2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
25 #include "ar9003_mac.h"
27 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
);
29 MODULE_AUTHOR("Atheros Communications");
30 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
31 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
32 MODULE_LICENSE("Dual BSD/GPL");
34 static int __init
ath9k_init(void)
38 module_init(ath9k_init
);
40 static void __exit
ath9k_exit(void)
44 module_exit(ath9k_exit
);
46 /* Private hardware callbacks */
48 static void ath9k_hw_init_cal_settings(struct ath_hw
*ah
)
50 ath9k_hw_private_ops(ah
)->init_cal_settings(ah
);
53 static void ath9k_hw_init_mode_regs(struct ath_hw
*ah
)
55 ath9k_hw_private_ops(ah
)->init_mode_regs(ah
);
58 static u32
ath9k_hw_compute_pll_control(struct ath_hw
*ah
,
59 struct ath9k_channel
*chan
)
61 return ath9k_hw_private_ops(ah
)->compute_pll_control(ah
, chan
);
64 static void ath9k_hw_init_mode_gain_regs(struct ath_hw
*ah
)
66 if (!ath9k_hw_private_ops(ah
)->init_mode_gain_regs
)
69 ath9k_hw_private_ops(ah
)->init_mode_gain_regs(ah
);
72 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw
*ah
)
74 /* You will not have this callback if using the old ANI */
75 if (!ath9k_hw_private_ops(ah
)->ani_cache_ini_regs
)
78 ath9k_hw_private_ops(ah
)->ani_cache_ini_regs(ah
);
81 /********************/
82 /* Helper Functions */
83 /********************/
85 static void ath9k_hw_set_clockrate(struct ath_hw
*ah
)
87 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
88 struct ath_common
*common
= ath9k_hw_common(ah
);
89 unsigned int clockrate
;
91 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
92 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
))
94 else if (!ah
->curchan
) /* should really check for CCK instead */
95 clockrate
= ATH9K_CLOCK_RATE_CCK
;
96 else if (conf
->channel
->band
== IEEE80211_BAND_2GHZ
)
97 clockrate
= ATH9K_CLOCK_RATE_2GHZ_OFDM
;
98 else if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_FASTCLOCK
)
99 clockrate
= ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM
;
101 clockrate
= ATH9K_CLOCK_RATE_5GHZ_OFDM
;
103 if (conf_is_ht40(conf
))
107 if (IS_CHAN_HALF_RATE(ah
->curchan
))
109 if (IS_CHAN_QUARTER_RATE(ah
->curchan
))
113 common
->clockrate
= clockrate
;
116 static u32
ath9k_hw_mac_to_clks(struct ath_hw
*ah
, u32 usecs
)
118 struct ath_common
*common
= ath9k_hw_common(ah
);
120 return usecs
* common
->clockrate
;
123 bool ath9k_hw_wait(struct ath_hw
*ah
, u32 reg
, u32 mask
, u32 val
, u32 timeout
)
127 BUG_ON(timeout
< AH_TIME_QUANTUM
);
129 for (i
= 0; i
< (timeout
/ AH_TIME_QUANTUM
); i
++) {
130 if ((REG_READ(ah
, reg
) & mask
) == val
)
133 udelay(AH_TIME_QUANTUM
);
136 ath_dbg(ath9k_hw_common(ah
), ANY
,
137 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
138 timeout
, reg
, REG_READ(ah
, reg
), mask
, val
);
142 EXPORT_SYMBOL(ath9k_hw_wait
);
144 void ath9k_hw_write_array(struct ath_hw
*ah
, struct ar5416IniArray
*array
,
145 int column
, unsigned int *writecnt
)
149 ENABLE_REGWRITE_BUFFER(ah
);
150 for (r
= 0; r
< array
->ia_rows
; r
++) {
151 REG_WRITE(ah
, INI_RA(array
, r
, 0),
152 INI_RA(array
, r
, column
));
155 REGWRITE_BUFFER_FLUSH(ah
);
158 u32
ath9k_hw_reverse_bits(u32 val
, u32 n
)
163 for (i
= 0, retval
= 0; i
< n
; i
++) {
164 retval
= (retval
<< 1) | (val
& 1);
170 u16
ath9k_hw_computetxtime(struct ath_hw
*ah
,
172 u32 frameLen
, u16 rateix
,
175 u32 bitsPerSymbol
, numBits
, numSymbols
, phyTime
, txTime
;
181 case WLAN_RC_PHY_CCK
:
182 phyTime
= CCK_PREAMBLE_BITS
+ CCK_PLCP_BITS
;
185 numBits
= frameLen
<< 3;
186 txTime
= CCK_SIFS_TIME
+ phyTime
+ ((numBits
* 1000) / kbps
);
188 case WLAN_RC_PHY_OFDM
:
189 if (ah
->curchan
&& IS_CHAN_QUARTER_RATE(ah
->curchan
)) {
190 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_QUARTER
) / 1000;
191 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
192 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
193 txTime
= OFDM_SIFS_TIME_QUARTER
194 + OFDM_PREAMBLE_TIME_QUARTER
195 + (numSymbols
* OFDM_SYMBOL_TIME_QUARTER
);
196 } else if (ah
->curchan
&&
197 IS_CHAN_HALF_RATE(ah
->curchan
)) {
198 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_HALF
) / 1000;
199 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
200 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
201 txTime
= OFDM_SIFS_TIME_HALF
+
202 OFDM_PREAMBLE_TIME_HALF
203 + (numSymbols
* OFDM_SYMBOL_TIME_HALF
);
205 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME
) / 1000;
206 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
207 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
208 txTime
= OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
209 + (numSymbols
* OFDM_SYMBOL_TIME
);
213 ath_err(ath9k_hw_common(ah
),
214 "Unknown phy %u (rate ix %u)\n", phy
, rateix
);
221 EXPORT_SYMBOL(ath9k_hw_computetxtime
);
223 void ath9k_hw_get_channel_centers(struct ath_hw
*ah
,
224 struct ath9k_channel
*chan
,
225 struct chan_centers
*centers
)
229 if (!IS_CHAN_HT40(chan
)) {
230 centers
->ctl_center
= centers
->ext_center
=
231 centers
->synth_center
= chan
->channel
;
235 if ((chan
->chanmode
== CHANNEL_A_HT40PLUS
) ||
236 (chan
->chanmode
== CHANNEL_G_HT40PLUS
)) {
237 centers
->synth_center
=
238 chan
->channel
+ HT40_CHANNEL_CENTER_SHIFT
;
241 centers
->synth_center
=
242 chan
->channel
- HT40_CHANNEL_CENTER_SHIFT
;
246 centers
->ctl_center
=
247 centers
->synth_center
- (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
248 /* 25 MHz spacing is supported by hw but not on upper layers */
249 centers
->ext_center
=
250 centers
->synth_center
+ (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
257 static void ath9k_hw_read_revisions(struct ath_hw
*ah
)
261 switch (ah
->hw_version
.devid
) {
262 case AR5416_AR9100_DEVID
:
263 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9100
;
265 case AR9300_DEVID_AR9330
:
266 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9330
;
267 if (ah
->get_mac_revision
) {
268 ah
->hw_version
.macRev
= ah
->get_mac_revision();
270 val
= REG_READ(ah
, AR_SREV
);
271 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
274 case AR9300_DEVID_AR9340
:
275 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9340
;
276 val
= REG_READ(ah
, AR_SREV
);
277 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
281 val
= REG_READ(ah
, AR_SREV
) & AR_SREV_ID
;
284 val
= REG_READ(ah
, AR_SREV
);
285 ah
->hw_version
.macVersion
=
286 (val
& AR_SREV_VERSION2
) >> AR_SREV_TYPE2_S
;
287 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
289 if (AR_SREV_9462(ah
))
290 ah
->is_pciexpress
= true;
292 ah
->is_pciexpress
= (val
&
293 AR_SREV_TYPE2_HOST_MODE
) ? 0 : 1;
295 if (!AR_SREV_9100(ah
))
296 ah
->hw_version
.macVersion
= MS(val
, AR_SREV_VERSION
);
298 ah
->hw_version
.macRev
= val
& AR_SREV_REVISION
;
300 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
)
301 ah
->is_pciexpress
= true;
305 /************************************/
306 /* HW Attach, Detach, Init Routines */
307 /************************************/
309 static void ath9k_hw_disablepcie(struct ath_hw
*ah
)
311 if (!AR_SREV_5416(ah
))
314 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
315 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
316 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000029);
317 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x57160824);
318 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x25980579);
319 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00000000);
320 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
321 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
322 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e1007);
324 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
327 static void ath9k_hw_aspm_init(struct ath_hw
*ah
)
329 struct ath_common
*common
= ath9k_hw_common(ah
);
331 if (common
->bus_ops
->aspm_init
)
332 common
->bus_ops
->aspm_init(common
);
335 /* This should work for all families including legacy */
336 static bool ath9k_hw_chip_test(struct ath_hw
*ah
)
338 struct ath_common
*common
= ath9k_hw_common(ah
);
339 u32 regAddr
[2] = { AR_STA_ID0
};
341 static const u32 patternData
[4] = {
342 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
346 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
348 regAddr
[1] = AR_PHY_BASE
+ (8 << 2);
352 for (i
= 0; i
< loop_max
; i
++) {
353 u32 addr
= regAddr
[i
];
356 regHold
[i
] = REG_READ(ah
, addr
);
357 for (j
= 0; j
< 0x100; j
++) {
358 wrData
= (j
<< 16) | j
;
359 REG_WRITE(ah
, addr
, wrData
);
360 rdData
= REG_READ(ah
, addr
);
361 if (rdData
!= wrData
) {
363 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
364 addr
, wrData
, rdData
);
368 for (j
= 0; j
< 4; j
++) {
369 wrData
= patternData
[j
];
370 REG_WRITE(ah
, addr
, wrData
);
371 rdData
= REG_READ(ah
, addr
);
372 if (wrData
!= rdData
) {
374 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
375 addr
, wrData
, rdData
);
379 REG_WRITE(ah
, regAddr
[i
], regHold
[i
]);
386 static void ath9k_hw_init_config(struct ath_hw
*ah
)
390 ah
->config
.dma_beacon_response_time
= 2;
391 ah
->config
.sw_beacon_response_time
= 10;
392 ah
->config
.additional_swba_backoff
= 0;
393 ah
->config
.ack_6mb
= 0x0;
394 ah
->config
.cwm_ignore_extcca
= 0;
395 ah
->config
.pcie_clock_req
= 0;
396 ah
->config
.pcie_waen
= 0;
397 ah
->config
.analog_shiftreg
= 1;
398 ah
->config
.enable_ani
= true;
400 for (i
= 0; i
< AR_EEPROM_MODAL_SPURS
; i
++) {
401 ah
->config
.spurchans
[i
][0] = AR_NO_SPUR
;
402 ah
->config
.spurchans
[i
][1] = AR_NO_SPUR
;
405 /* PAPRD needs some more work to be enabled */
406 ah
->config
.paprd_disable
= 1;
408 ah
->config
.rx_intr_mitigation
= true;
409 ah
->config
.pcieSerDesWrite
= true;
412 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
413 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
414 * This means we use it for all AR5416 devices, and the few
415 * minor PCI AR9280 devices out there.
417 * Serialization is required because these devices do not handle
418 * well the case of two concurrent reads/writes due to the latency
419 * involved. During one read/write another read/write can be issued
420 * on another CPU while the previous read/write may still be working
421 * on our hardware, if we hit this case the hardware poops in a loop.
422 * We prevent this by serializing reads and writes.
424 * This issue is not present on PCI-Express devices or pre-AR5416
425 * devices (legacy, 802.11abg).
