spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / net / wireless / ath / ath9k / eeprom_def.c
blob619b95d764ff33ea0adceabd8a15cb5c93815f1e
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
21 static void ath9k_get_txgain_index(struct ath_hw *ah,
22 struct ath9k_channel *chan,
23 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
24 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
26 u8 pcdac, i = 0;
27 u16 idxL = 0, idxR = 0, numPiers;
28 bool match;
29 struct chan_centers centers;
31 ath9k_hw_get_channel_centers(ah, chan, &centers);
33 for (numPiers = 0; numPiers < availPiers; numPiers++)
34 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
35 break;
37 match = ath9k_hw_get_lower_upper_index(
38 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
39 calChans, numPiers, &idxL, &idxR);
40 if (match) {
41 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
42 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
43 } else {
44 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
45 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
46 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
49 while (pcdac > ah->originalGain[i] &&
50 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
51 i++;
53 *pcdacIdx = i;
56 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
57 u32 initTxGain,
58 int txPower,
59 u8 *pPDADCValues)
61 u32 i;
62 u32 offset;
64 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
65 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
66 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
67 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
69 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
70 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
72 offset = txPower;
73 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
74 if (i < offset)
75 pPDADCValues[i] = 0x0;
76 else
77 pPDADCValues[i] = 0xFF;
80 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
82 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
85 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
87 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
90 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
92 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
94 struct ath_common *common = ath9k_hw_common(ah);
95 u16 *eep_data = (u16 *)&ah->eeprom.def;
96 int addr, ar5416_eep_start_loc = 0x100;
98 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
99 if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
100 eep_data)) {
101 ath_err(ath9k_hw_common(ah),
102 "Unable to read eeprom region\n");
103 return false;
105 eep_data++;
107 return true;
110 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
112 u16 *eep_data = (u16 *)&ah->eeprom.def;
114 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
115 0x100, SIZE_EEPROM_DEF);
116 return true;
119 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
121 struct ath_common *common = ath9k_hw_common(ah);
123 if (!ath9k_hw_use_flash(ah)) {
124 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
127 if (common->bus_ops->ath_bus_type == ATH_USB)
128 return __ath9k_hw_usb_def_fill_eeprom(ah);
129 else
130 return __ath9k_hw_def_fill_eeprom(ah);
133 #undef SIZE_EEPROM_DEF
135 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
136 static u32 ath9k_def_dump_modal_eeprom(char *buf, u32 len, u32 size,
137 struct modal_eep_header *modal_hdr)
139 PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
140 PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
141 PR_EEP("Chain2 Ant. Control", modal_hdr->antCtrlChain[2]);
142 PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
143 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
144 PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
145 PR_EEP("Chain2 Ant. Gain", modal_hdr->antennaGainCh[2]);
146 PR_EEP("Switch Settle", modal_hdr->switchSettling);
147 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
148 PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
149 PR_EEP("Chain2 TxRxAtten", modal_hdr->txRxAttenCh[2]);
150 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
151 PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
152 PR_EEP("Chain2 RxTxMargin", modal_hdr->rxTxMarginCh[2]);
153 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
154 PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
155 PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
156 PR_EEP("Chain1 xlna Gain", modal_hdr->xlnaGainCh[1]);
157 PR_EEP("Chain2 xlna Gain", modal_hdr->xlnaGainCh[2]);
158 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
159 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
160 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
161 PR_EEP("CCA Threshold)", modal_hdr->thresh62);
162 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
163 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
164 PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
165 PR_EEP("xpdGain", modal_hdr->xpdGain);
166 PR_EEP("External PD", modal_hdr->xpd);
167 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
168 PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
169 PR_EEP("Chain2 I Coefficient", modal_hdr->iqCalICh[2]);
170 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
171 PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
172 PR_EEP("Chain2 Q Coefficient", modal_hdr->iqCalQCh[2]);
173 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
174 PR_EEP("Chain0 OutputBias", modal_hdr->ob);
175 PR_EEP("Chain0 DriverBias", modal_hdr->db);
176 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
