware transmit queues: one queue for
2877 * beacon frames and one data queue for each QoS
2878 * priority. Note that hw functions handle resetting
2879 * these queues at the needed time.
2881 ret
= ath5k_beaconq_setup(ah
);
2883 ATH5K_ERR(ah
, "can't setup a beacon xmit queue\n");
2887 ah
->cabq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_CAB
, 0);
2888 if (IS_ERR(ah
->cabq
)) {
2889 ATH5K_ERR(ah
, "can't setup cab queue\n");
2890 ret
= PTR_ERR(ah
->cabq
);
2894 /* 5211 and 5212 usually support 10 queues but we better rely on the
2895 * capability information */
2896 if (ah
->ah_capabilities
.cap_queues
.q_tx_num
>= 6) {
2897 /* This order matches mac80211's queue priority, so we can
2898 * directly use the mac80211 queue number without any mapping */
2899 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_VO
);
2901 ATH5K_ERR(ah
, "can't setup xmit queue\n");
2905 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_VI
);
2907 ATH5K_ERR(ah
, "can't setup xmit queue\n");
2911 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BE
);
2913 ATH5K_ERR(ah
, "can't setup xmit queue\n");
2917 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BK
);
2919 ATH5K_ERR(ah
, "can't setup xmit queue\n");
2925 /* older hardware (5210) can only support one data queue */
2926 txq
= ath5k_txq_setup(ah
, AR5K_TX_QUEUE_DATA
, AR5K_WME_AC_BE
);
2928 ATH5K_ERR(ah
, "can't setup xmit queue\n");
2935 tasklet_init(&ah
->rxtq
, ath5k_tasklet_rx
, (unsigned long)ah
);
2936 tasklet_init(&ah
->txtq
, ath5k_tasklet_tx
, (unsigned long)ah
);
2937 tasklet_init(&ah
->beacontq
, ath5k_tasklet_beacon
, (unsigned long)ah
);
2938 tasklet_init(&ah
->ani_tasklet
, ath5k_tasklet_ani
, (unsigned long)ah
);
2940 INIT_WORK(&ah
->reset_work
, ath5k_reset_work
);
2941 INIT_WORK(&ah
->calib_work
, ath5k_calibrate_work
);
2942 INIT_DELAYED_WORK(&ah
->tx_complete_work
, ath5k_tx_complete_poll_work
);
2944 ret
= ath5k_hw_common(ah
)->bus_ops
->eeprom_read_mac(ah
, mac
);
2946 ATH5K_ERR(ah
, "unable to read address from EEPROM\n");
2950 SET_IEEE80211_PERM_ADDR(hw
, mac
);
2951 /* All MAC address bits matter for ACKs */
2952 ath5k_update_bssid_mask_and_opmode(ah
, NULL
);
2954 regulatory
->current_rd
= ah
->ah_capabilities
.cap_eeprom
.ee_regdomain
;
2955 ret
= ath_regd_init(regulatory
, hw
->wiphy
, ath5k_reg_notifier
);
2957 ATH5K_ERR(ah
, "can't initialize regulatory system\n");
2961 ret
= ieee80211_register_hw(hw
);
2963 ATH5K_ERR(ah
, "can't register ieee80211 hw\n");
2967 if (!ath_is_world_regd(regulatory
))
2968 regulatory_hint(hw
->wiphy
, regulatory
->alpha2
);
2970 ath5k_init_leds(ah
);
2972 ath5k_sysfs_register(ah
);
2976 ath5k_txq_release(ah
);
2978 ath5k_hw_release_tx_queue(ah
, ah
->bhalq
);
2980 ath5k_desc_free(ah
);
2986 ath5k_deinit_ah(struct ath5k_hw
*ah
)
2988 struct ieee80211_hw
*hw
= ah
->hw
;
2991 * NB: the order of these is important:
2992 * o call the 802.11 layer before detaching ath5k_hw to
2993 * ensure callbacks into the driver to delete global
2994 * key cache entries can be handled
2995 * o reclaim the tx queue data structures after calling
2996 * the 802.11 layer as we'll get called back to reclaim
2997 * node state and potentially want to use them
2998 * o to cleanup the tx queues the hal is called, so detach
3000 * XXX: ??? detach ath5k_hw ???
3001 * Other than that, it's straightforward...
3003 ieee80211_unregister_hw(hw
);
3004 ath5k_desc_free(ah
);
3005 ath5k_txq_release(ah
);
3006 ath5k_hw_release_tx_queue(ah
, ah
->bhalq
);
3007 ath5k_unregister_leds(ah
);
3009 ath5k_sysfs_unregister(ah
);
3011 * NB: can't reclaim these until after ieee80211_ifdetach
3012 * returns because we'll get called back to reclaim node
3013 * state and potentially want to use them.
3015 ath5k_hw_deinit(ah
);
3016 free_irq(ah
->irq
, ah
);
3020 ath5k_any_vif_assoc(struct ath5k_hw
*ah
)
3022 struct ath5k_vif_iter_data iter_data
;
3023 iter_data
.hw_macaddr
= NULL
;
3024 iter_data
.any_assoc
= false;
3025 iter_data
.need_set_hw_addr
= false;
3026 iter_data
.found_active
= true;
3028 ieee80211_iterate_active_interfaces_atomic(ah
->hw
, ath5k_vif_iter
,
3030 return iter_data
.any_assoc
;
3034 ath5k_set_beacon_filter(struct ieee80211_hw
*hw
, bool enable
)
3036 struct ath5k_hw
*ah
= hw
->priv
;
3038 rfilt
= ath5k_hw_get_rx_filter(ah
);
3040 rfilt
|= AR5K_RX_FILTER_BEACON
;
3042 rfilt
&= ~AR5K_RX_FILTER_BEACON
;
3043 ath5k_hw_set_rx_filter(ah
, rfilt
);
3044 ah
->filter_flags
= rfilt
;