427 if (num_possible_cpus() > 1)
428 ah
->config
.serialize_regmode
= SER_REG_MODE_AUTO
;
431 static void ath9k_hw_init_defaults(struct ath_hw
*ah
)
433 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
435 regulatory
->country_code
= CTRY_DEFAULT
;
436 regulatory
->power_limit
= MAX_RATE_POWER
;
438 ah
->hw_version
.magic
= AR5416_MAGIC
;
439 ah
->hw_version
.subvendorid
= 0;
442 ah
->sta_id1_defaults
=
443 AR_STA_ID1_CRPT_MIC_ENABLE
|
444 AR_STA_ID1_MCAST_KSRCH
;
445 if (AR_SREV_9100(ah
))
446 ah
->sta_id1_defaults
|= AR_STA_ID1_AR9100_BA_FIX
;
447 ah
->enable_32kHz_clock
= DONT_USE_32KHZ
;
448 ah
->slottime
= ATH9K_SLOT_TIME_9
;
449 ah
->globaltxtimeout
= (u32
) -1;
450 ah
->power_mode
= ATH9K_PM_UNDEFINED
;
453 static int ath9k_hw_init_macaddr(struct ath_hw
*ah
)
455 struct ath_common
*common
= ath9k_hw_common(ah
);
459 static const u32 EEP_MAC
[] = { EEP_MAC_LSW
, EEP_MAC_MID
, EEP_MAC_MSW
};
462 for (i
= 0; i
< 3; i
++) {
463 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_MAC
[i
]);
465 common
->macaddr
[2 * i
] = eeval
>> 8;
466 common
->macaddr
[2 * i
+ 1] = eeval
& 0xff;
468 if (sum
== 0 || sum
== 0xffff * 3)
469 return -EADDRNOTAVAIL
;
474 static int ath9k_hw_post_init(struct ath_hw
*ah
)
476 struct ath_common
*common
= ath9k_hw_common(ah
);
479 if (common
->bus_ops
->ath_bus_type
!= ATH_USB
) {
480 if (!ath9k_hw_chip_test(ah
))
484 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
485 ecode
= ar9002_hw_rf_claim(ah
);
490 ecode
= ath9k_hw_eeprom_init(ah
);
494 ath_dbg(ath9k_hw_common(ah
), CONFIG
, "Eeprom VER: %d, REV: %d\n",
495 ah
->eep_ops
->get_eeprom_ver(ah
),
496 ah
->eep_ops
->get_eeprom_rev(ah
));
498 ecode
= ath9k_hw_rf_alloc_ext_banks(ah
);
500 ath_err(ath9k_hw_common(ah
),
501 "Failed allocating banks for external radio\n");
502 ath9k_hw_rf_free_ext_banks(ah
);
506 if (ah
->config
.enable_ani
) {
507 ath9k_hw_ani_setup(ah
);
508 ath9k_hw_ani_init(ah
);
514 static void ath9k_hw_attach_ops(struct ath_hw
*ah
)
516 if (AR_SREV_9300_20_OR_LATER(ah
))
517 ar9003_hw_attach_ops(ah
);
519 ar9002_hw_attach_ops(ah
);
522 /* Called for all hardware families */
523 static int __ath9k_hw_init(struct ath_hw
*ah
)
525 struct ath_common
*common
= ath9k_hw_common(ah
);
528 ath9k_hw_read_revisions(ah
);
531 * Read back AR_WA into a permanent copy and set bits 14 and 17.
532 * We need to do this to avoid RMW of this register. We cannot
533 * read the reg when chip is asleep.
535 ah
->WARegVal
= REG_READ(ah
, AR_WA
);
536 ah
->WARegVal
|= (AR_WA_D3_L1_DISABLE
|
537 AR_WA_ASPM_TIMER_BASED_DISABLE
);
539 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
540 ath_err(common
, "Couldn't reset chip\n");
544 if (AR_SREV_9462(ah
))
545 ah
->WARegVal
&= ~AR_WA_D3_L1_DISABLE
;
547 ath9k_hw_init_defaults(ah
);
548 ath9k_hw_init_config(ah
);
550 ath9k_hw_attach_ops(ah
);
552 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
)) {
553 ath_err(common
, "Couldn't wakeup chip\n");
557 if (ah
->config
.serialize_regmode
== SER_REG_MODE_AUTO
) {
558 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
||
559 ((AR_SREV_9160(ah
) || AR_SREV_9280(ah
)) &&
560 !ah
->is_pciexpress
)) {
561 ah
->config
.serialize_regmode
=
564 ah
->config
.serialize_regmode
=
569 ath_dbg(common
, RESET
, "serialize_regmode is %d\n",
570 ah
->config
.serialize_regmode
);
572 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
573 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
>> 1;
575 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
;
577 switch (ah
->hw_version
.macVersion
) {
578 case AR_SREV_VERSION_5416_PCI
:
579 case AR_SREV_VERSION_5416_PCIE
:
580 case AR_SREV_VERSION_9160
:
581 case AR_SREV_VERSION_9100
:
582 case AR_SREV_VERSION_9280
:
583 case AR_SREV_VERSION_9285
:
584 case AR_SREV_VERSION_9287
:
585 case AR_SREV_VERSION_9271
:
586 case AR_SREV_VERSION_9300
:
587 case AR_SREV_VERSION_9330
:
588 case AR_SREV_VERSION_9485
:
589 case AR_SREV_VERSION_9340
:
590 case AR_SREV_VERSION_9462
:
594 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
595 ah
->hw_version
.macVersion
, ah
->hw_version
.macRev
);
599 if (AR_SREV_9271(ah
) || AR_SREV_9100(ah
) || AR_SREV_9340(ah
) ||
601 ah
->is_pciexpress
= false;
603 ah
->hw_version
.phyRev
= REG_READ(ah
, AR_PHY_CHIP_ID
);
604 ath9k_hw_init_cal_settings(ah
);
606 ah
->ani_function
= ATH9K_ANI_ALL
;
607 if (AR_SREV_9280_20_OR_LATER(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
608 ah
->ani_function
&= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL
;
609 if (!AR_SREV_9300_20_OR_LATER(ah
))
610 ah
->ani_function
&= ~ATH9K_ANI_MRC_CCK
;
612 /* disable ANI for 9340 */
613 if (AR_SREV_9340(ah
))
614 ah
->config
.enable_ani
= false;
616 ath9k_hw_init_mode_regs(ah
);
618 if (!ah
->is_pciexpress
)
619 ath9k_hw_disablepcie(ah
);
621 if (!AR_SREV_9300_20_OR_LATER(ah
))
622 ar9002_hw_cck_chan14_spread(ah
);
624 r
= ath9k_hw_post_init(ah
);
628 ath9k_hw_init_mode_gain_regs(ah
);
629 r
= ath9k_hw_fill_cap_info(ah
);
633 if (ah
->is_pciexpress
)
634 ath9k_hw_aspm_init(ah
);
636 r
= ath9k_hw_init_macaddr(ah
);
638 ath_err(common
, "Failed to initialize MAC address\n");
642 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
643 ah
->tx_trig_level
= (AR_FTRIG_256B
>> AR_FTRIG_S
);
645 ah
->tx_trig_level
= (AR_FTRIG_512B
>> AR_FTRIG_S
);
647 if (AR_SREV_9330(ah
))
648 ah
->bb_watchdog_timeout_ms
= 85;
650 ah
->bb_watchdog_timeout_ms
= 25;
652 common
->state
= ATH_HW_INITIALIZED
;
657 int ath9k_hw_init(struct ath_hw
*ah
)
660 struct ath_common
*common
= ath9k_hw_common(ah
);
662 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
663 switch (ah
->hw_version
.devid
) {
664 case AR5416_DEVID_PCI
:
665 case AR5416_DEVID_PCIE
:
666 case AR5416_AR9100_DEVID
:
667 case AR9160_DEVID_PCI
:
668 case AR9280_DEVID_PCI
:
669 case AR9280_DEVID_PCIE
:
670 case AR9285_DEVID_PCIE
:
671 case AR9287_DEVID_PCI
:
672 case AR9287_DEVID_PCIE
:
673 case AR2427_DEVID_PCIE
:
674 case AR9300_DEVID_PCIE
:
675 case AR9300_DEVID_AR9485_PCIE
:
676 case AR9300_DEVID_AR9330
:
677 case AR9300_DEVID_AR9340
:
678 case AR9300_DEVID_AR9580
:
679 case AR9300_DEVID_AR9462
:
682 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
684 ath_err(common
, "Hardware device ID 0x%04x not supported\n",
685 ah
->hw_version
.devid
);
689 ret
= __ath9k_hw_init(ah
);
692 "Unable to initialize hardware; initialization status: %d\n",
699 EXPORT_SYMBOL(ath9k_hw_init
);
701 static void ath9k_hw_init_qos(struct ath_hw
*ah
)
703 ENABLE_REGWRITE_BUFFER(ah
);
705 REG_WRITE(ah
, AR_MIC_QOS_CONTROL
, 0x100aa);
706 REG_WRITE(ah
, AR_MIC_QOS_SELECT
, 0x3210);
708 REG_WRITE(ah
, AR_QOS_NO_ACK
,
709 SM(2, AR_QOS_NO_ACK_TWO_BIT
) |
710 SM(5, AR_QOS_NO_ACK_BIT_OFF
) |
711 SM(0, AR_QOS_NO_ACK_BYTE_OFF
));
713 REG_WRITE(ah
, AR_TXOP_X
, AR_TXOP_X_VAL
);
714 REG_WRITE(ah
, AR_TXOP_0_3
, 0xFFFFFFFF);
715 REG_WRITE(ah
, AR_TXOP_4_7
, 0xFFFFFFFF);
716 REG_WRITE(ah
, AR_TXOP_8_11
, 0xFFFFFFFF);
717 REG_WRITE(ah
, AR_TXOP_12_15
, 0xFFFFFFFF);
719 REGWRITE_BUFFER_FLUSH(ah
);
722 u32
ar9003_get_pll_sqsum_dvc(struct ath_hw
*ah
)
724 REG_CLR_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
726 REG_SET_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
728 while ((REG_READ(ah
, PLL4
) & PLL4_MEAS_DONE
) == 0)
731 return (REG_READ(ah
, PLL3
) & SQSUM_DVC_MASK
) >> 3;
733 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc
);
735 static void ath9k_hw_init_pll(struct ath_hw
*ah
,
736 struct ath9k_channel
*chan
)
740 if (AR_SREV_9485(ah
)) {
742 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
743 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
744 AR_CH0_BB_DPLL2_PLL_PWD
, 0x1);
745 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
746 AR_CH0_DPLL2_KD
, 0x40);
747 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
748 AR_CH0_DPLL2_KI
, 0x4);
750 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
751 AR_CH0_BB_DPLL1_REFDIV
, 0x5);
752 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
753 AR_CH0_BB_DPLL1_NINI
, 0x58);
754 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
755 AR_CH0_BB_DPLL1_NFRAC
, 0x0);
757 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
758 AR_CH0_BB_DPLL2_OUTDIV
, 0x1);
759 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
760 AR_CH0_BB_DPLL2_LOCAL_PLL
, 0x1);
761 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
762 AR_CH0_BB_DPLL2_EN_NEGTRIG
, 0x1);
764 /* program BB PLL phase_shift to 0x6 */
765 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
766 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x6);
768 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
769 AR_CH0_BB_DPLL2_PLL_PWD
, 0x0);
771 } else if (AR_SREV_9330(ah
)) {
772 u32 ddr_dpll2
, pll_control2
, kd
;
774 if (ah
->is_clk_25mhz
) {
775 ddr_dpll2
= 0x18e82f01;
776 pll_control2
= 0xe04a3d;
779 ddr_dpll2
= 0x19e82f01;
780 pll_control2
= 0x886666;
784 /* program DDR PLL ki and kd value */
785 REG_WRITE(ah
, AR_CH0_DDR_DPLL2
, ddr_dpll2
);
787 /* program DDR PLL phase_shift */
788 REG_RMW_FIELD(ah
, AR_CH0_DDR_DPLL3
,
789 AR_CH0_DPLL3_PHASE_SHIFT
, 0x1);
791 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, 0x1142c);
794 /* program refdiv, nint, frac to RTC register */
795 REG_WRITE(ah
, AR_RTC_PLL_CONTROL2
, pll_control2
);
797 /* program BB PLL kd and ki value */
798 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KD
, kd
);
799 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KI
, 0x06);
801 /* program BB PLL phase_shift */
802 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
803 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x1);
804 } else if (AR_SREV_9340(ah
)) {
805 u32 regval
, pll2_divint
, pll2_divfrac
, refdiv
;
807 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, 0x1142c);
810 REG_SET_BIT(ah
, AR_PHY_PLL_MODE
, 0x1 << 16);
813 if (ah
->is_clk_25mhz
) {
815 pll2_divfrac
= 0x1eb85;
823 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
824 regval
|= (0x1 << 16);
825 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
828 REG_WRITE(ah
, AR_PHY_PLL_CONTROL
, (refdiv
<< 27) |
829 (pll2_divint
<< 18) | pll2_divfrac
);
832 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
833 regval
= (regval
& 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
834 (0x4 << 26) | (0x18 << 19);
835 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
836 REG_WRITE(ah
, AR_PHY_PLL_MODE
,
837 REG_READ(ah
, AR_PHY_PLL_MODE
) & 0xfffeffff);
841 pll
= ath9k_hw_compute_pll_control(ah
, chan
);
843 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, pll
);
845 if (AR_SREV_9485(ah
) || AR_SREV_9340(ah
) || AR_SREV_9330(ah
))
848 /* Switch the core clock for ar9271 to 117Mhz */
849 if (AR_SREV_9271(ah
)) {
851 REG_WRITE(ah
, 0x50040, 0x304);
854 udelay(RTC_PLL_SETTLE_DELAY
);
856 REG_WRITE(ah
, AR_RTC_SLEEP_CLK
, AR_RTC_FORCE_DERIVED_CLK
);
858 if (AR_SREV_9340(ah
)) {
859 if (ah
->is_clk_25mhz
) {
860 REG_WRITE(ah
, AR_RTC_DERIVED_CLK
, 0x17c << 1);
861 REG_WRITE(ah
, AR_SLP32_MODE
, 0x0010f3d7);
862 REG_WRITE(ah
, AR_SLP32_INC
, 0x0001e7ae);
864 REG_WRITE(ah
, AR_RTC_DERIVED_CLK
, 0x261 << 1);
865 REG_WRITE(ah
, AR_SLP32_MODE
, 0x0010f400);
866 REG_WRITE(ah
, AR_SLP32_INC
, 0x0001e800);
872 static void ath9k_hw_init_interrupt_masks(struct ath_hw
*ah
,
873 enum nl80211_iftype opmode
)
875 u32 sync_default
= AR_INTR_SYNC_DEFAULT
;
876 u32 imr_reg
= AR_IMR_TXERR
|
882 if (AR_SREV_9340(ah
))
883 sync_default
&= ~AR_INTR_SYNC_HOST1_FATAL
;
885 if (AR_SREV_9300_20_OR_LATER(ah
)) {
886 imr_reg
|= AR_IMR_RXOK_HP
;
887 if (ah
->config
.rx_intr_mitigation
)
888 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
