2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
19 #include "ar9002_phy.h"
21 static void ath9k_get_txgain_index(struct ath_hw
*ah
,
22 struct ath9k_channel
*chan
,
23 struct calDataPerFreqOpLoop
*rawDatasetOpLoop
,
24 u8
*calChans
, u16 availPiers
, u8
*pwr
, u8
*pcdacIdx
)
27 u16 idxL
= 0, idxR
= 0, numPiers
;
29 struct chan_centers centers
;
31 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
33 for (numPiers
= 0; numPiers
< availPiers
; numPiers
++)
34 if (calChans
[numPiers
] == AR5416_BCHAN_UNUSED
)
37 match
= ath9k_hw_get_lower_upper_index(
38 (u8
)FREQ2FBIN(centers
.synth_center
, IS_CHAN_2GHZ(chan
)),
39 calChans
, numPiers
, &idxL
, &idxR
);
41 pcdac
= rawDatasetOpLoop
[idxL
].pcdac
[0][0];
42 *pwr
= rawDatasetOpLoop
[idxL
].pwrPdg
[0][0];
44 pcdac
= rawDatasetOpLoop
[idxR
].pcdac
[0][0];
45 *pwr
= (rawDatasetOpLoop
[idxL
].pwrPdg
[0][0] +
46 rawDatasetOpLoop
[idxR
].pwrPdg
[0][0])/2;
49 while (pcdac
> ah
->originalGain
[i
] &&
50 i
< (AR9280_TX_GAIN_TABLE_SIZE
- 1))
56 static void ath9k_olc_get_pdadcs(struct ath_hw
*ah
,
64 REG_RMW_FIELD(ah
, AR_PHY_TX_PWRCTRL6_0
,
65 AR_PHY_TX_PWRCTRL_ERR_EST_MODE
, 3);
66 REG_RMW_FIELD(ah
, AR_PHY_TX_PWRCTRL6_1
,
67 AR_PHY_TX_PWRCTRL_ERR_EST_MODE
, 3);
69 REG_RMW_FIELD(ah
, AR_PHY_TX_PWRCTRL7
,
70 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN
, initTxGain
);
73 for (i
= 0; i
< AR5416_NUM_PDADC_VALUES
; i
++)
75 pPDADCValues
[i
] = 0x0;
77 pPDADCValues
[i
] = 0xFF;
80 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw
*ah
)
82 return ((ah
->eeprom
.def
.baseEepHeader
.version
>> 12) & 0xF);
85 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw
*ah
)
87 return ((ah
->eeprom
.def
.baseEepHeader
.version
) & 0xFFF);
90 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
92 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw
*ah
)
94 struct ath_common
*common
= ath9k_hw_common(ah
);
95 u16
*eep_data
= (u16
*)&ah
->eeprom
.def
;
96 int addr
, ar5416_eep_start_loc
= 0x100;
98 for (addr
= 0; addr
< SIZE_EEPROM_DEF
; addr
++) {
99 if (!ath9k_hw_nvram_read(common
, addr
+ ar5416_eep_start_loc
,
101 ath_err(ath9k_hw_common(ah
),
102 "Unable to read eeprom region\n");
110 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw
*ah
)
112 u16
*eep_data
= (u16
*)&ah
->eeprom
.def
;
114 ath9k_hw_usb_gen_fill_eeprom(ah
, eep_data
,
115 0x100, SIZE_EEPROM_DEF
);
119 static bool ath9k_hw_def_fill_eeprom(struct ath_hw
*ah
)
121 struct ath_common
*common
= ath9k_hw_common(ah
);
123 if (!ath9k_hw_use_flash(ah
)) {
124 ath_dbg(common
, EEPROM
, "Reading from EEPROM, not flash\n");
127 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
128 return __ath9k_hw_usb_def_fill_eeprom(ah
);
130 return __ath9k_hw_def_fill_eeprom(ah
);
133 #undef SIZE_EEPROM_DEF
135 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
136 static u32
ath9k_def_dump_modal_eeprom(char *buf
, u32 len
, u32 size
,
137 struct modal_eep_header
*modal_hdr
)
139 PR_EEP("Chain0 Ant. Control", modal_hdr
->antCtrlChain
[0]);
140 PR_EEP("Chain1 Ant. Control", modal_hdr
->antCtrlChain
[1]);
141 PR_EEP("Chain2 Ant. Control", modal_hdr
->antCtrlChain
[2]);
142 PR_EEP("Ant. Common Control", modal_hdr
->antCtrlCommon
);
143 PR_EEP("Chain0 Ant. Gain", modal_hdr
->antennaGainCh
[0]);
144 PR_EEP("Chain1 Ant. Gain", modal_hdr
->antennaGainCh
[1]);
145 PR_EEP("Chain2 Ant. Gain", modal_hdr
->antennaGainCh
[2]);
146 PR_EEP("Switch Settle", modal_hdr
->switchSettling
);
147 PR_EEP("Chain0 TxRxAtten", modal_hdr
->txRxAttenCh
[0]);
148 PR_EEP("Chain1 TxRxAtten", modal_hdr
->txRxAttenCh
[1]);
149 PR_EEP("Chain2 TxRxAtten", modal_hdr
->txRxAttenCh
[2]);
150 PR_EEP("Chain0 RxTxMargin", modal_hdr
->rxTxMarginCh
[0]);
151 PR_EEP("Chain1 RxTxMargin", modal_hdr
->rxTxMarginCh
[1]);
152 PR_EEP("Chain2 RxTxMargin", modal_hdr
->rxTxMarginCh
[2]);
153 PR_EEP("ADC Desired size", modal_hdr
->adcDesiredSize
);
154 PR_EEP("PGA Desired size", modal_hdr
->pgaDesiredSize
);
155 PR_EEP("Chain0 xlna Gain", modal_hdr
->xlnaGainCh
[0]);
156 PR_EEP("Chain1 xlna Gain", modal_hdr
->xlnaGainCh
[1]);
157 PR_EEP("Chain2 xlna Gain", modal_hdr
->xlnaGainCh
[2]);
158 PR_EEP("txEndToXpaOff", modal_hdr
->txEndToXpaOff
);
159 PR_EEP("txEndToRxOn", modal_hdr
->txEndToRxOn
);
160 PR_EEP("txFrameToXpaOn", modal_hdr
->txFrameToXpaOn
);
161 PR_EEP("CCA Threshold)", modal_hdr
->thresh62
);
162 PR_EEP("Chain0 NF Threshold", modal_hdr
->noiseFloorThreshCh
[0]);
163 PR_EEP("Chain1 NF Threshold", modal_hdr
->noiseFloorThreshCh
[1]);
164 PR_EEP("Chain2 NF Threshold", modal_hdr
->noiseFloorThreshCh
[2]);
165 PR_EEP("xpdGain", modal_hdr
->xpdGain
);
166 PR_EEP("External PD", modal_hdr
->xpd
);
167 PR_EEP("Chain0 I Coefficient", modal_hdr
->iqCalICh
[0]);
168 PR_EEP("Chain1 I Coefficient", modal_hdr
->iqCalICh
[1]);
169 PR_EEP("Chain2 I Coefficient", modal_hdr
->iqCalICh
[2]);
170 PR_EEP("Chain0 Q Coefficient", modal_hdr
->iqCalQCh
[0]);
171 PR_EEP("Chain1 Q Coefficient", modal_hdr
->iqCalQCh
[1]);
172 PR_EEP("Chain2 Q Coefficient", modal_hdr
->iqCalQCh
[2]);
173 PR_EEP("pdGainOverlap", modal_hdr
->pdGainOverlap
);
174 PR_EEP("Chain0 OutputBias", modal_hdr
