2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Matthew W. S. Bell <mentor@madwifi.org>
5 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23 /*********************************\
24 * Protocol Control Unit Functions *
25 \*********************************/
27 #include <asm/unaligned.h>
34 * DOC: Protocol Control Unit (PCU) functions
36 * Protocol control unit is responsible to maintain various protocol
37 * properties before a frame is send and after a frame is received to/from
38 * baseband. To be more specific, PCU handles:
40 * - Buffering of RX and TX frames (after QCU/DCUs)
42 * - Encrypting and decrypting (using the built-in engine)
44 * - Generating ACKs, RTS/CTS frames
50 * - Updating beacon data (with TSF etc)
52 * - Generating virtual CCA
54 * - RX/Multicast filtering
58 * - Various statistics
60 * -Different operating modes: AP, STA, IBSS
62 * Note: Most of these functions can be tweaked/bypassed so you can do
63 * them on sw above for debugging or research. For more infos check out PCU
70 * AR5212+ can use higher rates for ack transmission
71 * based on current tx rate instead of the base rate.
72 * It does this to better utilize channel usage.
73 * There is a mapping between G rates (that cover both
74 * CCK and OFDM) and ack rates that we use when setting
75 * rate -> duration table. This mapping is hw-based so
76 * don't change anything.
78 * To enable this functionality we must set
79 * ah->ah_ack_bitrate_high to true else base rate is
80 * used (1Mb for CCK, 6Mb for OFDM).
82 static const unsigned int ack_rates_high
[] =
95 /* 54Mb -> 24Mb */ 8 };
102 * ath5k_hw_get_frame_duration() - Get tx time of a frame
103 * @ah: The &struct ath5k_hw
104 * @len: Frame's length in bytes
105 * @rate: The @struct ieee80211_rate
106 * @shortpre: Indicate short preample
108 * Calculate tx duration of a frame given it's rate and length
109 * It extends ieee80211_generic_frame_duration for non standard
113 ath5k_hw_get_frame_duration(struct ath5k_hw
*ah
,
114 int len
, struct ieee80211_rate
*rate
, bool shortpre
)
116 int sifs
, preamble
, plcp_bits
, sym_time
;
117 int bitrate
, bits
, symbols
, symbol_bits
;
121 if (!ah
->ah_bwmode
) {
122 __le16 raw_dur
= ieee80211_generic_frame_duration(ah
->hw
,
125 /* subtract difference between long and short preamble */
126 dur
= le16_to_cpu(raw_dur
);
133 bitrate
= rate
->bitrate
;
134 preamble
= AR5K_INIT_OFDM_PREAMPLE_TIME
;
135 plcp_bits
= AR5K_INIT_OFDM_PLCP_BITS
;
136 sym_time
= AR5K_INIT_OFDM_SYMBOL_TIME
;
138 switch (ah
->ah_bwmode
) {
139 case AR5K_BWMODE_40MHZ
:
140 sifs
= AR5K_INIT_SIFS_TURBO
;
141 preamble
= AR5K_INIT_OFDM_PREAMBLE_TIME_MIN
;
143 case AR5K_BWMODE_10MHZ
:
144 sifs
= AR5K_INIT_SIFS_HALF_RATE
;
148 case AR5K_BWMODE_5MHZ
:
149 sifs
= AR5K_INIT_SIFS_QUARTER_RATE
;
154 sifs
= AR5K_INIT_SIFS_DEFAULT_BG
;
158 bits
= plcp_bits
+ (len
<< 3);
159 /* Bit rate is in 100Kbits */
160 symbol_bits
= bitrate
* sym_time
;
161 symbols