890 imr_reg
|= AR_IMR_RXOK_LP
;
893 if (ah
->config
.rx_intr_mitigation
)
894 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
896 imr_reg
|= AR_IMR_RXOK
;
899 if (ah
->config
.tx_intr_mitigation
)
900 imr_reg
|= AR_IMR_TXINTM
| AR_IMR_TXMINTR
;
902 imr_reg
|= AR_IMR_TXOK
;
904 if (opmode
== NL80211_IFTYPE_AP
)
905 imr_reg
|= AR_IMR_MIB
;
907 ENABLE_REGWRITE_BUFFER(ah
);
909 REG_WRITE(ah
, AR_IMR
, imr_reg
);
910 ah
->imrs2_reg
|= AR_IMR_S2_GTT
;
911 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
913 if (!AR_SREV_9100(ah
)) {
914 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE
, 0xFFFFFFFF);
915 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, sync_default
);
916 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, 0);
919 REGWRITE_BUFFER_FLUSH(ah
);
921 if (AR_SREV_9300_20_OR_LATER(ah
)) {
922 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_ENABLE
, 0);
923 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_MASK
, 0);
924 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_ENABLE
, 0);
925 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_MASK
, 0);
929 static void ath9k_hw_set_sifs_time(struct ath_hw
*ah
, u32 us
)
931 u32 val
= ath9k_hw_mac_to_clks(ah
, us
- 2);
932 val
= min(val
, (u32
) 0xFFFF);
933 REG_WRITE(ah
, AR_D_GBL_IFS_SIFS
, val
);
936 static void ath9k_hw_setslottime(struct ath_hw
*ah
, u32 us
)
938 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
939 val
= min(val
, (u32
) 0xFFFF);
940 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
, val
);
943 static void ath9k_hw_set_ack_timeout(struct ath_hw
*ah
, u32 us
)
945 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
946 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_ACK
));
947 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_ACK
, val
);
950 static void ath9k_hw_set_cts_timeout(struct ath_hw
*ah
, u32 us
)
952 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
953 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_CTS
));
954 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_CTS
, val
);
957 static bool ath9k_hw_set_global_txtimeout(struct ath_hw
*ah
, u32 tu
)
960 ath_dbg(ath9k_hw_common(ah
), XMIT
, "bad global tx timeout %u\n",
962 ah
->globaltxtimeout
= (u32
) -1;
965 REG_RMW_FIELD(ah
, AR_GTXTO
, AR_GTXTO_TIMEOUT_LIMIT
, tu
);
966 ah
->globaltxtimeout
= tu
;
971 void ath9k_hw_init_global_settings(struct ath_hw
*ah
)
973 struct ath_common
*common
= ath9k_hw_common(ah
);
974 struct ieee80211_conf
*conf
= &common
->hw
->conf
;
975 const struct ath9k_channel
*chan
= ah
->curchan
;
976 int acktimeout
, ctstimeout
;
979 int rx_lat
= 0, tx_lat
= 0, eifs
= 0;
982 ath_dbg(ath9k_hw_common(ah
), RESET
, "ah->misc_mode 0x%x\n",
988 if (ah
->misc_mode
!= 0)
989 REG_SET_BIT(ah
, AR_PCU_MISC
, ah
->misc_mode
);
991 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
997 if (IS_CHAN_HALF_RATE(chan
)) {
1001 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1006 } else if (IS_CHAN_QUARTER_RATE(chan
)) {
1008 rx_lat
= (rx_lat
* 4) - 1;
1010 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1016 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
1017 eifs
= AR_D_GBL_IFS_EIFS_ASYNC_FIFO
;
1018 reg
= AR_USEC_ASYNC_FIFO
;
1020 eifs
= REG_READ(ah
, AR_D_GBL_IFS_EIFS
)/
1022 reg
= REG_READ(ah
, AR_USEC
);
1024 rx_lat
= MS(reg
, AR_USEC_RX_LAT
);
1025 tx_lat
= MS(reg
, AR_USEC_TX_LAT
);
1027 slottime
= ah
->slottime
;
1028 if (IS_CHAN_5GHZ(chan
))
1034 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1035 acktimeout
= slottime
+ sifstime
+ 3 * ah
->coverage_class
;
1036 ctstimeout
= acktimeout
;
1039 * Workaround for early ACK timeouts, add an offset to match the
1040 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1041 * This was initially only meant to work around an issue with delayed
1042 * BA frames in some implementations, but it has been found to fix ACK
1043 * timeout issues in other cases as well.
1045 if (conf
->channel
&& conf
->channel
->band
== IEEE80211_BAND_2GHZ
) {
1046 acktimeout
+= 64 - sifstime
- ah
->slottime
;
1047 ctstimeout
+= 48 - sifstime
- ah
->slottime
;
1051 ath9k_hw_set_sifs_time(ah
, sifstime
);
1052 ath9k_hw_setslottime(ah
, slottime
);
1053 ath9k_hw_set_ack_timeout(ah
, acktimeout
);
1054 ath9k_hw_set_cts_timeout(ah
, ctstimeout
);
1055 if (ah
->globaltxtimeout
!= (u32
) -1)
1056 ath9k_hw_set_global_txtimeout(ah
, ah
->globaltxtimeout
);
1058 REG_WRITE(ah
, AR_D_GBL_IFS_EIFS
, ath9k_hw_mac_to_clks(ah
, eifs
));
1059 REG_RMW(ah
, AR_USEC
,
1060 (common
->clockrate
- 1) |
1061 SM(rx_lat
, AR_USEC_RX_LAT
) |
1062 SM(tx_lat
, AR_USEC_TX_LAT
),
1063 AR_USEC_TX_LAT
| AR_USEC_RX_LAT
| AR_USEC_USEC
);
1066 EXPORT_SYMBOL(ath9k_hw_init_global_settings
);
1068 void ath9k_hw_deinit(struct ath_hw
*ah
)
1070 struct ath_common
*common
= ath9k_hw_common(ah
);
1072 if (common
->state
< ATH_HW_INITIALIZED
)
1075 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
1078 ath9k_hw_rf_free_ext_banks(ah
);
1080 EXPORT_SYMBOL(ath9k_hw_deinit
);
1086 u32
ath9k_regd_get_ctl(struct ath_regulatory
*reg
, struct ath9k_channel
*chan
)
1088 u32 ctl
= ath_regd_get_band_ctl(reg
, chan
->chan
->band
);
1090 if (IS_CHAN_B(chan
))
1092 else if (IS_CHAN_G(chan
))
1100 /****************************************/
1101 /* Reset and Channel Switching Routines */
1102 /****************************************/
1104 static inline void ath9k_hw_set_dma(struct ath_hw
*ah
)
1106 struct ath_common
*common
= ath9k_hw_common(ah
);
1108 ENABLE_REGWRITE_BUFFER(ah
);
1111 * set AHB_MODE not to do cacheline prefetches
1113 if (!AR_SREV_9300_20_OR_LATER(ah
))
1114 REG_SET_BIT(ah
, AR_AHB_MODE
, AR_AHB_PREFETCH_RD_EN
);
1117 * let mac dma reads be in 128 byte chunks
1119 REG_RMW(ah
, AR_TXCFG
, AR_TXCFG_DMASZ_128B
, AR_TXCFG_DMASZ_MASK
);
1121 REGWRITE_BUFFER_FLUSH(ah
);
1124 * Restore TX Trigger Level to its pre-reset value.
1125 * The initial value depends on whether aggregation is enabled, and is
1126 * adjusted whenever underruns are detected.
1128 if (!AR_SREV_9300_20_OR_LATER(ah
))
1129 REG_RMW_FIELD(ah
, AR_TXCFG
, AR_FTRIG
, ah
->tx_trig_level
);
1131 ENABLE_REGWRITE_BUFFER(ah
);
1134 * let mac dma writes be in 128 byte chunks
1136 REG_RMW(ah
, AR_RXCFG
, AR_RXCFG_DMASZ_128B
, AR_RXCFG_DMASZ_MASK
);
1139 * Setup receive FIFO threshold to hold off TX activities
1141 REG_WRITE(ah
, AR_RXFIFO_CFG
, 0x200);
1143 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1144 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_HP
, 0x1);
1145 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_LP
, 0x1);
1147 ath9k_hw_set_rx_bufsize(ah
, common
->rx_bufsize
-
1148 ah
->caps
.rx_status_len
);
1152 * reduce the number of usable entries in PCU TXBUF to avoid
1153 * wrap around issues.
1155 if (AR_SREV_9285(ah
)) {
1156 /* For AR9285 the number of Fifos are reduced to half.
1157 * So set the usable tx buf size also to half to
1158 * avoid data/delimiter underruns
1160 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
1161 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE
);
1162 } else if (!AR_SREV_9271(ah
)) {
1163 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
,
1164 AR_PCU_TXBUF_CTRL_USABLE_SIZE
);
1167 REGWRITE_BUFFER_FLUSH(ah
);
1169 if (AR_SREV_9300_20_OR_LATER(ah
))
1170 ath9k_hw_reset_txstatus_ring(ah
);
1173 static void ath9k_hw_set_operating_mode(struct ath_hw
*ah
, int opmode
)
1175 u32 mask
= AR_STA_ID1_STA_AP
| AR_STA_ID1_ADHOC
;
1176 u32 set
= AR_STA_ID1_KSRCH_MODE
;
1179 case NL80211_IFTYPE_ADHOC
:
1180 case NL80211_IFTYPE_MESH_POINT
:
1181 set
|= AR_STA_ID1_ADHOC
;
1182 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1184 case NL80211_IFTYPE_AP
:
1185 set
|= AR_STA_ID1_STA_AP
;
1187 case NL80211_IFTYPE_STATION
:
1188 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1191 if (!ah
->is_monitoring
)
1195 REG_RMW(ah
, AR_STA_ID1
, set
, mask
);
1198 void ath9k_hw_get_delta_slope_vals(struct ath_hw
*ah
, u32 coef_scaled
,
1199 u32
*coef_mantissa
, u32
*coef_exponent
)
1201 u32 coef_exp
, coef_man
;
1203 for (coef_exp
= 31; coef_exp
> 0; coef_exp
--)
1204 if ((coef_scaled
>> coef_exp
) & 0x1)
1207 coef_exp
= 14 - (coef_exp
- COEF_SCALE_S
);
1209 coef_man
= coef_scaled
+ (1 << (COEF_SCALE_S
- coef_exp
- 1));
1211 *coef_mantissa
= coef_man
>> (COEF_SCALE_S
- coef_exp
);
1212 *coef_exponent
= coef_exp
- 16;
1215 static bool ath9k_hw_set_reset(struct ath_hw
*ah
, int type
)
1220 if (AR_SREV_9100(ah
)) {
1221 REG_RMW_FIELD(ah
, AR_RTC_DERIVED_CLK
,
1222 AR_RTC_DERIVED_CLK_PERIOD
, 1);
1223 (void)REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1226 ENABLE_REGWRITE_BUFFER(ah
);
1228 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1229 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1233 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1234 AR_RTC_FORCE_WAKE_ON_INT
);
1236 if (AR_SREV_9100(ah
)) {
1237 rst_flags
= AR_RTC_RC_MAC_WARM
| AR_RTC_RC_MAC_COLD
|
1238 AR_RTC_RC_COLD_RESET
| AR_RTC_RC_WARM_RESET
;
1240 tmpReg
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
1242 (AR_INTR_SYNC_LOCAL_TIMEOUT
|
1243 AR_INTR_SYNC_RADM_CPL_TIMEOUT
)) {
1245 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
1248 if (!AR_SREV_9300_20_OR_LATER(ah
))
1250 REG_WRITE(ah
, AR_RC
, val
);
1252 } else if (!AR_SREV_9300_20_OR_LATER(ah
))
1253 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1255 rst_flags
= AR_RTC_RC_MAC_WARM
;
1256 if (type
== ATH9K_RESET_COLD
)
1257 rst_flags
|= AR_RTC_RC_MAC_COLD
;
1260 if (AR_SREV_9330(ah
)) {
1265 * call external reset function to reset WMAC if:
1266 * - doing a cold reset
1267 * - we have pending frames in the TX queues
1270 for (i
= 0; i
< AR_NUM_QCU
; i
++) {
1271 npend
= ath9k_hw_numtxpending(ah
, i
);
1276 if (ah
->external_reset
&&
1277 (npend
|| type
== ATH9K_RESET_COLD
)) {
1280 ath_dbg(ath9k_hw_common(ah
), RESET
,
1281 "reset MAC via external reset\n");
1283 reset_err
= ah
->external_reset();
1285 ath_err(ath9k_hw_common(ah
),
1286 "External reset failed, err=%d\n",
1291 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1295 REG_WRITE(ah
, AR_RTC_RC
, rst_flags
);
1297 REGWRITE_BUFFER_FLUSH(ah
);
1301 REG_WRITE(ah
, AR_RTC_RC
, 0);
1302 if (!ath9k_hw_wait(ah
, AR_RTC_RC
, AR_RTC_RC_M
, 0, AH_WAIT_TIMEOUT
)) {
1303 ath_dbg(ath9k_hw_common(ah
), RESET
, "RTC stuck in MAC reset\n");
1307 if (!AR_SREV_9100(ah
))
1308 REG_WRITE(ah
, AR_RC
, 0);
1310 if (AR_SREV_9100(ah
))
1316 static bool ath9k_hw_set_reset_power_on(struct ath_hw
*ah
)
1318 ENABLE_REGWRITE_BUFFER(ah
);
1320 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1321 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1325 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1326 AR_RTC_FORCE_WAKE_ON_INT
);
1328 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1329 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1331 REG_WRITE(ah
, AR_RTC_RESET
, 0);
1333 REGWRITE_BUFFER_FLUSH(ah
);
1335 if (!AR_SREV_9300_20_OR_LATER(ah
))
1338 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1339 REG_WRITE(ah
, AR_RC
, 0);
1341 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1343 if (!ath9k_hw_wait(ah
,
1348 ath_dbg(ath9k_hw_common(ah
), RESET
, "RTC not waking up\n");
1352 return ath9k_hw_set_reset(ah
, ATH9K_RESET_WARM
);
1355 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
)
1359 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1360 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1364 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1365 AR_RTC_FORCE_WAKE_EN
| AR_RTC_FORCE_WAKE_ON_INT
);
1368 case ATH9K_RESET_POWER_ON
:
1369 ret
