spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / net / wireless / ath / ath9k / rc.c
bloba427a16bb739be2b97cbeb2c430fec41bd689774
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2011 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/slab.h>
19 #include <linux/export.h>
21 #include "ath9k.h"
23 static const struct ath_rate_table ar5416_11na_ratetable = {
24 68,
25 8, /* MCS start */
27 [0] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000,
28 5400, 0, 12, 0, 0, 0, 0 }, /* 6 Mb */
29 [1] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000,
30 7800, 1, 18, 0, 1, 1, 1 }, /* 9 Mb */
31 [2] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
32 10000, 2, 24, 2, 2, 2, 2 }, /* 12 Mb */
33 [3] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
34 13900, 3, 36, 2, 3, 3, 3 }, /* 18 Mb */
35 [4] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
36 17300, 4, 48, 4, 4, 4, 4 }, /* 24 Mb */
37 [5] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
38 23000, 5, 72, 4, 5, 5, 5 }, /* 36 Mb */
39 [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
40 27400, 6, 96, 4, 6, 6, 6 }, /* 48 Mb */
41 [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
42 29300, 7, 108, 4, 7, 7, 7 }, /* 54 Mb */
43 [8] = { RC_HT_SDT_2040, WLAN_RC_PHY_HT_20_SS, 6500,
44 6400, 0, 0, 0, 38, 8, 38 }, /* 6.5 Mb */
45 [9] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
46 12700, 1, 1, 2, 39, 9, 39 }, /* 13 Mb */
47 [10] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
48 18800, 2, 2, 2, 40, 10, 40 }, /* 19.5 Mb */
49 [11] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
50 25000, 3, 3, 4, 41, 11, 41 }, /* 26 Mb */
51 [12] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
52 36700, 4, 4, 4, 42, 12, 42 }, /* 39 Mb */
53 [13] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
54 48100, 5, 5, 4, 43, 13, 43 }, /* 52 Mb */
55 [14] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
56 53500, 6, 6, 4, 44, 14, 44 }, /* 58.5 Mb */
57 [15] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
58 59000, 7, 7, 4, 45, 16, 46 }, /* 65 Mb */
59 [16] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
60 65400, 7, 7, 4, 45, 16, 46 }, /* 75 Mb */
61 [17] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
62 12700, 8, 8, 0, 47, 17, 47 }, /* 13 Mb */
63 [18] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
64 24800, 9, 9, 2, 48, 18, 48 }, /* 26 Mb */
65 [19] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
66 36600, 10, 10, 2, 49, 19, 49 }, /* 39 Mb */
67 [20] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
68 48100, 11, 11, 4, 50, 20, 50 }, /* 52 Mb */
69 [21] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
70 69500, 12, 12, 4, 51, 21, 51 }, /* 78 Mb */
71 [22] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
72 89500, 13, 13, 4, 52, 22, 52 }, /* 104 Mb */
73 [23] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
74 98900, 14, 14, 4, 53, 23, 53 }, /* 117 Mb */
75 [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
76 108300, 15, 15, 4, 54, 25, 55 }, /* 130 Mb */
77 [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
78 120000, 15, 15, 4, 54, 25, 55 }, /* 144.4 Mb */
79 [26] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
80 17400, 16, 16, 0, 56, 26, 56 }, /* 19.5 Mb */
81 [27] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
82 35100, 17, 17, 2, 57, 27, 57 }, /* 39 Mb */
83 [28] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
84 52600, 18, 18, 2, 58, 28, 58 }, /* 58.5 Mb */
85 [29] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
86 70400, 19, 19, 4, 59, 29, 59 }, /* 78 Mb */
87 [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
88 104900, 20, 20, 4, 60, 31, 61 }, /* 117 Mb */
89 [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
90 115800, 20, 20, 4, 60, 31, 61 }, /* 130 Mb*/
91 [32] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
92 137200, 21, 21, 4, 62, 33, 63 }, /* 156 Mb */
93 [33] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
94 151100, 21, 21, 4, 62, 33, 63 }, /* 173.3 Mb */
95 [34] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
96 152800, 22, 22, 4, 64, 35, 65 }, /* 175.5 Mb */
97 [35] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
98 168400, 22, 22, 4, 64, 35, 65 }, /* 195 Mb*/
99 [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
100 168400, 23, 23, 4, 66, 37, 67 }, /* 195 Mb */
101 [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
102 185000, 23, 23, 4, 66, 37, 67 }, /* 216.7 Mb */
103 [38] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
104 13200, 0, 0, 0, 38, 38, 38 }, /* 13.5 Mb*/
105 [39] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
106 25900, 1, 1, 2, 39, 39, 39 }, /* 27.0 Mb*/
107 [40] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
108 38600, 2, 2, 2, 40, 40, 40 }, /* 40.5 Mb*/
109 [41] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
110 49800, 3, 3, 4, 41, 41, 41 }, /* 54 Mb */
111 [42] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
112 72200, 4, 4, 4, 42, 42, 42 }, /* 81 Mb */
113 [43] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 108000,
114 92900, 5, 5, 4, 43, 43, 43 }, /* 108 Mb */
115 [44] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
116 102700, 6, 6, 4, 44, 44, 44 }, /* 121.5 Mb*/
117 [45] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
118 112000, 7, 7, 4, 45, 46, 46 }, /* 135 Mb */
119 [46] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
120 122000, 7, 7, 4, 45, 46, 46 }, /* 150 Mb */
121 [47] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
122 25800, 8, 8, 0, 47, 47, 47 }, /* 27 Mb */
123 [48] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
124 49800, 9, 9, 2, 48, 48, 48 }, /* 54 Mb */
125 [49] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
126 71900, 10, 10, 2, 49, 49, 49 }, /* 81 Mb */
127 [50] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
128 92500, 11, 11, 4, 50, 50, 50 }, /* 108 Mb */
129 [51] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
130 130300, 12, 12, 4, 51, 51, 51 }, /* 162 Mb */
131 [52] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
132 162800, 13, 13, 4, 52, 52, 52 }, /* 216 Mb */
133 [53] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
134 178200, 14, 14, 4, 53, 53, 53 }, /* 243 Mb */
135 [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
