spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / net / wireless / ath / ath9k / eeprom_4k.c
blob4322ac80c203c1dfc6762f7f8547c73fbf3af7b3
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
23 return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
28 return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
35 struct ath_common *common = ath9k_hw_common(ah);
36 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
37 int addr, eep_start_loc = 64;
39 for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
40 if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
41 ath_dbg(common, EEPROM,
42 "Unable to read eeprom region\n");
43 return false;
45 eep_data++;
48 return true;
51 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
53 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
55 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
57 return true;
60 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
62 struct ath_common *common = ath9k_hw_common(ah);
64 if (!ath9k_hw_use_flash(ah)) {
65 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
68 if (common->bus_ops->ath_bus_type == ATH_USB)
69 return __ath9k_hw_usb_4k_fill_eeprom(ah);
70 else
71 return __ath9k_hw_4k_fill_eeprom(ah);
74 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
75 static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
76 struct modal_eep_4k_header *modal_hdr)
78 PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
79 PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
80 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
81 PR_EEP("Switch Settle", modal_hdr->switchSettling);
82 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
83 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
84 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
85 PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
86 PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
87 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
88 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
89 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
90 PR_EEP("CCA Threshold)", modal_hdr->thresh62);
91 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
92 PR_EEP("xpdGain", modal_hdr->xpdGain);
93 PR_EEP("External PD", modal_hdr->xpd);
94 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
95 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
96 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
97 PR_EEP("O/D Bias Version", modal_hdr->version);
98 PR_EEP("CCK OutputBias", modal_hdr->ob_0);
99 PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
100 PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
101 PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
102 PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
103 PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
104 PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
105 PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
106 PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
107 PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
108 PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
109 PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
110 PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
111 PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
112 PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
113 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
114 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
115 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
116 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
117 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
118 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
119 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
120 PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
121 PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
122 PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
123 PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
124 PR_EEP("TX Diversity", modal_hdr->tx_diversity);
126 return len;
129 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
130 u8 *buf, u32 len, u32 size)
132 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