= ath9k_hw_set_reset_power_on(ah
);
1371 case ATH9K_RESET_WARM
:
1372 case ATH9K_RESET_COLD
:
1373 ret
= ath9k_hw_set_reset(ah
, type
);
1379 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_MCI
)
1380 REG_WRITE(ah
, AR_RTC_KEEP_AWAKE
, 0x2);
1385 static bool ath9k_hw_chip_reset(struct ath_hw
*ah
,
1386 struct ath9k_channel
*chan
)
1388 if (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
)) {
1389 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
))
1391 } else if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
1394 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1397 ah
->chip_fullsleep
= false;
1398 ath9k_hw_init_pll(ah
, chan
);
1399 ath9k_hw_set_rfmode(ah
, chan
);
1404 static bool ath9k_hw_channel_change(struct ath_hw
*ah
,
1405 struct ath9k_channel
*chan
)
1407 struct ath_common
*common
= ath9k_hw_common(ah
);
1410 bool edma
= !!(ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
);
1411 bool band_switch
, mode_diff
;
1414 band_switch
= (chan
->channelFlags
& (CHANNEL_2GHZ
| CHANNEL_5GHZ
)) !=
1415 (ah
->curchan
->channelFlags
& (CHANNEL_2GHZ
|
1417 mode_diff
= (chan
->chanmode
!= ah
->curchan
->chanmode
);
1419 for (qnum
= 0; qnum
< AR_NUM_QCU
; qnum
++) {
1420 if (ath9k_hw_numtxpending(ah
, qnum
)) {
1421 ath_dbg(common
, QUEUE
,
1422 "Transmit frames pending on queue %d\n", qnum
);
1427 if (!ath9k_hw_rfbus_req(ah
)) {
1428 ath_err(common
, "Could not kill baseband RX\n");
1432 if (edma
&& (band_switch
|| mode_diff
)) {
1433 ath9k_hw_mark_phy_inactive(ah
);
1436 ath9k_hw_init_pll(ah
, NULL
);
1438 if (ath9k_hw_fast_chan_change(ah
, chan
, &ini_reloaded
)) {
1439 ath_err(common
, "Failed to do fast channel change\n");
1444 ath9k_hw_set_channel_regs(ah
, chan
);
1446 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1448 ath_err(common
, "Failed to set channel\n");
1451 ath9k_hw_set_clockrate(ah
);
1452 ath9k_hw_apply_txpower(ah
, chan
);
1453 ath9k_hw_rfbus_done(ah
);
1455 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
1456 ath9k_hw_set_delta_slope(ah
, chan
);
1458 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1460 if (edma
&& (band_switch
|| mode_diff
)) {
1461 ah
->ah_flags
|= AH_FASTCC
;
1462 if (band_switch
|| ini_reloaded
)
1463 ah
->eep_ops
->set_board_values(ah
, chan
);
1465 ath9k_hw_init_bb(ah
, chan
);
1467 if (band_switch
|| ini_reloaded
)
1468 ath9k_hw_init_cal(ah
, chan
);
1469 ah
->ah_flags
&= ~AH_FASTCC
;
1475 static void ath9k_hw_apply_gpio_override(struct ath_hw
*ah
)
1477 u32 gpio_mask
= ah
->gpio_mask
;
1480 for (i
= 0; gpio_mask
; i
++, gpio_mask
>>= 1) {
1481 if (!(gpio_mask
& 1))
1484 ath9k_hw_cfg_output(ah
, i
, AR_GPIO_OUTPUT_MUX_AS_OUTPUT
);
1485 ath9k_hw_set_gpio(ah
, i
, !!(ah
->gpio_val
& BIT(i
)));
1489 bool ath9k_hw_check_alive(struct ath_hw
*ah
)
1494 if (AR_SREV_9285_12_OR_LATER(ah
))
1498 reg
= REG_READ(ah
, AR_OBS_BUS_1
);
1500 if ((reg
& 0x7E7FFFEF) == 0x00702400)
1503 switch (reg
& 0x7E000B00) {
1511 } while (count
-- > 0);
1515 EXPORT_SYMBOL(ath9k_hw_check_alive
);
1517 int ath9k_hw_reset(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
1518 struct ath9k_hw_cal_data
*caldata
, bool bChannelChange
)
1520 struct ath_common
*common
= ath9k_hw_common(ah
);
1521 struct ath9k_hw_mci
*mci_hw
= &ah
->btcoex_hw
.mci
;
1523 struct ath9k_channel
*curchan
= ah
->curchan
;
1528 bool allow_fbs
= false;
1529 bool mci
= !!(ah
->caps
.hw_caps
& ATH9K_HW_CAP_MCI
);
1530 bool save_fullsleep
= ah
->chip_fullsleep
;
1534 ar9003_mci_2g5g_changed(ah
, IS_CHAN_2GHZ(chan
));
1536 if (mci_hw
->bt_state
== MCI_BT_CAL_START
) {
1537 u32 payload
[4] = {0, 0, 0, 0};
1539 ath_dbg(common
, MCI
, "MCI stop rx for BT CAL\n");
1541 mci_hw
->bt_state
= MCI_BT_CAL
;
1544 * MCI FIX: disable mci interrupt here. This is to avoid
1545 * SW_MSG_DONE or RX_MSG bits to trigger MCI_INT and
1546 * lead to mci_intr reentry.
1549 ar9003_mci_disable_interrupt(ah
);
1551 ath_dbg(common
, MCI
, "send WLAN_CAL_GRANT\n");
1552 MCI_GPM_SET_CAL_TYPE(payload
, MCI_GPM_WLAN_CAL_GRANT
);
1553 ar9003_mci_send_message(ah
, MCI_GPM
, 0, payload
,
1556 ath_dbg(common
, MCI
, "\nMCI BT is calibrating\n");
1558 /* Wait BT calibration to be completed for 25ms */
1560 if (ar9003_mci_wait_for_gpm(ah
, MCI_GPM_BT_CAL_DONE
,
1562 ath_dbg(common
, MCI
,
1563 "MCI got BT_CAL_DONE\n");
1565 ath_dbg(common
, MCI
,
1566 "MCI ### BT cal takes to long, force bt_state to be bt_awake\n");
1567 mci_hw
->bt_state
= MCI_BT_AWAKE
;
1568 /* MCI FIX: enable mci interrupt here */
1569 ar9003_mci_enable_interrupt(ah
);
1576 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1579 if (curchan
&& !ah
->chip_fullsleep
)
1580 ath9k_hw_getnf(ah
, curchan
);
1582 ah
->caldata
= caldata
;
1584 (chan
->channel
!= caldata
->channel
||
1585 (chan
->channelFlags
& ~CHANNEL_CW_INT
) !=
1586 (caldata
->channelFlags
& ~CHANNEL_CW_INT
))) {
1587 /* Operating channel changed, reset channel calibration data */
1588 memset(caldata
, 0, sizeof(*caldata
));
1589 ath9k_init_nfcal_hist_buffer(ah
, chan
);
1591 ah
->noise
= ath9k_hw_getchan_noise(ah
, chan
);
1593 if (AR_SREV_9280(ah
) && common
->bus_ops
->ath_bus_type
== ATH_PCI
)
1594 bChannelChange
= false;
1597 caldata
->done_txiqcal_once
&&
1598 caldata
->done_txclcal_once
&&
1599 caldata
->rtt_hist
.num_readings
)
1602 if (bChannelChange
&&
1603 (ah
->chip_fullsleep
!= true) &&
1604 (ah
->curchan
!= NULL
) &&
1605 (chan
->channel
!= ah
->curchan
->channel
) &&
1607 ((chan
->channelFlags
& CHANNEL_ALL
) ==
1608 (ah
->curchan
->channelFlags
& CHANNEL_ALL
)))) {
1609 if (ath9k_hw_channel_change(ah
, chan
)) {
1610 ath9k_hw_loadnf(ah
, ah
->curchan
);
1611 ath9k_hw_start_nfcal(ah
, true);
1612 if (mci
&& mci_hw
->ready
)
1613 ar9003_mci_2g5g_switch(ah
, true);
1615 if (AR_SREV_9271(ah
))
1616 ar9002_hw_load_ani_reg(ah
, chan
);
1622 ar9003_mci_disable_interrupt(ah
);
1624 if (mci_hw
->ready
&& !save_fullsleep
) {
1625 ar9003_mci_mute_bt(ah
);
1627 REG_WRITE(ah
, AR_BTCOEX_CTRL
, 0);
1630 mci_hw
->bt_state
= MCI_BT_SLEEP
;
1631 mci_hw
->ready
= false;
1635 saveDefAntenna
= REG_READ(ah
, AR_DEF_ANTENNA
);
1636 if (saveDefAntenna
== 0)
1639 macStaId1
= REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
1641 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1642 if (AR_SREV_9100(ah
) ||
1643 (AR_SREV_9280(ah
) && ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
)))
1644 tsf
= ath9k_hw_gettsf64(ah
);
1646 saveLedState
= REG_READ(ah
, AR_CFG_LED
) &
1647 (AR_CFG_LED_ASSOC_CTL
| AR_CFG_LED_MODE_SEL
|
1648 AR_CFG_LED_BLINK_THRESH_SEL
| AR_CFG_LED_BLINK_SLOW
);
1650 ath9k_hw_mark_phy_inactive(ah
);
1652 ah
->paprd_table_write_done
= false;
1654 /* Only required on the first reset */
1655 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1657 AR9271_RESET_POWER_DOWN_CONTROL
,
1658 AR9271_RADIO_RF_RST
);
1662 if (!ath9k_hw_chip_reset(ah
, chan
)) {
1663 ath_err(common
, "Chip reset failed\n");
1667 /* Only required on the first reset */
1668 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1669 ah
->htc_reset_init
= false;
1671 AR9271_RESET_POWER_DOWN_CONTROL
,
1672 AR9271_GATE_MAC_CTL
);
1678 ath9k_hw_settsf64(ah
, tsf
);
1680 if (AR_SREV_9280_20_OR_LATER(ah
))
1681 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
, AR_GPIO_JTAG_DISABLE
);
1683 if (!AR_SREV_9300_20_OR_LATER(ah
))
1684 ar9002_hw_enable_async_fifo(ah
);
1686 r
= ath9k_hw_process_ini(ah
, chan
);
1691 ar9003_mci_reset(ah
, false, IS_CHAN_2GHZ(chan
), save_fullsleep
);
1694 * Some AR91xx SoC devices frequently fail to accept TSF writes
1695 * right after the chip reset. When that happens, write a new
1696 * value after the initvals have been applied, with an offset
1697 * based on measured time difference
1699 if (AR_SREV_9100(ah
) && (ath9k_hw_gettsf64(ah
) < tsf
)) {
1701 ath9k_hw_settsf64(ah
, tsf
);
1704 /* Setup MFP options for CCMP */
1705 if (AR_SREV_9280_20_OR_LATER(ah
)) {
1706 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1707 * frames when constructing CCMP AAD. */
1708 REG_RMW_FIELD(ah
, AR_AES_MUTE_MASK1
, AR_AES_MUTE_MASK1_FC_MGMT
,
1710 ah
->sw_mgmt_crypto
= false;
1711 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
1712 /* Disable hardware crypto for management frames */
1713 REG_CLR_BIT(ah
, AR_PCU_MISC_MODE2
,
1714 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE
);
1715 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1716 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT
);
1717 ah
->sw_mgmt_crypto
= true;
1719 ah
->sw_mgmt_crypto
= true;
1721 if (IS_CHAN_OFDM(chan
) || IS_CHAN_HT(chan
))
1722 ath9k_hw_set_delta_slope(ah
, chan
);
1724 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1725 ah
->eep_ops
->set_board_values(ah
, chan
);
1727 ENABLE_REGWRITE_BUFFER(ah
);
1729 REG_WRITE(ah
, AR_STA_ID0
, get_unaligned_le32(common
->macaddr
));
1730 REG_WRITE(ah
, AR_STA_ID1
, get_unaligned_le16(common
->macaddr
+ 4)
1732 | AR_STA_ID1_RTS_USE_DEF
1734 ack_6mb
? AR_STA_ID1_ACKCTS_6MB
: 0)
1735 | ah
->sta_id1_defaults
);
1736 ath_hw_setbssidmask(common
);
1737 REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
1738 ath9k_hw_write_associd(ah
);
1739 REG_WRITE(ah
, AR_ISR
, ~0);
1740 REG_WRITE(ah
, AR_RSSI_THR
, INIT_RSSI_THR
);
1742 REGWRITE_BUFFER_FLUSH(ah
);
1744 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
1746 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1750 ath9k_hw_set_clockrate(ah
);
1752 ENABLE_REGWRITE_BUFFER(ah
);
1754 for (i
= 0; i
< AR_NUM_DCU
; i
++)
1755 REG_WRITE(ah
, AR_DQCUMASK(i
), 1 << i
);
1757 REGWRITE_BUFFER_FLUSH(ah
);
1760 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
1761 ath9k_hw_resettxqueue(ah
, i
);
1763 ath9k_hw_init_interrupt_masks(ah
, ah
->opmode
);
1764 ath9k_hw_ani_cache_ini_regs(ah
);
1765 ath9k_hw_init_qos(ah
);
1767 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
1768 ath9k_hw_cfg_gpio_input(ah
, ah
->rfkill_gpio
);
1770 ath9k_hw_init_global_settings(ah
);
1772 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
1773 REG_SET_BIT(ah
, AR_MAC_PCU_LOGIC_ANALYZER
,
1774 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768
);
1775 REG_RMW_FIELD(ah
, AR_AHB_MODE
, AR_AHB_CUSTOM_BURST_EN
,
1776 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL
);
1777 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1778 AR_PCU_MISC_MODE2_ENABLE_AGGWEP
);
1781 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PRESERVE_SEQNUM
);
1783 ath9k_hw_set_dma(ah
);
1785 REG_WRITE(ah
, AR_OBS
, 8);
1787 if (ah
->config
.rx_intr_mitigation
) {
1788 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_LAST
, 500);
1789 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_FIRST
, 2000);
1792 if (ah
->config
.tx_intr_mitigation
) {
1793 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_LAST
, 300);
1794 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_FIRST
, 750);
1797 ath9k_hw_init_bb(ah
, chan
);
1800 caldata
->done_txiqcal_once
= false;
1801 caldata
->done_txclcal_once
= false;
1802 caldata
->rtt_hist
.num_readings
= 0;
1804 if (!ath9k_hw_init_cal(ah
, chan
))
1807 ath9k_hw_loadnf(ah
, chan
);
1808 ath9k_hw_start_nfcal(ah
, true);
1810 if (mci
&& mci_hw
->ready
) {
1812 if (IS_CHAN_2GHZ(chan
) &&
1813 (mci_hw
->bt_state
== MCI_BT_SLEEP
)) {
1815 if (ar9003_mci_check_int(ah
,
1816 AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET
) ||
1817 ar9003_mci_check_int(ah
,
1818 AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE
)) {
1821 * BT is sleeping. Check if BT wakes up during
1822 * WLAN calibration. If BT wakes up during
1823 * WLAN calibration, need to go through all
1824 * message exchanges again and recal.