= DIV_ROUND_UP(bits
* 10, symbol_bits
);
163 dur
= sifs
+ preamble
+ (sym_time
* symbols
);
169 * ath5k_hw_get_default_slottime() - Get the default slot time for current mode
170 * @ah: The &struct ath5k_hw
173 ath5k_hw_get_default_slottime(struct ath5k_hw
*ah
)
175 struct ieee80211_channel
*channel
= ah
->ah_current_channel
;
176 unsigned int slot_time
;
178 switch (ah
->ah_bwmode
) {
179 case AR5K_BWMODE_40MHZ
:
180 slot_time
= AR5K_INIT_SLOT_TIME_TURBO
;
182 case AR5K_BWMODE_10MHZ
:
183 slot_time
= AR5K_INIT_SLOT_TIME_HALF_RATE
;
185 case AR5K_BWMODE_5MHZ
:
186 slot_time
= AR5K_INIT_SLOT_TIME_QUARTER_RATE
;
188 case AR5K_BWMODE_DEFAULT
:
190 slot_time
= AR5K_INIT_SLOT_TIME_DEFAULT
;
191 if ((channel
->hw_value
== AR5K_MODE_11B
) && !ah
->ah_short_slot
)
192 slot_time
= AR5K_INIT_SLOT_TIME_B
;
200 * ath5k_hw_get_default_sifs() - Get the default SIFS for current mode
201 * @ah: The &struct ath5k_hw
204 ath5k_hw_get_default_sifs(struct ath5k_hw
*ah
)
206 struct ieee80211_channel
*channel
= ah
->ah_current_channel
;
209 switch (ah
->ah_bwmode
) {
210 case AR5K_BWMODE_40MHZ
:
211 sifs
= AR5K_INIT_SIFS_TURBO
;
213 case AR5K_BWMODE_10MHZ
:
214 sifs
= AR5K_INIT_SIFS_HALF_RATE
;
216 case AR5K_BWMODE_5MHZ
:
217 sifs
= AR5K_INIT_SIFS_QUARTER_RATE
;
219 case AR5K_BWMODE_DEFAULT
:
220 sifs
= AR5K_INIT_SIFS_DEFAULT_BG
;
222 if (channel
->band
== IEEE80211_BAND_5GHZ
)
223 sifs
= AR5K_INIT_SIFS_DEFAULT_A
;
231 * ath5k_hw_update_mib_counters() - Update MIB counters (mac layer statistics)
232 * @ah: The &struct ath5k_hw
234 * Reads MIB counters from PCU and updates sw statistics. Is called after a
235 * MIB interrupt, because one of these counters might have reached their maximum
236 * and triggered the MIB interrupt, to let us read and clear the counter.
238 * NOTE: Is called in interrupt context!
241 ath5k_hw_update_mib_counters(struct ath5k_hw
*ah
)
243 struct ath5k_statistics
*stats
= &ah
->stats
;
246 stats
->ack_fail
+= ath5k_hw_reg_read(ah
, AR5K_ACK_FAIL
);
247 stats
->rts_fail
+= ath5k_hw_reg_read(ah
, AR5K_RTS_FAIL
);
248 stats
->rts_ok
+= ath5k_hw_reg_read(ah
, AR5K_RTS_OK
);
249 stats
->fcs_error
+= ath5k_hw_reg_read(ah
, AR5K_FCS_FAIL
);
250 stats
->beacons
+= ath5k_hw_reg_read(ah
, AR5K_BEACON_CNT
);
259 * ath5k_hw_write_rate_duration() - Fill rate code to duration table
260 * @ah: The &struct ath5k_hw
262 * Write the rate code to duration table upon hw reset. This is a helper for
263 * ath5k_hw_pcu_init(). It seems all this is doing is setting an ACK timeout on
264 * the hardware, based on current mode, for each rate. The rates which are
265 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
266 * different rate code so we write their value twice (one for long preamble
267 * and one for short).
269 * Note: Band doesn't matter here, if we set the values for OFDM it works
270 * on both a and g modes. So all we have to do is set values for all g rates
271 * that include all OFDM and CCK rates.