136 192100, 15, 15, 4, 54, 55, 55 }, /* 270 Mb */
137 [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
138 207000, 15, 15, 4, 54, 55, 55 }, /* 300 Mb */
139 [56] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
140 36100, 16, 16, 0, 56, 56, 56 }, /* 40.5 Mb */
141 [57] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
142 72900, 17, 17, 2, 57, 57, 57 }, /* 81 Mb */
143 [58] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
144 108300, 18, 18, 2, 58, 58, 58 }, /* 121.5 Mb */
145 [59] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
146 142000, 19, 19, 4, 59, 59, 59 }, /* 162 Mb */
147 [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
148 205100, 20, 20, 4, 60, 61, 61 }, /* 243 Mb */
149 [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
150 224700, 20, 20, 4, 60, 61, 61 }, /* 270 Mb */
151 [62] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
152 263100, 21, 21, 4, 62, 63, 63 }, /* 324 Mb */
153 [63] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
154 288000, 21, 21, 4, 62, 63, 63 }, /* 360 Mb */
155 [64] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
156 290700, 22, 22, 4, 64, 65, 65 }, /* 364.5 Mb */
157 [65] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
158 317200, 22, 22, 4, 64, 65, 65 }, /* 405 Mb */
159 [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
160 317200, 23, 23, 4, 66, 67, 67 }, /* 405 Mb */
161 [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
162 346400, 23, 23, 4, 66, 67, 67 }, /* 450 Mb */
164 50, /* probe interval */
165 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
168 /* 4ms frame limit not used for NG mode. The values filled
169 * for HT are the 64K max aggregate limit */
171 static const struct ath_rate_table ar5416_11ng_ratetable = {
173 12, /* MCS start */
175 [0] = { RC_ALL, WLAN_RC_PHY_CCK, 1000,
176 900, 0, 2, 0, 0, 0, 0 }, /* 1 Mb */
177 [1] = { RC_ALL, WLAN_RC_PHY_CCK, 2000,
178 1900, 1, 4, 1, 1, 1, 1 }, /* 2 Mb */
179 [2] = { RC_ALL, WLAN_RC_PHY_CCK, 5500,
180 4900, 2, 11, 2, 2, 2, 2 }, /* 5.5 Mb */
181 [3] = { RC_ALL, WLAN_RC_PHY_CCK, 11000,
182 8100, 3, 22, 3, 3, 3, 3 }, /* 11 Mb */
183 [4] = { RC_INVALID, WLAN_RC_PHY_OFDM, 6000,
184 5400, 4, 12, 4, 4, 4, 4 }, /* 6 Mb */
185 [5] = { RC_INVALID, WLAN_RC_PHY_OFDM, 9000,
186 7800, 5, 18, 4, 5, 5, 5 }, /* 9 Mb */
187 [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
188 10100, 6, 24, 6, 6, 6, 6 }, /* 12 Mb */
189 [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
190 14100, 7, 36, 6, 7, 7, 7 }, /* 18 Mb */
191 [8] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
192 17700, 8, 48, 8, 8, 8, 8 }, /* 24 Mb */
193 [9] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
194 23700, 9, 72, 8, 9, 9, 9 }, /* 36 Mb */
195 [10] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
196 27400, 10, 96, 8, 10, 10, 10 }, /* 48 Mb */
197 [11] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
198 30900, 11, 108, 8, 11, 11, 11 }, /* 54 Mb */
199 [12] = { RC_INVALID, WLAN_RC_PHY_HT_20_SS, 6500,
200 6400, 0, 0, 4, 42, 12, 42 }, /* 6.5 Mb */
201 [13] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
202 12700, 1, 1, 6, 43, 13, 43 }, /* 13 Mb */
203 [14] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
204 18800, 2, 2, 6, 44, 14, 44 }, /* 19.5 Mb*/
205 [15] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
206 25000, 3, 3, 8, 45, 15, 45 }, /* 26 Mb */
207 [16] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
208 36700, 4, 4, 8, 46, 16, 46 }, /* 39 Mb */
209 [17] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
210 48100, 5, 5, 8, 47, 17, 47 }, /* 52 Mb */
211 [18] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
212 53500, 6, 6, 8, 48, 18, 48 }, /* 58.5 Mb */
213 [19] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
214 59000, 7, 7, 8, 49, 20, 50 }, /* 65 Mb */
215 [20] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
216 65400, 7, 7, 8, 49, 20, 50 }, /* 65 Mb*/
217 [21] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
218 12700, 8, 8, 4, 51, 21, 51 }, /* 13 Mb */
219 [22] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
220 24800, 9, 9, 6, 52, 22, 52 }, /* 26 Mb */
221 [23] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
222 36600, 10, 10, 6, 53, 23, 53 }, /* 39 Mb */
223 [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
224 48100, 11, 11, 8, 54, 24, 54 }, /* 52 Mb */
225 [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
226 69500, 12, 12, 8, 55, 25, 55 }, /* 78 Mb */
227 [26] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
228 89500, 13, 13, 8, 56, 26, 56 }, /* 104 Mb */
229 [27] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
230 98900, 14, 14, 8, 57, 27, 57 }, /* 117 Mb */
231 [28] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
232 108300, 15, 15, 8, 58, 29, 59 }, /* 130 Mb */
233 [29] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
234 120000, 15, 15, 8, 58, 29, 59 }, /* 144.4 Mb */
235 [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
236 17400, 16, 16, 4, 60, 30, 60 }, /* 19.5 Mb */
237 [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
238 35100, 17, 17, 6, 61, 31, 61 }, /* 39 Mb */
239 [32] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
240 52600, 18, 18, 6, 62, 32, 62 }, /* 58.5 Mb */
241 [33] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
242 70400, 19, 19, 8, 63, 33, 63 }, /* 78 Mb */
243 [34] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
244 104900, 20, 20, 8, 64, 35, 65 }, /* 117 Mb */
245 [35] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
246 115800, 20, 20, 8, 64, 35, 65 }, /* 130 Mb */
247 [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
248 137200, 21, 21, 8, 66, 37, 67 }, /* 156 Mb */
249 [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
250 151100, 21, 21, 8, 66, 37, 67 }, /* 173.3 Mb */
251 [38] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
252 152800, 22, 22, 8, 68, 39, 69 }, /* 175.5 Mb */
253 [39] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
254 168400, 22, 22, 8, 68, 39, 69 }, /* 195 Mb */
255 [40] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
256 168400, 23, 23, 8, 70, 41, 71 }, /* 195 Mb */
257 [41] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
258 185000, 23, 23, 8, 70, 41, 71 }, /* 216.7 Mb */
