spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / net / wireless / ath / ath5k / pcu.c
blobcebfd6fd31d3a1212ed3568c3572dcc800e52e12
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Matthew W. S. Bell <mentor@madwifi.org>
5 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23 /*********************************\
24 * Protocol Control Unit Functions *
25 \*********************************/
27 #include <asm/unaligned.h>
29 #include "ath5k.h"
30 #include "reg.h"
31 #include "debug.h"
33 /**
34 * DOC: Protocol Control Unit (PCU) functions
36 * Protocol control unit is responsible to maintain various protocol
37 * properties before a frame is send and after a frame is received to/from
38 * baseband. To be more specific, PCU handles:
40 * - Buffering of RX and TX frames (after QCU/DCUs)
42 * - Encrypting and decrypting (using the built-in engine)
44 * - Generating ACKs, RTS/CTS frames
46 * - Maintaining TSF
48 * - FCS
50 * - Updating beacon data (with TSF etc)
52 * - Generating virtual CCA
54 * - RX/Multicast filtering
56 * - BSSID filtering
58 * - Various statistics
60 * -Different operating modes: AP, STA, IBSS
62 * Note: Most of these functions can be tweaked/bypassed so you can do
63 * them on sw above for debugging or research. For more infos check out PCU
64 * registers on reg.h.
67 /**
68 * DOC: ACK rates
70 * AR5212+ can use higher rates for ack transmission
71 * based on current tx rate instead of the base rate.
72 * It does this to better utilize channel usage.
73 * There is a mapping between G rates (that cover both
74 * CCK and OFDM) and ack rates that we use when setting
75 * rate -> duration table. This mapping is hw-based so
76 * don't change anything.
78 * To enable this functionality we must set
79 * ah->ah_ack_bitrate_high to true else base rate is
80 * used (1Mb for CCK, 6Mb for OFDM).
82 static const unsigned int ack_rates_high[] =
83 /* Tx -> ACK */
84 /* 1Mb -> 1Mb */ { 0,
85 /* 2MB -> 2Mb */ 1,
86 /* 5.5Mb -> 2Mb */ 1,
87 /* 11Mb -> 2Mb */ 1,
88 /* 6Mb -> 6Mb */ 4,
89 /* 9Mb -> 6Mb */ 4,
90 /* 12Mb -> 12Mb */ 6,
91 /* 18Mb -> 12Mb */ 6,
92 /* 24Mb -> 24Mb */ 8,
93 /* 36Mb -> 24Mb */ 8,
94 /* 48Mb -> 24Mb */ 8,
95 /* 54Mb -> 24Mb */ 8 };
97 /*******************\
98 * Helper functions *
99 \*******************/
102 * ath5k_hw_get_frame_duration() - Get tx time of a frame
103 * @ah: The &struct ath5k_hw
104 * @len: Frame's length in bytes
105 * @rate: The @struct ieee80211_rate
106 * @shortpre: Indicate short preample
108 * Calculate tx duration of a frame given it's rate and length
109 * It extends ieee80211_generic_frame_duration for non standard
110 * bwmodes.