275 ath5k_hw_write_rate_duration(struct ath5k_hw
*ah
)
277 struct ieee80211_rate
*rate
;
279 /* 802.11g covers both OFDM and CCK */
280 u8 band
= IEEE80211_BAND_2GHZ
;
282 /* Write rate duration table */
283 for (i
= 0; i
< ah
->sbands
[band
].n_bitrates
; i
++) {
287 if (ah
->ah_ack_bitrate_high
)
288 rate
= &ah
->sbands
[band
].bitrates
[ack_rates_high
[i
]];
291 rate
= &ah
->sbands
[band
].bitrates
[0];
294 rate
= &ah
->sbands
[band
].bitrates
[4];
296 /* Set ACK timeout */
297 reg
= AR5K_RATE_DUR(rate
->hw_value
);
299 /* An ACK frame consists of 10 bytes. If you add the FCS,
300 * which ieee80211_generic_frame_duration() adds,
301 * its 14 bytes. Note we use the control rate and not the
302 * actual rate for this rate. See mac80211 tx.c
303 * ieee80211_duration() for a brief description of
304 * what rate we should choose to TX ACKs. */
305 tx_time
= ath5k_hw_get_frame_duration(ah
, 10, rate
, false);
307 ath5k_hw_reg_write(ah
, tx_time
, reg
);
309 if (!(rate
->flags
& IEEE80211_RATE_SHORT_PREAMBLE
))
312 tx_time
= ath5k_hw_get_frame_duration(ah
, 10, rate
, true);
313 ath5k_hw_reg_write(ah
, tx_time
,
314 reg
+ (AR5K_SET_SHORT_PREAMBLE
<< 2));
319 * ath5k_hw_set_ack_timeout() - Set ACK timeout on PCU
320 * @ah: The &struct ath5k_hw
321 * @timeout: Timeout in usec
324 ath5k_hw_set_ack_timeout(struct ath5k_hw
*ah
, unsigned int timeout
)
326 if (ath5k_hw_clocktoh(ah
, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK
))
330 AR5K_REG_WRITE_BITS(ah
, AR5K_TIME_OUT
, AR5K_TIME_OUT_ACK
,
331 ath5k_hw_htoclock(ah
, timeout
));
337 * ath5k_hw_set_cts_timeout() - Set CTS timeout on PCU
338 * @ah: The &struct ath5k_hw
339 * @timeout: Timeout in usec
342 ath5k_hw_set_cts_timeout(struct ath5k_hw
*ah
, unsigned int timeout
)
344 if (ath5k_hw_clocktoh(ah
, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS
))
348 AR5K_REG_WRITE_BITS(ah
, AR5K_TIME_OUT
, AR5K_TIME_OUT_CTS
,
349 ath5k_hw_htoclock(ah
, timeout
));
355 /*******************\
356 * RX filter Control *
357 \*******************/
360 * ath5k_hw_set_lladdr() - Set station id
361 * @ah: The &struct ath5k_hw
362 * @mac: The card's mac address (array of octets)
364 * Set station id on hw using the provided mac address
367 ath5k_hw_set_lladdr(struct ath5k_hw
*ah
, const u8
*mac
)
369 struct ath_common
*common
= ath5k_hw_common(ah
);
373 /* Set new station ID */
374 memcpy(common
->macaddr
, mac
, ETH_ALEN
);
376 pcu_reg
= ath5k_hw_reg_read(ah
, AR5K_STA_ID1
) & 0xffff0000;
378 low_id
= get_unaligned_le32(mac
);
379 high_id
= get_unaligned_le16(mac
+ 4);
381 ath5k_hw_reg_write(ah
, low_id
, AR5K_STA_ID0
);
382 ath5k_hw_reg_write(ah
, pcu_reg
| high_id
, AR5K_STA_ID1
);
388 * ath5k_hw_set_bssid() - Set current BSSID on hw
389 * @ah: The &struct ath5k_hw
391 * Sets the current BSSID and BSSID mask we have from the
392 * common struct into the hardware
395 ath5k_hw_set_bssid(struct ath5k_hw
*ah
)
397 struct ath_common
*common
= ath5k_hw_common(ah
);
401 * Set BSSID mask on 5212
403 if (ah
->ah_version
== AR5K_AR5212
)
404 ath_hw_setbssidmask(common
);
409 ath5k_hw_reg_write(ah
,
410 get_unaligned_le32(common
->curbssid
),
412 ath5k_hw_reg_write(ah
,
413 get_unaligned_le16(common
->curbssid
+ 4) |
414 ((common
->curaid
& 0x3fff) << AR5K_BSS_ID1_AID_S
),
417 if (common
->curaid
== 0) {
418 ath5k_hw_disable_pspoll(ah
);
422 AR5K_REG_WRITE_BITS(ah
, AR5K_BEACON
, AR5K_BEACON_TIM
,
423 tim_offset
? tim_offset
+ 4 : 0);
425 ath5k_hw_enable_pspoll(ah
, NULL
, 0);
429 * ath5k_hw_set_bssid_mask() - Filter out bssids we listen
430 * @ah: The &struct ath5k_hw
431 * @mask: The BSSID mask to set (array of octets)
433 * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
434 * which bits of the interface's MAC address should be looked at when trying
435 * to decide which packets to ACK. In station mode and AP mode with a single
436 * BSS every bit matters since we lock to only one BSS. In AP mode with
437 * multiple BSSes (virtual interfaces) not every bit matters because hw must
438 * accept frames for all BSSes and so we tweak some bits of our mac address
439 * in order to have multiple BSSes.
441 * For more information check out ../hw.c of the common ath module.