259 [42] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
260 13200, 0, 0, 8, 42, 42, 42 }, /* 13.5 Mb */
261 [43] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
262 25900, 1, 1, 8, 43, 43, 43 }, /* 27.0 Mb */
263 [44] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
264 38600, 2, 2, 8, 44, 44, 44 }, /* 40.5 Mb */
265 [45] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
266 49800, 3, 3, 8, 45, 45, 45 }, /* 54 Mb */
267 [46] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
268 72200, 4, 4, 8, 46, 46, 46 }, /* 81 Mb */
269 [47] = { RC_HT_S_40 , WLAN_RC_PHY_HT_40_SS, 108000,
270 92900, 5, 5, 8, 47, 47, 47 }, /* 108 Mb */
271 [48] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
272 102700, 6, 6, 8, 48, 48, 48 }, /* 121.5 Mb */
273 [49] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
274 112000, 7, 7, 8, 49, 50, 50 }, /* 135 Mb */
275 [50] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
276 122000, 7, 7, 8, 49, 50, 50 }, /* 150 Mb */
277 [51] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
278 25800, 8, 8, 8, 51, 51, 51 }, /* 27 Mb */
279 [52] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
280 49800, 9, 9, 8, 52, 52, 52 }, /* 54 Mb */
281 [53] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
282 71900, 10, 10, 8, 53, 53, 53 }, /* 81 Mb */
283 [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
284 92500, 11, 11, 8, 54, 54, 54 }, /* 108 Mb */
285 [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
286 130300, 12, 12, 8, 55, 55, 55 }, /* 162 Mb */
287 [56] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
288 162800, 13, 13, 8, 56, 56, 56 }, /* 216 Mb */
289 [57] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
290 178200, 14, 14, 8, 57, 57, 57 }, /* 243 Mb */
291 [58] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
292 192100, 15, 15, 8, 58, 59, 59 }, /* 270 Mb */
293 [59] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
294 207000, 15, 15, 8, 58, 59, 59 }, /* 300 Mb */
295 [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
296 36100, 16, 16, 8, 60, 60, 60 }, /* 40.5 Mb */
297 [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
298 72900, 17, 17, 8, 61, 61, 61 }, /* 81 Mb */
299 [62] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
300 108300, 18, 18, 8, 62, 62, 62 }, /* 121.5 Mb */
301 [63] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
302 142000, 19, 19, 8, 63, 63, 63 }, /* 162 Mb */
303 [64] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
304 205100, 20, 20, 8, 64, 65, 65 }, /* 243 Mb */
305 [65] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
306 224700, 20, 20, 8, 64, 65, 65 }, /* 270 Mb */
307 [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
308 263100, 21, 21, 8, 66, 67, 67 }, /* 324 Mb */
309 [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
310 288000, 21, 21, 8, 66, 67, 67 }, /* 360 Mb */
311 [68] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
312 290700, 22, 22, 8, 68, 69, 69 }, /* 364.5 Mb */
313 [69] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
314 317200, 22, 22, 8, 68, 69, 69 }, /* 405 Mb */
315 [70] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
316 317200, 23, 23, 8, 70, 71, 71 }, /* 405 Mb */
317 [71] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
318 346400, 23, 23, 8, 70, 71, 71 }, /* 450 Mb */
320 50, /* probe interval */
321 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
324 static const struct ath_rate_table ar5416_11a_ratetable = {
328 { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
329 5400, 0, 12, 0},
330 { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
331 7800, 1, 18, 0},
332 { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
333 10000, 2, 24, 2},
334 { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
335 13900, 3, 36, 2},
336 { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
337 17300, 4, 48, 4},
338 { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
339 23000, 5, 72, 4},
340 { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
341 27400, 6, 96, 4},
342 { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
343 29300, 7, 108, 4},
345 50, /* probe interval */
346 0, /* Phy rates allowed initially */
349 static const struct ath_rate_table ar5416_11g_ratetable = {
353 { RC_L_SDT, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
354 900, 0, 2, 0},
355 { RC_L_SDT, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
356 1900, 1, 4, 1},
357 { RC_L_SDT, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
358 4900, 2, 11, 2},
359 { RC_L_SDT, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
360 8100, 3, 22, 3},
361 { RC_INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
362 5400, 4, 12, 4},
363 { RC_INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
364 7800, 5, 18, 4},
365 { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
366 10000, 6, 24, 6},
367 { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
368 13900, 7, 36, 6},
369 { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
370 17300, 8, 48, 8},
371 { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
372 23000, 9, 72, 8},
373 { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
374 27400, 10, 96, 8},
375 { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
376 29300, 11, 108, 8},
378 50, /* probe interval */
379 0, /* Phy rates allowed initially */
382 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
383 struct ieee80211_tx_rate *rate)
385 int rix = 0, i = 0;
386 static const int mcs_rix_off[] = { 7, 15, 20, 21, 22, 23 };
388 if (!(rate->flags & IEEE80211_TX_RC_MCS))
389 return rate->idx;
391 while (i < ARRAY_SIZE(mcs_rix_off) && rate->idx > mcs_rix_off[i]) {
392 rix++; i++;
395 rix += rate->idx + rate_table->mcs_start;
397 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
398 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
399 rix = rate_table->info[rix].ht_index;
400 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
401 rix = rate_table->info[rix].sgi_index;
402 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
403 rix = rate_table->info[rix].cw40index;
405 return rix;
408 static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
409 struct ath_rate_priv *ath_rc_priv)
411 u8 i, j, idx, idx_next;
413 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
