spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / net / wireless / ath / ath5k / reset.c
blob250db40b751d1780b0c7937cb53c6de016973bdd
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 /****************************\
23 Reset function and helpers
24 \****************************/
26 #include <asm/unaligned.h>
28 #include <linux/pci.h> /* To determine if a card is pci-e */
29 #include <linux/log2.h>
30 #include <linux/platform_device.h>
31 #include "ath5k.h"
32 #include "reg.h"
33 #include "debug.h"
36 /**
37 * DOC: Reset function and helpers
39 * Here we implement the main reset routine, used to bring the card
40 * to a working state and ready to receive. We also handle routines
41 * that don't fit on other places such as clock, sleep and power control
45 /******************\
46 * Helper functions *
47 \******************/
49 /**
50 * ath5k_hw_register_timeout() - Poll a register for a flag/field change
51 * @ah: The &struct ath5k_hw
52 * @reg: The register to read
53 * @flag: The flag/field to check on the register
54 * @val: The field value we expect (if we check a field)
55 * @is_set: Instead of checking if the flag got cleared, check if it got set
57 * Some registers contain flags that indicate that an operation is
58 * running. We use this function to poll these registers and check
59 * if these flags get cleared. We also use it to poll a register
60 * field (containing multiple flags) until it gets a specific value.
62 * Returns -EAGAIN if we exceeded AR5K_TUNE_REGISTER_TIMEOUT * 15us or 0
64 int
65 ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
66 bool is_set)
68 int i;
69 u32 data;
71 for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
72 data = ath5k_hw_reg_read(ah, reg);
73 if (is_set && (data & flag))
74 break;
75 else if ((data & flag) == val)
76 break;
77 udelay(15);
80 return (i <= 0) ? -EAGAIN : 0;
84 /*************************\
85 * Clock related functions *
86 \*************************/
88 /**
89 * ath5k_hw_htoclock() - Translate usec to hw clock units
90 * @ah: The &struct ath5k_hw
91 * @usec: value in microseconds
93 * Translate usecs to hw clock units based on the current
94 * hw clock rate.
96 * Returns number of clock units
98 unsigned int
99 ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec)
101 struct ath_common *common = ath5k_hw_common(ah);
102 return usec * common->clockrate;
106 * ath5k_hw_clocktoh() - Translate hw clock units to usec
107 * @ah: The &struct ath5k_hw
108 * @clock: value in hw clock units
110 * Translate hw clock units to usecs based on the current
111 * hw clock rate.
113 * Returns number of usecs
115 unsigned int
116 ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock)
118 struct ath_common *common = ath5k_hw_common(ah);
119 return clock / common->clockrate;
123 * ath5k_hw_init_core_clock() - Initialize core clock
124 * @ah: The &struct ath5k_hw
126 * Initialize core clock parameters (usec, usec32, latencies etc),
127 * based on current bwmode and chipset properties.
129 static void
130 ath5k_hw_init_core_clock(struct ath5k_hw *ah)
132 struct ieee80211_channel *channel = ah->ah_current_channel;
133 struct ath_common *common = ath5k_hw_common(ah);
134 u32 usec_reg, txlat, rxlat, usec, clock, sclock, txf2txs;
137 * Set core clock frequency
139 switch (channel->hw_value) {
140 case AR5K_MODE_11A:
141 clock = 40;
142 break;
143 case AR5K_MODE_11B:
144 clock = 22;
145 break;
146 case AR5K_MODE_11G:
147 default:
148 clock = 44;
149 break;
152 /* Use clock multiplier for non-default
153 * bwmode */
154 switch (ah->ah_bwmode) {
155 case AR5K_BWMODE_40MHZ:
156 clock *= 2;
157 break;
158 case AR5K_BWMODE_10MHZ:
159 clock /= 2;
160 break;
161 case AR5K_BWMODE_5MHZ:
162 clock /= 4;
163 break;
164 default:
165 break;
168 common->clockrate = clock;
171 * Set USEC parameters
173 /* Set USEC counter on PCU*/
174 usec = clock - 1;
175 usec = AR5K_REG_SM(usec, AR5K_USEC_1);
177 /* Set usec duration on DCU */
178 if (ah->ah_version != AR5K_AR5210)
179 AR5K_REG_WRITE_BITS(ah, AR5K_DCU_GBL_IFS_MISC,
180 AR5K_DCU_GBL_IFS_MISC_USEC_DUR,
181 clock);
183 /* Set 32MHz USEC counter */
184 if ((ah->ah_radio == AR5K_RF5112) ||
185 (ah->ah_radio == AR5K_RF2413) ||
186 (ah->ah_radio == AR5K_RF5413) ||
187 (ah->ah_radio == AR5K_RF2316) ||
188 (ah->ah_radio == AR5K_RF2317))
189 /* Remain on 40MHz clock ? */
190 sclock = 40 - 1;
191 else
192 sclock = 32 - 1;
193 sclock = AR5K_REG_SM(sclock, AR5K_USEC_32);
196 * Set tx/rx latencies
198 usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
199 txlat = AR5K_REG_MS(usec_reg, AR5K_USEC_TX_LATENCY_5211);
200 rxlat = AR5K_REG_MS(usec_reg, AR5K_USEC_RX_LATENCY_5211);
203 * Set default Tx frame to Tx data start delay
205 txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
208 * 5210 initvals don't include usec settings
209 * so we need to use magic values here for
210 * tx/rx latencies
212 if (ah->ah_version == AR5K_AR5210) {
213 /* same for turbo */
214 txlat = AR5K_INIT_TX_LATENCY_5210;
215 rxlat = AR5K_INIT_RX_LATENCY_5210;
218 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
219 /* 5311 has different tx/rx latency masks
220 * from 5211, since we deal 5311 the same
221 * as 5211 when setting initvals, shift
222 * values here to their proper locations
224 * Note: Initvals indicate tx/rx/ latencies
225 * are the same for turbo mode */
226 txlat = AR5K_REG_SM(txlat, AR5K_USEC_TX_LATENCY_5210);