177 PR_EEP("2chain pwr decrease", modal_hdr->pwrDecreaseFor2Chain);
178 PR_EEP("3chain pwr decrease", modal_hdr->pwrDecreaseFor3Chain);
179 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
180 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
181 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
182 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
183 PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
184 PR_EEP("Chain2 bswAtten", modal_hdr->bswAtten[2]);
185 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
186 PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
187 PR_EEP("Chain2 bswMargin", modal_hdr->bswMargin[2]);
188 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
189 PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
190 PR_EEP("Chain1 xatten2Db", modal_hdr->xatten2Db[1]);
191 PR_EEP("Chain2 xatten2Db", modal_hdr->xatten2Db[2]);
192 PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
193 PR_EEP("Chain1 xatten2Margin", modal_hdr->xatten2Margin[1]);
194 PR_EEP("Chain2 xatten2Margin", modal_hdr->xatten2Margin[2]);
195 PR_EEP("Chain1 OutputBias", modal_hdr->ob_ch1);
196 PR_EEP("Chain1 DriverBias", modal_hdr->db_ch1);
197 PR_EEP("LNA Control", modal_hdr->lna_ctl);
198 PR_EEP("XPA Bias Freq0", modal_hdr->xpaBiasLvlFreq[0]);
199 PR_EEP("XPA Bias Freq1", modal_hdr->xpaBiasLvlFreq[1]);
200 PR_EEP("XPA Bias Freq2", modal_hdr->xpaBiasLvlFreq[2]);
202 return len;
205 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
206 u8 *buf, u32 len, u32 size)
208 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
209 struct base_eep_header *pBase = &eep->baseEepHeader;
211 if (!dump_base_hdr) {
212 len += snprintf(buf + len, size - len,
213 "%20s :\n", "2GHz modal Header");
214 len += ath9k_def_dump_modal_eeprom(buf, len, size,
215 &eep->modalHeader[0]);
216 len += snprintf(buf + len, size - len,
217 "%20s :\n", "5GHz modal Header");
218 len += ath9k_def_dump_modal_eeprom(buf, len, size,
219 &eep->modalHeader[1]);
220 goto out;
223 PR_EEP("Major Version", pBase->version >> 12);
224 PR_EEP("Minor Version", pBase->version & 0xFFF);
225 PR_EEP("Checksum", pBase->checksum);
226 PR_EEP("Length", pBase->length);
227 PR_EEP("RegDomain1", pBase->regDmn[0]);
228 PR_EEP("RegDomain2", pBase->regDmn[1]);
229 PR_EEP("TX Mask", pBase->txMask);
230 PR_EEP("RX Mask", pBase->rxMask);
231 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
232 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
233 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
234 AR5416_OPFLAGS_N_2G_HT20));
235 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
236 AR5416_OPFLAGS_N_2G_HT40));
237 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
238 AR5416_OPFLAGS_N_5G_HT20));
239 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
240 AR5416_OPFLAGS_N_5G_HT40));
241 PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
242 PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
243 PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
244 PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
245 PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
247 len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
248 pBase->macAddr);
250 out:
251 if (len > size)
252 len = size;
254 return len;
256 #else
257 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
258 u8 *buf, u32 len, u32 size)
260 return 0;
262 #endif
265 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
267 struct ar5416_eeprom_def *eep =
268 (struct ar5416_eeprom_def *) &ah->eeprom.def;
269 struct ath_common *common = ath9k_hw_common(ah);
270 u16 *eepdata, temp, magic, magic2;
271 u32 sum = 0, el;
272 bool need_swap = false;
273 int i, addr, size;
275 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
276 ath_err(common, "Reading Magic # failed\n");
277 return false;
280 if (!ath9k_hw_use_flash(ah)) {
281 ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
283 if (magic != AR5416_EEPROM_MAGIC) {
284 magic2 = swab16(magic);
286 if (magic2 == AR5416_EEPROM_MAGIC) {
287 size = sizeof(struct ar5416_eeprom_def);
288 need_swap = true;
289 eepdata = (u16 *) (&ah->eeprom);
291 for (addr = 0; addr < size / sizeof(u16); addr++) {
292 temp = swab16(*eepdata);
293 *eepdata = temp;
294 eepdata++;
296 } else {
297 ath_err(common,
298 "Invalid EEPROM Magic. Endianness mismatch.\n");
299 return -EINVAL;
304 ath_dbg(common, EEPROM, "need_swap = %s\n",
305 need_swap ? "True" : "False");
307 if (need_swap)
308 el = swab16(ah->eeprom.def.baseEepHeader.length);
309 else
310 el = ah->eeprom.def.baseEepHeader.length;
312 if (el > sizeof(struct ar5416_eeprom_def))
313 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
314 else
315 el = el / sizeof(u16);
317 eepdata = (u16 *)(&ah->eeprom);
319 for (i = 0; i < el; i++)
320 sum ^= *eepdata++;
322 if (need_swap) {
323 u32 integer, j;
324 u16 word;
326 ath_dbg(common, EEPROM,
327 "EEPROM Endianness is not native.. Changing.\n");
329 word = swab16(eep->baseEepHeader.length);
330 eep->baseEepHeader.length = word;
332 word = swab16(eep->baseEepHeader.checksum);
333 eep->baseEepHeader.checksum = word;
335 word = swab16(eep->baseEepHeader.version);
336 eep->baseEepHeader.version = word;
338 word = swab16(eep->baseEepHeader.regDmn[0]);
339 eep->baseEepHeader.regDmn[0] = word;
341 word = swab16(eep->baseEepHeader.regDmn[1]);
342 eep->baseEepHeader.regDmn[1] = word;
344 word = swab16(eep->baseEepHeader.rfSilent);
345 eep->baseEepHeader.rfSilent = word;
347 word = swab16(eep->baseEepHeader.blueToothOptions);
348 eep->baseEepHeader.blueToothOptions = word;
350 word = swab16(eep->baseEepHeader.deviceCap);