133 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
135 if (!dump_base_hdr) {
136 len += snprintf(buf + len, size - len,
137 "%20s :\n", "2GHz modal Header");
138 len += ath9k_dump_4k_modal_eeprom(buf, len, size,
139 &eep->modalHeader);
140 goto out;
143 PR_EEP("Major Version", pBase->version >> 12);
144 PR_EEP("Minor Version", pBase->version & 0xFFF);
145 PR_EEP("Checksum", pBase->checksum);
146 PR_EEP("Length", pBase->length);
147 PR_EEP("RegDomain1", pBase->regDmn[0]);
148 PR_EEP("RegDomain2", pBase->regDmn[1]);
149 PR_EEP("TX Mask", pBase->txMask);
150 PR_EEP("RX Mask", pBase->rxMask);
151 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
152 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
153 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
154 AR5416_OPFLAGS_N_2G_HT20));
155 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
156 AR5416_OPFLAGS_N_2G_HT40));
157 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
158 AR5416_OPFLAGS_N_5G_HT20));
159 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
160 AR5416_OPFLAGS_N_5G_HT40));
161 PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
162 PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
163 PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
164 PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
165 PR_EEP("TX Gain type", pBase->txGainType);
167 len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
168 pBase->macAddr);
170 out:
171 if (len > size)
172 len = size;
174 return len;
176 #else
177 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
178 u8 *buf, u32 len, u32 size)
180 return 0;
182 #endif
185 #undef SIZE_EEPROM_4K
187 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
189 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
190 struct ath_common *common = ath9k_hw_common(ah);
191 struct ar5416_eeprom_4k *eep =
192 (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
193 u16 *eepdata, temp, magic, magic2;
194 u32 sum = 0, el;
195 bool need_swap = false;
196 int i, addr;
199 if (!ath9k_hw_use_flash(ah)) {
200 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
201 &magic)) {
202 ath_err(common, "Reading Magic # failed\n");
203 return false;
206 ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
208 if (magic != AR5416_EEPROM_MAGIC) {
209 magic2 = swab16(magic);
211 if (magic2 == AR5416_EEPROM_MAGIC) {
212 need_swap = true;
213 eepdata = (u16 *) (&ah->eeprom);
215 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
216 temp = swab16(*eepdata);
217 *eepdata = temp;
218 eepdata++;
220 } else {
221 ath_err(common,
222 "Invalid EEPROM Magic. Endianness mismatch.\n");
223 return -EINVAL;
228 ath_dbg(common, EEPROM, "need_swap = %s\n",
229 need_swap ? "True" : "False");
231 if (need_swap)
232 el = swab16(ah->eeprom.map4k.baseEepHeader.length);
233 else
234 el = ah->eeprom.map4k.baseEepHeader.length;
236 if (el > sizeof(struct ar5416_eeprom_4k))
237 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
238 else
239 el = el / sizeof(u16);
241 eepdata = (u16 *)(&ah->eeprom);
243 for (i = 0; i < el; i++)
244 sum ^= *eepdata++;
246 if (need_swap) {
247 u32 integer;
248 u16 word;
250 ath_dbg(common, EEPROM,
251 "EEPROM Endianness is not native.. Changing\n");
253 word = swab16(eep->baseEepHeader.length);
254 eep->baseEepHeader.length = word;
256 word = swab16(eep->baseEepHeader.checksum);
257 eep->baseEepHeader.checksum = word;
259 word = swab16(eep->baseEepHeader.version);
260 eep->baseEepHeader.version = word;
262 word = swab16(eep->baseEepHeader.regDmn[0]);
263 eep->baseEepHeader.regDmn[0] = word;
265 word = swab16(eep->baseEepHeader.regDmn[1]);
266 eep->baseEepHeader.regDmn[1] = word;
268 word = swab16(eep->baseEepHeader.rfSilent);
269 eep->baseEepHeader.rfSilent = word;
271 word = swab16(eep->baseEepHeader.blueToothOptions);
272 eep->baseEepHeader.blueToothOptions = word;
274 word = swab16(eep->baseEepHeader.deviceCap);
275 eep->baseEepHeader.deviceCap = word;
277 integer = swab32(eep->modalHeader.antCtrlCommon);
278 eep->modalHeader.antCtrlCommon = integer;
280 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
281 integer = swab32(eep->modalHeader.antCtrlChain[i]);
282 eep->modalHeader.antCtrlChain[i] = integer;
285 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