227 rxlat = AR5K_REG_SM(rxlat, AR5K_USEC_RX_LATENCY_5210);
228 } else
229 switch (ah->ah_bwmode) {
230 case AR5K_BWMODE_10MHZ:
231 txlat = AR5K_REG_SM(txlat * 2,
232 AR5K_USEC_TX_LATENCY_5211);
233 rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
234 AR5K_USEC_RX_LATENCY_5211);
235 txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_10MHZ;
236 break;
237 case AR5K_BWMODE_5MHZ:
238 txlat = AR5K_REG_SM(txlat * 4,
239 AR5K_USEC_TX_LATENCY_5211);
240 rxlat = AR5K_REG_SM(AR5K_INIT_RX_LAT_MAX,
241 AR5K_USEC_RX_LATENCY_5211);
242 txf2txs = AR5K_INIT_TXF2TXD_START_DELAY_5MHZ;
243 break;
244 case AR5K_BWMODE_40MHZ:
245 txlat = AR5K_INIT_TX_LAT_MIN;
246 rxlat = AR5K_REG_SM(rxlat / 2,
247 AR5K_USEC_RX_LATENCY_5211);
248 txf2txs = AR5K_INIT_TXF2TXD_START_DEFAULT;
249 break;
250 default:
251 break;
254 usec_reg = (usec | sclock | txlat | rxlat);
255 ath5k_hw_reg_write(ah, usec_reg, AR5K_USEC);
257 /* On 5112 set tx frame to tx data start delay */
258 if (ah->ah_radio == AR5K_RF5112) {
259 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL2,
260 AR5K_PHY_RF_CTL2_TXF2TXD_START,
261 txf2txs);
266 * ath5k_hw_set_sleep_clock() - Setup sleep clock operation
267 * @ah: The &struct ath5k_hw
268 * @enable: Enable sleep clock operation (false to disable)
270 * If there is an external 32KHz crystal available, use it
271 * as ref. clock instead of 32/40MHz clock and baseband clocks
272 * to save power during sleep or restore normal 32/40MHz
273 * operation.
275 * NOTE: When operating on 32KHz certain PHY registers (27 - 31,
276 * 123 - 127) require delay on access.
278 static void
279 ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
281 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
282 u32 scal, spending, sclock;
284 /* Only set 32KHz settings if we have an external
285 * 32KHz crystal present */
286 if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
287 AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
288 enable) {
290 /* 1 usec/cycle */
291 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
292 /* Set up tsf increment on each cycle */
293 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
295 /* Set baseband sleep control registers
296 * and sleep control rate */
297 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
299 if ((ah->ah_radio == AR5K_RF5112) ||
300 (ah->ah_radio == AR5K_RF5413) ||
301 (ah->ah_radio == AR5K_RF2316) ||
302 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
303 spending = 0x14;
304 else
305 spending = 0x18;
306 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
308 if ((ah->ah_radio == AR5K_RF5112) ||
309 (ah->ah_radio == AR5K_RF5413) ||
310 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
311 ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
312 ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
313 ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
314 ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
315 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
316 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
317 } else {
318 ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
319 ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
320 ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
321 ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
322 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
323 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
326 /* Enable sleep clock operation */
327 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
328 AR5K_PCICFG_SLEEP_CLOCK_EN);
330 } else {
332 /* Disable sleep clock operation and
333 * restore default parameters */
334 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
335 AR5K_PCICFG_SLEEP_CLOCK_EN);
337 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
338 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
340 /* Set DAC/ADC delays */
341 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
342 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
344 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
345 scal = AR5K_PHY_SCAL_32MHZ_2417;
346 else if (ee->ee_is_hb63)
347 scal = AR5K_PHY_SCAL_32MHZ_HB63;
348 else
349 scal = AR5K_PHY_SCAL_32MHZ;
350 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
352 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
353 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
355 if ((ah->ah_radio == AR5K_RF5112) ||
356 (ah->ah_radio == AR5K_RF5413) ||
357 (ah->ah_radio == AR5K_RF2316) ||
358 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
359 spending = 0x14;
360 else
361 spending = 0x18;
362 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
364 /* Set up tsf increment on each cycle */
365 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
367 if ((ah->ah_radio == AR5K_RF5112) ||
368 (ah->ah_radio == AR5K_RF5413) ||
369 (ah->ah_radio == AR5K_RF2316) ||
370 (ah->ah_radio == AR5K_RF2317))
371 sclock = 40 - 1;
372 else
373 sclock = 32 - 1;
374 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, sclock);
379 /*********************\
380 * Reset/Sleep control *
381 \*********************/
384 * ath5k_hw_nic_reset() - Reset the various chipset units
385 * @ah: The &struct ath5k_hw
386 * @val: Mask to indicate what units to reset
388 * To reset the various chipset units we need to write
389 * the mask to AR5K_RESET_CTL and poll the register until
390 * all flags are cleared.