444 ath5k_hw_set_bssid_mask(struct ath5k_hw
*ah
, const u8
*mask
)
446 struct ath_common
*common
= ath5k_hw_common(ah
);
448 /* Cache bssid mask so that we can restore it
450 memcpy(common
->bssidmask
, mask
, ETH_ALEN
);
451 if (ah
->ah_version
== AR5K_AR5212
)
452 ath_hw_setbssidmask(common
);
456 * ath5k_hw_set_mcast_filter() - Set multicast filter
457 * @ah: The &struct ath5k_hw
458 * @filter0: Lower 32bits of muticast filter
459 * @filter1: Higher 16bits of multicast filter
462 ath5k_hw_set_mcast_filter(struct ath5k_hw
*ah
, u32 filter0
, u32 filter1
)
464 ath5k_hw_reg_write(ah
, filter0
, AR5K_MCAST_FILTER0
);
465 ath5k_hw_reg_write(ah
, filter1
, AR5K_MCAST_FILTER1
);
469 * ath5k_hw_get_rx_filter() - Get current rx filter
470 * @ah: The &struct ath5k_hw
472 * Returns the RX filter by reading rx filter and
473 * phy error filter registers. RX filter is used
474 * to set the allowed frame types that PCU will accept
475 * and pass to the driver. For a list of frame types
479 ath5k_hw_get_rx_filter(struct ath5k_hw
*ah
)
481 u32 data
, filter
= 0;
483 filter
= ath5k_hw_reg_read(ah
, AR5K_RX_FILTER
);
485 /*Radar detection for 5212*/
486 if (ah
->ah_version
== AR5K_AR5212
) {
487 data
= ath5k_hw_reg_read(ah
, AR5K_PHY_ERR_FIL
);
489 if (data
& AR5K_PHY_ERR_FIL_RADAR
)
490 filter
|= AR5K_RX_FILTER_RADARERR
;
491 if (data
& (AR5K_PHY_ERR_FIL_OFDM
| AR5K_PHY_ERR_FIL_CCK
))
492 filter
|= AR5K_RX_FILTER_PHYERR
;
499 * ath5k_hw_set_rx_filter() - Set rx filter
500 * @ah: The &struct ath5k_hw
501 * @filter: RX filter mask (see reg.h)
503 * Sets RX filter register and also handles PHY error filter
504 * register on 5212 and newer chips so that we have proper PHY
508 ath5k_hw_set_rx_filter(struct ath5k_hw
*ah
, u32 filter
)
512 /* Set PHY error filter register on 5212*/
513 if (ah
->ah_version
== AR5K_AR5212
) {
514 if (filter
& AR5K_RX_FILTER_RADARERR
)
515 data
|= AR5K_PHY_ERR_FIL_RADAR
;
516 if (filter
& AR5K_RX_FILTER_PHYERR
)
517 data
|= AR5K_PHY_ERR_FIL_OFDM
| AR5K_PHY_ERR_FIL_CCK
;
521 * The AR5210 uses promiscuous mode to detect radar activity
523 if (ah
->ah_version
== AR5K_AR5210
&&
524 (filter
& AR5K_RX_FILTER_RADARERR
)) {
525 filter
&= ~AR5K_RX_FILTER_RADARERR
;
526 filter
|= AR5K_RX_FILTER_PROM
;
529 /*Zero length DMA (phy error reporting) */
531 AR5K_REG_ENABLE_BITS(ah
, AR5K_RXCFG
, AR5K_RXCFG_ZLFDMA
);
533 AR5K_REG_DISABLE_BITS(ah
, AR5K_RXCFG
, AR5K_RXCFG_ZLFDMA
);
535 /*Write RX Filter register*/
536 ath5k_hw_reg_write(ah
, filter
& 0xff, AR5K_RX_FILTER
);
538 /*Write PHY error filter register on 5212*/
539 if (ah
->ah_version
== AR5K_AR5212
)
540 ath5k_hw_reg_write(ah
, data
, AR5K_PHY_ERR_FIL
);
549 #define ATH5K_MAX_TSF_READ 10
552 * ath5k_hw_get_tsf64() - Get the full 64bit TSF
553 * @ah: The &struct ath5k_hw
555 * Returns the current TSF
558 ath5k_hw_get_tsf64(struct ath5k_hw
*ah
)
560 u32 tsf_lower
, tsf_upper1
, tsf_upper2
;
564 /* This code is time critical - we don't want to be interrupted here */
565 local_irq_save(flags
);
568 * While reading TSF upper and then lower part, the clock is still
569 * counting (or jumping in case of IBSS merge) so we might get
570 * inconsistent values. To avoid this, we read the upper part again
571 * and check it has not been changed. We make the hypothesis that a
572 * maximum of 3 changes can happens in a row (we use 10 as a safe
575 * Impact on performance is pretty small, since in most cases, only
576 * 3 register reads are needed.