->ob
);
175 PR_EEP("Chain0 DriverBias", modal_hdr
->db
);
176 PR_EEP("xPA Bias Level", modal_hdr
->xpaBiasLvl
);
177 PR_EEP("2chain pwr decrease", modal_hdr
->pwrDecreaseFor2Chain
);
178 PR_EEP("3chain pwr decrease", modal_hdr
->pwrDecreaseFor3Chain
);
179 PR_EEP("txFrameToDataStart", modal_hdr
->txFrameToDataStart
);
180 PR_EEP("txFrameToPaOn", modal_hdr
->txFrameToPaOn
);
181 PR_EEP("HT40 Power Inc.", modal_hdr
->ht40PowerIncForPdadc
);
182 PR_EEP("Chain0 bswAtten", modal_hdr
->bswAtten
[0]);
183 PR_EEP("Chain1 bswAtten", modal_hdr
->bswAtten
[1]);
184 PR_EEP("Chain2 bswAtten", modal_hdr
->bswAtten
[2]);
185 PR_EEP("Chain0 bswMargin", modal_hdr
->bswMargin
[0]);
186 PR_EEP("Chain1 bswMargin", modal_hdr
->bswMargin
[1]);
187 PR_EEP("Chain2 bswMargin", modal_hdr
->bswMargin
[2]);
188 PR_EEP("HT40 Switch Settle", modal_hdr
->swSettleHt40
);
189 PR_EEP("Chain0 xatten2Db", modal_hdr
->xatten2Db
[0]);
190 PR_EEP("Chain1 xatten2Db", modal_hdr
->xatten2Db
[1]);
191 PR_EEP("Chain2 xatten2Db", modal_hdr
->xatten2Db
[2]);
192 PR_EEP("Chain0 xatten2Margin", modal_hdr
->xatten2Margin
[0]);
193 PR_EEP("Chain1 xatten2Margin", modal_hdr
->xatten2Margin
[1]);
194 PR_EEP("Chain2 xatten2Margin", modal_hdr
->xatten2Margin
[2]);
195 PR_EEP("Chain1 OutputBias", modal_hdr
->ob_ch1
);
196 PR_EEP("Chain1 DriverBias", modal_hdr
->db_ch1
);
197 PR_EEP("LNA Control", modal_hdr
->lna_ctl
);
198 PR_EEP("XPA Bias Freq0", modal_hdr
->xpaBiasLvlFreq
[0]);
199 PR_EEP("XPA Bias Freq1", modal_hdr
->xpaBiasLvlFreq
[1]);
200 PR_EEP("XPA Bias Freq2", modal_hdr
->xpaBiasLvlFreq
[2]);
205 static u32
ath9k_hw_def_dump_eeprom(struct ath_hw
*ah
, bool dump_base_hdr
,
206 u8
*buf
, u32 len
, u32 size
)
208 struct ar5416_eeprom_def
*eep
= &ah
->eeprom
.def
;
209 struct base_eep_header
*pBase
= &eep
->baseEepHeader
;
211 if (!dump_base_hdr
) {
212 len
+= snprintf(buf
+ len
, size
- len
,
213 "%20s :\n", "2GHz modal Header");
214 len
+= ath9k_def_dump_modal_eeprom(buf
, len
, size
,
215 &eep
->modalHeader
[0]);
216 len
+= snprintf(buf
+ len
, size
- len
,
217 "%20s :\n", "5GHz modal Header");
218 len
+= ath9k_def_dump_modal_eeprom(buf
, len
, size
,
219 &eep
->modalHeader
[1]);
223 PR_EEP("Major Version", pBase
->version
>> 12);
224 PR_EEP("Minor Version", pBase
->version
& 0xFFF);
225 PR_EEP("Checksum", pBase
->checksum
);
226 PR_EEP("Length", pBase
->length
);
227 PR_EEP("RegDomain1", pBase
->regDmn
[0]);
228 PR_EEP("RegDomain2", pBase
->regDmn
[1]);
229 PR_EEP("TX Mask", pBase
->txMask
);
230 PR_EEP("RX Mask", pBase
->rxMask
);
231 PR_EEP("Allow 5GHz", !!(pBase
->opCapFlags
& AR5416_OPFLAGS_11A
));
232 PR_EEP("Allow 2GHz", !!(pBase
->opCapFlags
& AR5416_OPFLAGS_11G
));
233 PR_EEP("Disable 2GHz HT20", !!(pBase
->opCapFlags
&
234 AR5416_OPFLAGS_N_2G_HT20
));
235 PR_EEP("Disable 2GHz HT40", !!(pBase
->opCapFlags
&
236 AR5416_OPFLAGS_N_2G_HT40
));
237 PR_EEP("Disable 5Ghz HT20", !!(pBase
->opCapFlags
&
238 AR5416_OPFLAGS_N_5G_HT20
));
239 PR_EEP("Disable 5Ghz HT40", !!(pBase
->opCapFlags
&
240 AR5416_OPFLAGS_N_5G_HT40
));
241 PR_EEP("Big Endian", !!(pBase
->eepMisc
& 0x01));
242 PR_EEP("Cal Bin Major Ver", (pBase
->binBuildNumber
>> 24) & 0xFF);
243 PR_EEP("Cal Bin Minor Ver", (pBase
->binBuildNumber
>> 16) & 0xFF);
244 PR_EEP("Cal Bin Build", (pBase
->binBuildNumber
>> 8) & 0xFF);
245 PR_EEP("OpenLoop Power Ctrl", pBase
->openLoopPwrCntl
);
247 len
+= snprintf(buf
+ len
, size
- len
, "%20s : %pM\n", "MacAddress",
257 static u32
ath9k_hw_def_dump_eeprom(struct ath_hw
*ah
, bool dump_base_hdr
,
258 u8
*buf
, u32 len
, u32 size
)
265 static int ath9k_hw_def_check_eeprom(struct ath_hw
*ah
)
267 struct ar5416_eeprom_def
*eep
=
268 (struct ar5416_eeprom_def
*) &ah
->eeprom
.def
;
269 struct ath_common
*common
= ath9k_hw_common(ah
);
270 u16
*eepdata
, temp
, magic
, magic2
;
272 bool need_swap
= false;
275 if (!ath9k_hw_nvram_read(common
, AR5416_EEPROM_MAGIC_OFFSET
, &magic
)) {
276 ath_err(common
, "Reading Magic # failed\n");
280 if (!ath9k_hw_use_flash(ah
)) {
281 ath_dbg(common
, EEPROM
, "Read Magic = 0x%04X\n", magic
);
283 if (magic
!= AR5416_EEPROM_MAGIC
) {
284 magic2
= swab16(magic
);
286 if (magic2
== AR5416_EEPROM_MAGIC
) {
287 size
= sizeof(struct ar5416_eeprom_def
);
289 eepdata
= (u16
*) (&ah
->eeprom
);
291 for (addr
= 0; addr
< size
/ sizeof(u16
); addr
++) {
292 temp
= swab16(*eepdata
);
298 "Invalid EEPROM Magic. Endianness mismatch.\n");
304 ath_dbg(common
, EEPROM
, "need_swap = %s\n",
305 need_swap
? "True" : "False");
308 el
= swab16(ah
->eeprom
.def
.baseEepHeader
.length
);
310 el
= ah
->eeprom
.def
.baseEepHeader
.length
;
312 if (el
> sizeof(struct ar5416_eeprom_def
))
313 el
= sizeof(struct ar5416_eeprom_def
) / sizeof(u16
);
315 el
= el
/ sizeof(u16
);
317 eepdata
= (u16
*)(&ah
->eeprom
);
319 for (i
= 0; i
< el
; i
++)
326 ath_dbg(common
, EEPROM
,
327 "EEPROM Endianness is not native.. Changing.\n");
329 word
= swab16(eep
->baseEepHeader
.length
);
330 eep
->baseEepHeader
.length
= word
;
332 word
= swab16(eep
->baseEepHeader
.checksum
);
333 eep
->baseEepHeader
.checksum
= word
;
335 word
= swab16(eep
->baseEepHeader