113 ath5k_hw_get_frame_duration(struct ath5k_hw *ah,
114 int len, struct ieee80211_rate *rate, bool shortpre)
116 int sifs, preamble, plcp_bits, sym_time;
117 int bitrate, bits, symbols, symbol_bits;
118 int dur;
120 /* Fallback */
121 if (!ah->ah_bwmode) {
122 __le16 raw_dur = ieee80211_generic_frame_duration(ah->hw,
123 NULL, len, rate);
125 /* subtract difference between long and short preamble */
126 dur = le16_to_cpu(raw_dur);
127 if (shortpre)
128 dur -= 96;
130 return dur;
133 bitrate = rate->bitrate;
134 preamble = AR5K_INIT_OFDM_PREAMPLE_TIME;
135 plcp_bits = AR5K_INIT_OFDM_PLCP_BITS;
136 sym_time = AR5K_INIT_OFDM_SYMBOL_TIME;
138 switch (ah->ah_bwmode) {
139 case AR5K_BWMODE_40MHZ:
140 sifs = AR5K_INIT_SIFS_TURBO;
141 preamble = AR5K_INIT_OFDM_PREAMBLE_TIME_MIN;
142 break;
143 case AR5K_BWMODE_10MHZ:
144 sifs = AR5K_INIT_SIFS_HALF_RATE;
145 preamble *= 2;
146 sym_time *= 2;
147 break;
148 case AR5K_BWMODE_5MHZ:
149 sifs = AR5K_INIT_SIFS_QUARTER_RATE;
150 preamble *= 4;
151 sym_time *= 4;
152 break;
153 default:
154 sifs = AR5K_INIT_SIFS_DEFAULT_BG;
155 break;
158 bits = plcp_bits + (len << 3);
159 /* Bit rate is in 100Kbits */
160 symbol_bits = bitrate * sym_time;
161 symbols = DIV_ROUND_UP(bits * 10, symbol_bits);
163 dur = sifs + preamble + (sym_time * symbols);
165 return dur;
169 * ath5k_hw_get_default_slottime() - Get the default slot time for current mode
170 * @ah: The &struct ath5k_hw
172 unsigned int
173 ath5k_hw_get_default_slottime(struct ath5k_hw *ah)
175 struct ieee80211_channel *channel = ah->ah_current_channel;
176 unsigned int slot_time;
178 switch (ah->ah_bwmode) {
179 case AR5K_BWMODE_40MHZ:
180 slot_time = AR5K_INIT_SLOT_TIME_TURBO;
181 break;
182 case AR5K_BWMODE_10MHZ:
183 slot_time = AR5K_INIT_SLOT_TIME_HALF_RATE;
184 break;
185 case AR5K_BWMODE_5MHZ:
186 slot_time = AR5K_INIT_SLOT_TIME_QUARTER_RATE;
187 break;
188 case AR5K_BWMODE_DEFAULT:
189 default:
190 slot_time = AR5K_INIT_SLOT_TIME_DEFAULT;
191 if ((channel->hw_value == AR5K_MODE_11B) && !ah->ah_short_slot)
192 slot_time = AR5K_INIT_SLOT_TIME_B;
193 break;
196 return slot_time;
200 * ath5k_hw_get_default_sifs() - Get the default SIFS for current mode
201 * @ah: The &struct ath5k_hw
203 unsigned int
204 ath5k_hw_get_default_sifs(struct ath5k_hw *ah)
206 struct ieee80211_channel *channel = ah->ah_current_channel;
207 unsigned int sifs;
209 switch (ah->ah_bwmode) {
210 case AR5K_BWMODE_40MHZ:
211 sifs = AR5K_INIT_SIFS_TURBO;
212 break;
213 case AR5K_BWMODE_10MHZ:
214 sifs = AR5K_INIT_SIFS_HALF_RATE;
215 break;
216 case AR5K_BWMODE_5MHZ:
217 sifs = AR5K_INIT_SIFS_QUARTER_RATE;
218 break;
219 case AR5K_BWMODE_DEFAULT:
220 sifs = AR5K_INIT_SIFS_DEFAULT_BG;
221 default:
222 if (channel->band == IEEE80211_BAND_5GHZ)
223 sifs = AR5K_INIT_SIFS_DEFAULT_A;
224 break;
227 return sifs;
231 * ath5k_hw_update_mib_counters() - Update MIB counters (mac layer statistics)
232 * @ah: The &struct ath5k_hw
234 * Reads MIB counters from PCU and updates sw statistics. Is called after a
235 * MIB interrupt, because one of these counters might have reached their maximum
236 * and triggered the MIB interrupt, to let us read and clear the counter.
238 * NOTE: Is called in interrupt context!
240 void
241 ath5k_hw_update_mib_counters(struct ath5k_hw *ah)
243 struct ath5k_statistics *stats = &ah->stats;
245 /* Read-And-Clear */
246 stats->ack_fail += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
247 stats->rts_fail += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
248 stats->rts_ok += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
249 stats->fcs_error += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
250 stats->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
254 /******************\
255 * ACK/CTS Timeouts *
256 \******************/
259 * ath5k_hw_write_rate_duration() - Fill rate code to duration table
260 * @ah: The &struct ath5k_hw
262 * Write the rate code to duration table upon hw reset. This is a helper for
263 * ath5k_hw_pcu_init(). It seems all this is doing is setting an ACK timeout on
264 * the hardware, based on current mode, for each rate. The rates which are
265 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
266 * different rate code so we write their value twice (one for long preamble
267 * and one for short).