1827 ath_dbg(common
, MCI
,
1828 "MCI BT wakes up during WLAN calibration\n");
1830 REG_WRITE(ah
, AR_MCI_INTERRUPT_RX_MSG_RAW
,
1831 AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET
|
1832 AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE
);
1833 ath_dbg(common
, MCI
, "MCI send REMOTE_RESET\n");
1834 ar9003_mci_remote_reset(ah
, true);
1835 ar9003_mci_send_sys_waking(ah
, true);
1837 if (IS_CHAN_2GHZ(chan
))
1838 ar9003_mci_send_lna_transfer(ah
, true);
1840 mci_hw
->bt_state
= MCI_BT_AWAKE
;
1842 ath_dbg(common
, MCI
, "MCI re-cal\n");
1845 caldata
->done_txiqcal_once
= false;
1846 caldata
->done_txclcal_once
= false;
1847 caldata
->rtt_hist
.num_readings
= 0;
1850 if (!ath9k_hw_init_cal(ah
, chan
))
1855 ar9003_mci_enable_interrupt(ah
);
1858 ENABLE_REGWRITE_BUFFER(ah
);
1860 ath9k_hw_restore_chainmask(ah
);
1861 REG_WRITE(ah
, AR_CFG_LED
, saveLedState
| AR_CFG_SCLK_32KHZ
);
1863 REGWRITE_BUFFER_FLUSH(ah
);
1866 * For big endian systems turn on swapping for descriptors
1868 if (AR_SREV_9100(ah
)) {
1870 mask
= REG_READ(ah
, AR_CFG
);
1871 if (mask
& (AR_CFG_SWRB
| AR_CFG_SWTB
| AR_CFG_SWRG
)) {
1872 ath_dbg(common
, RESET
, "CFG Byte Swap Set 0x%x\n",
1876 INIT_CONFIG_STATUS
| AR_CFG_SWRB
| AR_CFG_SWTB
;
1877 REG_WRITE(ah
, AR_CFG
, mask
);
1878 ath_dbg(common
, RESET
, "Setting CFG 0x%x\n",
1879 REG_READ(ah
, AR_CFG
));
1882 if (common
->bus_ops
->ath_bus_type
== ATH_USB
) {
1883 /* Configure AR9271 target WLAN */
1884 if (AR_SREV_9271(ah
))
1885 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
);
1887 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1890 else if (AR_SREV_9330(ah
) || AR_SREV_9340(ah
))
1891 REG_RMW(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
, 0);
1893 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1897 if (ah
->btcoex_hw
.enabled
&&
1898 ath9k_hw_get_btcoex_scheme(ah
) != ATH_BTCOEX_CFG_NONE
)
1899 ath9k_hw_btcoex_enable(ah
);
1901 if (mci
&& mci_hw
->ready
) {
1903 * check BT state again to make
1904 * sure it's not changed.
1907 ar9003_mci_sync_bt_state(ah
);
1908 ar9003_mci_2g5g_switch(ah
, true);
1910 if ((mci_hw
->bt_state
== MCI_BT_AWAKE
) &&
1911 (mci_hw
->query_bt
== true)) {
1912 mci_hw
->need_flush_btinfo
= true;
1916 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1917 ar9003_hw_bb_watchdog_config(ah
);
1919 ar9003_hw_disable_phy_restart(ah
);
1922 ath9k_hw_apply_gpio_override(ah
);
1926 EXPORT_SYMBOL(ath9k_hw_reset
);
1928 /******************************/
1929 /* Power Management (Chipset) */
1930 /******************************/
1933 * Notify Power Mgt is disabled in self-generated frames.
1934 * If requested, force chip to sleep.
1936 static void ath9k_set_power_sleep(struct ath_hw
*ah
, int setChip
)
1938 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1940 if (AR_SREV_9462(ah
)) {
1941 REG_WRITE(ah
, AR_TIMER_MODE
,
1942 REG_READ(ah
, AR_TIMER_MODE
) & 0xFFFFFF00);
1943 REG_WRITE(ah
, AR_NDP2_TIMER_MODE
, REG_READ(ah
,
1944 AR_NDP2_TIMER_MODE
) & 0xFFFFFF00);
1945 REG_WRITE(ah
, AR_SLP32_INC
,
1946 REG_READ(ah
, AR_SLP32_INC
) & 0xFFF00000);
1947 /* xxx Required for WLAN only case ? */
1948 REG_WRITE(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
, 0);
1953 * Clear the RTC force wake bit to allow the
1954 * mac to go to sleep.
1956 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
);
1958 if (AR_SREV_9462(ah
))
1961 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1962 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
1964 /* Shutdown chip. Active low */
1965 if (!AR_SREV_5416(ah
) &&
1966 !AR_SREV_9271(ah
) && !AR_SREV_9462_10(ah
)) {
1967 REG_CLR_BIT(ah
, AR_RTC_RESET
, AR_RTC_RESET_EN
);
1972 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1973 if (AR_SREV_9300_20_OR_LATER(ah
))
1974 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
1978 * Notify Power Management is enabled in self-generating
1979 * frames. If request, set power mode of chip to
1980 * auto/normal. Duration in units of 128us (1/8 TU).
1982 static void ath9k_set_power_network_sleep(struct ath_hw
*ah
, int setChip
)
1986 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1988 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1990 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
1991 /* Set WakeOnInterrupt bit; clear ForceWake bit */
1992 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1993 AR_RTC_FORCE_WAKE_ON_INT
);
1996 /* When chip goes into network sleep, it could be waken
1997 * up by MCI_INT interrupt caused by BT's HW messages
1998 * (LNA_xxx, CONT_xxx) which chould be in a very fast
1999 * rate (~100us). This will cause chip to leave and
2000 * re-enter network sleep mode frequently, which in
2001 * consequence will have WLAN MCI HW to generate lots of
2002 * SYS_WAKING and SYS_SLEEPING messages which will make
2003 * BT CPU to busy to process.
2005 if (AR_SREV_9462(ah
)) {
2006 val
= REG_READ(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
) &
2007 ~AR_MCI_INTERRUPT_RX_HW_MSG_MASK
;
2008 REG_WRITE(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
, val
);
2011 * Clear the RTC force wake bit to allow the
2012 * mac to go to sleep.
2014 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
,
2015 AR_RTC_FORCE_WAKE_EN
);
2017 if (AR_SREV_9462(ah
))
2022 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2023 if (AR_SREV_9300_20_OR_LATER(ah
))
2024 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
2027 static bool ath9k_hw_set_power_awake(struct ath_hw
*ah
, int setChip
)
2032 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2033 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2034 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
2039 if ((REG_READ(ah
, AR_RTC_STATUS
) &
2040 AR_RTC_STATUS_M
) == AR_RTC_STATUS_SHUTDOWN
) {
2041 if (ath9k_hw_set_reset_reg(ah
,
2042 ATH9K_RESET_POWER_ON
) != true) {
2045 if (!AR_SREV_9300_20_OR_LATER(ah
))
2046 ath9k_hw_init_pll(ah
, NULL
);
2048 if (AR_SREV_9100(ah
))
2049 REG_SET_BIT(ah
, AR_RTC_RESET
,
2052 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2053 AR_RTC_FORCE_WAKE_EN
);
2056 for (i
= POWER_UP_TIME
/ 50; i
> 0; i
--) {
2057 val
= REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
;
2058 if (val
== AR_RTC_STATUS_ON
)
2061 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2062 AR_RTC_FORCE_WAKE_EN
);
2065 ath_err(ath9k_hw_common(ah
),
2066 "Failed to wakeup in %uus\n",
2067 POWER_UP_TIME
/ 20);
2072 REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2077 bool ath9k_hw_setpower(struct ath_hw
*ah
, enum ath9k_power_mode mode
)
2079 struct ath_common
*common
= ath9k_hw_common(ah
);
2080 struct ath9k_hw_mci
*mci
= &ah
->btcoex_hw
.mci
;
2081 int status
= true, setChip
= true;
2082 static const char *modes
[] = {
2089 if (ah
->power_mode
== mode
)
2092 ath_dbg(common
, RESET
, "%s -> %s\n",
2093 modes
[ah
->power_mode
], modes
[mode
]);
2096 case ATH9K_PM_AWAKE
:
2097 status
= ath9k_hw_set_power_awake(ah
, setChip
);
2099 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_MCI
)
2100 REG_WRITE(ah
, AR_RTC_KEEP_AWAKE
, 0x2);
2103 case ATH9K_PM_FULL_SLEEP
:
2105 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_MCI
) {
2106 if (ar9003_mci_state(ah
, MCI_STATE_ENABLE
, NULL
) &&
2107 (mci
->bt_state
!= MCI_BT_SLEEP
) &&
2108 !mci
->halted_bt_gpm
) {
2109 ath_dbg(common
, MCI
,
2110 "MCI halt BT GPM (full_sleep)\n");
2111 ar9003_mci_send_coex_halt_bt_gpm(ah
,
2116 REG_WRITE(ah
, AR_RTC_KEEP_AWAKE
, 0x2);
2119 ath9k_set_power_sleep(ah
, setChip
);
2120 ah
->chip_fullsleep
= true;
2122 case ATH9K_PM_NETWORK_SLEEP
:
2124 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_MCI
)
2125 REG_WRITE(ah
, AR_RTC_KEEP_AWAKE
, 0x2);
2127 ath9k_set_power_network_sleep(ah
, setChip
);
2130 ath_err(common
, "Unknown power mode %u\n", mode
);
2133 ah
->power_mode
= mode
;
2136 * XXX: If this warning never comes up after a while then
2137 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2138 * ath9k_hw_setpower() return type void.