.version
);
336 eep
->baseEepHeader
.version
= word
;
338 word
= swab16(eep
->baseEepHeader
.regDmn
[0]);
339 eep
->baseEepHeader
.regDmn
[0] = word
;
341 word
= swab16(eep
->baseEepHeader
.regDmn
[1]);
342 eep
->baseEepHeader
.regDmn
[1] = word
;
344 word
= swab16(eep
->baseEepHeader
.rfSilent
);
345 eep
->baseEepHeader
.rfSilent
= word
;
347 word
= swab16(eep
->baseEepHeader
.blueToothOptions
);
348 eep
->baseEepHeader
.blueToothOptions
= word
;
350 word
= swab16(eep
->baseEepHeader
.deviceCap
);
351 eep
->baseEepHeader
.deviceCap
= word
;
353 for (j
= 0; j
< ARRAY_SIZE(eep
->modalHeader
); j
++) {
354 struct modal_eep_header
*pModal
=
355 &eep
->modalHeader
[j
];
356 integer
= swab32(pModal
->antCtrlCommon
);
357 pModal
->antCtrlCommon
= integer
;
359 for (i
= 0; i
< AR5416_MAX_CHAINS
; i
++) {
360 integer
= swab32(pModal
->antCtrlChain
[i
]);
361 pModal
->antCtrlChain
[i
] = integer
;
363 for (i
= 0; i
< 3; i
++) {
364 word
= swab16(pModal
->xpaBiasLvlFreq
[i
]);
365 pModal
->xpaBiasLvlFreq
[i
] = word
;
368 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
369 word
= swab16(pModal
->spurChans
[i
].spurChan
);
370 pModal
->spurChans
[i
].spurChan
= word
;
375 if (sum
!= 0xffff || ah
->eep_ops
->get_eeprom_ver(ah
) != AR5416_EEP_VER
||
376 ah
->eep_ops
->get_eeprom_rev(ah
) < AR5416_EEP_NO_BACK_VER
) {
377 ath_err(common
, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
378 sum
, ah
->eep_ops
->get_eeprom_ver(ah
));
382 /* Enable fixup for AR_AN_TOP2 if necessary */
383 if ((ah
->hw_version
.devid
== AR9280_DEVID_PCI
) &&
384 ((eep
->baseEepHeader
.version
& 0xff) > 0x0a) &&
385 (eep
->baseEepHeader
.pwdclkind
== 0))
386 ah
->need_an_top2_fixup
= true;
388 if ((common
->bus_ops
->ath_bus_type
== ATH_USB
) &&
390 eep
->modalHeader
[0].xpaBiasLvl
= 0;
395 static u32
ath9k_hw_def_get_eeprom(struct ath_hw
*ah
,
396 enum eeprom_param param
)
398 struct ar5416_eeprom_def
*eep
= &ah
->eeprom
.def
;
399 struct modal_eep_header
*pModal
= eep
->modalHeader
;
400 struct base_eep_header
*pBase
= &eep
->baseEepHeader
;
405 return pModal
[0].noiseFloorThreshCh
[0];
407 return pModal
[1].noiseFloorThreshCh
[0];
409 return get_unaligned_be16(pBase
->macAddr
);
411 return get_unaligned_be16(pBase
->macAddr
+ 2);
413 return get_unaligned_be16(pBase
->macAddr
+ 4);
415 return pBase
->regDmn
[0];
417 return pBase
->deviceCap
;
419 return pBase
->opCapFlags
;
421 return pBase
->rfSilent
;
431 return AR5416_VER_MASK
;
433 return pBase
->txMask
;
435 return pBase
->rxMask
;
437 return pBase
->fastClk5g
;
438 case EEP_RXGAIN_TYPE
:
439 return pBase
->rxGainType
;
440 case EEP_TXGAIN_TYPE
:
441 return pBase
->txGainType
;
443 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_19
)
444 return pBase
->openLoopPwrCntl
? true : false;
447 case EEP_RC_CHAIN_MASK
:
448 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_19
)
449 return pBase
->rcChainMask
;
452 case EEP_DAC_HPWR_5G
:
453 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_20
)
454 return pBase
->dacHiPwrMode_5G
;
458 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_22
)
459 return pBase
->frac_n_5g
;
462 case EEP_PWR_TABLE_OFFSET
:
463 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_21
)
464 return pBase
->pwr_table_offset
;
466 return AR5416_PWR_TABLE_OFFSET_DB
;
467 case EEP_ANTENNA_GAIN_2G
:
470 case EEP_ANTENNA_GAIN_5G
:
471 return max_t(u8
, max_t(u8
,
472 pModal
[band
].antennaGainCh
[0],
473 pModal
[band
].antennaGainCh
[1]),
474 pModal
[band
].antennaGainCh
[2]);
480 static void ath9k_hw_def_set_gain(struct ath_hw
*ah
,
481 struct modal_eep_header
*pModal
,
482 struct ar5416_eeprom_def
*eep
,
483 u8 txRxAttenLocal
, int regChainOffset
, int i
)
485 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_3
) {
486 txRxAttenLocal
= pModal
->txRxAttenCh
[i
];
488 if (AR_SREV_9280_20_OR_LATER(ah
)) {
489 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
490 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN
,
491 pModal
->bswMargin
[i
]);
492 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
493 AR_PHY_GAIN_2GHZ_XATTEN1_DB
,
494 pModal
->bswAtten
[i
]);
495 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
496 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN
,
497 pModal
->xatten2Margin
[i
]);
498 REG_RMW_FIELD(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
499 AR_PHY_GAIN_2GHZ_XATTEN2_DB
,
500 pModal
->xatten2Db
[i
]);
502 REG_WRITE(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
503 (REG_READ(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
) &
504 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN
)
505 | SM(pModal
-> bswMargin
[i
],
506 AR_PHY_GAIN_2GHZ_BSW_MARGIN
));
507 REG_WRITE(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
,
508 (REG_READ(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
) &
509 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN
)
510 | SM(pModal
->bswAtten
[i
],
511 AR_PHY_GAIN_2GHZ_BSW_ATTEN
));
515 if (AR_SREV_9280_20_OR_LATER(ah
)) {
517 AR_PHY_RXGAIN
+ regChainOffset
,
518 AR9280_PHY_RXGAIN_TXRX_ATTEN
, txRxAttenLocal
);
520 AR_PHY_RXGAIN
+ regChainOffset