269 * Note: Band doesn't matter here, if we set the values for OFDM it works
270 * on both a and g modes. So all we have to do is set values for all g rates
271 * that include all OFDM and CCK rates.
274 static inline void
275 ath5k_hw_write_rate_duration(struct ath5k_hw *ah)
277 struct ieee80211_rate *rate;
278 unsigned int i;
279 /* 802.11g covers both OFDM and CCK */
280 u8 band = IEEE80211_BAND_2GHZ;
282 /* Write rate duration table */
283 for (i = 0; i < ah->sbands[band].n_bitrates; i++) {
284 u32 reg;
285 u16 tx_time;
287 if (ah->ah_ack_bitrate_high)
288 rate = &ah->sbands[band].bitrates[ack_rates_high[i]];
289 /* CCK -> 1Mb */
290 else if (i < 4)
291 rate = &ah->sbands[band].bitrates[0];
292 /* OFDM -> 6Mb */
293 else
294 rate = &ah->sbands[band].bitrates[4];
296 /* Set ACK timeout */
297 reg = AR5K_RATE_DUR(rate->hw_value);
299 /* An ACK frame consists of 10 bytes. If you add the FCS,
300 * which ieee80211_generic_frame_duration() adds,
301 * its 14 bytes. Note we use the control rate and not the
302 * actual rate for this rate. See mac80211 tx.c
303 * ieee80211_duration() for a brief description of
304 * what rate we should choose to TX ACKs. */
305 tx_time = ath5k_hw_get_frame_duration(ah, 10, rate, false);
307 ath5k_hw_reg_write(ah, tx_time, reg);
309 if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
310 continue;
312 tx_time = ath5k_hw_get_frame_duration(ah, 10, rate, true);
313 ath5k_hw_reg_write(ah, tx_time,
314 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
319 * ath5k_hw_set_ack_timeout() - Set ACK timeout on PCU
320 * @ah: The &struct ath5k_hw
321 * @timeout: Timeout in usec
323 static int
324 ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
326 if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK))
327 <= timeout)
328 return -EINVAL;
330 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
331 ath5k_hw_htoclock(ah, timeout));
333 return 0;
337 * ath5k_hw_set_cts_timeout() - Set CTS timeout on PCU
338 * @ah: The &struct ath5k_hw
339 * @timeout: Timeout in usec
341 static int
342 ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
344 if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS))
345 <= timeout)
346 return -EINVAL;
348 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
349 ath5k_hw_htoclock(ah, timeout));
351 return 0;
355 /*******************\
356 * RX filter Control *
357 \*******************/
360 * ath5k_hw_set_lladdr() - Set station id
361 * @ah: The &struct ath5k_hw
362 * @mac: The card's mac address (array of octets)
364 * Set station id on hw using the provided mac address
367 ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
369 struct ath_common *common = ath5k_hw_common(ah);
370 u32 low_id, high_id;
371 u32 pcu_reg;
373 /* Set new station ID */
374 memcpy(common->macaddr, mac, ETH_ALEN);
376 pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
378 low_id = get_unaligned_le32(mac);
379 high_id = get_unaligned_le16(mac + 4);
381 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
382 ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
384 return 0;
388 * ath5k_hw_set_bssid() - Set current BSSID on hw
389 * @ah: The &struct ath5k_hw
391 * Sets the current BSSID and BSSID mask we have from the
392 * common struct into the hardware
394 void
395 ath5k_hw_set_bssid(struct ath5k_hw *ah)
397 struct ath_common *common = ath5k_hw_common(ah);
398 u16 tim_offset = 0;
401 * Set BSSID mask on 5212
403 if (ah->ah_version == AR5K_AR5212)
404 ath_hw_setbssidmask(common);
407 * Set BSSID
409 ath5k_hw_reg_write(ah,
410 get_unaligned_le32(common->curbssid),
411 AR5K_BSS_ID0);
412 ath5k_hw_reg_write(ah,
413 get_unaligned_le16(common->curbssid + 4) |
414 ((common->curaid & 0x3fff) << AR5K_BSS_ID1_AID_S),
415 AR5K_BSS_ID1);
417 if (common->curaid == 0) {
418 ath5k_hw_disable_pspoll(ah);
419 return;
422 AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
423 tim_offset ? tim_offset + 4 : 0);
425 ath5k_hw_enable_pspoll(ah, NULL, 0);
429 * ath5k_hw_set_bssid_mask() - Filter out bssids we listen
430 * @ah: The &struct ath5k_hw
431 * @mask: The BSSID mask to set (array of octets)
433 * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
434 * which bits of the interface's MAC address should be looked at when trying
435 * to decide which packets to ACK. In station mode and AP mode with a single
436 * BSS every bit matters since we lock to only one BSS. In AP mode with
437 * multiple BSSes (virtual interfaces) not every bit matters because hw must
438 * accept frames for all BSSes and so we tweak some bits of our mac address
439 * in order to have multiple BSSes.