414 for (j = 0; j <= i-1; j++) {
415 idx = ath_rc_priv->valid_rate_index[j];
416 idx_next = ath_rc_priv->valid_rate_index[j+1];
418 if (rate_table->info[idx].ratekbps >
419 rate_table->info[idx_next].ratekbps) {
420 ath_rc_priv->valid_rate_index[j] = idx_next;
421 ath_rc_priv->valid_rate_index[j+1] = idx;
427 static void ath_rc_init_valid_rate_idx(struct ath_rate_priv *ath_rc_priv)
429 u8 i;
431 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
432 ath_rc_priv->valid_rate_index[i] = 0;
435 static inline void ath_rc_set_valid_rate_idx(struct ath_rate_priv *ath_rc_priv,
436 u8 index, int valid_tx_rate)
438 BUG_ON(index > ath_rc_priv->rate_table_size);
439 ath_rc_priv->valid_rate_index[index] = !!valid_tx_rate;
442 static inline
443 int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
444 struct ath_rate_priv *ath_rc_priv,
445 u8 cur_valid_txrate,
446 u8 *next_idx)
448 u8 i;
450 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
451 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
452 *next_idx = ath_rc_priv->valid_rate_index[i+1];
453 return 1;
457 /* No more valid rates */
458 *next_idx = 0;
460 return 0;
463 /* Return true only for single stream */
465 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
467 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
468 return 0;
469 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
470 return 0;
471 if (WLAN_RC_PHY_TS(phy) && !(capflag & WLAN_RC_TS_FLAG))
472 return 0;
473 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
474 return 0;
475 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
476 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
477 return 0;
478 return 1;
481 static inline int
482 ath_rc_get_lower_rix(const struct ath_rate_table *rate_table,
483 struct ath_rate_priv *ath_rc_priv,
484 u8 cur_valid_txrate, u8 *next_idx)
486 int8_t i;
488 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
489 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
490 *next_idx = ath_rc_priv->valid_rate_index[i-1];
491 return 1;
495 return 0;
498 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
499 const struct ath_rate_table *rate_table,
500 u32 capflag)
502 u8 i, hi = 0;
504 for (i = 0; i < rate_table->rate_cnt; i++) {
505 if (rate_table->info[i].rate_flags & RC_LEGACY) {
506 u32 phy = rate_table->info[i].phy;
507 u8 valid_rate_count = 0;
509 if (!ath_rc_valid_phyrate(phy, capflag, 0))
510 continue;
512 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
514 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
515 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
516 ath_rc_set_valid_rate_idx(ath_rc_priv, i, 1);
517 hi = i;
521 return hi;
524 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
525 const struct ath_rate_table *rate_table,
526 struct ath_rateset *rateset,
527 u32 capflag)
529 u8 i, j, hi = 0;
531 /* Use intersection of working rates and valid rates */
532 for (i = 0; i < rateset->rs_nrates; i++) {
533 for (j = 0; j < rate_table->rate_cnt; j++) {
534 u32 phy = rate_table->info[j].phy;
535 u16 rate_flags = rate_table->info[j].rate_flags;
536 u8 rate = rateset->rs_rates[i];
537 u8 dot11rate = rate_table->info[j].dot11rate;
539 /* We allow a rate only if its valid and the
540 * capflag matches one of the validity
541 * (VALID/VALID_20/VALID_40) flags */
543 if ((rate == dot11rate) &&
544 (rate_flags & WLAN_RC_CAP_MODE(capflag)) ==
545 WLAN_RC_CAP_MODE(capflag) &&
546 (rate_flags & WLAN_RC_CAP_STREAM(capflag)) &&
547 !WLAN_RC_PHY_HT(phy)) {
548 u8 valid_rate_count = 0;
550 if (!ath_rc_valid_phyrate(phy, capflag, 0))
551 continue;
553 valid_rate_count =
554 ath_rc_priv->valid_phy_ratecnt[phy];
556 ath_rc_priv->valid_phy_rateidx[phy]
557 [valid_rate_count] = j;
558 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
559 ath_rc_set_valid_rate_idx(ath_rc_priv, j, 1);
560 hi = max(hi, j);
565 return hi;
568 static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
569 const struct ath_rate_table *rate_table,
570 u8 *mcs_set, u32 capflag)
572 struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
574 u8 i, j, hi = 0;
576 /* Use intersection of working rates and valid rates */
577 for (i = 0; i < rateset->rs_nrates; i++) {
578 for (j = 0; j < rate_table->rate_cnt; j++) {
579 u32 phy = rate_table->info[j].phy;
580 u16 rate_flags = rate_table->info[j].rate_flags;
581 u8 rate = rateset->rs_rates[i];
582 u8 dot11rate = rate_table->info[j].dot11rate;
584 if ((rate != dot11rate) || !WLAN_RC_PHY_HT(phy) ||
585 !(rate_flags & WLAN_RC_CAP_STREAM(capflag)) ||
586 !WLAN_RC_PHY_HT_VALID(rate_flags, capflag))
587 continue;
589 if (!ath_rc_valid_phyrate(phy, capflag, 0))
590 continue;
592 ath_rc_priv->valid_phy_rateidx[phy]
593 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
594 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
595 ath_rc_set_valid_rate_idx(ath_rc_priv, j, 1);
596 hi = max(hi, j);
600 return hi;
603 /* Finds the highest rate index we can use */
604 static u8 ath_rc_get_highest_rix(struct ath_softc *sc,
605 struct ath_rate_priv *ath_rc_priv,
606 const struct ath_rate_table *rate_table,
607 int *is_probing,
608 bool legacy)
610 u32 best_thruput, this_thruput, now_msec;
611 u8 rate, next_rate, best_rate, maxindex, minindex;
612 int8_t index = 0;
614 now_msec = jiffies_to_msecs(jiffies);
615 *is_probing = 0;
616 best_thruput = 0;
617 maxindex = ath_rc_priv->max_valid_rate-1;
618 minindex = 0;
619 best_rate = minindex;
622 * Try the higher rate first. It will reduce memory moving time
623 * if we have very good channel characteristics.
625 for (index = maxindex; index >= minindex ; index--) {
626 u8 per_thres;
628 rate = ath_rc_priv->valid_rate_index[index];
629 if (legacy && !(rate_table->info[rate].rate_flags & RC_LEGACY))
630 continue;
631 if (rate > ath_rc_priv->rate_max_phy)
632 continue;
635 * For TCP the average collision rate is around 11%,
636 * so we ignore PERs less than this. This is to
637 * prevent the rate we are currently using (whose
638 * PER might be in the 10-15 range because of TCP
639 * collisions) looking worse than the next lower
640 * rate whose PER has decayed close to 0. If we
641 * used to next lower rate, its PER would grow to
642 * 10-15 and we would be worse off then staying
643 * at the current rate.