,
521 AR9280_PHY_RXGAIN_TXRX_MARGIN
, pModal
->rxTxMarginCh
[i
]);
524 AR_PHY_RXGAIN
+ regChainOffset
,
525 (REG_READ(ah
, AR_PHY_RXGAIN
+ regChainOffset
) &
526 ~AR_PHY_RXGAIN_TXRX_ATTEN
)
527 | SM(txRxAttenLocal
, AR_PHY_RXGAIN_TXRX_ATTEN
));
529 AR_PHY_GAIN_2GHZ
+ regChainOffset
,
530 (REG_READ(ah
, AR_PHY_GAIN_2GHZ
+ regChainOffset
) &
531 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN
) |
532 SM(pModal
->rxTxMarginCh
[i
], AR_PHY_GAIN_2GHZ_RXTX_MARGIN
));
536 static void ath9k_hw_def_set_board_values(struct ath_hw
*ah
,
537 struct ath9k_channel
*chan
)
539 struct modal_eep_header
*pModal
;
540 struct ar5416_eeprom_def
*eep
= &ah
->eeprom
.def
;
541 int i
, regChainOffset
;
544 pModal
= &(eep
->modalHeader
[IS_CHAN_2GHZ(chan
)]);
545 txRxAttenLocal
= IS_CHAN_2GHZ(chan
) ? 23 : 44;
547 REG_WRITE(ah
, AR_PHY_SWITCH_COM
, pModal
->antCtrlCommon
& 0xffff);
549 for (i
= 0; i
< AR5416_MAX_CHAINS
; i
++) {
550 if (AR_SREV_9280(ah
)) {
555 if ((ah
->rxchainmask
== 5 || ah
->txchainmask
== 5) && (i
!= 0))
556 regChainOffset
= (i
== 1) ? 0x2000 : 0x1000;
558 regChainOffset
= i
* 0x1000;
560 REG_WRITE(ah
, AR_PHY_SWITCH_CHAIN_0
+ regChainOffset
,
561 pModal
->antCtrlChain
[i
]);
563 REG_WRITE(ah
, AR_PHY_TIMING_CTRL4(0) + regChainOffset
,
564 (REG_READ(ah
, AR_PHY_TIMING_CTRL4(0) + regChainOffset
) &
565 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
|
566 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
)) |
567 SM(pModal
->iqCalICh
[i
],
568 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF
) |
569 SM(pModal
->iqCalQCh
[i
],
570 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF
));
572 ath9k_hw_def_set_gain(ah
, pModal
, eep
, txRxAttenLocal
,
576 if (AR_SREV_9280_20_OR_LATER(ah
)) {
577 if (IS_CHAN_2GHZ(chan
)) {
578 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF2G1_CH0
,
580 AR_AN_RF2G1_CH0_OB_S
,
582 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF2G1_CH0
,
584 AR_AN_RF2G1_CH0_DB_S
,
586 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF2G1_CH1
,
588 AR_AN_RF2G1_CH1_OB_S
,
590 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF2G1_CH1
,
592 AR_AN_RF2G1_CH1_DB_S
,
595 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF5G1_CH0
,
597 AR_AN_RF5G1_CH0_OB5_S
,
599 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF5G1_CH0
,
601 AR_AN_RF5G1_CH0_DB5_S
,
603 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF5G1_CH1
,
605 AR_AN_RF5G1_CH1_OB5_S
,
607 ath9k_hw_analog_shift_rmw(ah
, AR_AN_RF5G1_CH1
,
609 AR_AN_RF5G1_CH1_DB5_S
,
612 ath9k_hw_analog_shift_rmw(ah
, AR_AN_TOP2
,
613 AR_AN_TOP2_XPABIAS_LVL
,
614 AR_AN_TOP2_XPABIAS_LVL_S
,
616 ath9k_hw_analog_shift_rmw(ah
, AR_AN_TOP2
,
617 AR_AN_TOP2_LOCALBIAS
,
618 AR_AN_TOP2_LOCALBIAS_S
,
620 LNA_CTL_LOCAL_BIAS
));
621 REG_RMW_FIELD(ah
, AR_PHY_XPA_CFG
, AR_PHY_FORCE_XPA_CFG
,
622 !!(pModal
->lna_ctl
& LNA_CTL_FORCE_XPA
));
625 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
, AR_PHY_SETTLING_SWITCH
,
626 pModal
->switchSettling
);
627 REG_RMW_FIELD(ah
, AR_PHY_DESIRED_SZ
, AR_PHY_DESIRED_SZ_ADC
,
628 pModal
->adcDesiredSize
);
630 if (!AR_SREV_9280_20_OR_LATER(ah
))
631 REG_RMW_FIELD(ah
, AR_PHY_DESIRED_SZ
,
632 AR_PHY_DESIRED_SZ_PGA
,
633 pModal
->pgaDesiredSize
);
635 REG_WRITE(ah
, AR_PHY_RF_CTL4
,
636 SM(pModal
->txEndToXpaOff
, AR_PHY_RF_CTL4_TX_END_XPAA_OFF
)
637 | SM(pModal
->txEndToXpaOff
,
638 AR_PHY_RF_CTL4_TX_END_XPAB_OFF
)
639 | SM(pModal
->txFrameToXpaOn
,
640 AR_PHY_RF_CTL4_FRAME_XPAA_ON
)
641 | SM(pModal
->txFrameToXpaOn
,
642 AR_PHY_RF_CTL4_FRAME_XPAB_ON
));
644 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL3
, AR_PHY_TX_END_TO_A2_RX_ON
,
645 pModal
->txEndToRxOn
);
647 if (AR_SREV_9280_20_OR_LATER(ah
)) {
648 REG_RMW_FIELD(ah
, AR_PHY_CCA
, AR9280_PHY_CCA_THRESH62
,
650 REG_RMW_FIELD(ah
, AR_PHY_EXT_CCA0
,
651 AR_PHY_EXT_CCA0_THRESH62
,
654 REG_RMW_FIELD(ah
, AR_PHY_CCA
, AR_PHY_CCA_THRESH62
,
656 REG_RMW_FIELD(ah
, AR_PHY_EXT_CCA
,
657 AR_PHY_EXT_CCA_THRESH62
,
661 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_2
) {
662 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
,
663 AR_PHY_TX_END_DATA_START
,
664 pModal
->txFrameToDataStart
);
665 REG_RMW_FIELD(ah
, AR_PHY_RF_CTL2
, AR_PHY_TX_END_PA_ON
,
666 pModal
->txFrameToPaOn
);
669 if (AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_3
) {
670 if (IS_CHAN_HT40(chan
))
671 REG_RMW_FIELD(ah
, AR_PHY_SETTLING
,
672 AR_PHY_SETTLING_SWITCH
,
673 pModal
->swSettleHt40
);
676 if (AR_SREV_9280_20_OR_LATER(ah
) &&
677 AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_19
)
678 REG_RMW_FIELD(ah
, AR_PHY_CCK_TX_CTRL
,
679 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK
,
683 if (AR_SREV_9280_20(ah
) && AR5416_VER_MASK
>= AR5416_EEP_MINOR_VER_20
) {
684 if (IS_CHAN_2GHZ(chan
))
685 REG_RMW_FIELD(ah
, AR_AN_TOP1
, AR_AN_TOP1_DACIPMODE
,
686 eep
->baseEepHeader
.dacLpMode
);
687 else if (eep
->baseEepHeader
.dacHiPwrMode_5G
)
688 REG_RMW_FIELD(ah
, AR_AN_TOP1
, AR_AN_TOP1_DACIPMODE
, 0);
690 REG_RMW_FIELD(ah
, AR_AN_TOP1
, AR_AN_TOP1_DACIPMODE
,
691 eep
->baseEepHeader
.dacLpMode
);
695 REG_RMW_FIELD(ah