392 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
394 static int
395 ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
397 int ret;
398 u32 mask = val ? val : ~0U;
400 /* Read-and-clear RX Descriptor Pointer*/
401 ath5k_hw_reg_read(ah, AR5K_RXDP);
404 * Reset the device and wait until success
406 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
408 /* Wait at least 128 PCI clocks */
409 usleep_range(15, 20);
411 if (ah->ah_version == AR5K_AR5210) {
412 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
413 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
414 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
415 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
416 } else {
417 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
418 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
421 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
424 * Reset configuration register (for hw byte-swap). Note that this
425 * is only set for big endian. We do the necessary magic in
426 * AR5K_INIT_CFG.
428 if ((val & AR5K_RESET_CTL_PCU) == 0)
429 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
431 return ret;
435 * ath5k_hw_wisoc_reset() - Reset AHB chipset
436 * @ah: The &struct ath5k_hw
437 * @flags: Mask to indicate what units to reset
439 * Same as ath5k_hw_nic_reset but for AHB based devices
441 * Returns 0 if we are O.K. or -EAGAIN (from athk5_hw_register_timeout)
443 static int
444 ath5k_hw_wisoc_reset(struct ath5k_hw *ah, u32 flags)
446 u32 mask = flags ? flags : ~0U;
447 u32 __iomem *reg;
448 u32 regval;
449 u32 val = 0;
451 /* ah->ah_mac_srev is not available at this point yet */
452 if (ah->devid >= AR5K_SREV_AR2315_R6) {
453 reg = (u32 __iomem *) AR5K_AR2315_RESET;
454 if (mask & AR5K_RESET_CTL_PCU)
455 val |= AR5K_AR2315_RESET_WMAC;
456 if (mask & AR5K_RESET_CTL_BASEBAND)
457 val |= AR5K_AR2315_RESET_BB_WARM;
458 } else {
459 reg = (u32 __iomem *) AR5K_AR5312_RESET;
460 if (to_platform_device(ah->dev)->id == 0) {
461 if (mask & AR5K_RESET_CTL_PCU)
462 val |= AR5K_AR5312_RESET_WMAC0;
463 if (mask & AR5K_RESET_CTL_BASEBAND)
464 val |= AR5K_AR5312_RESET_BB0_COLD |
465 AR5K_AR5312_RESET_BB0_WARM;
466 } else {
467 if (mask & AR5K_RESET_CTL_PCU)
468 val |= AR5K_AR5312_RESET_WMAC1;
469 if (mask & AR5K_RESET_CTL_BASEBAND)
470 val |= AR5K_AR5312_RESET_BB1_COLD |
471 AR5K_AR5312_RESET_BB1_WARM;
475 /* Put BB/MAC into reset */
476 regval = __raw_readl(reg);
477 __raw_writel(regval | val, reg);
478 regval = __raw_readl(reg);
479 usleep_range(100, 150);
481 /* Bring BB/MAC out of reset */
482 __raw_writel(regval & ~val, reg);
483 regval = __raw_readl(reg);
486 * Reset configuration register (for hw byte-swap). Note that this
487 * is only set for big endian. We do the necessary magic in
488 * AR5K_INIT_CFG.
490 if ((flags & AR5K_RESET_CTL_PCU) == 0)
491 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
493 return 0;
497 * ath5k_hw_set_power_mode() - Set power mode
498 * @ah: The &struct ath5k_hw
499 * @mode: One of enum ath5k_power_mode
500 * @set_chip: Set to true to write sleep control register
501 * @sleep_duration: How much time the device is allowed to sleep
502 * when sleep logic is enabled (in 128 microsecond increments).
504 * This function is used to configure sleep policy and allowed
505 * sleep modes. For more information check out the sleep control
506 * register on reg.h and STA_ID1.
508 * Returns 0 on success, -EIO if chip didn't wake up or -EINVAL if an invalid
509 * mode is requested.
