spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / net / wireless / ath / ath9k / ar9002_phy.c
blob3cbbb033fcea545c0f9e013ee02799227a79e2d6
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 /**
18 * DOC: Programming Atheros 802.11n analog front end radios
20 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
21 * devices have either an external AR2133 analog front end radio for single
22 * band 2.4 GHz communication or an AR5133 analog front end radio for dual
23 * band 2.4 GHz / 5 GHz communication.
25 * All devices after the AR5416 and AR5418 family starting with the AR9280
26 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
27 * into a single-chip and require less programming.
29 * The following single-chips exist with a respective embedded radio:
31 * AR9280 - 11n dual-band 2x2 MIMO for PCIe
32 * AR9281 - 11n single-band 1x2 MIMO for PCIe
33 * AR9285 - 11n single-band 1x1 for PCIe
34 * AR9287 - 11n single-band 2x2 MIMO for PCIe
36 * AR9220 - 11n dual-band 2x2 MIMO for PCI
37 * AR9223 - 11n single-band 2x2 MIMO for PCI
39 * AR9287 - 11n single-band 1x1 MIMO for USB
42 #include "hw.h"
43 #include "ar9002_phy.h"
45 /**
46 * ar9002_hw_set_channel - set channel on single-chip device
47 * @ah: atheros hardware structure
48 * @chan:
50 * This is the function to change channel on single-chip devices, that is
51 * all devices after ar9280.
53 * This function takes the channel value in MHz and sets
54 * hardware channel value. Assumes writes have been enabled to analog bus.
56 * Actual Expression,
58 * For 2GHz channel,
59 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
60 * (freq_ref = 40MHz)
62 * For 5GHz channel,
63 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
64 * (freq_ref = 40MHz/(24>>amodeRefSel))
66 static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
68 u16 bMode, fracMode, aModeRefSel = 0;
69 u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
70 struct chan_centers centers;
71 u32 refDivA = 24;
73 ath9k_hw_get_channel_centers(ah, chan, &centers);
74 freq = centers.synth_center;
76 reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
77 reg32 &= 0xc0000000;
79 if (freq < 4800) { /* 2 GHz, fractional mode */
80 u32 txctl;
81 int regWrites = 0;
83 bMode = 1;
84 fracMode = 1;
85 aModeRefSel = 0;
86 channelSel = CHANSEL_2G(freq);
88 if (AR_SREV_9287_11_OR_LATER(ah)) {
89 if (freq == 2484) {
90 /* Enable channel spreading for channel 14 */
91 REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
92 1, regWrites);
93 } else {
94 REG_WRITE_ARRAY(&ah->iniCckfirNormal,
95 1, regWrites);
97 } else {
98 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
99 if (freq == 2484) {
100 /* Enable channel spreading for channel 14 */
101 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103 } else {
104 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
108 } else {
109 bMode = 0;
110 fracMode = 0;
112 switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113 case 0:
114 if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
115 aModeRefSel = 0;
116 else if ((freq % 20) == 0)
117 aModeRefSel = 3;
118 else if ((freq % 10) == 0)
119 aModeRefSel = 2;
120 if (aModeRefSel)
121 break;
122 case 1:
123 default:
124 aModeRefSel = 0;
126 * Enable 2G (fractional) mode for channels
127 * which are 5MHz spaced.
129 fracMode = 1;
130 refDivA = 1;
131 channelSel = CHANSEL_5G(freq);
133 /* RefDivA setting */
134 ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
135 AR_AN_SYNTH9_REFDIVA,
136 AR_AN_SYNTH9_REFDIVA_S, refDivA);
140 if (!fracMode) {
141 ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
142 channelSel = ndiv & 0x1ff;
143 channelFrac = (ndiv & 0xfffffe00) * 2;
144 channelSel = (channelSel << 17) | channelFrac;
148 reg32 = reg32 |
149 (bMode << 29) |
150 (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
152 REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
154 ah->curchan = chan;
155 ah->curchan_rad_index = -1;
157 return 0;
161 * ar9002_hw_spur_mitigate - convert baseband spur frequency
162 * @ah: atheros hardware structure
163 * @chan:
165 * For single-chip solutions. Converts to baseband spur frequency given the
166 * input channel frequency and compute register settings below.