, AR_PHY_FRAME_CTL
, AR_PHY_FRAME_CTL_TX_CLIP
,
696 pModal
->miscBits
>> 2);
698 REG_RMW_FIELD(ah
, AR_PHY_TX_PWRCTRL9
,
699 AR_PHY_TX_DESIRED_SCALE_CCK
,
700 eep
->baseEepHeader
.desiredScaleCCK
);
704 static void ath9k_hw_def_set_addac(struct ath_hw
*ah
,
705 struct ath9k_channel
*chan
)
707 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
708 struct modal_eep_header
*pModal
;
709 struct ar5416_eeprom_def
*eep
= &ah
->eeprom
.def
;
712 if (ah
->hw_version
.macVersion
!= AR_SREV_VERSION_9160
)
715 if (ah
->eep_ops
->get_eeprom_rev(ah
) < AR5416_EEP_MINOR_VER_7
)
718 pModal
= &(eep
->modalHeader
[IS_CHAN_2GHZ(chan
)]);
720 if (pModal
->xpaBiasLvl
!= 0xff) {
721 biaslevel
= pModal
->xpaBiasLvl
;
723 u16 resetFreqBin
, freqBin
, freqCount
= 0;
724 struct chan_centers centers
;
726 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
728 resetFreqBin
= FREQ2FBIN(centers
.synth_center
,
730 freqBin
= XPA_LVL_FREQ(0) & 0xff;
731 biaslevel
= (u8
) (XPA_LVL_FREQ(0) >> 14);
735 while (freqCount
< 3) {
736 if (XPA_LVL_FREQ(freqCount
) == 0x0)
739 freqBin
= XPA_LVL_FREQ(freqCount
) & 0xff;
740 if (resetFreqBin
>= freqBin
)
741 biaslevel
= (u8
)(XPA_LVL_FREQ(freqCount
) >> 14);
748 if (IS_CHAN_2GHZ(chan
)) {
749 INI_RA(&ah
->iniAddac
, 7, 1) = (INI_RA(&ah
->iniAddac
,
750 7, 1) & (~0x18)) | biaslevel
<< 3;
752 INI_RA(&ah
->iniAddac
, 6, 1) = (INI_RA(&ah
->iniAddac
,
753 6, 1) & (~0xc0)) | biaslevel
<< 6;
758 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw
*ah
,
761 u16 pdGainOverlap_t2
,
762 int8_t pwr_table_offset
,
768 /* Prior to writing the boundaries or the pdadc vs. power table
769 * into the chip registers the default starting point on the pdadc
770 * vs. power table needs to be checked and the curve boundaries
771 * adjusted accordingly
773 if (AR_SREV_9280_20_OR_LATER(ah
)) {
776 if (AR5416_PWR_TABLE_OFFSET_DB
!= pwr_table_offset
) {
777 /* get the difference in dB */
778 *diff
= (u16
)(pwr_table_offset
- AR5416_PWR_TABLE_OFFSET_DB
);
779 /* get the number of half dB steps */
781 /* change the original gain boundary settings
782 * by the number of half dB steps
784 for (k
= 0; k
< numXpdGain
; k
++)
785 gb
[k
] = (u16
)(gb
[k
] - *diff
);
787 /* Because of a hardware limitation, ensure the gain boundary
788 * is not larger than (63 - overlap)
790 gb_limit
= (u16
)(MAX_RATE_POWER
- pdGainOverlap_t2
);
792 for (k
= 0; k
< numXpdGain
; k
++)
793 gb
[k
] = (u16
)min(gb_limit
, gb
[k
]);
799 static void ath9k_adjust_pdadc_values(struct ath_hw
*ah
,
800 int8_t pwr_table_offset
,
804 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
807 /* If this is a board that has a pwrTableOffset that differs from
808 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
809 * pdadc vs pwr table needs to be adjusted prior to writing to the
812 if (AR_SREV_9280_20_OR_LATER(ah
)) {
813 if (AR5416_PWR_TABLE_OFFSET_DB
!= pwr_table_offset
) {
814 /* shift the table to start at the new offset */
815 for (k
= 0; k
< (u16
)NUM_PDADC(diff
); k
++ ) {
816 pdadcValues
[k
] = pdadcValues
[k
+ diff
];
819 /* fill the back of the table */
820 for (k
= (u16
)NUM_PDADC(diff
); k
< NUM_PDADC(0); k
++) {
821 pdadcValues
[k
] = pdadcValues
[NUM_PDADC(diff
)];
828 static void ath9k_hw_set_def_power_cal_table(struct ath_hw
*ah
,
829 struct ath9k_channel
*chan
)
831 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
832 #define SM_PDGAIN_B(x, y) \
833 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
834 struct ath_common
*common
= ath9k_hw_common(ah
);
835 struct ar5416_eeprom_def
*pEepData
= &ah
->eeprom
.def
;
836 struct cal_data_per_freq
*pRawDataset
;
837 u8
*pCalBChans
= NULL
;
838 u16 pdGainOverlap_t2
;
839 static u8 pdadcValues
[AR5416_NUM_PDADC_VALUES
];
840 u16 gainBoundaries
[AR5416_PD_GAINS_IN_MASK
];
843 u16 numXpdGain
, xpdMask
;
844 u16 xpdGainValues
[AR5416_NUM_PD_GAINS
] = { 0, 0, 0, 0 };
845 u32 reg32
, regOffset
, regChainOffset
;
847 int8_t pwr_table_offset
;
849 modalIdx
= IS_CHAN_2GHZ(chan
) ? 1 : 0;
850 xpdMask
= pEepData
->modalHeader
[modalIdx
].xpdGain
;
852 pwr_table_offset
= ah
->eep_ops
->get_eeprom(ah
, EEP_PWR_TABLE_OFFSET
);
854 if ((pEepData
->baseEepHeader
.version
& AR5416_EEP_VER_MINOR_MASK
) >=
855 AR5416_EEP_MINOR_VER_2
) {
857 pEepData
->modalHeader
[modalIdx
].pdGainOverlap
;
859 pdGainOverlap_t2
= (u16
)(MS(REG_READ(ah
, AR_PHY_TPCRG5
),
860 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
));
863 if (IS_CHAN_2GHZ(chan
)) {
864 pCalBChans
= pEepData
->calFreqPier2G
;
865 numPiers
= AR5416_NUM_2G_CAL_PIERS
;
867 pCalBChans
= pEepData
->calFreqPier5G
;
868 numPiers
= AR5416_NUM_5G_CAL_PIERS
;
871 if (OLC_FOR_AR9280_20_LATER
&& IS_CHAN_2GHZ(chan
)) {
872 pRawDataset
= pEepData
->calPierData2G
[0];
873 ah
->initPDADC
= ((struct calDataPerFreqOpLoop
*)
874 pRawDataset
)->vpdPdg
[0][0];
879 for (i
= 1; i
<= AR5416_PD_GAINS_IN_MASK
; i
++) {
880 if ((xpdMask
>> (AR5416_PD_GAINS_IN_MASK
- i
)) & 1) {
881 if (numXpdGain
>= AR5416_NUM_PD_GAINS
)
883 xpdGainValues
[numXpdGain
] =
884 (u16
)(AR5416_PD_GAINS_IN_MASK
- i
);
889 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_NUM_PD_GAIN
,
890 (numXpdGain