511 static int
512 ath5k_hw_set_power_mode(struct ath5k_hw *ah, enum ath5k_power_mode mode,
513 bool set_chip, u16 sleep_duration)
515 unsigned int i;
516 u32 staid, data;
518 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
520 switch (mode) {
521 case AR5K_PM_AUTO:
522 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
523 /* fallthrough */
524 case AR5K_PM_NETWORK_SLEEP:
525 if (set_chip)
526 ath5k_hw_reg_write(ah,
527 AR5K_SLEEP_CTL_SLE_ALLOW |
528 sleep_duration,
529 AR5K_SLEEP_CTL);
531 staid |= AR5K_STA_ID1_PWR_SV;
532 break;
534 case AR5K_PM_FULL_SLEEP:
535 if (set_chip)
536 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
537 AR5K_SLEEP_CTL);
539 staid |= AR5K_STA_ID1_PWR_SV;
540 break;
542 case AR5K_PM_AWAKE:
544 staid &= ~AR5K_STA_ID1_PWR_SV;
546 if (!set_chip)
547 goto commit;
549 data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
551 /* If card is down we 'll get 0xffff... so we
552 * need to clean this up before we write the register
554 if (data & 0xffc00000)
555 data = 0;
556 else
557 /* Preserve sleep duration etc */
558 data = data & ~AR5K_SLEEP_CTL_SLE;
560 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
561 AR5K_SLEEP_CTL);
562 usleep_range(15, 20);
564 for (i = 200; i > 0; i--) {
565 /* Check if the chip did wake up */
566 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
567 AR5K_PCICFG_SPWR_DN) == 0)
568 break;
570 /* Wait a bit and retry */
571 usleep_range(50, 75);
572 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
573 AR5K_SLEEP_CTL);
576 /* Fail if the chip didn't wake up */
577 if (i == 0)
578 return -EIO;
580 break;
582 default:
583 return -EINVAL;
586 commit:
587 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
589 return 0;
593 * ath5k_hw_on_hold() - Put device on hold
594 * @ah: The &struct ath5k_hw
596 * Put MAC and Baseband on warm reset and keep that state
597 * (don't clean sleep control register). After this MAC
598 * and Baseband are disabled and a full reset is needed
599 * to come back. This way we save as much power as possible
600 * without putting the card on full sleep.
602 * Returns 0 on success or -EIO on error
605 ath5k_hw_on_hold(struct ath5k_hw *ah)
607 struct pci_dev *pdev = ah->pdev;
608 u32 bus_flags;
609 int ret;
611 if (ath5k_get_bus_type(ah) == ATH_AHB)
612 return 0;
614 /* Make sure device is awake */
615 ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
616 if (ret) {
617 ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
618 return ret;
622 * Put chipset on warm reset...
624 * Note: putting PCI core on warm reset on PCI-E cards
625 * results card to hang and always return 0xffff... so
626 * we ignore that flag for PCI-E cards. On PCI cards
627 * this flag gets cleared after 64 PCI clocks.
629 bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
631 if (ah->ah_version == AR5K_AR5210) {
632 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
633 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
634 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
635 usleep_range(2000, 2500);
636 } else {
637 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
638 AR5K_RESET_CTL_BASEBAND | bus_flags);
641 if (ret) {
642 ATH5K_ERR(ah, "failed to put device on warm reset\n");
643 return -EIO;
646 /* ...wakeup again!*/
647 ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
648 if (ret) {
649 ATH5K_ERR(ah, "failed to put device on hold\n");
650 return ret;
653 return ret;
657 * ath5k_hw_nic_wakeup() - Force card out of sleep
658 * @ah: The &struct ath5k_hw
659 * @channel: The &struct ieee80211_channel
661 * Bring up MAC + PHY Chips and program PLL
662 * NOTE: Channel is NULL for the initial wakeup.
664 * Returns 0 on success, -EIO on hw failure or -EINVAL for false channel infos
667 ath5k_hw_nic_wakeup(struct ath5k_hw *ah, struct ieee80211_channel *channel)
669 struct pci_dev *pdev = ah->pdev;
670 u32 turbo, mode, clock, bus_flags;
671 int ret;
673 turbo = 0;
674 mode = 0;
675 clock = 0;
677 if ((ath5k_get_bus_type(ah) != ATH_AHB) || channel) {
678 /* Wakeup the device */
679 ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
680 if (ret) {
681 ATH5K_ERR(ah, "failed to wakeup the MAC Chip\n");
682 return ret;
687 * Put chipset on warm reset...
689 * Note: putting PCI core on warm reset on PCI-E cards
690 * results card to hang and always return 0xffff... so
691 * we ignore that flag for PCI-E cards. On PCI cards
692 * this flag gets cleared after 64 PCI clocks.
694 bus_flags = (pdev && pci_is_pcie(pdev)) ? 0 : AR5K_RESET_CTL_PCI;
696 if (ah->ah_version == AR5K_AR5210) {
697 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
698 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
699 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
700 usleep_range(2000, 2500);
701 } else {
702 if (ath5k_get_bus_type(ah) == ATH_AHB)
703 ret = ath5k_hw_wisoc_reset(ah, AR5K_RESET_CTL_PCU |
704 AR5K_RESET_CTL_BASEBAND);
705 else
706 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
707 AR5K_RESET_CTL_BASEBAND | bus_flags);
710 if (ret) {
711 ATH5K_ERR(ah, "failed to reset the MAC Chip\n");
712 return -EIO;
715 /* ...wakeup again!...*/
716 ret = ath5k_hw_set_power_mode(ah, AR5K_PM_AWAKE, true, 0);
717 if (ret) {
718 ATH5K_ERR(ah, "failed to resume the MAC Chip\n");
719 return ret;
722 /* ...reset configuration register on Wisoc ...