441 * For more information check out ../hw.c of the common ath module.
443 void
444 ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
446 struct ath_common *common = ath5k_hw_common(ah);
448 /* Cache bssid mask so that we can restore it
449 * on reset */
450 memcpy(common->bssidmask, mask, ETH_ALEN);
451 if (ah->ah_version == AR5K_AR5212)
452 ath_hw_setbssidmask(common);
456 * ath5k_hw_set_mcast_filter() - Set multicast filter
457 * @ah: The &struct ath5k_hw
458 * @filter0: Lower 32bits of muticast filter
459 * @filter1: Higher 16bits of multicast filter
461 void
462 ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
464 ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
465 ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
469 * ath5k_hw_get_rx_filter() - Get current rx filter
470 * @ah: The &struct ath5k_hw
472 * Returns the RX filter by reading rx filter and
473 * phy error filter registers. RX filter is used
474 * to set the allowed frame types that PCU will accept
475 * and pass to the driver. For a list of frame types
476 * check out reg.h.
479 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
481 u32 data, filter = 0;
483 filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
485 /*Radar detection for 5212*/
486 if (ah->ah_version == AR5K_AR5212) {
487 data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
489 if (data & AR5K_PHY_ERR_FIL_RADAR)
490 filter |= AR5K_RX_FILTER_RADARERR;
491 if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
492 filter |= AR5K_RX_FILTER_PHYERR;
495 return filter;
499 * ath5k_hw_set_rx_filter() - Set rx filter
500 * @ah: The &struct ath5k_hw
501 * @filter: RX filter mask (see reg.h)
503 * Sets RX filter register and also handles PHY error filter
504 * register on 5212 and newer chips so that we have proper PHY
505 * error reporting.
507 void
508 ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
510 u32 data = 0;
512 /* Set PHY error filter register on 5212*/
513 if (ah->ah_version == AR5K_AR5212) {
514 if (filter & AR5K_RX_FILTER_RADARERR)
515 data |= AR5K_PHY_ERR_FIL_RADAR;
516 if (filter & AR5K_RX_FILTER_PHYERR)
517 data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
521 * The AR5210 uses promiscuous mode to detect radar activity
523 if (ah->ah_version == AR5K_AR5210 &&
524 (filter & AR5K_RX_FILTER_RADARERR)) {
525 filter &= ~AR5K_RX_FILTER_RADARERR;
526 filter |= AR5K_RX_FILTER_PROM;
529 /*Zero length DMA (phy error reporting) */
530 if (data)
531 AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
532 else
533 AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
535 /*Write RX Filter register*/
536 ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
538 /*Write PHY error filter register on 5212*/
539 if (ah->ah_version == AR5K_AR5212)
540 ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
545 /****************\
546 * Beacon control *
547 \****************/
549 #define ATH5K_MAX_TSF_READ 10
552 * ath5k_hw_get_tsf64() - Get the full 64bit TSF
553 * @ah: The &struct ath5k_hw
555 * Returns the current TSF
558 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
560 u32 tsf_lower, tsf_upper1, tsf_upper2;
561 int i;
562 unsigned long flags;
564 /* This code is time critical - we don't want to be interrupted here */
565 local_irq_save(flags);
568 * While reading TSF upper and then lower part, the clock is still
569 * counting (or jumping in case of IBSS merge) so we might get
570 * inconsistent values. To avoid this, we read the upper part again
571 * and check it has not been changed. We make the hypothesis that a
572 * maximum of 3 changes can happens in a row (we use 10 as a safe
573 * value).
575 * Impact on performance is pretty small, since in most cases, only
576 * 3 register reads are needed.