286 word = swab16(eep->modalHeader.spurChans[i].spurChan);
287 eep->modalHeader.spurChans[i].spurChan = word;
291 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
292 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
293 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
294 sum, ah->eep_ops->get_eeprom_ver(ah));
295 return -EINVAL;
298 return 0;
299 #undef EEPROM_4K_SIZE
302 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
303 enum eeprom_param param)
305 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
306 struct modal_eep_4k_header *pModal = &eep->modalHeader;
307 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
308 u16 ver_minor;
310 ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
312 switch (param) {
313 case EEP_NFTHRESH_2:
314 return pModal->noiseFloorThreshCh[0];
315 case EEP_MAC_LSW:
316 return get_unaligned_be16(pBase->macAddr);
317 case EEP_MAC_MID:
318 return get_unaligned_be16(pBase->macAddr + 2);
319 case EEP_MAC_MSW:
320 return get_unaligned_be16(pBase->macAddr + 4);
321 case EEP_REG_0:
322 return pBase->regDmn[0];
323 case EEP_OP_CAP:
324 return pBase->deviceCap;
325 case EEP_OP_MODE:
326 return pBase->opCapFlags;
327 case EEP_RF_SILENT:
328 return pBase->rfSilent;
329 case EEP_OB_2:
330 return pModal->ob_0;
331 case EEP_DB_2:
332 return pModal->db1_1;
333 case EEP_MINOR_REV:
334 return ver_minor;
335 case EEP_TX_MASK:
336 return pBase->txMask;
337 case EEP_RX_MASK:
338 return pBase->rxMask;
339 case EEP_FRAC_N_5G:
340 return 0;
341 case EEP_PWR_TABLE_OFFSET:
342 return AR5416_PWR_TABLE_OFFSET_DB;
343 case EEP_MODAL_VER:
344 return pModal->version;
345 case EEP_ANT_DIV_CTL1:
346 return pModal->antdiv_ctl1;
347 case EEP_TXGAIN_TYPE:
348 return pBase->txGainType;
349 case EEP_ANTENNA_GAIN_2G:
350 return pModal->antennaGainCh[0];
351 default:
352 return 0;
356 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
357 struct ath9k_channel *chan)
359 struct ath_common *common = ath9k_hw_common(ah);
360 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
361 struct cal_data_per_freq_4k *pRawDataset;
362 u8 *pCalBChans = NULL;
363 u16 pdGainOverlap_t2;
364 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
365 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
366 u16 numPiers, i, j;
367 u16 numXpdGain, xpdMask;
368 u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
369 u32 reg32, regOffset, regChainOffset;
371 xpdMask = pEepData->modalHeader.xpdGain;
373 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
374 AR5416_EEP_MINOR_VER_2) {
375 pdGainOverlap_t2 =
376 pEepData->modalHeader.pdGainOverlap;
377 } else {
378 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
379 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
382 pCalBChans = pEepData->calFreqPier2G;
383 numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
385 numXpdGain = 0;
387 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
388 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
389 if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
390 break;
391 xpdGainValues[numXpdGain] =
392 (u16)(AR5416_PD_GAINS_IN_MASK - i);
393 numXpdGain++;
397 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
398 (numXpdGain - 1) & 0x3);
399 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
400 xpdGainValues[0]);
401 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
402 xpdGainValues[1]);
403 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
405 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
406 regChainOffset = i * 0x1000;
408 if (pEepData->baseEepHeader.txMask & (1 << i)) {
409 pRawDataset = pEepData->calPierData2G[i];
411 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
412 pRawDataset, pCalBChans,
413 numPiers, pdGainOverlap_t2,
414 gainBoundaries,
415 pdadcValues, numXpdGain);
417 ENABLE_REGWRITE_BUFFER(ah);
419 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
420 SM(pdGainOverlap_t2,
421 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
422 | SM(gainBoundaries[0],
423 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
424 | SM(gainBoundaries[1],
425 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
426 | SM(gainBoundaries[2],
427 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