351 eep->baseEepHeader.deviceCap = word;
353 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
354 struct modal_eep_header *pModal =
355 &eep->modalHeader[j];
356 integer = swab32(pModal->antCtrlCommon);
357 pModal->antCtrlCommon = integer;
359 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
360 integer = swab32(pModal->antCtrlChain[i]);
361 pModal->antCtrlChain[i] = integer;
363 for (i = 0; i < 3; i++) {
364 word = swab16(pModal->xpaBiasLvlFreq[i]);
365 pModal->xpaBiasLvlFreq[i] = word;
368 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
369 word = swab16(pModal->spurChans[i].spurChan);
370 pModal->spurChans[i].spurChan = word;
375 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
376 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
377 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
378 sum, ah->eep_ops->get_eeprom_ver(ah));
379 return -EINVAL;
382 /* Enable fixup for AR_AN_TOP2 if necessary */
383 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
384 ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
385 (eep->baseEepHeader.pwdclkind == 0))
386 ah->need_an_top2_fixup = true;
388 if ((common->bus_ops->ath_bus_type == ATH_USB) &&
389 (AR_SREV_9280(ah)))
390 eep->modalHeader[0].xpaBiasLvl = 0;
392 return 0;
395 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
396 enum eeprom_param param)
398 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
399 struct modal_eep_header *pModal = eep->modalHeader;
400 struct base_eep_header *pBase = &eep->baseEepHeader;
401 int band = 0;
403 switch (param) {
404 case EEP_NFTHRESH_5:
405 return pModal[0].noiseFloorThreshCh[0];
406 case EEP_NFTHRESH_2:
407 return pModal[1].noiseFloorThreshCh[0];
408 case EEP_MAC_LSW:
409 return get_unaligned_be16(pBase->macAddr);
410 case EEP_MAC_MID:
411 return get_unaligned_be16(pBase->macAddr + 2);
412 case EEP_MAC_MSW:
413 return get_unaligned_be16(pBase->macAddr + 4);
414 case EEP_REG_0:
415 return pBase->regDmn[0];
416 case EEP_OP_CAP:
417 return pBase->deviceCap;
418 case EEP_OP_MODE:
419 return pBase->opCapFlags;
420 case EEP_RF_SILENT:
421 return pBase->rfSilent;
422 case EEP_OB_5:
423 return pModal[0].ob;
424 case EEP_DB_5:
425 return pModal[0].db;
426 case EEP_OB_2:
427 return pModal[1].ob;
428 case EEP_DB_2:
429 return pModal[1].db;
430 case EEP_MINOR_REV:
431 return AR5416_VER_MASK;
432 case EEP_TX_MASK:
433 return pBase->txMask;
434 case EEP_RX_MASK:
435 return pBase->rxMask;
436 case EEP_FSTCLK_5G:
437 return pBase->fastClk5g;
438 case EEP_RXGAIN_TYPE:
439 return pBase->rxGainType;
440 case EEP_TXGAIN_TYPE:
441 return pBase->txGainType;
442 case EEP_OL_PWRCTRL:
443 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
444 return pBase->openLoopPwrCntl ? true : false;
445 else
446 return false;
447 case EEP_RC_CHAIN_MASK:
448 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
449 return pBase->rcChainMask;
450 else
451 return 0;
452 case EEP_DAC_HPWR_5G:
453 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
454 return pBase->dacHiPwrMode_5G;
455 else
456 return 0;
457 case EEP_FRAC_N_5G:
458 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
459 return pBase->frac_n_5g;
460 else
461 return 0;
462 case EEP_PWR_TABLE_OFFSET:
463 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
464 return pBase->pwr_table_offset;
465 else
466 return AR5416_PWR_TABLE_OFFSET_DB;
467 case EEP_ANTENNA_GAIN_2G:
468 band = 1;
469 /* fall through */
470 case EEP_ANTENNA_GAIN_5G:
471 return max_t(u8, max_t(u8,
472 pModal[band].antennaGainCh[0],
473 pModal[band].antennaGainCh[1]),
474 pModal[band].antennaGainCh[2]);
475 default:
476 return 0;
480 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
481 struct modal_eep_header *pModal,
482 struct ar5416_eeprom_def *eep,
483 u8 txRxAttenLocal, int regChainOffset, int i)
485 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
486 txRxAttenLocal = pModal->txRxAttenCh[i];
488 if (AR_SREV_9280_20_OR_LATER(ah)) {
489 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
490 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
491 pModal->bswMargin[i]);
492 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
493 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
494 pModal->bswAtten[i]);
495 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
496 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
497 pModal->xatten2Margin[i]);
498 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
499 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
500 pModal->xatten2Db[i]);
501 } else {
502 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
503 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
504 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
505 | SM(pModal-> bswMargin[i],
506 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
507 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
508 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
509 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
510 | SM(pModal->bswAtten[i],
511 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
515 if (AR_SREV_9280_20_OR_LATER(ah)) {
516 REG_RMW_FIELD(ah,
517 AR_PHY_RXGAIN + regChainOffset,
518 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
519 REG_RMW_FIELD(ah,
520 AR_PHY_RXGAIN + regChainOffset,
521 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
522 } else {
523 REG_WRITE(ah,
524 AR_PHY_RXGAIN + regChainOffset,
525 (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
526 ~AR_PHY_RXGAIN_TXRX_ATTEN)
527 | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
528 REG_WRITE(ah,