579 tsf_upper1
= ath5k_hw_reg_read(ah
, AR5K_TSF_U32
);
580 for (i
= 0; i
< ATH5K_MAX_TSF_READ
; i
++) {
581 tsf_lower
= ath5k_hw_reg_read(ah
, AR5K_TSF_L32
);
582 tsf_upper2
= ath5k_hw_reg_read(ah
, AR5K_TSF_U32
);
583 if (tsf_upper2
== tsf_upper1
)
585 tsf_upper1
= tsf_upper2
;
588 local_irq_restore(flags
);
590 WARN_ON(i
== ATH5K_MAX_TSF_READ
);
592 return ((u64
)tsf_upper1
<< 32) | tsf_lower
;
595 #undef ATH5K_MAX_TSF_READ
598 * ath5k_hw_set_tsf64() - Set a new 64bit TSF
599 * @ah: The &struct ath5k_hw
600 * @tsf64: The new 64bit TSF
605 ath5k_hw_set_tsf64(struct ath5k_hw
*ah
, u64 tsf64
)
607 ath5k_hw_reg_write(ah
, tsf64
& 0xffffffff, AR5K_TSF_L32
);
608 ath5k_hw_reg_write(ah
, (tsf64
>> 32) & 0xffffffff, AR5K_TSF_U32
);
612 * ath5k_hw_reset_tsf() - Force a TSF reset
613 * @ah: The &struct ath5k_hw
615 * Forces a TSF reset on PCU
618 ath5k_hw_reset_tsf(struct ath5k_hw
*ah
)
622 val
= ath5k_hw_reg_read(ah
, AR5K_BEACON
) | AR5K_BEACON_RESET_TSF
;
625 * Each write to the RESET_TSF bit toggles a hardware internal
626 * signal to reset TSF, but if left high it will cause a TSF reset
627 * on the next chip reset as well. Thus we always write the value
628 * twice to clear the signal.
630 ath5k_hw_reg_write(ah
, val
, AR5K_BEACON
);
631 ath5k_hw_reg_write(ah
, val
, AR5K_BEACON
);
635 * ath5k_hw_init_beacon_timers() - Initialize beacon timers
636 * @ah: The &struct ath5k_hw
637 * @next_beacon: Next TBTT
638 * @interval: Current beacon interval
640 * This function is used to initialize beacon timers based on current
641 * operation mode and settings.
644 ath5k_hw_init_beacon_timers(struct ath5k_hw
*ah
, u32 next_beacon
, u32 interval
)
646 u32 timer1
, timer2
, timer3
;
649 * Set the additional timers by mode
651 switch (ah
->opmode
) {
652 case NL80211_IFTYPE_MONITOR
:
653 case NL80211_IFTYPE_STATION
:
654 /* In STA mode timer1 is used as next wakeup
655 * timer and timer2 as next CFP duration start
656 * timer. Both in 1/8TUs. */
657 /* TODO: PCF handling */
658 if (ah
->ah_version
== AR5K_AR5210
) {
665 /* Mark associated AP as PCF incapable for now */
666 AR5K_REG_DISABLE_BITS(ah
, AR5K_STA_ID1
, AR5K_STA_ID1_PCF
);
668 case NL80211_IFTYPE_ADHOC
:
669 AR5K_REG_ENABLE_BITS(ah
, AR5K_TXCFG
, AR5K_TXCFG_ADHOC_BCN_ATIM
);
671 /* On non-STA modes timer1 is used as next DMA
672 * beacon alert (DBA) timer and timer2 as next
673 * software beacon alert. Both in 1/8TUs. */
674 timer1
= (next_beacon
- AR5K_TUNE_DMA_BEACON_RESP
) << 3;
675 timer2
= (next_beacon
- AR5K_TUNE_SW_BEACON_RESP
) << 3;
679 /* Timer3 marks the end of our ATIM window
680 * a zero length window is not allowed because
681 * we 'll get no beacons */
682 timer3
= next_beacon
+ 1;
685 * Set the beacon register and enable all timers.