645 per_thres = ath_rc_priv->per[rate];
646 if (per_thres < 12)
647 per_thres = 12;
649 this_thruput = rate_table->info[rate].user_ratekbps *
650 (100 - per_thres);
652 if (best_thruput <= this_thruput) {
653 best_thruput = this_thruput;
654 best_rate = rate;
658 rate = best_rate;
661 * Must check the actual rate (ratekbps) to account for
662 * non-monoticity of 11g's rate table
665 if (rate >= ath_rc_priv->rate_max_phy) {
666 rate = ath_rc_priv->rate_max_phy;
668 /* Probe the next allowed phy state */
669 if (ath_rc_get_nextvalid_txrate(rate_table,
670 ath_rc_priv, rate, &next_rate) &&
671 (now_msec - ath_rc_priv->probe_time >
672 rate_table->probe_interval) &&
673 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
674 rate = next_rate;
675 ath_rc_priv->probe_rate = rate;
676 ath_rc_priv->probe_time = now_msec;
677 ath_rc_priv->hw_maxretry_pktcnt = 0;
678 *is_probing = 1;
682 if (rate > (ath_rc_priv->rate_table_size - 1))
683 rate = ath_rc_priv->rate_table_size - 1;
685 if (RC_TS_ONLY(rate_table->info[rate].rate_flags) &&
686 (ath_rc_priv->ht_cap & WLAN_RC_TS_FLAG))
687 return rate;
689 if (RC_DS_OR_LATER(rate_table->info[rate].rate_flags) &&
690 (ath_rc_priv->ht_cap & (WLAN_RC_DS_FLAG | WLAN_RC_TS_FLAG)))
691 return rate;
693 if (RC_SS_OR_LEGACY(rate_table->info[rate].rate_flags))
694 return rate;
696 /* This should not happen */
697 WARN_ON_ONCE(1);
699 rate = ath_rc_priv->valid_rate_index[0];
701 return rate;
704 static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
705 struct ieee80211_tx_rate *rate,
706 struct ieee80211_tx_rate_control *txrc,
707 u8 tries, u8 rix, int rtsctsenable)
709 rate->count = tries;
710 rate->idx = rate_table->info[rix].ratecode;
712 if (txrc->short_preamble)
713 rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
714 if (txrc->rts || rtsctsenable)
715 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
717 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) {
718 rate->flags |= IEEE80211_TX_RC_MCS;
719 if (WLAN_RC_PHY_40(rate_table->info[rix].phy) &&
720 conf_is_ht40(&txrc->hw->conf))
721 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
722 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
723 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
727 static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
728 const struct ath_rate_table *rate_table,
729 struct ieee80211_tx_info *tx_info)
731 struct ieee80211_tx_rate *rates = tx_info->control.rates;
732 int i = 0, rix = 0, cix, enable_g_protection = 0;
734 /* get the cix for the lowest valid rix */
735 for (i = 3; i >= 0; i--) {
736 if (rates[i].count && (rates[i].idx >= 0)) {
737 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
738 break;
741 cix = rate_table->info[rix].ctrl_rate;
743 /* All protection frames are transmited at 2Mb/s for 802.11g,
744 * otherwise we transmit them at 1Mb/s */
745 if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
746 !conf_is_ht(&sc->hw->conf))
747 enable_g_protection = 1;
750 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
751 * just CTS. Note that this is only done for OFDM/HT unicast frames.
753 if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) &&
754 (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
755 WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
756 rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
757 cix = rate_table->info[enable_g_protection].ctrl_rate;
760 tx_info->control.rts_cts_rate_idx = cix;
763 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
764 struct ieee80211_tx_rate_control *txrc)
766 struct ath_softc *sc = priv;
767 struct ath_rate_priv *ath_rc_priv = priv_sta;
768 const struct ath_rate_table *rate_table;
769 struct sk_buff *skb = txrc->skb;
770 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
771 struct ieee80211_tx_rate *rates = tx_info->control.rates;
772 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
773 __le16 fc = hdr->frame_control;
774 u8 try_per_rate, i = 0, rix, high_rix;
775 int is_probe = 0;
777 if (rate_control_send_low(sta, priv_sta, txrc))
778 return;
781 * For Multi Rate Retry we use a different number of
782 * retry attempt counts. This ends up looking like this:
784 * MRR[0] = 4
785 * MRR[1] = 4
786 * MRR[2] = 4
787 * MRR[3] = 8
790 try_per_rate = 4;
792 rate_table = ath_rc_priv->rate_table;
793 rix = ath_rc_get_highest_rix(sc, ath_rc_priv, rate_table,
794 &is_probe, false);
795 high_rix = rix;
798 * If we're in HT mode and both us and our peer supports LDPC.
799 * We don't need to check our own device's capabilities as our own
800 * ht capabilities would have already been intersected with our peer's.
802 if (conf_is_ht(&sc->hw->conf) &&
803 (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING))
804 tx_info->flags |= IEEE80211_TX_CTL_LDPC;
806 if (conf_is_ht(&sc->hw->conf) &&
807 (sta->ht_cap.cap & IEEE80211_HT_CAP_TX_STBC))
808 tx_info->flags |= (1 << IEEE80211_TX_CTL_STBC_SHIFT);
810 if (is_probe) {
811 /* set one try for probe rates. For the
812 * probes don't enable rts */
813 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
814 1, rix, 0);
816 /* Get the next tried/allowed rate. No RTS for the next series
817 * after the probe rate
819 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
820 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
821 try_per_rate, rix, 0);
823 tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
824 } else {
825 /* Set the chosen rate. No RTS for first series entry. */
826 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
827 try_per_rate, rix, 0);
830 /* Fill in the other rates for multirate retry */
831 for ( ; i < 3; i++) {
833 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
834 /* All other rates in the series have RTS enabled */
835 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
836 try_per_rate, rix, 1);
839 /* Use twice the number of tries for the last MRR segment. */
840 try_per_rate = 8;
843 * Use a legacy rate as last retry to ensure that the frame
844 * is tried in both MCS and legacy rates.