529 AR_PHY_GAIN_2GHZ + regChainOffset,
530 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
531 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
532 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
536 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
537 struct ath9k_channel *chan)
539 struct modal_eep_header *pModal;
540 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
541 int i, regChainOffset;
542 u8 txRxAttenLocal;
544 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
545 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
547 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
549 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
550 if (AR_SREV_9280(ah)) {
551 if (i >= 2)
552 break;
555 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
556 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
557 else
558 regChainOffset = i * 0x1000;
560 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
561 pModal->antCtrlChain[i]);
563 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
564 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
565 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
566 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
567 SM(pModal->iqCalICh[i],
568 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
569 SM(pModal->iqCalQCh[i],
570 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
572 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
573 regChainOffset, i);
576 if (AR_SREV_9280_20_OR_LATER(ah)) {
577 if (IS_CHAN_2GHZ(chan)) {
578 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
579 AR_AN_RF2G1_CH0_OB,
580 AR_AN_RF2G1_CH0_OB_S,
581 pModal->ob);
582 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
583 AR_AN_RF2G1_CH0_DB,
584 AR_AN_RF2G1_CH0_DB_S,
585 pModal->db);
586 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
587 AR_AN_RF2G1_CH1_OB,
588 AR_AN_RF2G1_CH1_OB_S,
589 pModal->ob_ch1);
590 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
591 AR_AN_RF2G1_CH1_DB,
592 AR_AN_RF2G1_CH1_DB_S,
593 pModal->db_ch1);
594 } else {
595 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
596 AR_AN_RF5G1_CH0_OB5,
597 AR_AN_RF5G1_CH0_OB5_S,
598 pModal->ob);
599 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
600 AR_AN_RF5G1_CH0_DB5,
601 AR_AN_RF5G1_CH0_DB5_S,
602 pModal->db);
603 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
604 AR_AN_RF5G1_CH1_OB5,
605 AR_AN_RF5G1_CH1_OB5_S,
606 pModal->ob_ch1);
607 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
608 AR_AN_RF5G1_CH1_DB5,
609 AR_AN_RF5G1_CH1_DB5_S,
610 pModal->db_ch1);
612 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
613 AR_AN_TOP2_XPABIAS_LVL,
614 AR_AN_TOP2_XPABIAS_LVL_S,
615 pModal->xpaBiasLvl);
616 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
617 AR_AN_TOP2_LOCALBIAS,
618 AR_AN_TOP2_LOCALBIAS_S,
619 !!(pModal->lna_ctl &
620 LNA_CTL_LOCAL_BIAS));
621 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
622 !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
625 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
626 pModal->switchSettling);
627 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
628 pModal->adcDesiredSize);
630 if (!AR_SREV_9280_20_OR_LATER(ah))
631 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
632 AR_PHY_DESIRED_SZ_PGA,
633 pModal->pgaDesiredSize);
635 REG_WRITE(ah, AR_PHY_RF_CTL4,
636 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
637 | SM(pModal->txEndToXpaOff,
638 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
639 | SM(pModal->txFrameToXpaOn,
640 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
641 | SM(pModal->txFrameToXpaOn,
642 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
644 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
645 pModal->txEndToRxOn);
647 if (AR_SREV_9280_20_OR_LATER(ah)) {
648 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
649 pModal->thresh62);
650 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
651 AR_PHY_EXT_CCA0_THRESH62,
652 pModal->thresh62);
653 } else {
654 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
655 pModal->thresh62);
656 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
657 AR_PHY_EXT_CCA_THRESH62,
658 pModal->thresh62);
661 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
662 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
663 AR_PHY_TX_END_DATA_START,
664 pModal->txFrameToDataStart);
665 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
666 pModal->txFrameToPaOn);
669 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
670 if (IS_CHAN_HT40(chan))
671 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
672 AR_PHY_SETTLING_SWITCH,
673 pModal->swSettleHt40);
676 if (AR_SREV_9280_20_OR_LATER(ah) &&
677 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
678 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
679 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
680 pModal->miscBits);
683 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
684 if (IS_CHAN_2GHZ(chan))
685 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
686 eep->baseEepHeader.dacLpMode);
687 else if (eep->baseEepHeader.dacHiPwrMode_5G)
688 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
689 else
690 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
691 eep->baseEepHeader.dacLpMode);
693 udelay(100);
695 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
696 pModal->miscBits >> 2);
698 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
699 AR_PHY_TX_DESIRED_SCALE_CCK,
700 eep->baseEepHeader.desiredScaleCCK);
704 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