723 * ...clear reset control register and pull device out of
724 * warm reset on others */
725 if (ath5k_get_bus_type(ah) == ATH_AHB)
726 ret = ath5k_hw_wisoc_reset(ah, 0);
727 else
728 ret = ath5k_hw_nic_reset(ah, 0);
730 if (ret) {
731 ATH5K_ERR(ah, "failed to warm reset the MAC Chip\n");
732 return -EIO;
735 /* On initialization skip PLL programming since we don't have
736 * a channel / mode set yet */
737 if (!channel)
738 return 0;
740 if (ah->ah_version != AR5K_AR5210) {
742 * Get channel mode flags
745 if (ah->ah_radio >= AR5K_RF5112) {
746 mode = AR5K_PHY_MODE_RAD_RF5112;
747 clock = AR5K_PHY_PLL_RF5112;
748 } else {
749 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
750 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
753 if (channel->band == IEEE80211_BAND_2GHZ) {
754 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
755 clock |= AR5K_PHY_PLL_44MHZ;
757 if (channel->hw_value == AR5K_MODE_11B) {
758 mode |= AR5K_PHY_MODE_MOD_CCK;
759 } else {
760 /* XXX Dynamic OFDM/CCK is not supported by the
761 * AR5211 so we set MOD_OFDM for plain g (no
762 * CCK headers) operation. We need to test
763 * this, 5211 might support ofdm-only g after
764 * all, there are also initial register values
765 * in the code for g mode (see initvals.c).
767 if (ah->ah_version == AR5K_AR5211)
768 mode |= AR5K_PHY_MODE_MOD_OFDM;
769 else
770 mode |= AR5K_PHY_MODE_MOD_DYN;
772 } else if (channel->band == IEEE80211_BAND_5GHZ) {
773 mode |= (AR5K_PHY_MODE_FREQ_5GHZ |
774 AR5K_PHY_MODE_MOD_OFDM);
776 /* Different PLL setting for 5413 */
777 if (ah->ah_radio == AR5K_RF5413)
778 clock = AR5K_PHY_PLL_40MHZ_5413;
779 else
780 clock |= AR5K_PHY_PLL_40MHZ;
781 } else {
782 ATH5K_ERR(ah, "invalid radio frequency mode\n");
783 return -EINVAL;
786 /*XXX: Can bwmode be used with dynamic mode ?
787 * (I don't think it supports 44MHz) */
788 /* On 2425 initvals TURBO_SHORT is not present */
789 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
790 turbo = AR5K_PHY_TURBO_MODE |
791 (ah->ah_radio == AR5K_RF2425) ? 0 :
792 AR5K_PHY_TURBO_SHORT;
793 } else if (ah->ah_bwmode != AR5K_BWMODE_DEFAULT) {
794 if (ah->ah_radio == AR5K_RF5413) {
795 mode |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
796 AR5K_PHY_MODE_HALF_RATE :
797 AR5K_PHY_MODE_QUARTER_RATE;
798 } else if (ah->ah_version == AR5K_AR5212) {
799 clock |= (ah->ah_bwmode == AR5K_BWMODE_10MHZ) ?
800 AR5K_PHY_PLL_HALF_RATE :
801 AR5K_PHY_PLL_QUARTER_RATE;
805 } else { /* Reset the device */
807 /* ...enable Atheros turbo mode if requested */
808 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
809 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
810 AR5K_PHY_TURBO);
813 if (ah->ah_version != AR5K_AR5210) {
815 /* ...update PLL if needed */
816 if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
817 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
818 usleep_range(300, 350);
821 /* ...set the PHY operating mode */
822 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
823 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
826 return 0;
830 /**************************************\
831 * Post-initvals register modifications *
832 \**************************************/
835 * ath5k_hw_tweak_initval_settings() - Tweak initial settings
836 * @ah: The &struct ath5k_hw
837 * @channel: The &struct ieee80211_channel
839 * Some settings are not handled on initvals, e.g. bwmode
840 * settings, some phy settings, workarounds etc that in general
841 * don't fit anywhere else or are too small to introduce a separate
842 * function for each one. So we have this function to handle
843 * them all during reset and complete card's initialization.