2141 if (!(ah
->ah_flags
& AH_UNPLUGGED
))
2142 ATH_DBG_WARN_ON_ONCE(!status
);
2146 EXPORT_SYMBOL(ath9k_hw_setpower
);
2148 /*******************/
2149 /* Beacon Handling */
2150 /*******************/
2152 void ath9k_hw_beaconinit(struct ath_hw
*ah
, u32 next_beacon
, u32 beacon_period
)
2156 ENABLE_REGWRITE_BUFFER(ah
);
2158 switch (ah
->opmode
) {
2159 case NL80211_IFTYPE_ADHOC
:
2160 case NL80211_IFTYPE_MESH_POINT
:
2161 REG_SET_BIT(ah
, AR_TXCFG
,
2162 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY
);
2163 REG_WRITE(ah
, AR_NEXT_NDP_TIMER
, next_beacon
+
2164 TU_TO_USEC(ah
->atim_window
? ah
->atim_window
: 1));
2165 flags
|= AR_NDP_TIMER_EN
;
2166 case NL80211_IFTYPE_AP
:
2167 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, next_beacon
);
2168 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
, next_beacon
-
2169 TU_TO_USEC(ah
->config
.dma_beacon_response_time
));
2170 REG_WRITE(ah
, AR_NEXT_SWBA
, next_beacon
-
2171 TU_TO_USEC(ah
->config
.sw_beacon_response_time
));
2173 AR_TBTT_TIMER_EN
| AR_DBA_TIMER_EN
| AR_SWBA_TIMER_EN
;
2176 ath_dbg(ath9k_hw_common(ah
), BEACON
,
2177 "%s: unsupported opmode: %d\n", __func__
, ah
->opmode
);
2182 REG_WRITE(ah
, AR_BEACON_PERIOD
, beacon_period
);
2183 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, beacon_period
);
2184 REG_WRITE(ah
, AR_SWBA_PERIOD
, beacon_period
);
2185 REG_WRITE(ah
, AR_NDP_PERIOD
, beacon_period
);
2187 REGWRITE_BUFFER_FLUSH(ah
);
2189 REG_SET_BIT(ah
, AR_TIMER_MODE
, flags
);
2191 EXPORT_SYMBOL(ath9k_hw_beaconinit
);
2193 void ath9k_hw_set_sta_beacon_timers(struct ath_hw
*ah
,
2194 const struct ath9k_beacon_state
*bs
)
2196 u32 nextTbtt
, beaconintval
, dtimperiod
, beacontimeout
;
2197 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2198 struct ath_common
*common
= ath9k_hw_common(ah
);
2200 ENABLE_REGWRITE_BUFFER(ah
);
2202 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, TU_TO_USEC(bs
->bs_nexttbtt
));
2204 REG_WRITE(ah
, AR_BEACON_PERIOD
,
2205 TU_TO_USEC(bs
->bs_intval
));
2206 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
,
2207 TU_TO_USEC(bs
->bs_intval
));
2209 REGWRITE_BUFFER_FLUSH(ah
);
2211 REG_RMW_FIELD(ah
, AR_RSSI_THR
,
2212 AR_RSSI_THR_BM_THR
, bs
->bs_bmissthreshold
);
2214 beaconintval
= bs
->bs_intval
;
2216 if (bs
->bs_sleepduration
> beaconintval
)
2217 beaconintval
= bs
->bs_sleepduration
;
2219 dtimperiod
= bs
->bs_dtimperiod
;
2220 if (bs
->bs_sleepduration
> dtimperiod
)
2221 dtimperiod
= bs
->bs_sleepduration
;
2223 if (beaconintval
== dtimperiod
)
2224 nextTbtt
= bs
->bs_nextdtim
;
2226 nextTbtt
= bs
->bs_nexttbtt
;
2228 ath_dbg(common
, BEACON
, "next DTIM %d\n", bs
->bs_nextdtim
);
2229 ath_dbg(common
, BEACON
, "next beacon %d\n", nextTbtt
);
2230 ath_dbg(common
, BEACON
, "beacon period %d\n", beaconintval
);
2231 ath_dbg(common
, BEACON
, "DTIM period %d\n", dtimperiod
);
2233 ENABLE_REGWRITE_BUFFER(ah
);
2235 REG_WRITE(ah
, AR_NEXT_DTIM
,
2236 TU_TO_USEC(bs
->bs_nextdtim
- SLEEP_SLOP
));
2237 REG_WRITE(ah
, AR_NEXT_TIM
, TU_TO_USEC(nextTbtt
- SLEEP_SLOP
));
2239 REG_WRITE(ah
, AR_SLEEP1
,
2240 SM((CAB_TIMEOUT_VAL
<< 3), AR_SLEEP1_CAB_TIMEOUT
)
2241 | AR_SLEEP1_ASSUME_DTIM
);
2243 if (pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)
2244 beacontimeout
= (BEACON_TIMEOUT_VAL
<< 3);
2246 beacontimeout
= MIN_BEACON_TIMEOUT_VAL
;
2248 REG_WRITE(ah
, AR_SLEEP2
,
2249 SM(beacontimeout
, AR_SLEEP2_BEACON_TIMEOUT
));
2251 REG_WRITE(ah
, AR_TIM_PERIOD
, TU_TO_USEC(beaconintval
));
2252 REG_WRITE(ah
, AR_DTIM_PERIOD
, TU_TO_USEC(dtimperiod
));
2254 REGWRITE_BUFFER_FLUSH(ah
);
2256 REG_SET_BIT(ah
, AR_TIMER_MODE
,
2257 AR_TBTT_TIMER_EN
| AR_TIM_TIMER_EN
|
2260 /* TSF Out of Range Threshold */
2261 REG_WRITE(ah
, AR_TSFOOR_THRESHOLD
, bs
->bs_tsfoor_threshold
);
2263 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers
);
2265 /*******************/
2266 /* HW Capabilities */
2267 /*******************/
2269 static u8
fixup_chainmask(u8 chip_chainmask
, u8 eeprom_chainmask
)
2271 eeprom_chainmask
&= chip_chainmask
;
2272 if (eeprom_chainmask
)
2273 return eeprom_chainmask
;
2275 return chip_chainmask
;
2279 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2280 * @ah: the atheros hardware data structure
2282 * We enable DFS support upstream on chipsets which have passed a series
2283 * of tests. The testing requirements are going to be documented. Desired
2284 * test requirements are documented at:
2286 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2288 * Once a new chipset gets properly tested an individual commit can be used
2289 * to document the testing for DFS for that chipset.
2291 static bool ath9k_hw_dfs_tested(struct ath_hw
*ah
)
2294 switch (ah
->hw_version
.macVersion
) {
2295 /* AR9580 will likely be our first target to get testing on */
2296 case AR_SREV_VERSION_9580
:
2302 int ath9k_hw_fill_cap_info(struct ath_hw
*ah
)
2304 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2305 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
2306 struct ath_common
*common
= ath9k_hw_common(ah
);
2307 struct ath_btcoex_hw
*btcoex_hw
= &ah
->btcoex_hw
;
2308 unsigned int chip_chainmask
;
2311 u8 ant_div_ctl1
, tx_chainmask
, rx_chainmask
;
2313 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
2314 regulatory
->current_rd
= eeval
;
2316 if (ah
->opmode
!= NL80211_IFTYPE_AP
&&
2317 ah
->hw_version
.subvendorid
== AR_SUBVENDOR_ID_NEW_A
) {
2318 if (regulatory
->current_rd
== 0x64 ||
2319 regulatory
->current_rd
== 0x65)
2320 regulatory
->current_rd
+= 5;
2321 else if (regulatory
->current_rd
== 0x41)
2322 regulatory
->current_rd
= 0x43;
2323 ath_dbg(common
, REGULATORY
, "regdomain mapped to 0x%x\n",
2324 regulatory
->current_rd
);
2327 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_MODE
);
2328 if ((eeval
& (AR5416_OPFLAGS_11G
| AR5416_OPFLAGS_11A
)) == 0) {
2330 "no band has been marked as supported in EEPROM\n");
2334 if (eeval
& AR5416_OPFLAGS_11A
)
2335 pCap
->hw_caps
|= ATH9K_HW_CAP_5GHZ
;
2337 if (eeval
& AR5416_OPFLAGS_11G
)
2338 pCap
->hw_caps
|= ATH9K_HW_CAP_2GHZ
;
2340 if (AR_SREV_9485(ah
) || AR_SREV_9285(ah
) || AR_SREV_9330(ah
))
2342 else if (AR_SREV_9462(ah
))
2344 else if (!AR_SREV_9280_20_OR_LATER(ah
))
2346 else if (!AR_SREV_9300_20_OR_LATER(ah
) || AR_SREV_9340(ah
))
2351 pCap
->tx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_TX_MASK
);
2353 * For AR9271 we will temporarilly uses the rx chainmax as read from
2356 if ((ah
->hw_version
.devid
== AR5416_DEVID_PCI
) &&
2357 !(eeval
& AR5416_OPFLAGS_11A
) &&
2358 !(AR_SREV_9271(ah
)))
2359 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2360 pCap
->rx_chainmask
= ath9k_hw_gpio_get(ah
, 0) ? 0x5 : 0x7;
2361 else if (AR_SREV_9100(ah
))
2362 pCap
->rx_chainmask
= 0x7;
2364 /* Use rx_chainmask from EEPROM. */
2365 pCap
->rx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_RX_MASK
);
2367 pCap
->tx_chainmask
= fixup_chainmask(chip_chainmask
, pCap
->tx_chainmask
);
2368 pCap
->rx_chainmask
= fixup_chainmask(chip_chainmask
, pCap
->rx_chainmask
);
2369 ah
->txchainmask
= pCap
->tx_chainmask
;
2370 ah
->rxchainmask
= pCap
->rx_chainmask
;
2372 ah
->misc_mode
|= AR_PCU_MIC_NEW_LOC_ENA
;
2374 /* enable key search for every frame in an aggregate */
2375 if (AR_SREV_9300_20_OR_LATER(ah
))
2376 ah
->misc_mode
|= AR_PCU_ALWAYS_PERFORM_KEYSEARCH
;
2378 common
->crypt_caps
|= ATH_CRYPT_CAP_CIPHER_AESCCM
;
2380 if (ah
->hw_version
.devid
!= AR2427_DEVID_PCIE
)
2381 pCap
->hw_caps
|= ATH9K_HW_CAP_HT
;
2383 pCap
->hw_caps
&= ~ATH9K_HW_CAP_HT
;
2385 if (AR_SREV_9271(ah
))
2386 pCap
->num_gpio_pins
= AR9271_NUM_GPIO
;
2387 else if (AR_DEVID_7010(ah
))
2388 pCap
->num_gpio_pins
= AR7010_NUM_GPIO
;
2389 else if (AR_SREV_9300_20_OR_LATER(ah
))
2390 pCap
->num_gpio_pins
= AR9300_NUM_GPIO
;
2391 else if (AR_SREV_9287_11_OR_LATER(ah
))
2392 pCap
->num_gpio_pins
= AR9287_NUM_GPIO
;
2393 else if (AR_SREV_9285_12_OR_LATER(ah
))
2394 pCap
->num_gpio_pins
= AR9285_NUM_GPIO
;
2395 else if (AR_SREV_9280_20_OR_LATER(ah
))
2396 pCap
->num_gpio_pins
= AR928X_NUM_GPIO
;
2398 pCap
->num_gpio_pins
= AR_NUM_GPIO
;
2400 if (AR_SREV_9160_10_OR_LATER(ah
) || AR_SREV_9100(ah
))
2401 pCap
->rts_aggr_limit
= ATH_AMPDU_LIMIT_MAX
;
2403 pCap
->rts_aggr_limit
= (8 * 1024);
2405 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2406 ah
->rfsilent
= ah
->eep_ops
->get_eeprom(ah
, EEP_RF_SILENT
);
2407 if (ah
->rfsilent
& EEP_RFSILENT_ENABLED
) {
2409 MS(ah
->rfsilent
, EEP_RFSILENT_GPIO_SEL
);
2410 ah
->rfkill_polarity
=
2411 MS(ah
->rfsilent
, EEP_RFSILENT_POLARITY
);
2413 pCap
->hw_caps
|= ATH9K_HW_CAP_RFSILENT
;
2416 if (AR_SREV_9271(ah
) || AR_SREV_9300_20_OR_LATER(ah
))
2417 pCap
->hw_caps
|= ATH9K_HW_CAP_AUTOSLEEP
;
2419 pCap
->hw_caps
&= ~ATH9K_HW_CAP_AUTOSLEEP
;
2421 if (AR_SREV_9280(ah
) || AR_SREV_9285(ah
))
2422 pCap
->hw_caps
&= ~ATH9K_HW_CAP_4KB_SPLITTRANS
;
2424 pCap
->hw_caps
|= ATH9K_HW_CAP_4KB_SPLITTRANS
;
2426 if (common
->btcoex_enabled
) {
2427 if (AR_SREV_9462(ah
))
2428 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_MCI
;
2429 else if (AR_SREV_9300_20_OR_LATER(ah
)) {
2430 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_3WIRE
;
2431 btcoex_hw
->btactive_gpio
= ATH_BTACTIVE_GPIO_9300
;
2432 btcoex_hw
->wlanactive_gpio
= ATH_WLANACTIVE_GPIO_9300
;
2433 btcoex_hw
->btpriority_gpio
= ATH_BTPRIORITY_GPIO_9300
;
2434 } else if (AR_SREV_9280_20_OR_LATER(ah
)) {
2435 btcoex_hw
->btactive_gpio
= ATH_BTACTIVE_GPIO_9280
;
2436 btcoex_hw
->wlanactive_gpio
= ATH_WLANACTIVE_GPIO_9280
;
2438 if (AR_SREV_9285(ah
)) {
2439 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_3WIRE
;
2440 btcoex_hw
->btpriority_gpio
=
2441 ATH_BTPRIORITY_GPIO_9285
;
2443 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_2WIRE
;
2447 btcoex_hw
->scheme