579 tsf_upper1 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
580 for (i = 0; i < ATH5K_MAX_TSF_READ; i++) {
581 tsf_lower = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
582 tsf_upper2 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
583 if (tsf_upper2 == tsf_upper1)
584 break;
585 tsf_upper1 = tsf_upper2;
588 local_irq_restore(flags);
590 WARN_ON(i == ATH5K_MAX_TSF_READ);
592 return ((u64)tsf_upper1 << 32) | tsf_lower;
595 #undef ATH5K_MAX_TSF_READ
598 * ath5k_hw_set_tsf64() - Set a new 64bit TSF
599 * @ah: The &struct ath5k_hw
600 * @tsf64: The new 64bit TSF
602 * Sets the new TSF
604 void
605 ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
607 ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
608 ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
612 * ath5k_hw_reset_tsf() - Force a TSF reset
613 * @ah: The &struct ath5k_hw
615 * Forces a TSF reset on PCU
617 void
618 ath5k_hw_reset_tsf(struct ath5k_hw *ah)
620 u32 val;
622 val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
625 * Each write to the RESET_TSF bit toggles a hardware internal
626 * signal to reset TSF, but if left high it will cause a TSF reset
627 * on the next chip reset as well. Thus we always write the value
628 * twice to clear the signal.
630 ath5k_hw_reg_write(ah, val, AR5K_BEACON);
631 ath5k_hw_reg_write(ah, val, AR5K_BEACON);
635 * ath5k_hw_init_beacon_timers() - Initialize beacon timers
636 * @ah: The &struct ath5k_hw
637 * @next_beacon: Next TBTT
638 * @interval: Current beacon interval
640 * This function is used to initialize beacon timers based on current
641 * operation mode and settings.
643 void
644 ath5k_hw_init_beacon_timers(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
646 u32 timer1, timer2, timer3;
649 * Set the additional timers by mode
651 switch (ah->opmode) {
652 case NL80211_IFTYPE_MONITOR:
653 case NL80211_IFTYPE_STATION:
654 /* In STA mode timer1 is used as next wakeup
655 * timer and timer2 as next CFP duration start
656 * timer. Both in 1/8TUs. */
657 /* TODO: PCF handling */
658 if (ah->ah_version == AR5K_AR5210) {
659 timer1 = 0xffffffff;
660 timer2 = 0xffffffff;
661 } else {
662 timer1 = 0x0000ffff;
663 timer2 = 0x0007ffff;
665 /* Mark associated AP as PCF incapable for now */
666 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
667 break;
668 case NL80211_IFTYPE_ADHOC:
669 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
670 default:
671 /* On non-STA modes timer1 is used as next DMA
672 * beacon alert (DBA) timer and timer2 as next
673 * software beacon alert. Both in 1/8TUs. */
674 timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
675 timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
676 break;
679 /* Timer3 marks the end of our ATIM window
680 * a zero length window is not allowed because
681 * we 'll get no beacons */
682 timer3 = next_beacon + 1;
685 * Set the beacon register and enable all timers.
687 /* When in AP or Mesh Point mode zero timer0 to start TSF */
688 if (ah->opmode == NL80211_IFTYPE_AP ||
689 ah->opmode == NL80211_IFTYPE_MESH_POINT)
690 ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
692 ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
693 ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
694 ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
695 ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
697 /* Force a TSF reset if requested and enable beacons */
698 if (interval & AR5K_BEACON_RESET_TSF)
699 ath5k_hw_reset_tsf(ah);
701 ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
702 AR5K_BEACON_ENABLE),
703 AR5K_BEACON);
705 /* Flush any pending BMISS interrupts on ISR by
706 * performing a clear-on-write operation on PISR
707 * register for the BMISS bit (writing a bit on
708 * ISR toggles a reset for that bit and leaves
709 * the remaining bits intact) */
710 if (ah->ah_version == AR5K_AR5210)
711 ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
712 else
713 ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
715 /* TODO: Set enhanced sleep registers on AR5212
716 * based on vif->bss_conf params, until then
717 * disable power save reporting.*/
718 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
723 * ath5k_check_timer_win() - Check if timer B is timer A + window
724 * @a: timer a (before b)
725 * @b: timer b (after a)
726 * @window: difference between a and b
727 * @intval: timers are increased by this interval
729 * This helper function checks if timer B is timer A + window and covers
730 * cases where timer A or B might have already been updated or wrapped
731 * around (Timers are 16 bit).
733 * Returns true if O.K.
