spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / net / wireless / ath / ath9k / eeprom.c
blobc43523233319a8d5d66af5ac221b3495d5df9632
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
19 static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
21 if (fbin == AR5416_BCHAN_UNUSED)
22 return fbin;
24 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
27 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
29 REG_WRITE(ah, reg, val);
31 if (ah->config.analog_shiftreg)
32 udelay(100);
35 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
36 u32 shift, u32 val)
38 u32 regVal;
40 regVal = REG_READ(ah, reg) & ~mask;
41 regVal |= (val << shift) & mask;
43 REG_WRITE(ah, reg, regVal);
45 if (ah->config.analog_shiftreg)
46 udelay(100);
49 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
50 int16_t targetLeft, int16_t targetRight)
52 int16_t rv;
54 if (srcRight == srcLeft) {
55 rv = targetLeft;
56 } else {
57 rv = (int16_t) (((target - srcLeft) * targetRight +
58 (srcRight - target) * targetLeft) /
59 (srcRight - srcLeft));
61 return rv;
64 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
65 u16 *indexL, u16 *indexR)
67 u16 i;
69 if (target <= pList[0]) {
70 *indexL = *indexR = 0;
71 return true;
73 if (target >= pList[listSize - 1]) {
74 *indexL = *indexR = (u16) (listSize - 1);
75 return true;
78 for (i = 0; i < listSize - 1; i++) {
79 if (pList[i] == target) {
80 *indexL = *indexR = i;
81 return true;
83 if (target < pList[i + 1]) {
84 *indexL = i;
85 *indexR = (u16) (i + 1);
86 return false;
89 return false;
92 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
93 int eep_start_loc, int size)
95 int i = 0, j, addr;
96 u32 addrdata[8];
97 u32 data[8];
99 for (addr = 0; addr < size; addr++) {
100 addrdata[i] = AR5416_EEPROM_OFFSET +
101 ((addr + eep_start_loc) << AR5416_EEPROM_S);
102 i++;
103 if (i == 8) {
104 REG_READ_MULTI(ah, addrdata, data, i);
106 for (j = 0; j < i; j++) {
107 *eep_data = data[j];
108 eep_data++;
110 i = 0;
114 if (i != 0) {
115 REG_READ_MULTI(ah, addrdata, data, i);
117 for (j = 0; j < i; j++) {
118 *eep_data = data[j];
119 eep_data++;
124 bool ath9k_hw_nvram_read(struct ath_common *common, u32 off, u16 *data)
126 return common->bus_ops->eeprom_read(common, off, data);
129 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
130 u8 *pVpdList, u16 numIntercepts,
131 u8 *pRetVpdList)
133 u16 i, k;
134 u8 currPwr = pwrMin;
135 u16 idxL = 0, idxR = 0;
137 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
138 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
139 numIntercepts, &(idxL),
140 &(idxR));
141 if (idxR < 1)
142 idxR = 1;
143 if (idxL == numIntercepts - 1)
144 idxL = (u16) (numIntercepts - 2);
145 if (pPwrList[idxL] == pPwrList[idxR])
146 k = pVpdList[idxL];
147 else
148 k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
149 (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
150 (pPwrList[idxR] - pPwrList[idxL]));
151 pRetVpdList[i] = (u8) k;
152 currPwr += 2;
156 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
157 struct ath9k_channel *chan,
158 struct cal_target_power_leg *powInfo,
159 u16 numChannels,
160 struct cal_target_power_leg *pNewPower,
161 u16 numRates, bool isExtTarget)
163 struct chan_centers centers;
164 u16 clo, chi;
165 int i;
166 int matchIndex = -1, lowIndex = -1;
167 u16 freq;
169 ath9k_hw_get_channel_centers(ah, chan, &centers);
170 freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
172 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
173 IS_CHAN_2GHZ(chan))) {
174 matchIndex = 0;
175 } else {
176 for (i = 0; (i < numChannels) &&
177 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
178 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
179 IS_CHAN_2GHZ(chan))) {
180 matchIndex = i;
181 break;
182 } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
183 IS_CHAN_2GHZ(chan)) && i > 0 &&
184 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
185 IS_CHAN_2GHZ(chan))) {
186 lowIndex = i - 1;
187 break;
190 if ((matchIndex == -1) && (lowIndex == -1))
191 matchIndex = i - 1;
194 if (matchIndex != -1) {
195 *pNewPower = powInfo[matchIndex];
196 } else {
197 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
198 IS_CHAN_2GHZ(chan));
199 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
200 IS_CHAN_2GHZ(chan));
202 for (i = 0; i < numRates; i++) {
203 pNewPower->tPow2x[i] =
204 (u8)ath9k_hw_interpolate(freq, clo, chi,
205 powInfo[lowIndex].tPow2x[i],
206 powInfo[lowIndex + 1].tPow2x[i]);
211 void ath9k_hw_get_target_powers(struct ath_hw *ah,