168 static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
169 struct ath9k_channel *chan)
171 int bb_spur = AR_NO_SPUR;
172 int freq;
173 int bin, cur_bin;
174 int bb_spur_off, spur_subchannel_sd;
175 int spur_freq_sd;
176 int spur_delta_phase;
177 int denominator;
178 int upper, lower, cur_vit_mask;
179 int tmp, newVal;
180 int i;
181 static const int pilot_mask_reg[4] = {
182 AR_PHY_TIMING7, AR_PHY_TIMING8,
183 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
185 static const int chan_mask_reg[4] = {
186 AR_PHY_TIMING9, AR_PHY_TIMING10,
187 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
189 static const int inc[4] = { 0, 100, 0, 0 };
190 struct chan_centers centers;
192 int8_t mask_m[123];
193 int8_t mask_p[123];
194 int8_t mask_amt;
195 int tmp_mask;
196 int cur_bb_spur;
197 bool is2GHz = IS_CHAN_2GHZ(chan);
199 memset(&mask_m, 0, sizeof(int8_t) * 123);
200 memset(&mask_p, 0, sizeof(int8_t) * 123);
202 ath9k_hw_get_channel_centers(ah, chan, &centers);
203 freq = centers.synth_center;
205 ah->config.spurmode = SPUR_ENABLE_EEPROM;
206 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
207 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
209 if (AR_NO_SPUR == cur_bb_spur)
210 break;
212 if (is2GHz)
213 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
214 else
215 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
217 cur_bb_spur = cur_bb_spur - freq;
219 if (IS_CHAN_HT40(chan)) {
220 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
221 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
222 bb_spur = cur_bb_spur;
223 break;
225 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
226 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
227 bb_spur = cur_bb_spur;
228 break;
232 if (AR_NO_SPUR == bb_spur) {
233 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
234 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
235 return;
236 } else {
237 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
238 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
241 bin = bb_spur * 320;
243 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
245 ENABLE_REGWRITE_BUFFER(ah);
247 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
248 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
249 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
250 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
251 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
253 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
254 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
255 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
256 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
257 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
258 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
260 if (IS_CHAN_HT40(chan)) {
261 if (bb_spur < 0) {
262 spur_subchannel_sd = 1;
263 bb_spur_off = bb_spur + 10;
264 } else {
265 spur_subchannel_sd = 0;
266 bb_spur_off = bb_spur - 10;
268 } else {
269 spur_subchannel_sd = 0;
270 bb_spur_off = bb_spur;
273 if (IS_CHAN_HT40(chan))
274 spur_delta_phase =
275 ((bb_spur * 262144) /
276 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
277 else
278 spur_delta_phase =
279 ((bb_spur * 524288) /
280 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
282 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
283 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
285 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
286 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
287 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
288 REG_WRITE(ah, AR_PHY_TIMING11, newVal);
290 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
291 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
293 cur_bin = -6000;
294 upper = bin + 100;
295 lower = bin - 100;
297 for (i = 0; i < 4; i++) {
298 int pilot_mask = 0;
299 int chan_mask = 0;
300 int bp = 0;
301 for (bp = 0; bp < 30; bp++) {
302 if ((cur_bin > lower) && (cur_bin < upper)) {
303 pilot_mask = pilot_mask | 0x1 << bp;
304 chan_mask = chan_mask | 0x1 << bp;
306 cur_bin += 100;
308 cur_bin += inc[i];
309 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
310 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
313 cur_vit_mask = 6100;
314 upper = bin + 120;
315 lower = bin - 120;
317 for (i = 0; i < 123; i++) {
318 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
320 /* workaround for gcc bug #37014 */
321 volatile int tmp_v = abs(cur_vit_mask - bin);
323 if (tmp_v < 75)
324 mask_amt = 1;