428 | SM(gainBoundaries[3],
429 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
431 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
432 for (j = 0; j < 32; j++) {
433 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
434 REG_WRITE(ah, regOffset, reg32);
436 ath_dbg(common, EEPROM,
437 "PDADC (%d,%4x): %4.4x %8.8x\n",
438 i, regChainOffset, regOffset,
439 reg32);
440 ath_dbg(common, EEPROM,
441 "PDADC: Chain %d | "
442 "PDADC %3d Value %3d | "
443 "PDADC %3d Value %3d | "
444 "PDADC %3d Value %3d | "
445 "PDADC %3d Value %3d |\n",
446 i, 4 * j, pdadcValues[4 * j],
447 4 * j + 1, pdadcValues[4 * j + 1],
448 4 * j + 2, pdadcValues[4 * j + 2],
449 4 * j + 3, pdadcValues[4 * j + 3]);
451 regOffset += 4;
454 REGWRITE_BUFFER_FLUSH(ah);
459 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
460 struct ath9k_channel *chan,
461 int16_t *ratesArray,
462 u16 cfgCtl,
463 u16 antenna_reduction,
464 u16 powerLimit)
466 #define CMP_TEST_GRP \
467 (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
468 pEepData->ctlIndex[i]) \
469 || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
470 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
472 int i;
473 u16 twiceMinEdgePower;
474 u16 twiceMaxEdgePower;
475 u16 scaledPower = 0, minCtlPower;
476 u16 numCtlModes;
477 const u16 *pCtlMode;
478 u16 ctlMode, freq;
479 struct chan_centers centers;
480 struct cal_ctl_data_4k *rep;
481 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
482 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
483 0, { 0, 0, 0, 0}
485 struct cal_target_power_leg targetPowerOfdmExt = {
486 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
487 0, { 0, 0, 0, 0 }
489 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
490 0, {0, 0, 0, 0}
492 static const u16 ctlModesFor11g[] = {
493 CTL_11B, CTL_11G, CTL_2GHT20,
494 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
497 ath9k_hw_get_channel_centers(ah, chan, &centers);
499 scaledPower = powerLimit - antenna_reduction;
500 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
501 pCtlMode = ctlModesFor11g;
503 ath9k_hw_get_legacy_target_powers(ah, chan,
504 pEepData->calTargetPowerCck,
505 AR5416_NUM_2G_CCK_TARGET_POWERS,
506 &targetPowerCck, 4, false);
507 ath9k_hw_get_legacy_target_powers(ah, chan,
508 pEepData->calTargetPower2G,
509 AR5416_NUM_2G_20_TARGET_POWERS,
510 &targetPowerOfdm, 4, false);
511 ath9k_hw_get_target_powers(ah, chan,
512 pEepData->calTargetPower2GHT20,
513 AR5416_NUM_2G_20_TARGET_POWERS,
514 &targetPowerHt20, 8, false);
516 if (IS_CHAN_HT40(chan)) {
517 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
518 ath9k_hw_get_target_powers(ah, chan,
519 pEepData->calTargetPower2GHT40,
520 AR5416_NUM_2G_40_TARGET_POWERS,
521 &targetPowerHt40, 8, true);
522 ath9k_hw_get_legacy_target_powers(ah, chan,
523 pEepData->calTargetPowerCck,
524 AR5416_NUM_2G_CCK_TARGET_POWERS,
525 &targetPowerCckExt, 4, true);
526 ath9k_hw_get_legacy_target_powers(ah, chan,
527 pEepData->calTargetPower2G,
528 AR5416_NUM_2G_20_TARGET_POWERS,
529 &targetPowerOfdmExt, 4, true);
532 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
533 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
534 (pCtlMode[ctlMode] == CTL_2GHT40);
536 if (isHt40CtlMode)
537 freq = centers.synth_center;
538 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
539 freq = centers.ext_center;
540 else
541 freq = centers.ctl_center;
543 twiceMaxEdgePower = MAX_RATE_POWER;
545 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
546 pEepData->ctlIndex[i]; i++) {
548 if (CMP_TEST_GRP) {
549 rep = &(pEepData->ctlData[i]);
551 twiceMinEdgePower = ath9k_hw_get_max_edge_power(
552 freq,
553 rep->ctlEdges[
554 ar5416_get_ntxchains(ah->txchainmask) - 1],
555 IS_CHAN_2GHZ(chan),
556 AR5416_EEP4K_NUM_BAND_EDGES);
558 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
559 twiceMaxEdgePower =
560 min(twiceMaxEdgePower,
561 twiceMinEdgePower);
562 } else {
563 twiceMaxEdgePower = twiceMinEdgePower;
564 break;
569 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
571 switch (pCtlMode[ctlMode]) {
572 case CTL_11B:
573 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
574 targetPowerCck.tPow2x[i] =
575 min((u16)targetPowerCck.tPow2x[i],
576 minCtlPower);
578 break;