687 /* When in AP or Mesh Point mode zero timer0 to start TSF */
688 if (ah
->opmode
== NL80211_IFTYPE_AP
||
689 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
)
690 ath5k_hw_reg_write(ah
, 0, AR5K_TIMER0
);
692 ath5k_hw_reg_write(ah
, next_beacon
, AR5K_TIMER0
);
693 ath5k_hw_reg_write(ah
, timer1
, AR5K_TIMER1
);
694 ath5k_hw_reg_write(ah
, timer2
, AR5K_TIMER2
);
695 ath5k_hw_reg_write(ah
, timer3
, AR5K_TIMER3
);
697 /* Force a TSF reset if requested and enable beacons */
698 if (interval
& AR5K_BEACON_RESET_TSF
)
699 ath5k_hw_reset_tsf(ah
);
701 ath5k_hw_reg_write(ah
, interval
& (AR5K_BEACON_PERIOD
|
705 /* Flush any pending BMISS interrupts on ISR by
706 * performing a clear-on-write operation on PISR
707 * register for the BMISS bit (writing a bit on
708 * ISR toggles a reset for that bit and leaves
709 * the remaining bits intact) */
710 if (ah
->ah_version
== AR5K_AR5210
)
711 ath5k_hw_reg_write(ah
, AR5K_ISR_BMISS
, AR5K_ISR
);
713 ath5k_hw_reg_write(ah
, AR5K_ISR_BMISS
, AR5K_PISR
);
715 /* TODO: Set enhanced sleep registers on AR5212
716 * based on vif->bss_conf params, until then
717 * disable power save reporting.*/
718 AR5K_REG_DISABLE_BITS(ah
, AR5K_STA_ID1
, AR5K_STA_ID1_PWR_SV
);
723 * ath5k_check_timer_win() - Check if timer B is timer A + window
724 * @a: timer a (before b)
725 * @b: timer b (after a)
726 * @window: difference between a and b
727 * @intval: timers are increased by this interval
729 * This helper function checks if timer B is timer A + window and covers
730 * cases where timer A or B might have already been updated or wrapped
731 * around (Timers are 16 bit).
733 * Returns true if O.K.
736 ath5k_check_timer_win(int a
, int b
, int window
, int intval
)
739 * 1.) usually B should be A + window
740 * 2.) A already updated, B not updated yet
741 * 3.) A already updated and has wrapped around
742 * 4.) B has wrapped around
744 if ((b
- a
== window
) || /* 1.) */
745 (a
- b
== intval
- window
) || /* 2.) */
746 ((a
| 0x10000) - b
== intval
- window
) || /* 3.) */
747 ((b
| 0x10000) - a
== window
)) /* 4.) */
748 return true; /* O.K. */
753 * ath5k_hw_check_beacon_timers() - Check if the beacon timers are correct
754 * @ah: The &struct ath5k_hw
755 * @intval: beacon interval
757 * This is a workaround for IBSS mode
759 * The need for this function arises from the fact that we have 4 separate
760 * HW timer registers (TIMER0 - TIMER3), which are closely related to the
761 * next beacon target time (NBTT), and that the HW updates these timers
762 * separately based on the current TSF value. The hardware increments each
763 * timer by the beacon interval, when the local TSF converted to TU is equal
764 * to the value stored in the timer.
766 * The reception of a beacon with the same BSSID can update the local HW TSF
767 * at any time - this is something we can't avoid. If the TSF jumps to a
768 * time which is later than the time stored in a timer, this timer will not
769 * be updated until the TSF in TU wraps around at 16 bit (the size of the
770 * timers) and reaches the time which is stored in the timer.
772 * The problem is that these timers are closely related to TIMER0 (NBTT) and
773 * that they define a time "window". When the TSF jumps between two timers
774 * (e.g. ATIM and NBTT), the one in the past will be left behind (not
775 * updated), while the one in the future will be updated every beacon
776 * interval. This causes the window to get larger, until the TSF wraps
777 * around as described above and the timer which was left behind gets
778 * updated again. But - because the beacon interval is usually not an exact
779 * divisor of the size of the timers (16 bit), an unwanted "window" between
780 * these timers has developed!
782 * This is especially important with the ATIM window, because during
783 * the ATIM window only ATIM frames and no data frames are allowed to be
784 * sent, which creates transmission pauses after each beacon. This symptom
785 * has been described as "ramping ping" because ping times increase linearly
786 * for some time and then drop down again. A wrong window on the DMA beacon
787 * timer has the same effect, so we check for these two conditions.
789 * Returns true if O.K.