- 1) & 0x3);
891 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_1
,
893 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_2
,
895 REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_PD_GAIN_3
,
898 for (i
= 0; i
< AR5416_MAX_CHAINS
; i
++) {
899 if ((ah
->rxchainmask
== 5 || ah
->txchainmask
== 5) &&
901 regChainOffset
= (i
== 1) ? 0x2000 : 0x1000;
903 regChainOffset
= i
* 0x1000;
905 if (pEepData
->baseEepHeader
.txMask
& (1 << i
)) {
906 if (IS_CHAN_2GHZ(chan
))
907 pRawDataset
= pEepData
->calPierData2G
[i
];
909 pRawDataset
= pEepData
->calPierData5G
[i
];
912 if (OLC_FOR_AR9280_20_LATER
) {
916 ath9k_get_txgain_index(ah
, chan
,
917 (struct calDataPerFreqOpLoop
*)pRawDataset
,
918 pCalBChans
, numPiers
, &txPower
, &pcdacIdx
);
919 ath9k_olc_get_pdadcs(ah
, pcdacIdx
,
920 txPower
/2, pdadcValues
);
922 ath9k_hw_get_gain_boundaries_pdadcs(ah
,
924 pCalBChans
, numPiers
,
931 diff
= ath9k_change_gain_boundary_setting(ah
,
938 ENABLE_REGWRITE_BUFFER(ah
);
940 if (OLC_FOR_AR9280_20_LATER
) {
942 AR_PHY_TPCRG5
+ regChainOffset
,
944 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
) |
945 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
946 SM_PD_GAIN(3) | SM_PD_GAIN(4));
949 AR_PHY_TPCRG5
+ regChainOffset
,
951 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
)|
958 ath9k_adjust_pdadc_values(ah
, pwr_table_offset
,
961 regOffset
= AR_PHY_BASE
+ (672 << 2) + regChainOffset
;
962 for (j
= 0; j
< 32; j
++) {
963 reg32
= get_unaligned_le32(&pdadcValues
[4 * j
]);
964 REG_WRITE(ah
, regOffset
, reg32
);
966 ath_dbg(common
, EEPROM
,
967 "PDADC (%d,%4x): %4.4x %8.8x\n",
968 i
, regChainOffset
, regOffset
,
970 ath_dbg(common
, EEPROM
,
971 "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
972 i
, 4 * j
, pdadcValues
[4 * j
],
973 4 * j
+ 1, pdadcValues
[4 * j
+ 1],
974 4 * j
+ 2, pdadcValues
[4 * j
+ 2],
975 4 * j
+ 3, pdadcValues
[4 * j
+ 3]);
979 REGWRITE_BUFFER_FLUSH(ah
);
987 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw
*ah
,
988 struct ath9k_channel
*chan
,
991 u16 antenna_reduction
,
994 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
995 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
997 struct ar5416_eeprom_def
*pEepData
= &ah
->eeprom
.def
;
998 u16 twiceMaxEdgePower
;
1000 struct cal_ctl_data
*rep
;
1001 struct cal_target_power_leg targetPowerOfdm
, targetPowerCck
= {
1004 struct cal_target_power_leg targetPowerOfdmExt
= {
1005 0, { 0, 0, 0, 0} }, targetPowerCckExt
= {
1008 struct cal_target_power_ht targetPowerHt20
, targetPowerHt40
= {
1011 u16 scaledPower
= 0, minCtlPower
;
1012 static const u16 ctlModesFor11a
[] = {
1013 CTL_11A
, CTL_5GHT20
, CTL_11A_EXT
, CTL_5GHT40
1015 static const u16 ctlModesFor11g
[] = {
1016 CTL_11B
, CTL_11G
, CTL_2GHT20
,
1017 CTL_11B_EXT
, CTL_11G_EXT
, CTL_2GHT40
1020 const u16
*pCtlMode
;
1022 struct chan_centers centers
;
1024 u16 twiceMinEdgePower
;
1026 tx_chainmask
= ah
->txchainmask
;
1028 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
1030 scaledPower
= powerLimit
- antenna_reduction
;
1032 switch (ar5416_get_ntxchains(tx_chainmask
)) {
1036 if (scaledPower
> REDUCE_SCALED_POWER_BY_TWO_CHAIN
)
1037 scaledPower
-= REDUCE_SCALED_POWER_BY_TWO_CHAIN
;
1042 if (scaledPower
> REDUCE_SCALED_POWER_BY_THREE_CHAIN
)
1043 scaledPower
-= REDUCE_SCALED_POWER_BY_THREE_CHAIN
;
1049 if (IS_CHAN_2GHZ(chan
)) {
1050 numCtlModes
= ARRAY_SIZE(ctlModesFor11g
) -
1051 SUB_NUM_CTL_MODES_AT_2G_40
;
1052 pCtlMode
= ctlModesFor11g
;
1054 ath9k_hw_get_legacy_target_powers(ah
, chan
,
1055 pEepData
->calTargetPowerCck
,
1056 AR5416_NUM_2G_CCK_TARGET_POWERS
,
1057 &targetPowerCck
, 4, false);
1058 ath9k_hw_get_legacy_target_powers(ah
, chan
,
1059 pEepData
->calTargetPower2G
,
1060 AR5416_NUM_2G_20_TARGET_POWERS
,
1061 &targetPowerOfdm
, 4, false);
1062 ath9k_hw_get_target_powers(ah
, chan
,
1063 pEepData
->calTargetPower2GHT20
,
1064 AR5416_NUM_2G_20_TARGET_POWERS
,
1065 &targetPowerHt20
, 8, false);
1067 if (IS_CHAN_HT40(chan
)) {
1068 numCtlModes
= ARRAY_SIZE(ctlModesFor11g
);
1069 ath9k_hw_get_target_powers(ah
, chan
,
1070 pEepData
->calTargetPower2GHT40
,
1071 AR5416_NUM_2G_40_TARGET_POWERS
,
1072 &targetPowerHt40
, 8, true);
1073 ath9k_hw_get_legacy_target_powers(ah
, chan
,
1074 pEepData
->calTargetPowerCck
,
1075 AR5416_NUM_2G_CCK_TARGET_POWERS
,
1076 &targetPowerCckExt
, 4, true);
1077 ath9k_hw_get_legacy_target_powers(ah
, chan
,
1078 pEepData
->calTargetPower2G
,
1079 AR5416_NUM_2G_20_TARGET_POWERS
,
1080 &targetPowerOfdmExt
, 4, true);
1083 numCtlModes
= ARRAY_SIZE(ctlModesFor11a
) -
1084 SUB_NUM_CTL_MODES_AT_5G_40
;
1085 pCtlMode
= ctlModesFor11a
;
1087 ath9k_hw_get_legacy_target_powers(ah
, chan
,
1088 pEepData
->calTargetPower5G
,
1089 AR5416_NUM_5G_20_TARGET_POWERS
,
1090 &targetPowerOfdm
, 4, false);
1091 ath9k_hw_get_target_powers(ah
, chan
,
1092 pEepData
->calTargetPower5GHT20
,
1093 AR5416_NUM_5G_20_TARGET_POWERS
,
1094 &targetPowerHt20
, 8, false);
1096 if (IS_CHAN_HT40(chan
)) {
1097 numCtlModes
= ARRAY_SIZE(ctlModesFor11a
);
1098 ath9k_hw_get_target_powers(ah
, chan
,
1099 pEepData
->calTargetPower5GHT40