705 struct ath9k_channel *chan)
707 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
708 struct modal_eep_header *pModal;
709 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
710 u8 biaslevel;
712 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
713 return;
715 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
716 return;
718 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
720 if (pModal->xpaBiasLvl != 0xff) {
721 biaslevel = pModal->xpaBiasLvl;
722 } else {
723 u16 resetFreqBin, freqBin, freqCount = 0;
724 struct chan_centers centers;
726 ath9k_hw_get_channel_centers(ah, chan, &centers);
728 resetFreqBin = FREQ2FBIN(centers.synth_center,
729 IS_CHAN_2GHZ(chan));
730 freqBin = XPA_LVL_FREQ(0) & 0xff;
731 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
733 freqCount++;
735 while (freqCount < 3) {
736 if (XPA_LVL_FREQ(freqCount) == 0x0)
737 break;
739 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
740 if (resetFreqBin >= freqBin)
741 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
742 else
743 break;
744 freqCount++;
748 if (IS_CHAN_2GHZ(chan)) {
749 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
750 7, 1) & (~0x18)) | biaslevel << 3;
751 } else {
752 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
753 6, 1) & (~0xc0)) | biaslevel << 6;
755 #undef XPA_LVL_FREQ
758 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
759 u16 *gb,
760 u16 numXpdGain,
761 u16 pdGainOverlap_t2,
762 int8_t pwr_table_offset,
763 int16_t *diff)
766 u16 k;
768 /* Prior to writing the boundaries or the pdadc vs. power table
769 * into the chip registers the default starting point on the pdadc
770 * vs. power table needs to be checked and the curve boundaries
771 * adjusted accordingly
773 if (AR_SREV_9280_20_OR_LATER(ah)) {
774 u16 gb_limit;
776 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
777 /* get the difference in dB */
778 *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
779 /* get the number of half dB steps */
780 *diff *= 2;
781 /* change the original gain boundary settings
782 * by the number of half dB steps
784 for (k = 0; k < numXpdGain; k++)
785 gb[k] = (u16)(gb[k] - *diff);
787 /* Because of a hardware limitation, ensure the gain boundary
788 * is not larger than (63 - overlap)
790 gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
792 for (k = 0; k < numXpdGain; k++)
793 gb[k] = (u16)min(gb_limit, gb[k]);
796 return *diff;
799 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
800 int8_t pwr_table_offset,
801 int16_t diff,
802 u8 *pdadcValues)
804 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
805 u16 k;
807 /* If this is a board that has a pwrTableOffset that differs from
808 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
809 * pdadc vs pwr table needs to be adjusted prior to writing to the
810 * chip.
812 if (AR_SREV_9280_20_OR_LATER(ah)) {
813 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
814 /* shift the table to start at the new offset */
815 for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
816 pdadcValues[k] = pdadcValues[k + diff];
819 /* fill the back of the table */
820 for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
821 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
825 #undef NUM_PDADC
828 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
829 struct ath9k_channel *chan)
831 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
832 #define SM_PDGAIN_B(x, y) \
833 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
834 struct ath_common *common = ath9k_hw_common(ah);
835 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
836 struct cal_data_per_freq *pRawDataset;
837 u8 *pCalBChans = NULL;
838 u16 pdGainOverlap_t2;
839 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
840 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
841 u16 numPiers, i, j;
842 int16_t diff = 0;
843 u16 numXpdGain, xpdMask;
844 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
845 u32 reg32, regOffset, regChainOffset;
846 int16_t modalIdx;
847 int8_t pwr_table_offset;
849 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
850 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
852 pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
854 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
855 AR5416_EEP_MINOR_VER_2) {
856 pdGainOverlap_t2 =
857 pEepData->modalHeader[modalIdx].pdGainOverlap;
858 } else {
859 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
860 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
863 if (IS_CHAN_2GHZ(chan)) {
864 pCalBChans = pEepData->calFreqPier2G;
865 numPiers = AR5416_NUM_2G_CAL_PIERS;
866 } else {
867 pCalBChans = pEepData->calFreqPier5G;
868 numPiers = AR5416_NUM_5G_CAL_PIERS;
871 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
872 pRawDataset = pEepData->calPierData2G[0];
873 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
874 pRawDataset)->vpdPdg[0][0];
877 numXpdGain = 0;
879 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
880 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
881 if (numXpdGain >= AR5416_NUM_PD_GAINS)
882 break;
883 xpdGainValues[numXpdGain] =
884 (u16)(AR5416_PD_GAINS_IN_MASK - i);
885 numXpdGain++;
889 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
890 (numXpdGain - 1) & 0x3);
891 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
892 xpdGainValues[0]);
893 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
894 xpdGainValues[1]);
895 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
896 xpdGainValues[2]);
898 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