792 ath5k_hw_check_beacon_timers(struct ath5k_hw
*ah
, int intval
)
794 unsigned int nbtt
, atim
, dma
;
796 nbtt
= ath5k_hw_reg_read(ah
, AR5K_TIMER0
);
797 atim
= ath5k_hw_reg_read(ah
, AR5K_TIMER3
);
798 dma
= ath5k_hw_reg_read(ah
, AR5K_TIMER1
) >> 3;
800 /* NOTE: SWBA is different. Having a wrong window there does not
801 * stop us from sending data and this condition is caught by
802 * other means (SWBA interrupt) */
804 if (ath5k_check_timer_win(nbtt
, atim
, 1, intval
) &&
805 ath5k_check_timer_win(dma
, nbtt
, AR5K_TUNE_DMA_BEACON_RESP
,
807 return true; /* O.K. */
812 * ath5k_hw_set_coverage_class() - Set IEEE 802.11 coverage class
813 * @ah: The &struct ath5k_hw
814 * @coverage_class: IEEE 802.11 coverage class number
816 * Sets IFS intervals and ACK/CTS timeouts for given coverage class.
819 ath5k_hw_set_coverage_class(struct ath5k_hw
*ah
, u8 coverage_class
)
821 /* As defined by IEEE 802.11-2007 17.3.8.6 */
822 int slot_time
= ath5k_hw_get_default_slottime(ah
) + 3 * coverage_class
;
823 int ack_timeout
= ath5k_hw_get_default_sifs(ah
) + slot_time
;
824 int cts_timeout
= ack_timeout
;
826 ath5k_hw_set_ifs_intervals(ah
, slot_time
);
827 ath5k_hw_set_ack_timeout(ah
, ack_timeout
);
828 ath5k_hw_set_cts_timeout(ah
, cts_timeout
);
830 ah
->ah_coverage_class
= coverage_class
;
833 /***************************\
834 * Init/Start/Stop functions *
835 \***************************/
838 * ath5k_hw_start_rx_pcu() - Start RX engine
839 * @ah: The &struct ath5k_hw
841 * Starts RX engine on PCU so that hw can process RXed frames
844 * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
847 ath5k_hw_start_rx_pcu(struct ath5k_hw
*ah
)
849 AR5K_REG_DISABLE_BITS(ah
, AR5K_DIAG_SW
, AR5K_DIAG_SW_DIS_RX
);
853 * at5k_hw_stop_rx_pcu() - Stop RX engine
854 * @ah: The &struct ath5k_hw
856 * Stops RX engine on PCU
859 ath5k_hw_stop_rx_pcu(struct ath5k_hw
*ah
)
861 AR5K_REG_ENABLE_BITS(ah
, AR5K_DIAG_SW
, AR5K_DIAG_SW_DIS_RX
);
865 * ath5k_hw_set_opmode() - Set PCU operating mode
866 * @ah: The &struct ath5k_hw
867 * @op_mode: One of enum nl80211_iftype
869 * Configure PCU for the various operating modes (AP/STA etc)
872 ath5k_hw_set_opmode(struct ath5k_hw
*ah
, enum nl80211_iftype op_mode
)
874 struct ath_common
*common
= ath5k_hw_common(ah
);
875 u32 pcu_reg
, beacon_reg
, low_id
, high_id
;
877 ATH5K_DBG(ah
, ATH5K_DEBUG_MODE
, "mode %d\n", op_mode
);
879 /* Preserve rest settings */
880 pcu_reg
= ath5k_hw_reg_read(ah
, AR5K_STA_ID1
) & 0xffff0000;
881 pcu_reg
&= ~(AR5K_STA_ID1_ADHOC
| AR5K_STA_ID1_AP
882 | AR5K_STA_ID1_KEYSRCH_MODE
883 | (ah
->ah_version
== AR5K_AR5210
?