212 struct ath9k_channel *chan,
213 struct cal_target_power_ht *powInfo,
214 u16 numChannels,
215 struct cal_target_power_ht *pNewPower,
216 u16 numRates, bool isHt40Target)
218 struct chan_centers centers;
219 u16 clo, chi;
220 int i;
221 int matchIndex = -1, lowIndex = -1;
222 u16 freq;
224 ath9k_hw_get_channel_centers(ah, chan, &centers);
225 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
227 if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
228 matchIndex = 0;
229 } else {
230 for (i = 0; (i < numChannels) &&
231 (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
232 if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
233 IS_CHAN_2GHZ(chan))) {
234 matchIndex = i;
235 break;
236 } else
237 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
238 IS_CHAN_2GHZ(chan)) && i > 0 &&
239 freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
240 IS_CHAN_2GHZ(chan))) {
241 lowIndex = i - 1;
242 break;
245 if ((matchIndex == -1) && (lowIndex == -1))
246 matchIndex = i - 1;
249 if (matchIndex != -1) {
250 *pNewPower = powInfo[matchIndex];
251 } else {
252 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
253 IS_CHAN_2GHZ(chan));
254 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
255 IS_CHAN_2GHZ(chan));
257 for (i = 0; i < numRates; i++) {
258 pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
259 clo, chi,
260 powInfo[lowIndex].tPow2x[i],
261 powInfo[lowIndex + 1].tPow2x[i]);
266 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
267 bool is2GHz, int num_band_edges)
269 u16 twiceMaxEdgePower = MAX_RATE_POWER;
270 int i;
272 for (i = 0; (i < num_band_edges) &&
273 (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
274 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
275 twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
276 break;
277 } else if ((i > 0) &&
278 (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
279 is2GHz))) {
280 if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
281 is2GHz) < freq &&
282 CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
283 twiceMaxEdgePower =
284 CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
286 break;
290 return twiceMaxEdgePower;
293 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
295 struct ath_common *common = ath9k_hw_common(ah);
296 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
298 switch (ar5416_get_ntxchains(ah->txchainmask)) {
299 case 1:
300 break;
301 case 2:
302 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
303 break;
304 case 3:
305 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
306 break;
307 default:
308 ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
309 break;
313 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
314 struct ath9k_channel *chan,
315 void *pRawDataSet,
316 u8 *bChans, u16 availPiers,
317 u16 tPdGainOverlap,
318 u16 *pPdGainBoundaries, u8 *pPDADCValues,
319 u16 numXpdGains)
321 int i, j, k;
322 int16_t ss;
323 u16 idxL = 0, idxR = 0, numPiers;
324 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
325 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
326 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
327 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
328 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
329 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
331 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
332 u8 minPwrT4[AR5416_NUM_PD_GAINS];
333 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
334 int16_t vpdStep;
335 int16_t tmpVal;
336 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
337 bool match;
338 int16_t minDelta = 0;
339 struct chan_centers centers;
340 int pdgain_boundary_default;
341 struct cal_data_per_freq *data_def = pRawDataSet;
342 struct cal_data_per_freq_4k *data_4k = pRawDataSet;
343 struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
344 bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
345 int intercepts;
347 if (AR_SREV_9287(ah))
348 intercepts = AR9287_PD_GAIN_ICEPTS;
349 else
350 intercepts = AR5416_PD_GAIN_ICEPTS;
352 memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
353 ath9k_hw_get_channel_centers(ah, chan, &centers);
355 for (numPiers = 0; numPiers < availPiers; numPiers++) {
356 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
357 break;
360 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
361 IS_CHAN_2GHZ(chan)),
362 bChans, numPiers, &idxL, &idxR);
364 if (match) {
365 if (AR_SREV_9287(ah)) {
366 /* FIXME: array overrun? */
367 for (i = 0; i < numXpdGains; i++) {