735 static inline bool
736 ath5k_check_timer_win(int a, int b, int window, int intval)
739 * 1.) usually B should be A + window
740 * 2.) A already updated, B not updated yet
741 * 3.) A already updated and has wrapped around
742 * 4.) B has wrapped around
744 if ((b - a == window) || /* 1.) */
745 (a - b == intval - window) || /* 2.) */
746 ((a | 0x10000) - b == intval - window) || /* 3.) */
747 ((b | 0x10000) - a == window)) /* 4.) */
748 return true; /* O.K. */
749 return false;
753 * ath5k_hw_check_beacon_timers() - Check if the beacon timers are correct
754 * @ah: The &struct ath5k_hw
755 * @intval: beacon interval
757 * This is a workaround for IBSS mode
759 * The need for this function arises from the fact that we have 4 separate
760 * HW timer registers (TIMER0 - TIMER3), which are closely related to the
761 * next beacon target time (NBTT), and that the HW updates these timers
762 * separately based on the current TSF value. The hardware increments each
763 * timer by the beacon interval, when the local TSF converted to TU is equal
764 * to the value stored in the timer.
766 * The reception of a beacon with the same BSSID can update the local HW TSF
767 * at any time - this is something we can't avoid. If the TSF jumps to a
768 * time which is later than the time stored in a timer, this timer will not
769 * be updated until the TSF in TU wraps around at 16 bit (the size of the
770 * timers) and reaches the time which is stored in the timer.
772 * The problem is that these timers are closely related to TIMER0 (NBTT) and
773 * that they define a time "window". When the TSF jumps between two timers
774 * (e.g. ATIM and NBTT), the one in the past will be left behind (not
775 * updated), while the one in the future will be updated every beacon
776 * interval. This causes the window to get larger, until the TSF wraps
777 * around as described above and the timer which was left behind gets
778 * updated again. But - because the beacon interval is usually not an exact
779 * divisor of the size of the timers (16 bit), an unwanted "window" between
780 * these timers has developed!
782 * This is especially important with the ATIM window, because during
783 * the ATIM window only ATIM frames and no data frames are allowed to be
784 * sent, which creates transmission pauses after each beacon. This symptom
785 * has been described as "ramping ping" because ping times increase linearly
786 * for some time and then drop down again. A wrong window on the DMA beacon
787 * timer has the same effect, so we check for these two conditions.
789 * Returns true if O.K.
791 bool
792 ath5k_hw_check_beacon_timers(struct ath5k_hw *ah, int intval)
794 unsigned int nbtt, atim, dma;
796 nbtt = ath5k_hw_reg_read(ah, AR5K_TIMER0);
797 atim = ath5k_hw_reg_read(ah, AR5K_TIMER3);
798 dma = ath5k_hw_reg_read(ah, AR5K_TIMER1) >> 3;
800 /* NOTE: SWBA is different. Having a wrong window there does not
801 * stop us from sending data and this condition is caught by
802 * other means (SWBA interrupt) */
804 if (ath5k_check_timer_win(nbtt, atim, 1, intval) &&
805 ath5k_check_timer_win(dma, nbtt, AR5K_TUNE_DMA_BEACON_RESP,
806 intval))
807 return true; /* O.K. */
808 return false;
812 * ath5k_hw_set_coverage_class() - Set IEEE 802.11 coverage class
813 * @ah: The &struct ath5k_hw
814 * @coverage_class: IEEE 802.11 coverage class number
816 * Sets IFS intervals and ACK/CTS timeouts for given coverage class.
818 void
819 ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class)
821 /* As defined by IEEE 802.11-2007 17.3.8.6 */
822 int slot_time = ath5k_hw_get_default_slottime(ah) + 3 * coverage_class;
823 int ack_timeout = ath5k_hw_get_default_sifs(ah) + slot_time;
824 int cts_timeout = ack_timeout;
826 ath5k_hw_set_ifs_intervals(ah, slot_time);
827 ath5k_hw_set_ack_timeout(ah, ack_timeout);
828 ath5k_hw_set_cts_timeout(ah, cts_timeout);
830 ah->ah_coverage_class = coverage_class;
833 /***************************\
834 * Init/Start/Stop functions *
835 \***************************/
838 * ath5k_hw_start_rx_pcu() - Start RX engine
839 * @ah: The &struct ath5k_hw
841 * Starts RX engine on PCU so that hw can process RXed frames
842 * (ACK etc).