579 case CTL_11G:
580 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
581 targetPowerOfdm.tPow2x[i] =
582 min((u16)targetPowerOfdm.tPow2x[i],
583 minCtlPower);
585 break;
586 case CTL_2GHT20:
587 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
588 targetPowerHt20.tPow2x[i] =
589 min((u16)targetPowerHt20.tPow2x[i],
590 minCtlPower);
592 break;
593 case CTL_11B_EXT:
594 targetPowerCckExt.tPow2x[0] =
595 min((u16)targetPowerCckExt.tPow2x[0],
596 minCtlPower);
597 break;
598 case CTL_11G_EXT:
599 targetPowerOfdmExt.tPow2x[0] =
600 min((u16)targetPowerOfdmExt.tPow2x[0],
601 minCtlPower);
602 break;
603 case CTL_2GHT40:
604 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
605 targetPowerHt40.tPow2x[i] =
606 min((u16)targetPowerHt40.tPow2x[i],
607 minCtlPower);
609 break;
610 default:
611 break;
615 ratesArray[rate6mb] =
616 ratesArray[rate9mb] =
617 ratesArray[rate12mb] =
618 ratesArray[rate18mb] =
619 ratesArray[rate24mb] =
620 targetPowerOfdm.tPow2x[0];
622 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
623 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
624 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
625 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
627 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
628 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
630 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
631 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
632 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
633 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
635 if (IS_CHAN_HT40(chan)) {
636 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
637 ratesArray[rateHt40_0 + i] =
638 targetPowerHt40.tPow2x[i];
640 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
641 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
642 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
643 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
646 #undef CMP_TEST_GRP
649 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
650 struct ath9k_channel *chan,
651 u16 cfgCtl,
652 u8 twiceAntennaReduction,
653 u8 powerLimit, bool test)
655 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
656 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
657 struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
658 int16_t ratesArray[Ar5416RateSize];
659 u8 ht40PowerIncForPdadc = 2;
660 int i;
662 memset(ratesArray, 0, sizeof(ratesArray));
664 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
665 AR5416_EEP_MINOR_VER_2) {
666 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
669 ath9k_hw_set_4k_power_per_rate_table(ah, chan,
670 &ratesArray[0], cfgCtl,
671 twiceAntennaReduction,
672 powerLimit);
674 ath9k_hw_set_4k_power_cal_table(ah, chan);
676 regulatory->max_power_level = 0;
677 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
678 if (ratesArray[i] > MAX_RATE_POWER)
679 ratesArray[i] = MAX_RATE_POWER;
681 if (ratesArray[i] > regulatory->max_power_level)
682 regulatory->max_power_level = ratesArray[i];
685 if (test)
686 return;
688 for (i = 0; i < Ar5416RateSize; i++)
689 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
691 ENABLE_REGWRITE_BUFFER(ah);
693 /* OFDM power per rate */
694 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
695 ATH9K_POW_SM(ratesArray[rate18mb], 24)
696 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
697 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
698 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
699 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
700 ATH9K_POW_SM(ratesArray[rate54mb], 24)
701 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
702 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
703 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
705 /* CCK power per rate */
706 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
707 ATH9K_POW_SM(ratesArray[rate2s], 24)
708 | ATH9K_POW_SM(ratesArray[rate2l], 16)
709 | ATH9K_POW_SM(ratesArray[rateXr], 8)
710 | ATH9K_POW_SM(ratesArray[rate1l], 0));
711 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
712 ATH9K_POW_SM(ratesArray[rate11s], 24)
713 | ATH9K_POW_SM(ratesArray[rate11l], 16)
714 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