,
1100 AR5416_NUM_5G_40_TARGET_POWERS
,
1101 &targetPowerHt40
, 8, true);
1102 ath9k_hw_get_legacy_target_powers(ah
, chan
,
1103 pEepData
->calTargetPower5G
,
1104 AR5416_NUM_5G_20_TARGET_POWERS
,
1105 &targetPowerOfdmExt
, 4, true);
1109 for (ctlMode
= 0; ctlMode
< numCtlModes
; ctlMode
++) {
1110 bool isHt40CtlMode
= (pCtlMode
[ctlMode
] == CTL_5GHT40
) ||
1111 (pCtlMode
[ctlMode
] == CTL_2GHT40
);
1113 freq
= centers
.synth_center
;
1114 else if (pCtlMode
[ctlMode
] & EXT_ADDITIVE
)
1115 freq
= centers
.ext_center
;
1117 freq
= centers
.ctl_center
;
1119 twiceMaxEdgePower
= MAX_RATE_POWER
;
1121 for (i
= 0; (i
< AR5416_NUM_CTLS
) && pEepData
->ctlIndex
[i
]; i
++) {
1122 if ((((cfgCtl
& ~CTL_MODE_M
) |
1123 (pCtlMode
[ctlMode
] & CTL_MODE_M
)) ==
1124 pEepData
->ctlIndex
[i
]) ||
1125 (((cfgCtl
& ~CTL_MODE_M
) |
1126 (pCtlMode
[ctlMode
] & CTL_MODE_M
)) ==
1127 ((pEepData
->ctlIndex
[i
] & CTL_MODE_M
) | SD_NO_CTL
))) {
1128 rep
= &(pEepData
->ctlData
[i
]);
1130 twiceMinEdgePower
= ath9k_hw_get_max_edge_power(freq
,
1131 rep
->ctlEdges
[ar5416_get_ntxchains(tx_chainmask
) - 1],
1132 IS_CHAN_2GHZ(chan
), AR5416_NUM_BAND_EDGES
);
1134 if ((cfgCtl
& ~CTL_MODE_M
) == SD_NO_CTL
) {
1135 twiceMaxEdgePower
= min(twiceMaxEdgePower
,
1138 twiceMaxEdgePower
= twiceMinEdgePower
;
1144 minCtlPower
= min(twiceMaxEdgePower
, scaledPower
);
1146 switch (pCtlMode
[ctlMode
]) {
1148 for (i
= 0; i
< ARRAY_SIZE(targetPowerCck
.tPow2x
); i
++) {
1149 targetPowerCck
.tPow2x
[i
] =
1150 min((u16
)targetPowerCck
.tPow2x
[i
],
1156 for (i
= 0; i
< ARRAY_SIZE(targetPowerOfdm
.tPow2x
); i
++) {
1157 targetPowerOfdm
.tPow2x
[i
] =
1158 min((u16
)targetPowerOfdm
.tPow2x
[i
],
1164 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++) {
1165 targetPowerHt20
.tPow2x
[i
] =
1166 min((u16
)targetPowerHt20
.tPow2x
[i
],
1171 targetPowerCckExt
.tPow2x
[0] = min((u16
)
1172 targetPowerCckExt
.tPow2x
[0],
1177 targetPowerOfdmExt
.tPow2x
[0] = min((u16
)
1178 targetPowerOfdmExt
.tPow2x
[0],
1183 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++) {
1184 targetPowerHt40
.tPow2x
[i
] =
1185 min((u16
)targetPowerHt40
.tPow2x
[i
],
1194 ratesArray
[rate6mb
] = ratesArray
[rate9mb
] = ratesArray
[rate12mb
] =
1195 ratesArray
[rate18mb
] = ratesArray
[rate24mb
] =
1196 targetPowerOfdm
.tPow2x
[0];
1197 ratesArray
[rate36mb
] = targetPowerOfdm
.tPow2x
[1];
1198 ratesArray
[rate48mb
] = targetPowerOfdm
.tPow2x
[2];
1199 ratesArray
[rate54mb
] = targetPowerOfdm
.tPow2x
[3];
1200 ratesArray
[rateXr
] = targetPowerOfdm
.tPow2x
[0];
1202 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt20
.tPow2x
); i
++)
1203 ratesArray
[rateHt20_0
+ i
] = targetPowerHt20
.tPow2x
[i
];
1205 if (IS_CHAN_2GHZ(chan
)) {
1206 ratesArray
[rate1l
] = targetPowerCck
.tPow2x
[0];
1207 ratesArray
[rate2s
] = ratesArray
[rate2l
] =
1208 targetPowerCck
.tPow2x
[1];
1209 ratesArray
[rate5_5s
] = ratesArray
[rate5_5l
] =
1210 targetPowerCck
.tPow2x
[2];
1211 ratesArray
[rate11s
] = ratesArray
[rate11l
] =
1212 targetPowerCck
.tPow2x
[3];
1214 if (IS_CHAN_HT40(chan
)) {
1215 for (i
= 0; i
< ARRAY_SIZE(targetPowerHt40
.tPow2x
); i
++) {
1216 ratesArray
[rateHt40_0
+ i
] =
1217 targetPowerHt40
.tPow2x
[i
];
1219 ratesArray
[rateDupOfdm
] = targetPowerHt40
.tPow2x
[0];
1220 ratesArray
[rateDupCck
] = targetPowerHt40
.tPow2x
[0];
1221 ratesArray
[rateExtOfdm
] = targetPowerOfdmExt
.tPow2x
[0];
1222 if (IS_CHAN_2GHZ(chan
)) {
1223 ratesArray
[rateExtCck
] =
1224 targetPowerCckExt
.tPow2x
[0];
1229 static void ath9k_hw_def_set_txpower(struct ath_hw
*ah
,
1230 struct ath9k_channel
*chan
,
1232 u8 twiceAntennaReduction
,
1233 u8 powerLimit
, bool test
)
1235 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1236 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
1237 struct ar5416_eeprom_def
*pEepData
= &ah
->eeprom
.def
;
1238 struct modal_eep_header
*pModal
=
1239 &(pEepData
->modalHeader
[IS_CHAN_2GHZ(chan
)]);
1240 int16_t ratesArray
[Ar5416RateSize
];
1241 u8 ht40PowerIncForPdadc
= 2;
1242 int i
, cck_ofdm_delta
= 0;
1244 memset(ratesArray
, 0, sizeof(ratesArray
));
1246 if ((pEepData
->baseEepHeader
.version
& AR5416_EEP_VER_MINOR_MASK
) >=
1247 AR5416_EEP_MINOR_VER_2
) {
1248 ht40PowerIncForPdadc
= pModal
->ht40PowerIncForPdadc
;
1251 ath9k_hw_set_def_power_per_rate_table(ah
, chan
,
1252 &ratesArray
[0], cfgCtl
,
1253 twiceAntennaReduction
,
1256 ath9k_hw_set_def_power_cal_table(ah
, chan
);
1258 regulatory
->max_power_level
= 0;
1259 for (i
= 0; i
< ARRAY_SIZE(ratesArray
); i
++) {
1260 if (ratesArray
[i
] > MAX_RATE_POWER
)
1261 ratesArray
[i
] = MAX_RATE_POWER
;
1262 if (ratesArray
[i
] > regulatory
->max_power_level
)
1263 regulatory
->max_power_level
= ratesArray
[i
];
1266 switch(ar5416_get_ntxchains(ah
->txchainmask
)) {
1270 regulatory
->max_power_level
+= INCREASE_MAXPOW_BY_TWO_CHAIN
;
1273 regulatory
->max_power_level
+= INCREASE_MAXPOW_BY_THREE_CHAIN
;
1276 ath_dbg(ath9k_hw_common(ah
), EEPROM
,
1277 "Invalid chainmask configuration\n");
1284 if (AR_SREV_9280_20_OR_LATER(ah
)) {
1285 for (i
= 0; i
< Ar5416RateSize
; i
++) {
1286 int8_t pwr_table_offset