846 if ((rates[2].flags & IEEE80211_TX_RC_MCS) &&
847 (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU) ||
848 (ath_rc_priv->per[high_rix] > 45)))
849 rix = ath_rc_get_highest_rix(sc, ath_rc_priv, rate_table,
850 &is_probe, true);
851 else
852 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
854 /* All other rates in the series have RTS enabled */
855 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
856 try_per_rate, rix, 1);
858 * NB:Change rate series to enable aggregation when operating
859 * at lower MCS rates. When first rate in series is MCS2
860 * in HT40 @ 2.4GHz, series should look like:
862 * {MCS2, MCS1, MCS0, MCS0}.
864 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
865 * look like:
867 * {MCS3, MCS2, MCS1, MCS1}
869 * So, set fourth rate in series to be same as third one for
870 * above conditions.
872 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
873 (conf_is_ht(&sc->hw->conf))) {
874 u8 dot11rate = rate_table->info[rix].dot11rate;
875 u8 phy = rate_table->info[rix].phy;
876 if (i == 4 &&
877 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
878 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
879 rates[3].idx = rates[2].idx;
880 rates[3].flags = rates[2].flags;
885 * Force hardware to use computed duration for next
886 * fragment by disabling multi-rate retry, which
887 * updates duration based on the multi-rate duration table.
889 * FIXME: Fix duration
891 if (ieee80211_has_morefrags(fc) ||
892 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
893 rates[1].count = rates[2].count = rates[3].count = 0;
894 rates[1].idx = rates[2].idx = rates[3].idx = 0;
895 rates[0].count = ATH_TXMAXTRY;
898 /* Setup RTS/CTS */
899 ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
902 static void ath_rc_update_per(struct ath_softc *sc,
903 const struct ath_rate_table *rate_table,
904 struct ath_rate_priv *ath_rc_priv,
905 struct ieee80211_tx_info *tx_info,
906 int tx_rate, int xretries, int retries,
907 u32 now_msec)
909 int count, n_bad_frames;
910 u8 last_per;
911 static const u32 nretry_to_per_lookup[10] = {
912 100 * 0 / 1,
913 100 * 1 / 4,
914 100 * 1 / 2,
915 100 * 3 / 4,
916 100 * 4 / 5,
917 100 * 5 / 6,
918 100 * 6 / 7,
919 100 * 7 / 8,
920 100 * 8 / 9,
921 100 * 9 / 10
924 last_per = ath_rc_priv->per[tx_rate];
925 n_bad_frames = tx_info->status.ampdu_len - tx_info->status.ampdu_ack_len;
927 if (xretries) {
928 if (xretries == 1) {
929 ath_rc_priv->per[tx_rate] += 30;
930 if (ath_rc_priv->per[tx_rate] > 100)
931 ath_rc_priv->per[tx_rate] = 100;
932 } else {
933 /* xretries == 2 */
934 count = ARRAY_SIZE(nretry_to_per_lookup);
935 if (retries >= count)
936 retries = count - 1;
938 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
939 ath_rc_priv->per[tx_rate] =
940 (u8)(last_per - (last_per >> 3) + (100 >> 3));
943 /* xretries == 1 or 2 */
945 if (ath_rc_priv->probe_rate == tx_rate)
946 ath_rc_priv->probe_rate = 0;
948 } else { /* xretries == 0 */
949 count = ARRAY_SIZE(nretry_to_per_lookup);
950 if (retries >= count)
951 retries = count - 1;
953 if (n_bad_frames) {
954 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
955 * Assuming that n_frames is not 0. The current PER
956 * from the retries is 100 * retries / (retries+1),
957 * since the first retries attempts failed, and the
958 * next one worked. For the one that worked,
959 * n_bad_frames subframes out of n_frames wored,
960 * so the PER for that part is
961 * 100 * n_bad_frames / n_frames, and it contributes
962 * 100 * n_bad_frames / (n_frames * (retries+1)) to
963 * the above PER. The expression below is a
964 * simplified version of the sum of these two terms.
966 if (tx_info->status.ampdu_len > 0) {
967 int n_frames, n_bad_tries;
968 u8 cur_per, new_per;
970 n_bad_tries = retries * tx_info->status.ampdu_len +
971 n_bad_frames;
972 n_frames = tx_info->status.ampdu_len * (retries + 1);
973 cur_per = (100 * n_bad_tries / n_frames) >> 3;
974 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
975 ath_rc_priv->per[tx_rate] = new_per;
977 } else {
978 ath_rc_priv->per[tx_rate] =
979 (u8)(last_per - (last_per >> 3) +
980 (nretry_to_per_lookup[retries] >> 3));
985 * If we got at most one retry then increase the max rate if
986 * this was a probe. Otherwise, ignore the probe.
988 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
989 if (retries > 0 || 2 * n_bad_frames > tx_info->status.ampdu_len) {
991 * Since we probed with just a single attempt,
992 * any retries means the probe failed. Also,
993 * if the attempt worked, but more than half
994 * the subframes were bad then also consider
995 * the probe a failure.
997 ath_rc_priv->probe_rate = 0;
998 } else {
999 u8 probe_rate = 0;
1001 ath_rc_priv->rate_max_phy =
1002 ath_rc_priv->probe_rate;
1003 probe_rate = ath_rc_priv->probe_rate;
1005 if (ath_rc_priv->per[probe_rate] > 30)
1006 ath_rc_priv->per[probe_rate] = 20;
1008 ath_rc_priv->probe_rate = 0;
1011 * Since this probe succeeded, we allow the next
1012 * probe twice as soon. This allows the maxRate
1013 * to move up faster if the probes are
1014 * successful.
1016 ath_rc_priv->probe_time =
1017 now_msec - rate_table->probe_interval / 2;
1021 if (retries > 0) {
1023 * Don't update anything. We don't know if
1024 * this was because of collisions or poor signal.
1026 ath_rc_priv->hw_maxretry_pktcnt = 0;
1027 } else {
1029 * It worked with no retries. First ignore bogus (small)
1030 * rssi_ack values.
1032 if (tx_rate == ath_rc_priv->rate_max_phy &&
1033 ath_rc_priv->hw_maxretry_pktcnt < 255) {
1034 ath_rc_priv->hw_maxretry_pktcnt++;
1041 static void ath_debug_stat_retries(struct ath_rate_priv *rc, int rix,
1042 int xretries, int retries, u8 per)
1044 struct ath_rc_stats *stats = &rc->rcstats[rix];
1046 stats->xretries += xretries;
1047 stats->retries += retries;
1048 stats->per = per;
1051 /* Update PER, RSSI and whatever else that the code thinks it is doing.