715 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
717 /* HT20 power per rate */
718 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
719 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
720 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
721 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
722 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
723 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
724 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
725 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
726 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
727 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
729 /* HT40 power per rate */
730 if (IS_CHAN_HT40(chan)) {
731 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
732 ATH9K_POW_SM(ratesArray[rateHt40_3] +
733 ht40PowerIncForPdadc, 24)
734 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
735 ht40PowerIncForPdadc, 16)
736 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
737 ht40PowerIncForPdadc, 8)
738 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
739 ht40PowerIncForPdadc, 0));
740 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
741 ATH9K_POW_SM(ratesArray[rateHt40_7] +
742 ht40PowerIncForPdadc, 24)
743 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
744 ht40PowerIncForPdadc, 16)
745 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
746 ht40PowerIncForPdadc, 8)
747 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
748 ht40PowerIncForPdadc, 0));
749 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
750 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
751 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
752 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
753 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
756 REGWRITE_BUFFER_FLUSH(ah);
759 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
760 struct modal_eep_4k_header *pModal,
761 struct ar5416_eeprom_4k *eep,
762 u8 txRxAttenLocal)
764 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
765 pModal->antCtrlChain[0]);
767 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
768 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
769 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
770 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
771 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
772 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
774 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
775 AR5416_EEP_MINOR_VER_3) {
776 txRxAttenLocal = pModal->txRxAttenCh[0];
778 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
779 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
780 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
781 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
782 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
783 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
784 pModal->xatten2Margin[0]);
785 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
786 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
788 /* Set the block 1 value to block 0 value */
789 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
790 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
791 pModal->bswMargin[0]);
792 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
793 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
794 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
795 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
796 pModal->xatten2Margin[0]);
797 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
798 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
799 pModal->xatten2Db[0]);
802 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
803 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
804 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
805 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
807 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
808 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
809 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
810 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
814 * Read EEPROM header info and program the device for correct operation
815 * given the channel value.
817 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