= ATH_BTCOEX_CFG_NONE
;
2450 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2451 pCap
->hw_caps
|= ATH9K_HW_CAP_EDMA
| ATH9K_HW_CAP_FASTCLOCK
;
2452 if (!AR_SREV_9330(ah
) && !AR_SREV_9485(ah
))
2453 pCap
->hw_caps
|= ATH9K_HW_CAP_LDPC
;
2455 pCap
->rx_hp_qdepth
= ATH9K_HW_RX_HP_QDEPTH
;
2456 pCap
->rx_lp_qdepth
= ATH9K_HW_RX_LP_QDEPTH
;
2457 pCap
->rx_status_len
= sizeof(struct ar9003_rxs
);
2458 pCap
->tx_desc_len
= sizeof(struct ar9003_txc
);
2459 pCap
->txs_len
= sizeof(struct ar9003_txs
);
2460 if (!ah
->config
.paprd_disable
&&
2461 ah
->eep_ops
->get_eeprom(ah
, EEP_PAPRD
))
2462 pCap
->hw_caps
|= ATH9K_HW_CAP_PAPRD
;
2464 pCap
->tx_desc_len
= sizeof(struct ath_desc
);
2465 if (AR_SREV_9280_20(ah
))
2466 pCap
->hw_caps
|= ATH9K_HW_CAP_FASTCLOCK
;
2469 if (AR_SREV_9300_20_OR_LATER(ah
))
2470 pCap
->hw_caps
|= ATH9K_HW_CAP_RAC_SUPPORTED
;
2472 if (AR_SREV_9300_20_OR_LATER(ah
))
2473 ah
->ent_mode
= REG_READ(ah
, AR_ENT_OTP
);
2475 if (AR_SREV_9287_11_OR_LATER(ah
) || AR_SREV_9271(ah
))
2476 pCap
->hw_caps
|= ATH9K_HW_CAP_SGI_20
;
2478 if (AR_SREV_9285(ah
))
2479 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MODAL_VER
) >= 3) {
2481 ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2482 if ((ant_div_ctl1
& 0x1) && ((ant_div_ctl1
>> 3) & 0x1))
2483 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2485 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2486 if (ah
->eep_ops
->get_eeprom(ah
, EEP_CHAIN_MASK_REDUCE
))
2487 pCap
->hw_caps
|= ATH9K_HW_CAP_APM
;
2491 if (AR_SREV_9330(ah
) || AR_SREV_9485(ah
)) {
2492 ant_div_ctl1
= ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2494 * enable the diversity-combining algorithm only when
2495 * both enable_lna_div and enable_fast_div are set
2496 * Table for Diversity
2497 * ant_div_alt_lnaconf bit 0-1
2498 * ant_div_main_lnaconf bit 2-3
2499 * ant_div_alt_gaintb bit 4
2500 * ant_div_main_gaintb bit 5
2501 * enable_ant_div_lnadiv bit 6
2502 * enable_ant_fast_div bit 7
2504 if ((ant_div_ctl1
>> 0x6) == 0x3)
2505 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2508 if (AR_SREV_9485_10(ah
)) {
2509 pCap
->pcie_lcr_extsync_en
= true;
2510 pCap
->pcie_lcr_offset
= 0x80;
2513 if (ath9k_hw_dfs_tested(ah
))
2514 pCap
->hw_caps
|= ATH9K_HW_CAP_DFS
;
2516 tx_chainmask
= pCap
->tx_chainmask
;
2517 rx_chainmask
= pCap
->rx_chainmask
;
2518 while (tx_chainmask
|| rx_chainmask
) {
2519 if (tx_chainmask
& BIT(0))
2520 pCap
->max_txchains
++;
2521 if (rx_chainmask
& BIT(0))
2522 pCap
->max_rxchains
++;
2528 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2529 ah
->enabled_cals
|= TX_IQ_CAL
;
2530 if (AR_SREV_9485_OR_LATER(ah
))
2531 ah
->enabled_cals
|= TX_IQ_ON_AGC_CAL
;
2533 if (AR_SREV_9462(ah
))
2534 pCap
->hw_caps
|= ATH9K_HW_CAP_RTT
| ATH9K_HW_CAP_MCI
;
2539 /****************************/
2540 /* GPIO / RFKILL / Antennae */
2541 /****************************/
2543 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw
*ah
,
2547 u32 gpio_shift
, tmp
;
2550 addr
= AR_GPIO_OUTPUT_MUX3
;
2552 addr
= AR_GPIO_OUTPUT_MUX2
;
2554 addr
= AR_GPIO_OUTPUT_MUX1
;
2556 gpio_shift
= (gpio
% 6) * 5;
2558 if (AR_SREV_9280_20_OR_LATER(ah
)
2559 || (addr
!= AR_GPIO_OUTPUT_MUX1
)) {
2560 REG_RMW(ah
, addr
, (type
<< gpio_shift
),
2561 (0x1f << gpio_shift
));
2563 tmp
= REG_READ(ah
, addr
);
2564 tmp
= ((tmp
& 0x1F0) << 1) | (tmp
& ~0x1F0);
2565 tmp
&= ~(0x1f << gpio_shift
);
2566 tmp
|= (type
<< gpio_shift
);
2567 REG_WRITE(ah
, addr
, tmp
);
2571 void ath9k_hw_cfg_gpio_input(struct ath_hw
*ah
, u32 gpio
)
2575 BUG_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2577 if (AR_DEVID_7010(ah
)) {
2579 REG_RMW(ah
, AR7010_GPIO_OE
,
2580 (AR7010_GPIO_OE_AS_INPUT
<< gpio_shift
),
2581 (AR7010_GPIO_OE_MASK
<< gpio_shift
));
2585 gpio_shift
= gpio
<< 1;
2588 (AR_GPIO_OE_OUT_DRV_NO
<< gpio_shift
),
2589 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
2591 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input
);
2593 u32
ath9k_hw_gpio_get(struct ath_hw
*ah
, u32 gpio
)
2595 #define MS_REG_READ(x, y) \
2596 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2598 if (gpio
>= ah
->caps
.num_gpio_pins
)
2601 if (AR_DEVID_7010(ah
)) {
2603 val
= REG_READ(ah
, AR7010_GPIO_IN
);
2604 return (MS(val
, AR7010_GPIO_IN_VAL
) & AR_GPIO_BIT(gpio
)) == 0;
2605 } else if (AR_SREV_9300_20_OR_LATER(ah
))
2606 return (MS(REG_READ(ah
, AR_GPIO_IN
), AR9300_GPIO_IN_VAL
) &
2607 AR_GPIO_BIT(gpio
)) != 0;
2608 else if (AR_SREV_9271(ah
))
2609 return MS_REG_READ(AR9271
, gpio
) != 0;
2610 else if (AR_SREV_9287_11_OR_LATER(ah
))
2611 return MS_REG_READ(AR9287
, gpio
) != 0;
2612 else if (AR_SREV_9285_12_OR_LATER(ah
))
2613 return MS_REG_READ(AR9285
, gpio
) != 0;
2614 else if (AR_SREV_9280_20_OR_LATER(ah
))
2615 return MS_REG_READ(AR928X
, gpio
) != 0;
2617 return MS_REG_READ(AR
, gpio
) != 0;
2619 EXPORT_SYMBOL(ath9k_hw_gpio_get
);
2621 void ath9k_hw_cfg_output(struct ath_hw
*ah
, u32 gpio
,
2626 if (AR_DEVID_7010(ah
)) {
2628 REG_RMW(ah
, AR7010_GPIO_OE
,
2629 (AR7010_GPIO_OE_AS_OUTPUT
<< gpio_shift
),
2630 (AR7010_GPIO_OE_MASK
<< gpio_shift
));
2634 ath9k_hw_gpio_cfg_output_mux(ah
, gpio
, ah_signal_type
);
2635 gpio_shift
= 2 * gpio
;
2638 (AR_GPIO_OE_OUT_DRV_ALL
<< gpio_shift
),
2639 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
2641 EXPORT_SYMBOL(ath9k_hw_cfg_output
);
2643 void ath9k_hw_set_gpio(struct ath_hw
*ah
, u32 gpio
, u32 val
)
2645 if (AR_DEVID_7010(ah
)) {
2647 REG_RMW(ah
, AR7010_GPIO_OUT
, ((val
&1) << gpio
),
2652 if (AR_SREV_9271(ah
))
2655 REG_RMW(ah
, AR_GPIO_IN_OUT
, ((val
& 1) << gpio
),
2658 EXPORT_SYMBOL(ath9k_hw_set_gpio
);
2660 u32
ath9k_hw_getdefantenna(struct ath_hw
*ah
)
2662 return REG_READ(ah
, AR_DEF_ANTENNA
) & 0x7;
2664 EXPORT_SYMBOL(ath9k_hw_getdefantenna
);
2666 void ath9k_hw_setantenna(struct ath_hw
*ah
, u32 antenna
)
2668 REG_WRITE(ah
, AR_DEF_ANTENNA
, (antenna
& 0x7));
2670 EXPORT_SYMBOL(ath9k_hw_setantenna
);
2672 /*********************/
2673 /* General Operation */
2674 /*********************/
2676 u32
ath9k_hw_getrxfilter(struct ath_hw
*ah
)
2678 u32 bits
= REG_READ(ah
, AR_RX_FILTER
);
2679 u32 phybits
= REG_READ(ah
, AR_PHY_ERR
);
2681 if (phybits
& AR_PHY_ERR_RADAR
)
2682 bits
|= ATH9K_RX_FILTER_PHYRADAR
;
2683 if (phybits
& (AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
))
2684 bits
|= ATH9K_RX_FILTER_PHYERR
;
2688 EXPORT_SYMBOL(ath9k_hw_getrxfilter
);
2690 void ath9k_hw_setrxfilter(struct ath_hw
*ah
, u32 bits
)
2694 ENABLE_REGWRITE_BUFFER(ah
);
2696 if (AR_SREV_9462(ah
))
2697 bits
|= ATH9K_RX_FILTER_CONTROL_WRAPPER
;
2699 REG_WRITE(ah
, AR_RX_FILTER
, bits
);
2702 if (bits
& ATH9K_RX_FILTER_PHYRADAR
)
2703 phybits
|= AR_PHY_ERR_RADAR
;
2704 if (bits
& ATH9K_RX_FILTER_PHYERR
)
2705 phybits
|= AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
;
2706 REG_WRITE(ah
, AR_PHY_ERR
, phybits
);
2709 REG_SET_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2711 REG_CLR_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2713 REGWRITE_BUFFER_FLUSH(ah
);
2715 EXPORT_SYMBOL(ath9k_hw_setrxfilter
);
2717 bool ath9k_hw_phy_disable(struct ath_hw
*ah
)
2719 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
2722 ath9k_hw_init_pll(ah
, NULL
);
2725 EXPORT_SYMBOL(ath9k_hw_phy_disable
);
2727 bool ath9k_hw_disable(struct ath_hw
*ah
)
2729 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
2732 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_COLD
))
2735 ath9k_hw_init_pll(ah
, NULL
);
2738 EXPORT_SYMBOL(ath9k_hw_disable
);
2740 static int get_antenna_gain(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2742 enum eeprom_param gain_param
;
2744 if (IS_CHAN_2GHZ(chan
))
2745 gain_param
= EEP_ANTENNA_GAIN_2G
;
2747 gain_param
= EEP_ANTENNA_GAIN_5G
;
2749 return ah
->eep_ops
->get_eeprom(ah
, gain_param
);
2752 void ath9k_hw_apply_txpower(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2754 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2755 struct ieee80211_channel
*channel
;
2756 int chan_pwr
, new_pwr
, max_gain
;
2757 int ant_gain
, ant_reduction
= 0;
2762 channel
= chan
->chan
;
2763 chan_pwr
= min_t(int, channel
->max_power
* 2, MAX_RATE_POWER
);
2764 new_pwr
= min_t(int, chan_pwr
, reg
->power_limit
);
2765 max_gain
= chan_pwr
- new_pwr
+ channel
->max_antenna_gain
* 2;
2767 ant_gain
= get_antenna_gain(ah
, chan
);
2768 if (ant_gain
> max_gain
)
2769 ant_reduction
= ant_gain
- max_gain
;
2771 ah
->eep_ops
->set_txpower(ah
, chan
,
2772 ath9k_regd_get_ctl(reg
, chan
),
2773 ant_reduction
, new_pwr
, false);
2776 void ath9k_hw_set_txpowerlimit(struct ath_hw
*ah
, u32 limit
, bool test
)
2778 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2779 struct ath9k_channel
*chan
= ah
->curchan
;
2780 struct ieee80211_channel
*channel
= chan
->chan
;
2782 reg
->power_limit
= min_t(u32
, limit
, MAX_RATE_POWER
);
2784 channel
->max_power
= MAX_RATE_POWER
/ 2;
2786 ath9k_hw_apply_txpower(ah
, chan
);
2789 channel
->max_power
= DIV_ROUND_UP(reg
->max_power_level
, 2);
2791 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit
);
2793 void ath9k_hw_setopmode(struct ath_hw
*ah
)
2795 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
2797 EXPORT_SYMBOL(ath9k_hw_setopmode
);
2799 void ath9k_hw_setmcastfilter(struct ath_hw
*ah
, u32 filter0
, u32 filter1
)
2801 REG_WRITE(ah
, AR_MCAST_FIL0
, filter0
);
2802 REG_WRITE(ah
, AR_MCAST_FIL1
, filter1
);
2804 EXPORT_SYMBOL(ath9k_hw_setmcastfilter
);
2806 void ath9k_hw_write_associd(struct ath_hw
*ah
)
2808 struct ath_common
*common
= ath9k_hw_common(ah
);
2810 REG_WRITE(ah
, AR_BSS_ID0
, get_unaligned_le32(common
->curbssid
));
2811 REG_WRITE(ah
, AR_BSS_ID1
, get_unaligned_le16(common
->curbssid
+ 4) |
2812 ((common
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
2814 EXPORT_SYMBOL(ath9k_hw_write_associd