884 (AR5K_STA_ID1_PWR_SV
| AR5K_STA_ID1_NO_PSPOLL
) : 0));
889 case NL80211_IFTYPE_ADHOC
:
890 pcu_reg
|= AR5K_STA_ID1_ADHOC
| AR5K_STA_ID1_KEYSRCH_MODE
;
891 beacon_reg
|= AR5K_BCR_ADHOC
;
892 if (ah
->ah_version
== AR5K_AR5210
)
893 pcu_reg
|= AR5K_STA_ID1_NO_PSPOLL
;
895 AR5K_REG_ENABLE_BITS(ah
, AR5K_CFG
, AR5K_CFG_IBSS
);
898 case NL80211_IFTYPE_AP
:
899 case NL80211_IFTYPE_MESH_POINT
:
900 pcu_reg
|= AR5K_STA_ID1_AP
| AR5K_STA_ID1_KEYSRCH_MODE
;
901 beacon_reg
|= AR5K_BCR_AP
;
902 if (ah
->ah_version
== AR5K_AR5210
)
903 pcu_reg
|= AR5K_STA_ID1_NO_PSPOLL
;
905 AR5K_REG_DISABLE_BITS(ah
, AR5K_CFG
, AR5K_CFG_IBSS
);
908 case NL80211_IFTYPE_STATION
:
909 pcu_reg
|= AR5K_STA_ID1_KEYSRCH_MODE
910 | (ah
->ah_version
== AR5K_AR5210
?
911 AR5K_STA_ID1_PWR_SV
: 0);
912 case NL80211_IFTYPE_MONITOR
:
913 pcu_reg
|= AR5K_STA_ID1_KEYSRCH_MODE
914 | (ah
->ah_version
== AR5K_AR5210
?
915 AR5K_STA_ID1_NO_PSPOLL
: 0);
925 low_id
= get_unaligned_le32(common
->macaddr
);
926 high_id
= get_unaligned_le16(common
->macaddr
+ 4);
927 ath5k_hw_reg_write(ah
, low_id
, AR5K_STA_ID0
);
928 ath5k_hw_reg_write(ah
, pcu_reg
| high_id
, AR5K_STA_ID1
);
931 * Set Beacon Control Register on 5210
933 if (ah
->ah_version
== AR5K_AR5210
)
934 ath5k_hw_reg_write(ah
, beacon_reg
, AR5K_BCR
);
940 * ath5k_hw_pcu_init() - Initialize PCU
941 * @ah: The &struct ath5k_hw
942 * @op_mode: One of enum nl80211_iftype
943 * @mode: One of enum ath5k_driver_mode
945 * This function is used to initialize PCU by setting current
946 * operation mode and various other settings.
949 ath5k_hw_pcu_init(struct ath5k_hw
*ah
, enum nl80211_iftype op_mode
)
951 /* Set bssid and bssid mask */
952 ath5k_hw_set_bssid(ah
);
955 ath5k_hw_set_opmode(ah
, op_mode
);
957 /* Write rate duration table only on AR5212 and if
958 * virtual interface has already been brought up
959 * XXX: rethink this after new mode changes to
960 * mac80211 are integrated */
961 if (ah
->ah_version
== AR5K_AR5212
&&
963 ath5k_hw_write_rate_duration(ah
);
965 /* Set RSSI/BRSSI thresholds
967 * Note: If we decide to set this value
968 * dynamically, have in mind that when AR5K_RSSI_THR
969 * register is read it might return 0x40 if we haven't
970 * wrote anything to it plus BMISS RSSI threshold is zeroed.
971 * So doing a save/restore procedure here isn't the right
972 * choice. Instead store it on ath5k_hw */
973 ath5k_hw_reg_write(ah
, (AR5K_TUNE_RSSI_THRES
|
974 AR5K_TUNE_BMISS_THRES
<<
975 AR5K_RSSI_THR_BMISS_S
),
978 /* MIC QoS support */
979 if (ah
->ah_mac_srev
>= AR5K_SREV_AR2413
) {
980 ath5k_hw_reg_write(ah
, 0x000100aa, AR5K_MIC_QOS_CTL
);
981 ath5k_hw_reg_write(ah
, 0x00003210, AR5K_MIC_QOS_SEL
);
984 /* QoS NOACK Policy */
985 if (ah
->ah_version
== AR5K_AR5212
) {
986 ath5k_hw_reg_write(ah
,
987 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES
) |
988 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET
) |
989 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET
),
993 /* Restore slot time and ACK timeouts */
994 if (ah
->ah_coverage_class
> 0)
995 ath5k_hw_set_coverage_class(ah
, ah
->ah_coverage_class
);
997 /* Set ACK bitrate mode (see ack_rates_high) */
998 if (ah
->ah_version
== AR5K_AR5212
) {
999 u32 val
= AR5K_STA_ID1_BASE_RATE_11B
| AR5K_STA_ID1_ACKCTS_6MB
;
1000 if (ah
->ah_ack_bitrate_high
)
1001 AR5K_REG_DISABLE_BITS(ah
, AR5K_STA_ID1
, val
);
1003 AR5K_REG_ENABLE_BITS(ah
, AR5K_STA_ID1
, val
);