818 struct ath9k_channel *chan)
820 struct modal_eep_4k_header *pModal;
821 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
822 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
823 u8 txRxAttenLocal;
824 u8 ob[5], db1[5], db2[5];
825 u8 ant_div_control1, ant_div_control2;
826 u8 bb_desired_scale;
827 u32 regVal;
829 pModal = &eep->modalHeader;
830 txRxAttenLocal = 23;
832 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
834 /* Single chain for 4K EEPROM*/
835 ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
837 /* Initialize Ant Diversity settings from EEPROM */
838 if (pModal->version >= 3) {
839 ant_div_control1 = pModal->antdiv_ctl1;
840 ant_div_control2 = pModal->antdiv_ctl2;
842 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
843 regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
845 regVal |= SM(ant_div_control1,
846 AR_PHY_9285_ANT_DIV_CTL);
847 regVal |= SM(ant_div_control2,
848 AR_PHY_9285_ANT_DIV_ALT_LNACONF);
849 regVal |= SM((ant_div_control2 >> 2),
850 AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
851 regVal |= SM((ant_div_control1 >> 1),
852 AR_PHY_9285_ANT_DIV_ALT_GAINTB);
853 regVal |= SM((ant_div_control1 >> 2),
854 AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
857 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
858 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
859 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
860 regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
861 regVal |= SM((ant_div_control1 >> 3),
862 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
864 REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
865 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
868 if (pModal->version >= 2) {
869 ob[0] = pModal->ob_0;
870 ob[1] = pModal->ob_1;
871 ob[2] = pModal->ob_2;
872 ob[3] = pModal->ob_3;
873 ob[4] = pModal->ob_4;
875 db1[0] = pModal->db1_0;
876 db1[1] = pModal->db1_1;
877 db1[2] = pModal->db1_2;
878 db1[3] = pModal->db1_3;
879 db1[4] = pModal->db1_4;
881 db2[0] = pModal->db2_0;
882 db2[1] = pModal->db2_1;
883 db2[2] = pModal->db2_2;
884 db2[3] = pModal->db2_3;
885 db2[4] = pModal->db2_4;
886 } else if (pModal->version == 1) {
887 ob[0] = pModal->ob_0;
888 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
889 db1[0] = pModal->db1_0;
890 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
891 db2[0] = pModal->db2_0;
892 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
893 } else {
894 int i;
896 for (i = 0; i < 5; i++) {
897 ob[i] = pModal->ob_0;
898 db1[i] = pModal->db1_0;
899 db2[i] = pModal->db1_0;
903 if (AR_SREV_9271(ah)) {
904 ath9k_hw_analog_shift_rmw(ah,
905 AR9285_AN_RF2G3,
906 AR9271_AN_RF2G3_OB_cck,
907 AR9271_AN_RF2G3_OB_cck_S,
908 ob[0]);
909 ath9k_hw_analog_shift_rmw(ah,
910 AR9285_AN_RF2G3,
911 AR9271_AN_RF2G3_OB_psk,
912 AR9271_AN_RF2G3_OB_psk_S,
913 ob[1]);
914 ath9k_hw_analog_shift_rmw(ah,
915 AR9285_AN_RF2G3,
916 AR9271_AN_RF2G3_OB_qam,
917 AR9271_AN_RF2G3_OB_qam_S,
918 ob[2]);
919 ath9k_hw_analog_shift_rmw(ah,
920 AR9285_AN_RF2G3,
921 AR9271_AN_RF2G3_DB_1,
922 AR9271_AN_RF2G3_DB_1_S,
923 db1[0]);
924 ath9k_hw_analog_shift_rmw(ah,
925 AR9285_AN_RF2G4,
926 AR9271_AN_RF2G4_DB_2,
927 AR9271_AN_RF2G4_DB_2_S,
928 db2[0]);
929 } else {
930 ath9k_hw_analog_shift_rmw(ah,
931 AR9285_AN_RF2G3,
932 AR9285_AN_RF2G3_OB_0,
933 AR9285_AN_RF2G3_OB_0_S,
934 ob[0]);
935 ath9k_hw_analog_shift_rmw(ah,
936 AR9285_AN_RF2G3,
937 AR9285_AN_RF2G3_OB_1,
938 AR9285_AN_RF2G3_OB_1_S,
939 ob[1]);
940 ath9k_hw_analog_shift_rmw(ah,
941 AR9285_AN_RF2G3,
942 AR9285_AN_RF2G3_OB_2,
943 AR9285_AN_RF2G3_OB_2_S,
944 ob[2]);
945 ath9k_hw_analog_shift_rmw(ah,
946 AR9285_AN_RF2G3,
947 AR9285_AN_RF2G3_OB_3,
948 AR9285_AN_RF2G3_OB_3_S,
949 ob[3]);
950 ath9k_hw_analog_shift_rmw(ah,
951 AR9285_AN_RF2G3,
952 AR9285_AN_RF2G3_OB_4,
953 AR9285_AN_RF2G3_OB_4_S,
954 ob[4]);
956 ath9k_hw_analog_shift_rmw(ah,
957 AR9285_AN_RF2G3,
958 AR9285_AN_RF2G3_DB1_0,
959 AR9285_AN_RF2G3_DB1_0_S,
960 db1[0]);
961 ath9k_hw_analog_shift_rmw(ah,
962 AR9285_AN_RF2G3,
963 AR9285_AN_RF2G3_DB1_1,
964 AR9285_AN_RF2G3_DB1_1_S,
965 db1[1]);
966 ath9k_hw_analog_shift_rmw(ah,
967 AR9285_AN_RF2G3,
968 AR9285_AN_RF2G3_DB1_2,
969 AR9285_AN_RF2G3_DB1_2_S,
970 db1[2]);