1052 If you can make sense of all this, you really need to go out more. */
1054 static void ath_rc_update_ht(struct ath_softc *sc,
1055 struct ath_rate_priv *ath_rc_priv,
1056 struct ieee80211_tx_info *tx_info,
1057 int tx_rate, int xretries, int retries)
1059 u32 now_msec = jiffies_to_msecs(jiffies);
1060 int rate;
1061 u8 last_per;
1062 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
1063 int size = ath_rc_priv->rate_table_size;
1065 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1066 return;
1068 last_per = ath_rc_priv->per[tx_rate];
1070 /* Update PER first */
1071 ath_rc_update_per(sc, rate_table, ath_rc_priv,
1072 tx_info, tx_rate, xretries,
1073 retries, now_msec);
1076 * If this rate looks bad (high PER) then stop using it for
1077 * a while (except if we are probing).
1079 if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 &&
1080 rate_table->info[tx_rate].ratekbps <=
1081 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1082 ath_rc_get_lower_rix(rate_table, ath_rc_priv,
1083 (u8)tx_rate, &ath_rc_priv->rate_max_phy);
1085 /* Don't probe for a little while. */
1086 ath_rc_priv->probe_time = now_msec;
1089 /* Make sure the rates below this have lower PER */
1090 /* Monotonicity is kept only for rates below the current rate. */
1091 if (ath_rc_priv->per[tx_rate] < last_per) {
1092 for (rate = tx_rate - 1; rate >= 0; rate--) {
1094 if (ath_rc_priv->per[rate] >
1095 ath_rc_priv->per[rate+1]) {
1096 ath_rc_priv->per[rate] =
1097 ath_rc_priv->per[rate+1];
1102 /* Maintain monotonicity for rates above the current rate */
1103 for (rate = tx_rate; rate < size - 1; rate++) {
1104 if (ath_rc_priv->per[rate+1] <
1105 ath_rc_priv->per[rate])
1106 ath_rc_priv->per[rate+1] =
1107 ath_rc_priv->per[rate];
1110 /* Every so often, we reduce the thresholds
1111 * and PER (different for CCK and OFDM). */
1112 if (now_msec - ath_rc_priv->per_down_time >=
1113 rate_table->probe_interval) {
1114 for (rate = 0; rate < size; rate++) {
1115 ath_rc_priv->per[rate] =
1116 7 * ath_rc_priv->per[rate] / 8;
1119 ath_rc_priv->per_down_time = now_msec;
1122 ath_debug_stat_retries(ath_rc_priv, tx_rate, xretries, retries,
1123 ath_rc_priv->per[tx_rate]);
1128 static void ath_rc_tx_status(struct ath_softc *sc,
1129 struct ath_rate_priv *ath_rc_priv,
1130 struct ieee80211_tx_info *tx_info,
1131 int final_ts_idx, int xretries, int long_retry)
1133 const struct ath_rate_table *rate_table;
1134 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1135 u8 flags;
1136 u32 i = 0, rix;
1138 rate_table = ath_rc_priv->rate_table;
1141 * If the first rate is not the final index, there
1142 * are intermediate rate failures to be processed.
1144 if (final_ts_idx != 0) {
1145 /* Process intermediate rates that failed.*/
1146 for (i = 0; i < final_ts_idx ; i++) {
1147 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1148 flags = rates[i].flags;
1150 /* If HT40 and we have switched mode from
1151 * 40 to 20 => don't update */
1153 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1154 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1155 return;
1157 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1158 ath_rc_update_ht(sc, ath_rc_priv, tx_info,
1159 rix, xretries ? 1 : 2,
1160 rates[i].count);
1163 } else {
1165 * Handle the special case of MIMO PS burst, where the second
1166 * aggregate is sent out with only one rate and one try.
1167 * Treating it as an excessive retry penalizes the rate
1168 * inordinately.
1170 if (rates[0].count == 1 && xretries == 1)
1171 xretries = 2;
1174 flags = rates[i].flags;
1176 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1177 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1178 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1179 return;
1181 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1182 ath_rc_update_ht(sc, ath_rc_priv, tx_info, rix, xretries, long_retry);
1185 static const
1186 struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1187 enum ieee80211_band band,
1188 bool is_ht)
1190 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1192 switch(band) {
1193 case IEEE80211_BAND_2GHZ:
1194 if (is_ht)
1195 return &ar5416_11ng_ratetable;
1196 return &ar5416_11g_ratetable;
1197 case IEEE80211_BAND_5GHZ:
1198 if (is_ht)
1199 return &ar5416_11na_ratetable;
1200 return &ar5416_11a_ratetable;
1201 default:
1202 ath_dbg(common, CONFIG, "Invalid band\n");
1203 return NULL;
1207 static void ath_rc_init(struct ath_softc *sc,
1208 struct ath_rate_priv *ath_rc_priv,
1209 struct ieee80211_supported_band *sband,
1210 struct ieee80211_sta *sta,
1211 const struct ath_rate_table *rate_table)
1213 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1214 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1215 u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
1216 u8 i, j, k, hi = 0, hthi = 0;
1218 /* Initial rate table size. Will change depending
1219 * on the working rate set */
1220 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1222 /* Initialize thresholds according to the global rate table */
1223 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1224 ath_rc_priv->per[i] = 0;
1227 /* Determine the valid rates */
1228 ath_rc_init_valid_rate_idx(ath_rc_priv);
1230 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1231 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1232 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1233 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1236 if (!rateset->rs_nrates) {
1237 /* No working rate, just initialize valid rates */
1238 hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
1239 ath_rc_priv->ht_cap);
1240 } else {
1241 /* Use intersection of working rates and valid rates */
1242 hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
1243 rateset, ath_rc_priv->ht_cap);
1244 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1245 hthi = ath_rc_setvalid_htrates(ath_rc_priv,
1246 rate_table,
1247 ht_mcs,
1248 ath_rc_priv->ht_cap);
1250 hi = max(hi, hthi);
1253 ath_rc_priv->rate_table_size = hi + 1;
1254 ath_rc_priv->rate_max_phy = 0;
1255 BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1257 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1258 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1259 ath_rc_priv->valid_rate_index[k++] =
1260 ath_rc_priv->valid_phy_rateidx[i][j];
1263 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
1264 || !ath_rc_priv->valid_phy_ratecnt[i])
1265 continue;
1267 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1269 BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1270 BUG_ON(k > RATE_TABLE_SIZE);
1272 ath_rc_priv->max_valid_rate = k;
1273 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1274 ath_rc_priv->rate_max_phy = (k > 4) ?