;
1288 pwr_table_offset
= ah
->eep_ops
->get_eeprom(ah
,
1289 EEP_PWR_TABLE_OFFSET
);
1290 ratesArray
[i
] -= pwr_table_offset
* 2;
1294 ENABLE_REGWRITE_BUFFER(ah
);
1296 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE1
,
1297 ATH9K_POW_SM(ratesArray
[rate18mb
], 24)
1298 | ATH9K_POW_SM(ratesArray
[rate12mb
], 16)
1299 | ATH9K_POW_SM(ratesArray
[rate9mb
], 8)
1300 | ATH9K_POW_SM(ratesArray
[rate6mb
], 0));
1301 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE2
,
1302 ATH9K_POW_SM(ratesArray
[rate54mb
], 24)
1303 | ATH9K_POW_SM(ratesArray
[rate48mb
], 16)
1304 | ATH9K_POW_SM(ratesArray
[rate36mb
], 8)
1305 | ATH9K_POW_SM(ratesArray
[rate24mb
], 0));
1307 if (IS_CHAN_2GHZ(chan
)) {
1308 if (OLC_FOR_AR9280_20_LATER
) {
1310 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE3
,
1311 ATH9K_POW_SM(RT_AR_DELTA(rate2s
), 24)
1312 | ATH9K_POW_SM(RT_AR_DELTA(rate2l
), 16)
1313 | ATH9K_POW_SM(ratesArray
[rateXr
], 8)
1314 | ATH9K_POW_SM(RT_AR_DELTA(rate1l
), 0));
1315 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE4
,
1316 ATH9K_POW_SM(RT_AR_DELTA(rate11s
), 24)
1317 | ATH9K_POW_SM(RT_AR_DELTA(rate11l
), 16)
1318 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s
), 8)
1319 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l
), 0));
1321 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE3
,
1322 ATH9K_POW_SM(ratesArray
[rate2s
], 24)
1323 | ATH9K_POW_SM(ratesArray
[rate2l
], 16)
1324 | ATH9K_POW_SM(ratesArray
[rateXr
], 8)
1325 | ATH9K_POW_SM(ratesArray
[rate1l
], 0));
1326 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE4
,
1327 ATH9K_POW_SM(ratesArray
[rate11s
], 24)
1328 | ATH9K_POW_SM(ratesArray
[rate11l
], 16)
1329 | ATH9K_POW_SM(ratesArray
[rate5_5s
], 8)
1330 | ATH9K_POW_SM(ratesArray
[rate5_5l
], 0));
1334 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE5
,
1335 ATH9K_POW_SM(ratesArray
[rateHt20_3
], 24)
1336 | ATH9K_POW_SM(ratesArray
[rateHt20_2
], 16)
1337 | ATH9K_POW_SM(ratesArray
[rateHt20_1
], 8)
1338 | ATH9K_POW_SM(ratesArray
[rateHt20_0
], 0));
1339 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE6
,
1340 ATH9K_POW_SM(ratesArray
[rateHt20_7
], 24)
1341 | ATH9K_POW_SM(ratesArray
[rateHt20_6
], 16)
1342 | ATH9K_POW_SM(ratesArray
[rateHt20_5
], 8)
1343 | ATH9K_POW_SM(ratesArray
[rateHt20_4
], 0));
1345 if (IS_CHAN_HT40(chan
)) {
1346 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE7
,
1347 ATH9K_POW_SM(ratesArray
[rateHt40_3
] +
1348 ht40PowerIncForPdadc
, 24)
1349 | ATH9K_POW_SM(ratesArray
[rateHt40_2
] +
1350 ht40PowerIncForPdadc
, 16)
1351 | ATH9K_POW_SM(ratesArray
[rateHt40_1
] +
1352 ht40PowerIncForPdadc
, 8)
1353 | ATH9K_POW_SM(ratesArray
[rateHt40_0
] +
1354 ht40PowerIncForPdadc
, 0));
1355 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE8
,
1356 ATH9K_POW_SM(ratesArray
[rateHt40_7
] +
1357 ht40PowerIncForPdadc
, 24)
1358 | ATH9K_POW_SM(ratesArray
[rateHt40_6
] +
1359 ht40PowerIncForPdadc
, 16)
1360 | ATH9K_POW_SM(ratesArray
[rateHt40_5
] +
1361 ht40PowerIncForPdadc
, 8)
1362 | ATH9K_POW_SM(ratesArray
[rateHt40_4
] +
1363 ht40PowerIncForPdadc
, 0));
1364 if (OLC_FOR_AR9280_20_LATER
) {
1365 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE9
,
1366 ATH9K_POW_SM(ratesArray
[rateExtOfdm
], 24)
1367 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck
), 16)
1368 | ATH9K_POW_SM(ratesArray
[rateDupOfdm
], 8)
1369 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck
), 0));
1371 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE9
,
1372 ATH9K_POW_SM(ratesArray
[rateExtOfdm
], 24)
1373 | ATH9K_POW_SM(ratesArray
[rateExtCck
], 16)
1374 | ATH9K_POW_SM(ratesArray
[rateDupOfdm
], 8)
1375 | ATH9K_POW_SM(ratesArray
[rateDupCck
], 0));
1379 REG_WRITE(ah
, AR_PHY_POWER_TX_SUB
,
1380 ATH9K_POW_SM(pModal
->pwrDecreaseFor3Chain
, 6)
1381 | ATH9K_POW_SM(pModal
->pwrDecreaseFor2Chain
, 0));
1383 REGWRITE_BUFFER_FLUSH(ah
);
1386 static u16
ath9k_hw_def_get_spur_channel(struct ath_hw
*ah
, u16 i
, bool is2GHz
)
1388 #define EEP_DEF_SPURCHAN \
1389 (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1390 struct ath_common
*common
= ath9k_hw_common(ah
);
1392 u16 spur_val
= AR_NO_SPUR
;
1394 ath_dbg(common
, ANI
, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1395 i
, is2GHz
, ah
->config
.spurchans
[i
][is2GHz
]);
1397 switch (ah
->config
.spurmode
) {
1400 case SPUR_ENABLE_IOCTL
:
1401 spur_val
= ah
->config
.spurchans
[i
][is2GHz
];
1402 ath_dbg(common
, ANI
, "Getting spur val from new loc. %d\n",
1405 case SPUR_ENABLE_EEPROM
:
1406 spur_val
= EEP_DEF_SPURCHAN
;
1412 #undef EEP_DEF_SPURCHAN
1415 const struct eeprom_ops eep_def_ops
= {
1416 .check_eeprom
= ath9k_hw_def_check_eeprom
,
1417 .get_eeprom
= ath9k_hw_def_get_eeprom
,
1418 .fill_eeprom
= ath9k_hw_def_fill_eeprom
,
1419 .dump_eeprom
= ath9k_hw_def_dump_eeprom
,
1420 .get_eeprom_ver
= ath9k_hw_def_get_eeprom_ver
,
1421 .get_eeprom_rev
= ath9k_hw_def_get_eeprom_rev
,
1422 .set_board_values
= ath9k_hw_def_set_board_values
,
1423 .set_addac
= ath9k_hw_def_set_addac
,
1424 .set_txpower
= ath9k_hw_def_set_txpower
,
1425 .get_spur_channel
= ath9k_hw_def_get_spur_channel