845 static void
846 ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
847 struct ieee80211_channel *channel)
849 if (ah->ah_version == AR5K_AR5212 &&
850 ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
852 /* Setup ADC control */
853 ath5k_hw_reg_write(ah,
854 (AR5K_REG_SM(2,
855 AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
856 AR5K_REG_SM(2,
857 AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
858 AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
859 AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
860 AR5K_PHY_ADC_CTL);
864 /* Disable barker RSSI threshold */
865 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
866 AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
868 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
869 AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
871 /* Set the mute mask */
872 ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
875 /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
876 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
877 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
879 /* Enable DCU double buffering */
880 if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
881 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
882 AR5K_TXCFG_DCU_DBL_BUF_DIS);
884 /* Set fast ADC */
885 if ((ah->ah_radio == AR5K_RF5413) ||
886 (ah->ah_radio == AR5K_RF2317) ||
887 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
888 u32 fast_adc = true;
890 if (channel->center_freq == 2462 ||
891 channel->center_freq == 2467)
892 fast_adc = 0;
894 /* Only update if needed */
895 if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
896 ath5k_hw_reg_write(ah, fast_adc,
897 AR5K_PHY_FAST_ADC);
900 /* Fix for first revision of the RF5112 RF chipset */
901 if (ah->ah_radio == AR5K_RF5112 &&
902 ah->ah_radio_5ghz_revision <
903 AR5K_SREV_RAD_5112A) {
904 u32 data;
905 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
906 AR5K_PHY_CCKTXCTL);
907 if (channel->band == IEEE80211_BAND_5GHZ)
908 data = 0xffb81020;
909 else
910 data = 0xffb80d20;
911 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
914 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
915 /* Clear QCU/DCU clock gating register */
916 ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
917 /* Set DAC/ADC delays */
918 ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ_5311,
919 AR5K_PHY_SCAL);
920 /* Enable PCU FIFO corruption ECO */
921 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
922 AR5K_DIAG_SW_ECO_ENABLE);
925 if (ah->ah_bwmode) {
926 /* Increase PHY switch and AGC settling time
927 * on turbo mode (ath5k_hw_commit_eeprom_settings
928 * will override settling time if available) */
929 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) {
931 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
932 AR5K_PHY_SETTLING_AGC,
933 AR5K_AGC_SETTLING_TURBO);
935 /* XXX: Initvals indicate we only increase
936 * switch time on AR5212, 5211 and 5210
937 * only change agc time (bug?) */
938 if (ah->ah_version == AR5K_AR5212)
939 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
940 AR5K_PHY_SETTLING_SWITCH,
941 AR5K_SWITCH_SETTLING_TURBO);
943 if (ah->ah_version == AR5K_AR5210) {
944 /* Set Frame Control Register */
945 ath5k_hw_reg_write(ah,
946 (AR5K_PHY_FRAME_CTL_INI |
947 AR5K_PHY_TURBO_MODE |
948 AR5K_PHY_TURBO_SHORT | 0x2020),
949 AR5K_PHY_FRAME_CTL_5210);
951 /* On 5413 PHY force window length for half/quarter rate*/
952 } else if ((ah->ah_mac_srev >= AR5K_SREV_AR5424) &&
953 (ah->ah_mac_srev <= AR5K_SREV_AR5414)) {
954 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL_5211,
955 AR5K_PHY_FRAME_CTL_WIN_LEN,
958 } else if (ah->ah_version == AR5K_AR5210) {
959 /* Set Frame Control Register for normal operation */
960 ath5k_hw_reg_write(ah, (AR5K_PHY_FRAME_CTL_INI | 0x1020),
961 AR5K_PHY_FRAME_CTL_5210);
966 * ath5k_hw_commit_eeprom_settings() - Commit settings from EEPROM
967 * @ah: The &struct ath5k_hw
968 * @channel: The &struct ieee80211_channel
970 * Use settings stored on EEPROM to properly initialize the card
971 * based on various infos and per-mode calibration data.
973 static void
974 ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
975 struct ieee80211_channel *channel)
977 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
978 s16 cck_ofdm_pwr_delta;
979 u8 ee_mode;
981 /* TODO: Add support for AR5210 EEPROM */
982 if (ah->ah_version == AR5K_AR5210)
983 return;
985 ee_mode = ath5k_eeprom_mode_from_channel(channel);
987 /* Adjust power delta for channel 14 */
988 if (channel->center_freq == 2484)
989 cck_ofdm_pwr_delta =
990 ((ee->ee_cck_ofdm_power_delta -
991 ee->ee_scaled_cck_delta) * 2) / 10;
992 else
993 cck_ofdm_pwr_delta =
994 (ee->ee_cck_ofdm_power_delta * 2) / 10;
996 /* Set CCK to OFDM power delta on tx power
997 * adjustment register */
998 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
999 if (channel->hw_value == AR5K_MODE_11G)
1000 ath5k_hw_reg_write(ah,
1001 AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
1002 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
1003 AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
1004 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
1005 AR5K_PHY_TX_PWR_ADJ);
1006 else
1007 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
1008 } else {
1009 /* For older revs we scale power on sw during tx power
1010 * setup */
1011 ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
1012 ah->ah_txpower.txp_cck_ofdm_gainf_delta =
1013 ee->ee_cck_ofdm_gain_delta;
1016 /* XXX: necessary here? is called from ath5k_hw_set_antenna_mode()
1017 * too */
1018 ath5k_hw_set_antenna_switch(ah, ee_mode);
1020 /* Noise floor threshold */
1021 ath5k_hw_reg_write(ah,
1022 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
1023 AR5K_PHY_NFTHRES);
1025 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