368 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
369 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
370 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
371 data_9287[idxL].pwrPdg[i],
372 data_9287[idxL].vpdPdg[i],
373 intercepts,
374 vpdTableI[i]);
376 } else if (eeprom_4k) {
377 for (i = 0; i < numXpdGains; i++) {
378 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
379 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
380 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
381 data_4k[idxL].pwrPdg[i],
382 data_4k[idxL].vpdPdg[i],
383 intercepts,
384 vpdTableI[i]);
386 } else {
387 for (i = 0; i < numXpdGains; i++) {
388 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
389 maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
390 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
391 data_def[idxL].pwrPdg[i],
392 data_def[idxL].vpdPdg[i],
393 intercepts,
394 vpdTableI[i]);
397 } else {
398 for (i = 0; i < numXpdGains; i++) {
399 if (AR_SREV_9287(ah)) {
400 pVpdL = data_9287[idxL].vpdPdg[i];
401 pPwrL = data_9287[idxL].pwrPdg[i];
402 pVpdR = data_9287[idxR].vpdPdg[i];
403 pPwrR = data_9287[idxR].pwrPdg[i];
404 } else if (eeprom_4k) {
405 pVpdL = data_4k[idxL].vpdPdg[i];
406 pPwrL = data_4k[idxL].pwrPdg[i];
407 pVpdR = data_4k[idxR].vpdPdg[i];
408 pPwrR = data_4k[idxR].pwrPdg[i];
409 } else {
410 pVpdL = data_def[idxL].vpdPdg[i];
411 pPwrL = data_def[idxL].pwrPdg[i];
412 pVpdR = data_def[idxR].vpdPdg[i];
413 pPwrR = data_def[idxR].pwrPdg[i];
416 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
418 maxPwrT4[i] =
419 min(pPwrL[intercepts - 1],
420 pPwrR[intercepts - 1]);
423 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
424 pPwrL, pVpdL,
425 intercepts,
426 vpdTableL[i]);
427 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
428 pPwrR, pVpdR,
429 intercepts,
430 vpdTableR[i]);
432 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
433 vpdTableI[i][j] =
434 (u8)(ath9k_hw_interpolate((u16)
435 FREQ2FBIN(centers.
436 synth_center,
437 IS_CHAN_2GHZ
438 (chan)),
439 bChans[idxL], bChans[idxR],
440 vpdTableL[i][j], vpdTableR[i][j]));
445 k = 0;
447 for (i = 0; i < numXpdGains; i++) {
448 if (i == (numXpdGains - 1))
449 pPdGainBoundaries[i] =
450 (u16)(maxPwrT4[i] / 2);
451 else
452 pPdGainBoundaries[i] =
453 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
455 pPdGainBoundaries[i] =
456 min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
458 minDelta = 0;
460 if (i == 0) {
461 if (AR_SREV_9280_20_OR_LATER(ah))
462 ss = (int16_t)(0 - (minPwrT4[i] / 2));
463 else
464 ss = 0;
465 } else {
466 ss = (int16_t)((pPdGainBoundaries[i - 1] -
467 (minPwrT4[i] / 2)) -
468 tPdGainOverlap + 1 + minDelta);
470 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
471 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
473 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
474 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
475 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
476 ss++;
479 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
480 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
481 (minPwrT4[i] / 2));
482 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
483 tgtIndex : sizeCurrVpdTable;
485 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
486 pPDADCValues[k++] = vpdTableI[i][ss++];
489 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
490 vpdTableI[i][sizeCurrVpdTable - 2]);
491 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
493 if (tgtIndex >= maxIndex) {
494 while ((ss <= tgtIndex) &&
495 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
496 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
497 (ss - maxIndex + 1) * vpdStep));
498 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
499 255 : tmpVal);
500 ss++;
505 if (eeprom_4k)
506 pdgain_boundary_default = 58;
507 else
508 pdgain_boundary_default = pPdGainBoundaries[i - 1];
510 while (i < AR5416_PD_GAINS_IN_MASK) {
511 pPdGainBoundaries[i] = pdgain_boundary_default;
512 i++;
515 while (k < AR5416_NUM_PDADC_VALUES) {
516 pPDADCValues[k] = pPDADCValues[k - 1];
517 k++;
521 int ath9k_hw_eeprom_init(struct ath_hw *ah)
523 int status;
525 if (AR_SREV_9300_20_OR_LATER(ah))
526 ah->eep_ops = &eep_ar9300_ops;
527 else if (AR_SREV_9287(ah)) {
528 ah->eep_ops = &eep_ar9287_ops;
529 } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
530 ah->eep_ops = &eep_4k_ops;
531 } else {
532 ah->eep_ops = &eep_def_ops;
535 if (!ah->eep_ops->fill_eeprom(ah))
536 return -EIO;
538 status = ah->eep_ops->check_eeprom(ah);
540 return status;