);
2816 #define ATH9K_MAX_TSF_READ 10
2818 u64
ath9k_hw_gettsf64(struct ath_hw
*ah
)
2820 u32 tsf_lower
, tsf_upper1
, tsf_upper2
;
2823 tsf_upper1
= REG_READ(ah
, AR_TSF_U32
);
2824 for (i
= 0; i
< ATH9K_MAX_TSF_READ
; i
++) {
2825 tsf_lower
= REG_READ(ah
, AR_TSF_L32
);
2826 tsf_upper2
= REG_READ(ah
, AR_TSF_U32
);
2827 if (tsf_upper2
== tsf_upper1
)
2829 tsf_upper1
= tsf_upper2
;
2832 WARN_ON( i
== ATH9K_MAX_TSF_READ
);
2834 return (((u64
)tsf_upper1
<< 32) | tsf_lower
);
2836 EXPORT_SYMBOL(ath9k_hw_gettsf64
);
2838 void ath9k_hw_settsf64(struct ath_hw
*ah
, u64 tsf64
)
2840 REG_WRITE(ah
, AR_TSF_L32
, tsf64
& 0xffffffff);
2841 REG_WRITE(ah
, AR_TSF_U32
, (tsf64
>> 32) & 0xffffffff);
2843 EXPORT_SYMBOL(ath9k_hw_settsf64
);
2845 void ath9k_hw_reset_tsf(struct ath_hw
*ah
)
2847 if (!ath9k_hw_wait(ah
, AR_SLP32_MODE
, AR_SLP32_TSF_WRITE_STATUS
, 0,
2848 AH_TSF_WRITE_TIMEOUT
))
2849 ath_dbg(ath9k_hw_common(ah
), RESET
,
2850 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2852 REG_WRITE(ah
, AR_RESET_TSF
, AR_RESET_TSF_ONCE
);
2854 EXPORT_SYMBOL(ath9k_hw_reset_tsf
);
2856 void ath9k_hw_set_tsfadjust(struct ath_hw
*ah
, u32 setting
)
2859 ah
->misc_mode
|= AR_PCU_TX_ADD_TSF
;
2861 ah
->misc_mode
&= ~AR_PCU_TX_ADD_TSF
;
2863 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust
);
2865 void ath9k_hw_set11nmac2040(struct ath_hw
*ah
)
2867 struct ieee80211_conf
*conf
= &ath9k_hw_common(ah
)->hw
->conf
;
2870 if (conf_is_ht40(conf
) && !ah
->config
.cwm_ignore_extcca
)
2871 macmode
= AR_2040_JOINED_RX_CLEAR
;
2875 REG_WRITE(ah
, AR_2040_MODE
, macmode
);
2878 /* HW Generic timers configuration */
2880 static const struct ath_gen_timer_configuration gen_tmr_configuration
[] =
2882 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2883 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2884 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2885 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2886 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2887 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2888 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2889 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2890 {AR_NEXT_NDP2_TIMER
, AR_NDP2_PERIOD
, AR_NDP2_TIMER_MODE
, 0x0001},
2891 {AR_NEXT_NDP2_TIMER
+ 1*4, AR_NDP2_PERIOD
+ 1*4,
2892 AR_NDP2_TIMER_MODE
, 0x0002},
2893 {AR_NEXT_NDP2_TIMER
+ 2*4, AR_NDP2_PERIOD
+ 2*4,
2894 AR_NDP2_TIMER_MODE
, 0x0004},
2895 {AR_NEXT_NDP2_TIMER
+ 3*4, AR_NDP2_PERIOD
+ 3*4,
2896 AR_NDP2_TIMER_MODE
, 0x0008},
2897 {AR_NEXT_NDP2_TIMER
+ 4*4, AR_NDP2_PERIOD
+ 4*4,
2898 AR_NDP2_TIMER_MODE
, 0x0010},
2899 {AR_NEXT_NDP2_TIMER
+ 5*4, AR_NDP2_PERIOD
+ 5*4,
2900 AR_NDP2_TIMER_MODE
, 0x0020},
2901 {AR_NEXT_NDP2_TIMER
+ 6*4, AR_NDP2_PERIOD
+ 6*4,
2902 AR_NDP2_TIMER_MODE
, 0x0040},
2903 {AR_NEXT_NDP2_TIMER
+ 7*4, AR_NDP2_PERIOD
+ 7*4,
2904 AR_NDP2_TIMER_MODE
, 0x0080}
2907 /* HW generic timer primitives */
2909 /* compute and clear index of rightmost 1 */
2910 static u32
rightmost_index(struct ath_gen_timer_table
*timer_table
, u32
*mask
)
2920 return timer_table
->gen_timer_index
[b
];
2923 u32
ath9k_hw_gettsf32(struct ath_hw
*ah
)
2925 return REG_READ(ah
, AR_TSF_L32
);
2927 EXPORT_SYMBOL(ath9k_hw_gettsf32
);
2929 struct ath_gen_timer
*ath_gen_timer_alloc(struct ath_hw
*ah
,
2930 void (*trigger
)(void *),
2931 void (*overflow
)(void *),
2935 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2936 struct ath_gen_timer
*timer
;
2938 timer
= kzalloc(sizeof(struct ath_gen_timer
), GFP_KERNEL
);
2940 if (timer
== NULL
) {
2941 ath_err(ath9k_hw_common(ah
),
2942 "Failed to allocate memory for hw timer[%d]\n",
2947 /* allocate a hardware generic timer slot */
2948 timer_table
->timers
[timer_index
] = timer
;
2949 timer
->index
= timer_index
;
2950 timer
->trigger
= trigger
;
2951 timer
->overflow
= overflow
;
2956 EXPORT_SYMBOL(ath_gen_timer_alloc
);
2958 void ath9k_hw_gen_timer_start(struct ath_hw
*ah
,
2959 struct ath_gen_timer
*timer
,
2963 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2964 u32 tsf
, timer_next
;
2966 BUG_ON(!timer_period
);
2968 set_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
2970 tsf
= ath9k_hw_gettsf32(ah
);
2972 timer_next
= tsf
+ trig_timeout
;
2974 ath_dbg(ath9k_hw_common(ah
), HWTIMER
,
2975 "current tsf %x period %x timer_next %x\n",
2976 tsf
, timer_period
, timer_next
);
2979 * Program generic timer registers
2981 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].next_addr
,
2983 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].period_addr
,
2985 REG_SET_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
2986 gen_tmr_configuration
[timer
->index
].mode_mask
);
2988 if (AR_SREV_9462(ah
)) {
2990 * Starting from AR9462, each generic timer can select which tsf
2991 * to use. But we still follow the old rule, 0 - 7 use tsf and
2994 if ((timer
->index
< AR_GEN_TIMER_BANK_1_LEN
))
2995 REG_CLR_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
2996 (1 << timer
->index
));
2998 REG_SET_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
2999 (1 << timer
->index
));
3002 /* Enable both trigger and thresh interrupt masks */
3003 REG_SET_BIT(ah
, AR_IMR_S5
,
3004 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
3005 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
3007 EXPORT_SYMBOL(ath9k_hw_gen_timer_start
);
3009 void ath9k_hw_gen_timer_stop(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
3011 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3013 if ((timer
->index
< AR_FIRST_NDP_TIMER
) ||
3014 (timer
->index
>= ATH_MAX_GEN_TIMER
)) {
3018 /* Clear generic timer enable bits. */
3019 REG_CLR_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
3020 gen_tmr_configuration
[timer
->index
].mode_mask
);
3022 /* Disable both trigger and thresh interrupt masks */
3023 REG_CLR_BIT(ah
, AR_IMR_S5
,
3024 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
3025 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
3027 clear_bit(timer
->index
, &timer_table
->timer_mask
.timer_bits
);
3029 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop
);
3031 void ath_gen_timer_free(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
3033 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3035 /* free the hardware generic timer slot */
3036 timer_table
->timers
[timer
->index
] = NULL
;
3039 EXPORT_SYMBOL(ath_gen_timer_free
);
3042 * Generic Timer Interrupts handling
3044 void ath_gen_timer_isr(struct ath_hw
*ah
)
3046 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3047 struct ath_gen_timer
*timer
;
3048 struct ath_common
*common
= ath9k_hw_common(ah
);
3049 u32 trigger_mask
, thresh_mask
, index
;
3051 /* get hardware generic timer interrupt status */
3052 trigger_mask
= ah
->intr_gen_timer_trigger
;
3053 thresh_mask
= ah
->intr_gen_timer_thresh
;
3054 trigger_mask
&= timer_table
->timer_mask
.val
;
3055 thresh_mask
&= timer_table
->timer_mask
.val
;
3057 trigger_mask
&= ~thresh_mask
;
3059 while (thresh_mask
) {
3060 index
= rightmost_index(timer_table
, &thresh_mask
);
3061 timer
= timer_table
->timers
[index
];
3063 ath_dbg(common
, HWTIMER
, "TSF overflow for Gen timer %d\n",
3065 timer
->overflow(timer
->arg
);
3068 while (trigger_mask
) {
3069 index
= rightmost_index(timer_table
, &trigger_mask
);
3070 timer
= timer_table
->timers
[index
];
3072 ath_dbg(common
, HWTIMER
,
3073 "Gen timer[%d] trigger\n", index
);
3074 timer
->trigger(timer
->arg
);
3077 EXPORT_SYMBOL(ath_gen_timer_isr
);
3083 void ath9k_hw_htc_resetinit(struct ath_hw
*ah
)
3085 ah
->htc_reset_init
= true;
3087 EXPORT_SYMBOL(ath9k_hw_htc_resetinit
);
3092 } ath_mac_bb_names
[] = {
3093 /* Devices with external radios */
3094 { AR_SREV_VERSION_5416_PCI
, "5416" },
3095 { AR_SREV_VERSION_5416_PCIE
, "5418" },
3096 { AR_SREV_VERSION_9100
, "9100" },
3097 { AR_SREV_VERSION_9160
, "9160" },
3098 /* Single-chip solutions */
3099 { AR_SREV_VERSION_9280
, "9280" },
3100 { AR_SREV_VERSION_9285
, "9285" },
3101 { AR_SREV_VERSION_9287
, "9287" },
3102 { AR_SREV_VERSION_9271
, "9271" },
3103 { AR_SREV_VERSION_9300
, "9300" },
3104 { AR_SREV_VERSION_9330
, "9330" },
3105 { AR_SREV_VERSION_9340
, "9340" },
3106 { AR_SREV_VERSION_9485
, "9485" },
3107 { AR_SREV_VERSION_9462
, "9462" },
3110 /* For devices with external radios */
3114 } ath_rf_names
[] = {
3116 { AR_RAD5133_SREV_MAJOR
, "5133" },
3117 { AR_RAD5122_SREV_MAJOR
, "5122" },
3118 { AR_RAD2133_SREV_MAJOR
, "2133" },
3119 { AR_RAD2122_SREV_MAJOR
, "2122" }
3123 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3125 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version
)
3129 for (i
=0; i
<ARRAY_SIZE(ath_mac_bb_names
); i
++) {
3130 if (ath_mac_bb_names
[i
].version
== mac_bb_version
) {
3131 return ath_mac_bb_names
[i
].name
;
3139 * Return the RF name. "????" is returned if the RF is unknown.
3140 * Used for devices with external radios.
3142 static const char *ath9k_hw_rf_name(u16 rf_version
)
3146 for (i
=0; i
<ARRAY_SIZE(ath_rf_names
); i
++) {
3147 if (ath_rf_names
[i
].version
== rf_version
) {
3148 return ath_rf_names
[i
].name
;
3155 void ath9k_hw_name(struct ath_hw
*ah
, char *hw_name
, size_t len
)
3159 /* chipsets >= AR9280 are single-chip */
3160 if (AR_SREV_9280_20_OR_LATER(ah
)) {
3161 used
= snprintf(hw_name
, len
,
3162 "Atheros AR%s Rev:%x",
3163 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
3164 ah
->hw_version
.macRev
);
3167 used
= snprintf(hw_name
, len
,
3168 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3169 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
3170 ah
->hw_version
.macRev
,
3171 ath9k_hw_rf_name((ah
->hw_version
.analog5GhzRev
&
3172 AR_RADIO_SREV_MAJOR
)),
3173 ah
->hw_version
.phyRev
);
3176 hw_name
[used
] = '\0';
3178 EXPORT_SYMBOL(ath9k_hw_name
);