1026 (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
1027 /* Switch settling time (Turbo) */
1028 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
1029 AR5K_PHY_SETTLING_SWITCH,
1030 ee->ee_switch_settling_turbo[ee_mode]);
1032 /* Tx/Rx attenuation (Turbo) */
1033 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
1034 AR5K_PHY_GAIN_TXRX_ATTEN,
1035 ee->ee_atn_tx_rx_turbo[ee_mode]);
1037 /* ADC/PGA desired size (Turbo) */
1038 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1039 AR5K_PHY_DESIRED_SIZE_ADC,
1040 ee->ee_adc_desired_size_turbo[ee_mode]);
1042 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1043 AR5K_PHY_DESIRED_SIZE_PGA,
1044 ee->ee_pga_desired_size_turbo[ee_mode]);
1046 /* Tx/Rx margin (Turbo) */
1047 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
1048 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
1049 ee->ee_margin_tx_rx_turbo[ee_mode]);
1051 } else {
1052 /* Switch settling time */
1053 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
1054 AR5K_PHY_SETTLING_SWITCH,
1055 ee->ee_switch_settling[ee_mode]);
1057 /* Tx/Rx attenuation */
1058 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
1059 AR5K_PHY_GAIN_TXRX_ATTEN,
1060 ee->ee_atn_tx_rx[ee_mode]);
1062 /* ADC/PGA desired size */
1063 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1064 AR5K_PHY_DESIRED_SIZE_ADC,
1065 ee->ee_adc_desired_size[ee_mode]);
1067 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
1068 AR5K_PHY_DESIRED_SIZE_PGA,
1069 ee->ee_pga_desired_size[ee_mode]);
1071 /* Tx/Rx margin */
1072 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
1073 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
1074 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
1075 ee->ee_margin_tx_rx[ee_mode]);
1078 /* XPA delays */
1079 ath5k_hw_reg_write(ah,
1080 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
1081 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
1082 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
1083 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
1085 /* XLNA delay */
1086 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
1087 AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
1088 ee->ee_tx_end2xlna_enable[ee_mode]);
1090 /* Thresh64 (ANI) */
1091 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
1092 AR5K_PHY_NF_THRESH62,
1093 ee->ee_thr_62[ee_mode]);
1095 /* False detect backoff for channels
1096 * that have spur noise. Write the new
1097 * cyclic power RSSI threshold. */
1098 if (ath5k_hw_chan_has_spur_noise(ah, channel))
1099 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1100 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1101 AR5K_INIT_CYCRSSI_THR1 +
1102 ee->ee_false_detect[ee_mode]);
1103 else
1104 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
1105 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
1106 AR5K_INIT_CYCRSSI_THR1);
1108 /* I/Q correction (set enable bit last to match HAL sources) */
1109 /* TODO: Per channel i/q infos ? */
1110 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1111 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF,
1112 ee->ee_i_cal[ee_mode]);
1113 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF,
1114 ee->ee_q_cal[ee_mode]);
1115 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1118 /* Heavy clipping -disable for now */
1119 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
1120 ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
1124 /*********************\
1125 * Main reset function *
1126 \*********************/
1129 * ath5k_hw_reset() - The main reset function
1130 * @ah: The &struct ath5k_hw
1131 * @op_mode: One of enum nl80211_iftype
1132 * @channel: The &struct ieee80211_channel
1133 * @fast: Enable fast channel switching
1134 * @skip_pcu: Skip pcu initialization
1136 * This is the function we call each time we want to (re)initialize the
1137 * card and pass new settings to hw. We also call it when hw runs into
1138 * trouble to make it come back to a working state.
1140 * Returns 0 on success, -EINVAL on false op_mode or channel infos, or -EIO
1141 * on failure.
1144 ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
1145 struct ieee80211_channel *channel, bool fast, bool skip_pcu)
1147 u32 s_seq[10], s_led[3], tsf_up, tsf_lo;
1148 u8 mode;
1149 int i, ret;
1151 tsf_up = 0;
1152 tsf_lo = 0;
1153 mode = 0;
1156 * Sanity check for fast flag
1157 * Fast channel change only available
1158 * on AR2413/AR5413.
1160 if (fast && (ah->ah_radio != AR5K_RF2413) &&
1161 (ah->ah_radio != AR5K_RF5413))
1162 fast = false;
1164 /* Disable sleep clock operation
1165 * to avoid register access delay on certain
1166 * PHY registers */
1167 if (ah->ah_version == AR5K_AR5212)
1168 ath5k_hw_set_sleep_clock(ah, false);
1171 * Stop PCU
1173 ath5k_hw_stop_rx_pcu(ah);
1176 * Stop DMA
1178 * Note: If DMA didn't stop continue
1179 * since only a reset will fix it.
1181 ret = ath5k_hw_dma_stop(ah);
1183 /* RF Bus grant won't work if we have pending
1184 * frames */
1185 if (ret && fast) {
1186 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1187 "DMA didn't stop, falling back to normal reset\n");
1188 fast = false;
1189 /* Non fatal, just continue with
1190 * normal reset */
1191 ret = 0;
1194 mode = channel->hw_value;
1195 switch (mode) {
1196 case AR5K_MODE_11A:
1197 break;
1198 case AR5K_MODE_11G:
1199 if (ah->ah_version <= AR5K_AR5211) {
1200 ATH5K_ERR(ah,
1201 "G mode not available on 5210/5211");
1202 return -EINVAL;
1204 break;
1205 case AR5K_MODE_11B:
1206 if (ah->ah_version < AR5K_AR5211) {
1207 ATH5K_ERR(ah,
1208 "B mode not available on 5210");
1209 return -EINVAL;
1211 break;
1212 default:
1213 ATH5K_ERR(ah,
1214 "invalid channel: %d\n", channel->center_freq);
1215 return -EINVAL;
1219 * If driver requested fast channel change and DMA has stopped
1220 * go on. If it fails continue with a normal reset.