971 ath9k_hw_analog_shift_rmw(ah,
972 AR9285_AN_RF2G4,
973 AR9285_AN_RF2G4_DB1_3,
974 AR9285_AN_RF2G4_DB1_3_S,
975 db1[3]);
976 ath9k_hw_analog_shift_rmw(ah,
977 AR9285_AN_RF2G4,
978 AR9285_AN_RF2G4_DB1_4,
979 AR9285_AN_RF2G4_DB1_4_S, db1[4]);
981 ath9k_hw_analog_shift_rmw(ah,
982 AR9285_AN_RF2G4,
983 AR9285_AN_RF2G4_DB2_0,
984 AR9285_AN_RF2G4_DB2_0_S,
985 db2[0]);
986 ath9k_hw_analog_shift_rmw(ah,
987 AR9285_AN_RF2G4,
988 AR9285_AN_RF2G4_DB2_1,
989 AR9285_AN_RF2G4_DB2_1_S,
990 db2[1]);
991 ath9k_hw_analog_shift_rmw(ah,
992 AR9285_AN_RF2G4,
993 AR9285_AN_RF2G4_DB2_2,
994 AR9285_AN_RF2G4_DB2_2_S,
995 db2[2]);
996 ath9k_hw_analog_shift_rmw(ah,
997 AR9285_AN_RF2G4,
998 AR9285_AN_RF2G4_DB2_3,
999 AR9285_AN_RF2G4_DB2_3_S,
1000 db2[3]);
1001 ath9k_hw_analog_shift_rmw(ah,
1002 AR9285_AN_RF2G4,
1003 AR9285_AN_RF2G4_DB2_4,
1004 AR9285_AN_RF2G4_DB2_4_S,
1005 db2[4]);
1009 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1010 pModal->switchSettling);
1011 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1012 pModal->adcDesiredSize);
1014 REG_WRITE(ah, AR_PHY_RF_CTL4,
1015 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1016 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1017 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
1018 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1020 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1021 pModal->txEndToRxOn);
1023 if (AR_SREV_9271_10(ah))
1024 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1025 pModal->txEndToRxOn);
1026 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1027 pModal->thresh62);
1028 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1029 pModal->thresh62);
1031 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1032 AR5416_EEP_MINOR_VER_2) {
1033 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1034 pModal->txFrameToDataStart);
1035 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1036 pModal->txFrameToPaOn);
1039 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1040 AR5416_EEP_MINOR_VER_3) {
1041 if (IS_CHAN_HT40(chan))
1042 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1043 AR_PHY_SETTLING_SWITCH,
1044 pModal->swSettleHt40);
1047 bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1048 EEP_4K_BB_DESIRED_SCALE_MASK);
1049 if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1050 u32 pwrctrl, mask, clr;
1052 mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1053 pwrctrl = mask * bb_desired_scale;
1054 clr = mask * 0x1f;
1055 REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1056 REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1057 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1059 mask = BIT(0)|BIT(5)|BIT(15);
1060 pwrctrl = mask * bb_desired_scale;
1061 clr = mask * 0x1f;
1062 REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1064 mask = BIT(0)|BIT(5);
1065 pwrctrl = mask * bb_desired_scale;
1066 clr = mask * 0x1f;
1067 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1068 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1072 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1074 #define EEP_MAP4K_SPURCHAN \
1075 (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1076 struct ath_common *common = ath9k_hw_common(ah);
1078 u16 spur_val = AR_NO_SPUR;
1080 ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1081 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1083 switch (ah->config.spurmode) {
1084 case SPUR_DISABLE:
1085 break;
1086 case SPUR_ENABLE_IOCTL:
1087 spur_val = ah->config.spurchans[i][is2GHz];
1088 ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1089 spur_val);
1090 break;
1091 case SPUR_ENABLE_EEPROM:
1092 spur_val = EEP_MAP4K_SPURCHAN;
1093 break;
1096 return spur_val;
1098 #undef EEP_MAP4K_SPURCHAN
1101 const struct eeprom_ops eep_4k_ops = {
1102 .check_eeprom = ath9k_hw_4k_check_eeprom,
1103 .get_eeprom = ath9k_hw_4k_get_eeprom,
1104 .fill_eeprom = ath9k_hw_4k_fill_eeprom,
1105 .dump_eeprom = ath9k_hw_4k_dump_eeprom,
1106 .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
1107 .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
1108 .set_board_values = ath9k_hw_4k_set_board_values,
1109 .set_txpower = ath9k_hw_4k_set_txpower,
1110 .get_spur_channel = ath9k_hw_4k_get_spur_channel