844 * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
846 void
847 ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
849 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
853 * at5k_hw_stop_rx_pcu() - Stop RX engine
854 * @ah: The &struct ath5k_hw
856 * Stops RX engine on PCU
858 void
859 ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
861 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
865 * ath5k_hw_set_opmode() - Set PCU operating mode
866 * @ah: The &struct ath5k_hw
867 * @op_mode: One of enum nl80211_iftype
869 * Configure PCU for the various operating modes (AP/STA etc)
872 ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
874 struct ath_common *common = ath5k_hw_common(ah);
875 u32 pcu_reg, beacon_reg, low_id, high_id;
877 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode %d\n", op_mode);
879 /* Preserve rest settings */
880 pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
881 pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
882 | AR5K_STA_ID1_KEYSRCH_MODE
883 | (ah->ah_version == AR5K_AR5210 ?
884 (AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
886 beacon_reg = 0;
888 switch (op_mode) {
889 case NL80211_IFTYPE_ADHOC:
890 pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
891 beacon_reg |= AR5K_BCR_ADHOC;
892 if (ah->ah_version == AR5K_AR5210)
893 pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
894 else
895 AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
896 break;
898 case NL80211_IFTYPE_AP:
899 case NL80211_IFTYPE_MESH_POINT:
900 pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
901 beacon_reg |= AR5K_BCR_AP;
902 if (ah->ah_version == AR5K_AR5210)
903 pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
904 else
905 AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
906 break;
908 case NL80211_IFTYPE_STATION:
909 pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
910 | (ah->ah_version == AR5K_AR5210 ?
911 AR5K_STA_ID1_PWR_SV : 0);
912 case NL80211_IFTYPE_MONITOR:
913 pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
914 | (ah->ah_version == AR5K_AR5210 ?
915 AR5K_STA_ID1_NO_PSPOLL : 0);
916 break;
918 default:
919 return -EINVAL;
923 * Set PCU registers
925 low_id = get_unaligned_le32(common->macaddr);
926 high_id = get_unaligned_le16(common->macaddr + 4);
927 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
928 ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
931 * Set Beacon Control Register on 5210
933 if (ah->ah_version == AR5K_AR5210)
934 ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
936 return 0;
940 * ath5k_hw_pcu_init() - Initialize PCU
941 * @ah: The &struct ath5k_hw
942 * @op_mode: One of enum nl80211_iftype
943 * @mode: One of enum ath5k_driver_mode
945 * This function is used to initialize PCU by setting current
946 * operation mode and various other settings.
948 void
949 ath5k_hw_pcu_init(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
951 /* Set bssid and bssid mask */
952 ath5k_hw_set_bssid(ah);
954 /* Set PCU config */
955 ath5k_hw_set_opmode(ah, op_mode);
957 /* Write rate duration table only on AR5212 and if
958 * virtual interface has already been brought up
959 * XXX: rethink this after new mode changes to
960 * mac80211 are integrated */
961 if (ah->ah_version == AR5K_AR5212 &&
962 ah->nvifs)
963 ath5k_hw_write_rate_duration(ah);
965 /* Set RSSI/BRSSI thresholds
967 * Note: If we decide to set this value
968 * dynamically, have in mind that when AR5K_RSSI_THR
969 * register is read it might return 0x40 if we haven't
970 * wrote anything to it plus BMISS RSSI threshold is zeroed.
971 * So doing a save/restore procedure here isn't the right
972 * choice. Instead store it on ath5k_hw */
973 ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
974 AR5K_TUNE_BMISS_THRES <<
975 AR5K_RSSI_THR_BMISS_S),
976 AR5K_RSSI_THR);
978 /* MIC QoS support */
979 if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
980 ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
981 ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
984 /* QoS NOACK Policy */
985 if (ah->ah_version == AR5K_AR5212) {
986 ath5k_hw_reg_write(ah,
987 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
988 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) |
989 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
990 AR5K_QOS_NOACK);
993 /* Restore slot time and ACK timeouts */
994 if (ah->ah_coverage_class > 0)
995 ath5k_hw_set_coverage_class(ah, ah->ah_coverage_class);
997 /* Set ACK bitrate mode (see ack_rates_high) */
998 if (ah->ah_version == AR5K_AR5212) {
999 u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
1000 if (ah->ah_ack_bitrate_high)
1001 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
1002 else
1003 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
1005 return;