1222 if (fast) {
1223 ret = ath5k_hw_phy_init(ah, channel, mode, true);
1224 if (ret) {
1225 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1226 "fast chan change failed, falling back to normal reset\n");
1227 /* Non fatal, can happen eg.
1228 * on mode change */
1229 ret = 0;
1230 } else {
1231 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1232 "fast chan change successful\n");
1233 return 0;
1238 * Save some registers before a reset
1240 if (ah->ah_version != AR5K_AR5210) {
1242 * Save frame sequence count
1243 * For revs. after Oahu, only save
1244 * seq num for DCU 0 (Global seq num)
1246 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1248 for (i = 0; i < 10; i++)
1249 s_seq[i] = ath5k_hw_reg_read(ah,
1250 AR5K_QUEUE_DCU_SEQNUM(i));
1252 } else {
1253 s_seq[0] = ath5k_hw_reg_read(ah,
1254 AR5K_QUEUE_DCU_SEQNUM(0));
1257 /* TSF accelerates on AR5211 during reset
1258 * As a workaround save it here and restore
1259 * it later so that it's back in time after
1260 * reset. This way it'll get re-synced on the
1261 * next beacon without breaking ad-hoc.
1263 * On AR5212 TSF is almost preserved across a
1264 * reset so it stays back in time anyway and
1265 * we don't have to save/restore it.
1267 * XXX: Since this breaks power saving we have
1268 * to disable power saving until we receive the
1269 * next beacon, so we can resync beacon timers */
1270 if (ah->ah_version == AR5K_AR5211) {
1271 tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
1272 tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
1277 /*GPIOs*/
1278 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
1279 AR5K_PCICFG_LEDSTATE;
1280 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
1281 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
1285 * Since we are going to write rf buffer
1286 * check if we have any pending gain_F
1287 * optimization settings
1289 if (ah->ah_version == AR5K_AR5212 &&
1290 (ah->ah_radio <= AR5K_RF5112)) {
1291 if (!fast && ah->ah_rf_banks != NULL)
1292 ath5k_hw_gainf_calibrate(ah);
1295 /* Wakeup the device */
1296 ret = ath5k_hw_nic_wakeup(ah, channel);
1297 if (ret)
1298 return ret;
1300 /* PHY access enable */
1301 if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
1302 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1303 else
1304 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
1305 AR5K_PHY(0));
1307 /* Write initial settings */
1308 ret = ath5k_hw_write_initvals(ah, mode, skip_pcu);
1309 if (ret)
1310 return ret;
1312 /* Initialize core clock settings */
1313 ath5k_hw_init_core_clock(ah);
1316 * Tweak initval settings for revised
1317 * chipsets and add some more config
1318 * bits
1320 ath5k_hw_tweak_initval_settings(ah, channel);
1322 /* Commit values from EEPROM */
1323 ath5k_hw_commit_eeprom_settings(ah, channel);
1327 * Restore saved values
1330 /* Seqnum, TSF */
1331 if (ah->ah_version != AR5K_AR5210) {
1332 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1333 for (i = 0; i < 10; i++)
1334 ath5k_hw_reg_write(ah, s_seq[i],
1335 AR5K_QUEUE_DCU_SEQNUM(i));
1336 } else {
1337 ath5k_hw_reg_write(ah, s_seq[0],
1338 AR5K_QUEUE_DCU_SEQNUM(0));
1341 if (ah->ah_version == AR5K_AR5211) {
1342 ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1343 ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1347 /* Ledstate */
1348 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1350 /* Gpio settings */
1351 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1352 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1355 * Initialize PCU
1357 ath5k_hw_pcu_init(ah, op_mode);
1360 * Initialize PHY
1362 ret = ath5k_hw_phy_init(ah, channel, mode, false);
1363 if (ret) {
1364 ATH5K_ERR(ah,
1365 "failed to initialize PHY (%i) !\n", ret);
1366 return ret;
1370 * Configure QCUs/DCUs
1372 ret = ath5k_hw_init_queues(ah);
1373 if (ret)
1374 return ret;
1378 * Initialize DMA/Interrupts
1380 ath5k_hw_dma_init(ah);
1384 * Enable 32KHz clock function for AR5212+ chips
1385 * Set clocks to 32KHz operation and use an
1386 * external 32KHz crystal when sleeping if one
1387 * exists.
1388 * Disabled by default because it is also disabled in
1389 * other drivers and it is known to cause stability
1390 * issues on some devices
1392 if (ah->ah_use_32khz_clock && ah->ah_version == AR5K_AR5212 &&
1393 op_mode != NL80211_IFTYPE_AP)
1394 ath5k_hw_set_sleep_clock(ah, true);
1397 * Disable beacons and reset the TSF
1399 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE);
1400 ath5k_hw_reset_tsf(ah);
1401 return 0;