899 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) &&
900 (i != 0)) {
901 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
902 } else
903 regChainOffset = i * 0x1000;
905 if (pEepData->baseEepHeader.txMask & (1 << i)) {
906 if (IS_CHAN_2GHZ(chan))
907 pRawDataset = pEepData->calPierData2G[i];
908 else
909 pRawDataset = pEepData->calPierData5G[i];
912 if (OLC_FOR_AR9280_20_LATER) {
913 u8 pcdacIdx;
914 u8 txPower;
916 ath9k_get_txgain_index(ah, chan,
917 (struct calDataPerFreqOpLoop *)pRawDataset,
918 pCalBChans, numPiers, &txPower, &pcdacIdx);
919 ath9k_olc_get_pdadcs(ah, pcdacIdx,
920 txPower/2, pdadcValues);
921 } else {
922 ath9k_hw_get_gain_boundaries_pdadcs(ah,
923 chan, pRawDataset,
924 pCalBChans, numPiers,
925 pdGainOverlap_t2,
926 gainBoundaries,
927 pdadcValues,
928 numXpdGain);
931 diff = ath9k_change_gain_boundary_setting(ah,
932 gainBoundaries,
933 numXpdGain,
934 pdGainOverlap_t2,
935 pwr_table_offset,
936 &diff);
938 ENABLE_REGWRITE_BUFFER(ah);
940 if (OLC_FOR_AR9280_20_LATER) {
941 REG_WRITE(ah,
942 AR_PHY_TPCRG5 + regChainOffset,
943 SM(0x6,
944 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
945 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
946 SM_PD_GAIN(3) | SM_PD_GAIN(4));
947 } else {
948 REG_WRITE(ah,
949 AR_PHY_TPCRG5 + regChainOffset,
950 SM(pdGainOverlap_t2,
951 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
952 SM_PDGAIN_B(0, 1) |
953 SM_PDGAIN_B(1, 2) |
954 SM_PDGAIN_B(2, 3) |
955 SM_PDGAIN_B(3, 4));
958 ath9k_adjust_pdadc_values(ah, pwr_table_offset,
959 diff, pdadcValues);
961 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
962 for (j = 0; j < 32; j++) {
963 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
964 REG_WRITE(ah, regOffset, reg32);
966 ath_dbg(common, EEPROM,
967 "PDADC (%d,%4x): %4.4x %8.8x\n",
968 i, regChainOffset, regOffset,
969 reg32);
970 ath_dbg(common, EEPROM,
971 "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
972 i, 4 * j, pdadcValues[4 * j],
973 4 * j + 1, pdadcValues[4 * j + 1],
974 4 * j + 2, pdadcValues[4 * j + 2],
975 4 * j + 3, pdadcValues[4 * j + 3]);
977 regOffset += 4;
979 REGWRITE_BUFFER_FLUSH(ah);
983 #undef SM_PD_GAIN
984 #undef SM_PDGAIN_B
987 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
988 struct ath9k_channel *chan,
989 int16_t *ratesArray,
990 u16 cfgCtl,
991 u16 antenna_reduction,
992 u16 powerLimit)
994 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
995 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
997 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
998 u16 twiceMaxEdgePower;
999 int i;
1000 struct cal_ctl_data *rep;
1001 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
1002 0, { 0, 0, 0, 0}
1004 struct cal_target_power_leg targetPowerOfdmExt = {
1005 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
1006 0, { 0, 0, 0, 0 }
1008 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1009 0, {0, 0, 0, 0}
1011 u16 scaledPower = 0, minCtlPower;
1012 static const u16 ctlModesFor11a[] = {
1013 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1015 static const u16 ctlModesFor11g[] = {
1016 CTL_11B, CTL_11G, CTL_2GHT20,
1017 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1019 u16 numCtlModes;
1020 const u16 *pCtlMode;
1021 u16 ctlMode, freq;
1022 struct chan_centers centers;
1023 int tx_chainmask;
1024 u16 twiceMinEdgePower;
1026 tx_chainmask = ah->txchainmask;
1028 ath9k_hw_get_channel_centers(ah, chan, &centers);
1030 scaledPower = powerLimit - antenna_reduction;
1032 switch (ar5416_get_ntxchains(tx_chainmask)) {
1033 case 1:
1034 break;
1035 case 2:
1036 if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
1037 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
1038 else
1039 scaledPower = 0;
1040 break;
1041 case 3:
1042 if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
1043 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
1044 else
1045 scaledPower = 0;
1046 break;
1049 if (IS_CHAN_2GHZ(chan)) {
1050 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1051 SUB_NUM_CTL_MODES_AT_2G_40;
1052 pCtlMode = ctlModesFor11g;
1054 ath9k_hw_get_legacy_target_powers(ah, chan,
1055 pEepData->calTargetPowerCck,
1056 AR5416_NUM_2G_CCK_TARGET_POWERS,
1057 &targetPowerCck, 4, false);
1058 ath9k_hw_get_legacy_target_powers(ah, chan,
1059 pEepData->calTargetPower2G,
1060 AR5416_NUM_2G_20_TARGET_POWERS,
1061 &targetPowerOfdm, 4, false);
1062 ath9k_hw_get_target_powers(ah, chan,
1063 pEepData->calTargetPower2GHT20,
1064 AR5416_NUM_2G_20_TARGET_POWERS,
1065 &targetPowerHt20, 8, false);
1067 if (IS_CHAN_HT40(chan)) {
1068 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1069 ath9k_hw_get_target_powers(ah, chan,
1070 pEepData->calTargetPower2GHT40,
1071 AR5416_NUM_2G_40_TARGET_POWERS,
1072 &targetPowerHt40, 8, true);
1073 ath9k_hw_get_legacy_target_powers(ah, chan,
1074 pEepData->calTargetPowerCck,
1075 AR5416_NUM_2G_CCK_TARGET_POWERS,
1076 &targetPowerCckExt, 4, true);
1077 ath9k_hw_get_legacy_target_powers(ah, chan,
1078 pEepData->calTargetPower2G,
1079 AR5416_NUM_2G_20_TARGET_POWERS,
1080 &targetPowerOfdmExt, 4, true);
1082 } else {
1083 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1084 SUB_NUM_CTL_MODES_AT_5G_40;
1085 pCtlMode = ctlModesFor11a;
1087 ath9k_hw_get_legacy_target_powers(ah, chan,
1088 pEepData->calTargetPower5G,
1089 AR5416_NUM_5G_20_TARGET_POWERS,
1090 &targetPowerOfdm, 4, false);
1091 ath9k_hw_get_target_powers(ah, chan,
1092 pEepData->calTargetPower5GHT20,
1093 AR5416_NUM_5G_20_TARGET_POWERS,
1094 &targetPowerHt20, 8, false);
1096 if (IS_CHAN_HT40(chan)) {