325 else
326 mask_amt = 0;
327 if (cur_vit_mask < 0)
328 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
329 else
330 mask_p[cur_vit_mask / 100] = mask_amt;
332 cur_vit_mask -= 100;
335 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
336 | (mask_m[48] << 26) | (mask_m[49] << 24)
337 | (mask_m[50] << 22) | (mask_m[51] << 20)
338 | (mask_m[52] << 18) | (mask_m[53] << 16)
339 | (mask_m[54] << 14) | (mask_m[55] << 12)
340 | (mask_m[56] << 10) | (mask_m[57] << 8)
341 | (mask_m[58] << 6) | (mask_m[59] << 4)
342 | (mask_m[60] << 2) | (mask_m[61] << 0);
343 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
344 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
346 tmp_mask = (mask_m[31] << 28)
347 | (mask_m[32] << 26) | (mask_m[33] << 24)
348 | (mask_m[34] << 22) | (mask_m[35] << 20)
349 | (mask_m[36] << 18) | (mask_m[37] << 16)
350 | (mask_m[48] << 14) | (mask_m[39] << 12)
351 | (mask_m[40] << 10) | (mask_m[41] << 8)
352 | (mask_m[42] << 6) | (mask_m[43] << 4)
353 | (mask_m[44] << 2) | (mask_m[45] << 0);
354 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
355 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
357 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
358 | (mask_m[18] << 26) | (mask_m[18] << 24)
359 | (mask_m[20] << 22) | (mask_m[20] << 20)
360 | (mask_m[22] << 18) | (mask_m[22] << 16)
361 | (mask_m[24] << 14) | (mask_m[24] << 12)
362 | (mask_m[25] << 10) | (mask_m[26] << 8)
363 | (mask_m[27] << 6) | (mask_m[28] << 4)
364 | (mask_m[29] << 2) | (mask_m[30] << 0);
365 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
366 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
368 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
369 | (mask_m[2] << 26) | (mask_m[3] << 24)
370 | (mask_m[4] << 22) | (mask_m[5] << 20)
371 | (mask_m[6] << 18) | (mask_m[7] << 16)
372 | (mask_m[8] << 14) | (mask_m[9] << 12)
373 | (mask_m[10] << 10) | (mask_m[11] << 8)
374 | (mask_m[12] << 6) | (mask_m[13] << 4)
375 | (mask_m[14] << 2) | (mask_m[15] << 0);
376 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
377 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
379 tmp_mask = (mask_p[15] << 28)
380 | (mask_p[14] << 26) | (mask_p[13] << 24)
381 | (mask_p[12] << 22) | (mask_p[11] << 20)
382 | (mask_p[10] << 18) | (mask_p[9] << 16)
383 | (mask_p[8] << 14) | (mask_p[7] << 12)
384 | (mask_p[6] << 10) | (mask_p[5] << 8)
385 | (mask_p[4] << 6) | (mask_p[3] << 4)
386 | (mask_p[2] << 2) | (mask_p[1] << 0);
387 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
388 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
390 tmp_mask = (mask_p[30] << 28)
391 | (mask_p[29] << 26) | (mask_p[28] << 24)
392 | (mask_p[27] << 22) | (mask_p[26] << 20)
393 | (mask_p[25] << 18) | (mask_p[24] << 16)
394 | (mask_p[23] << 14) | (mask_p[22] << 12)
395 | (mask_p[21] << 10) | (mask_p[20] << 8)
396 | (mask_p[19] << 6) | (mask_p[18] << 4)
397 | (mask_p[17] << 2) | (mask_p[16] << 0);
398 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
399 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
401 tmp_mask = (mask_p[45] << 28)
402 | (mask_p[44] << 26) | (mask_p[43] << 24)
403 | (mask_p[42] << 22) | (mask_p[41] << 20)
404 | (mask_p[40] << 18) | (mask_p[39] << 16)
405 | (mask_p[38] << 14) | (mask_p[37] << 12)
406 | (mask_p[36] << 10) | (mask_p[35] << 8)
407 | (mask_p[34] << 6) | (mask_p[33] << 4)
408 | (mask_p[32] << 2) | (mask_p[31] << 0);
409 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
410 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
412 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
413 | (mask_p[59] << 26) | (mask_p[58] << 24)
414 | (mask_p[57] << 22) | (mask_p[56] << 20)
415 | (mask_p[55] << 18) | (mask_p[54] << 16)
416 | (mask_p[53] << 14) | (mask_p[52] << 12)
417 | (mask_p[51] << 10) | (mask_p[50] << 8)
418 | (mask_p[49] << 6) | (mask_p[48] << 4)
419 | (mask_p[47] << 2) | (mask_p[46] << 0);
420 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
421 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
423 REGWRITE_BUFFER_FLUSH(ah);
426 static void ar9002_olc_init(struct ath_hw *ah)
428 u32 i;
430 if (!OLC_FOR_AR9280_20_LATER)
431 return;
433 if (OLC_FOR_AR9287_10_LATER) {
434 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
435 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
436 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
437 AR9287_AN_TXPC0_TXPCMODE,
438 AR9287_AN_TXPC0_TXPCMODE_S,
439 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
440 udelay(100);