1097 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1098 ath9k_hw_get_target_powers(ah, chan,
1099 pEepData->calTargetPower5GHT40,
1100 AR5416_NUM_5G_40_TARGET_POWERS,
1101 &targetPowerHt40, 8, true);
1102 ath9k_hw_get_legacy_target_powers(ah, chan,
1103 pEepData->calTargetPower5G,
1104 AR5416_NUM_5G_20_TARGET_POWERS,
1105 &targetPowerOfdmExt, 4, true);
1109 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1110 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1111 (pCtlMode[ctlMode] == CTL_2GHT40);
1112 if (isHt40CtlMode)
1113 freq = centers.synth_center;
1114 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1115 freq = centers.ext_center;
1116 else
1117 freq = centers.ctl_center;
1119 twiceMaxEdgePower = MAX_RATE_POWER;
1121 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1122 if ((((cfgCtl & ~CTL_MODE_M) |
1123 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1124 pEepData->ctlIndex[i]) ||
1125 (((cfgCtl & ~CTL_MODE_M) |
1126 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1127 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1128 rep = &(pEepData->ctlData[i]);
1130 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1131 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1132 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1134 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1135 twiceMaxEdgePower = min(twiceMaxEdgePower,
1136 twiceMinEdgePower);
1137 } else {
1138 twiceMaxEdgePower = twiceMinEdgePower;
1139 break;
1144 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1146 switch (pCtlMode[ctlMode]) {
1147 case CTL_11B:
1148 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1149 targetPowerCck.tPow2x[i] =
1150 min((u16)targetPowerCck.tPow2x[i],
1151 minCtlPower);
1153 break;
1154 case CTL_11A:
1155 case CTL_11G:
1156 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1157 targetPowerOfdm.tPow2x[i] =
1158 min((u16)targetPowerOfdm.tPow2x[i],
1159 minCtlPower);
1161 break;
1162 case CTL_5GHT20:
1163 case CTL_2GHT20:
1164 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1165 targetPowerHt20.tPow2x[i] =
1166 min((u16)targetPowerHt20.tPow2x[i],
1167 minCtlPower);
1169 break;
1170 case CTL_11B_EXT:
1171 targetPowerCckExt.tPow2x[0] = min((u16)
1172 targetPowerCckExt.tPow2x[0],
1173 minCtlPower);
1174 break;
1175 case CTL_11A_EXT:
1176 case CTL_11G_EXT:
1177 targetPowerOfdmExt.tPow2x[0] = min((u16)
1178 targetPowerOfdmExt.tPow2x[0],
1179 minCtlPower);
1180 break;
1181 case CTL_5GHT40:
1182 case CTL_2GHT40:
1183 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1184 targetPowerHt40.tPow2x[i] =
1185 min((u16)targetPowerHt40.tPow2x[i],
1186 minCtlPower);
1188 break;
1189 default:
1190 break;
1194 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1195 ratesArray[rate18mb] = ratesArray[rate24mb] =
1196 targetPowerOfdm.tPow2x[0];
1197 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1198 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1199 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1200 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1202 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1203 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1205 if (IS_CHAN_2GHZ(chan)) {
1206 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1207 ratesArray[rate2s] = ratesArray[rate2l] =
1208 targetPowerCck.tPow2x[1];
1209 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1210 targetPowerCck.tPow2x[2];
1211 ratesArray[rate11s] = ratesArray[rate11l] =
1212 targetPowerCck.tPow2x[3];
1214 if (IS_CHAN_HT40(chan)) {
1215 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1216 ratesArray[rateHt40_0 + i] =
1217 targetPowerHt40.tPow2x[i];
1219 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1220 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1221 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1222 if (IS_CHAN_2GHZ(chan)) {
1223 ratesArray[rateExtCck] =
1224 targetPowerCckExt.tPow2x[0];
1229 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1230 struct ath9k_channel *chan,
1231 u16 cfgCtl,
1232 u8 twiceAntennaReduction,
1233 u8 powerLimit, bool test)
1235 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1236 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1237 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1238 struct modal_eep_header *pModal =
1239 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1240 int16_t ratesArray[Ar5416RateSize];
1241 u8 ht40PowerIncForPdadc = 2;
1242 int i, cck_ofdm_delta = 0;
1244 memset(ratesArray, 0, sizeof(ratesArray));
1246 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1247 AR5416_EEP_MINOR_VER_2) {
1248 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1251 ath9k_hw_set_def_power_per_rate_table(ah, chan,
1252 &ratesArray[0], cfgCtl,
1253 twiceAntennaReduction,
1254 powerLimit);
1256 ath9k_hw_set_def_power_cal_table(ah, chan);
1258 regulatory->max_power_level = 0;
1259 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1260 if (ratesArray[i] > MAX_RATE_POWER)
1261 ratesArray[i] = MAX_RATE_POWER;
1262 if (ratesArray[i] > regulatory->max_power_level)
1263 regulatory->max_power_level = ratesArray[i];
1266 switch(ar5416_get_ntxchains(ah->txchainmask)) {
1267 case 1:
1268 break;
1269 case 2:
1270 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
1271 break;
1272 case 3:
1273 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
1274 break;
1275 default:
1276 ath_dbg(ath9k_hw_common(ah), EEPROM,
1277 "Invalid chainmask configuration\n");
1278 break;
1281 if (test)
1282 return;
1284 if (AR_SREV_9280_20_OR_LATER(ah)) {
1285 for (i = 0; i < Ar5416RateSize; i++) {
1286 int8_t pwr_table_offset;
1288 pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1289 EEP_PWR_TABLE_OFFSET);
1290 ratesArray[i] -= pwr_table_offset * 2;
1294 ENABLE_REGWRITE_BUFFER(ah);
1296 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1297 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1298 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1299 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1300 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1301 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1302 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1303 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1304 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1305 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1307 if (IS_CHAN_2GHZ(chan)) {
1308 if (OLC_FOR_AR9280_20_LATER) {
1309 cck_ofdm_delta = 2;
1310 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1311 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1312 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1313 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1314 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1315 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1316 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1317 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1318 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1319 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1320 } else {
1321 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1322 ATH9K_POW_SM(ratesArray[rate2s], 24)
1323 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1324 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1325 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1326 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1327 ATH9K_POW_SM(ratesArray[rate11s], 24)
1328 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1329 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1330 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1334 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1335 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1336 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1337 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1338 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1339 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1340 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1341 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1342 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1343 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1345 if (IS_CHAN_HT40(chan)) {
1346 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1347 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1348 ht40PowerIncForPdadc, 24)
1349 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1350 ht40PowerIncForPdadc, 16)
1351 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1352 ht40PowerIncForPdadc, 8)
1353 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1354 ht40PowerIncForPdadc, 0));
1355 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1356 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1357 ht40PowerIncForPdadc, 24)
1358 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1359 ht40PowerIncForPdadc, 16)
1360 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1361 ht40PowerIncForPdadc, 8)
1362 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1363 ht40PowerIncForPdadc, 0));
1364 if (OLC_FOR_AR9280_20_LATER) {
1365 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1366 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1367 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1368 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1369 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1370 } else {
1371 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1372 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1373 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1374 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1375 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1379 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1380 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1381 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1383 REGWRITE_BUFFER_FLUSH(ah);
1386 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1388 #define EEP_DEF_SPURCHAN \
1389 (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1390 struct ath_common *common = ath9k_hw_common(ah);
1392 u16 spur_val = AR_NO_SPUR;
1394 ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1395 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1397 switch (ah->config.spurmode) {
1398 case SPUR_DISABLE:
1399 break;
1400 case SPUR_ENABLE_IOCTL:
1401 spur_val = ah->config.spurchans[i][is2GHz];
1402 ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1403 spur_val);
1404 break;
1405 case SPUR_ENABLE_EEPROM:
1406 spur_val = EEP_DEF_SPURCHAN;
1407 break;
1410 return spur_val;
1412 #undef EEP_DEF_SPURCHAN
1415 const struct eeprom_ops eep_def_ops = {
1416 .check_eeprom = ath9k_hw_def_check_eeprom,
1417 .get_eeprom = ath9k_hw_def_get_eeprom,
1418 .fill_eeprom = ath9k_hw_def_fill_eeprom,
1419 .dump_eeprom = ath9k_hw_def_dump_eeprom,
1420 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
1421 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
1422 .set_board_values = ath9k_hw_def_set_board_values,
1423 .set_addac = ath9k_hw_def_set_addac,
1424 .set_txpower = ath9k_hw_def_set_txpower,
1425 .get_spur_channel = ath9k_hw_def_get_spur_channel