441 } else {
442 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
443 ah->originalGain[i] =
444 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
445 AR_PHY_TX_GAIN);
446 ah->PDADCdelta = 0;
450 static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
451 struct ath9k_channel *chan)
453 int ref_div = 5;
454 int pll_div = 0x2c;
455 u32 pll;
457 if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
458 if (AR_SREV_9280_20(ah)) {
459 ref_div = 10;
460 pll_div = 0x50;
461 } else {
462 pll_div = 0x28;
466 pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
467 pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
469 if (chan && IS_CHAN_HALF_RATE(chan))
470 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
471 else if (chan && IS_CHAN_QUARTER_RATE(chan))
472 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
474 return pll;
477 static void ar9002_hw_do_getnf(struct ath_hw *ah,
478 int16_t nfarray[NUM_NF_READINGS])
480 int16_t nf;
482 nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
483 nfarray[0] = sign_extend32(nf, 8);
485 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
486 if (IS_CHAN_HT40(ah->curchan))
487 nfarray[3] = sign_extend32(nf, 8);
489 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
490 return;
492 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
493 nfarray[1] = sign_extend32(nf, 8);
495 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
496 if (IS_CHAN_HT40(ah->curchan))
497 nfarray[4] = sign_extend32(nf, 8);
500 static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
502 if (AR_SREV_9285(ah)) {
503 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
504 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
505 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
506 } else if (AR_SREV_9287(ah)) {
507 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
508 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
509 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
510 } else if (AR_SREV_9271(ah)) {
511 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
512 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
513 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
514 } else {
515 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
516 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
517 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
518 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
519 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
520 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
524 static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
525 struct ath_hw_antcomb_conf *antconf)
527 u32 regval;
529 regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
530 antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
531 AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
532 antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
533 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
534 antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
535 AR_PHY_9285_FAST_DIV_BIAS_S;
536 antconf->lna1_lna2_delta = -3;
537 antconf->div_group = 0;
540 static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
541 struct ath_hw_antcomb_conf *antconf)
543 u32 regval;
545 regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
546 regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
547 AR_PHY_9285_ANT_DIV_ALT_LNACONF |
548 AR_PHY_9285_FAST_DIV_BIAS);
549 regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
550 & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
551 regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
552 & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
553 regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
554 & AR_PHY_9285_FAST_DIV_BIAS);
556 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
559 void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
561 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
562 struct ath_hw_ops *ops = ath9k_hw_ops(ah);
564 priv_ops->set_rf_regs = NULL;
565 priv_ops->rf_alloc_ext_banks = NULL;
566 priv_ops->rf_free_ext_banks = NULL;
567 priv_ops->rf_set_freq = ar9002_hw_set_channel;
568 priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
569 priv_ops->olc_init = ar9002_olc_init;
570 priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
571 priv_ops->do_getnf = ar9002_hw_do_getnf;
573 ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
574 ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
576 ar9002_hw_set_nf_limits(ah);