1275 ath_rc_priv->valid_rate_index[k-4] :
1276 ath_rc_priv->valid_rate_index[k-1];
1277 ath_rc_priv->rate_table = rate_table;
1279 ath_dbg(common, CONFIG, "RC Initialized with capabilities: 0x%x\n",
1280 ath_rc_priv->ht_cap);
1283 static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta,
1284 bool is_cw40, bool is_sgi)
1286 u8 caps = 0;
1288 if (sta->ht_cap.ht_supported) {
1289 caps = WLAN_RC_HT_FLAG;
1290 if (sta->ht_cap.mcs.rx_mask[1] && sta->ht_cap.mcs.rx_mask[2])
1291 caps |= WLAN_RC_TS_FLAG | WLAN_RC_DS_FLAG;
1292 else if (sta->ht_cap.mcs.rx_mask[1])
1293 caps |= WLAN_RC_DS_FLAG;
1294 if (is_cw40)
1295 caps |= WLAN_RC_40_FLAG;
1296 if (is_sgi)
1297 caps |= WLAN_RC_SGI_FLAG;
1300 return caps;
1303 static bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an,
1304 u8 tidno)
1306 struct ath_atx_tid *txtid;
1308 if (!(sc->sc_flags & SC_OP_TXAGGR))
1309 return false;
1311 txtid = ATH_AN_2_TID(an, tidno);
1313 if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
1314 return true;
1315 return false;
1319 /***********************************/
1320 /* mac80211 Rate Control callbacks */
1321 /***********************************/
1323 static void ath_debug_stat_rc(struct ath_rate_priv *rc, int final_rate)
1325 struct ath_rc_stats *stats;
1327 stats = &rc->rcstats[final_rate];
1328 stats->success++;
1332 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1333 struct ieee80211_sta *sta, void *priv_sta,
1334 struct sk_buff *skb)
1336 struct ath_softc *sc = priv;
1337 struct ath_rate_priv *ath_rc_priv = priv_sta;
1338 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1339 struct ieee80211_hdr *hdr;
1340 int final_ts_idx = 0, tx_status = 0;
1341 int long_retry = 0;
1342 __le16 fc;
1343 int i;
1345 hdr = (struct ieee80211_hdr *)skb->data;
1346 fc = hdr->frame_control;
1347 for (i = 0; i < sc->hw->max_rates; i++) {
1348 struct ieee80211_tx_rate *rate = &tx_info->status.rates[i];
1349 if (rate->idx < 0 || !rate->count)
1350 break;
1352 final_ts_idx = i;
1353 long_retry = rate->count - 1;
1356 if (!priv_sta || !ieee80211_is_data(fc))
1357 return;
1359 /* This packet was aggregated but doesn't carry status info */
1360 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) &&
1361 !(tx_info->flags & IEEE80211_TX_STAT_AMPDU))
1362 return;
1364 if (tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED)
1365 return;
1367 if (!(tx_info->flags & IEEE80211_TX_STAT_ACK))
1368 tx_status = 1;
1370 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1371 long_retry);
1373 /* Check if aggregation has to be enabled for this tid */
1374 if (conf_is_ht(&sc->hw->conf) &&
1375 !(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1376 if (ieee80211_is_data_qos(fc) &&
1377 skb_get_queue_mapping(skb) != IEEE80211_AC_VO) {
1378 u8 *qc, tid;
1379 struct ath_node *an;
1381 qc = ieee80211_get_qos_ctl(hdr);
1382 tid = qc[0] & 0xf;
1383 an = (struct ath_node *)sta->drv_priv;
1385 if(ath_tx_aggr_check(sc, an, tid))
1386 ieee80211_start_tx_ba_session(sta, tid, 0);
1390 ath_debug_stat_rc(ath_rc_priv,
1391 ath_rc_get_rateindex(ath_rc_priv->rate_table,
1392 &tx_info->status.rates[final_ts_idx]));
1395 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1396 struct ieee80211_sta *sta, void *priv_sta)
1398 struct ath_softc *sc = priv;
1399 struct ath_rate_priv *ath_rc_priv = priv_sta;
1400 const struct ath_rate_table *rate_table;
1401 bool is_cw40, is_sgi = false;
1402 int i, j = 0;
1404 for (i = 0; i < sband->n_bitrates; i++) {
1405 if (sta->supp_rates[sband->band] & BIT(i)) {
1406 ath_rc_priv->neg_rates.rs_rates[j]
1407 = (sband->bitrates[i].bitrate * 2) / 10;
1408 j++;
1411 ath_rc_priv->neg_rates.rs_nrates = j;
1413 if (sta->ht_cap.ht_supported) {
1414 for (i = 0, j = 0; i < 77; i++) {
1415 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1416 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1417 if (j == ATH_RATE_MAX)
1418 break;
1420 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1423 is_cw40 = !!(sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40);
1425 if (is_cw40)
1426 is_sgi = !!(sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1427 else if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
1428 is_sgi = !!(sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1430 /* Choose rate table first */
1432 rate_table = ath_choose_rate_table(sc, sband->band,
1433 sta->ht_cap.ht_supported);
1435 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, is_cw40, is_sgi);
1436 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1439 static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
1440 struct ieee80211_sta *sta, void *priv_sta,
1441 u32 changed, enum nl80211_channel_type oper_chan_type)
1443 struct ath_softc *sc = priv;
1444 struct ath_rate_priv *ath_rc_priv = priv_sta;
1445 const struct ath_rate_table *rate_table = NULL;
1446 bool oper_cw40 = false, oper_sgi;
1447 bool local_cw40 = !!(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG);
1448 bool local_sgi = !!(ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG);
1450 /* FIXME: Handle AP mode later when we support CWM */
1452 if (changed & IEEE80211_RC_HT_CHANGED) {
1453 if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
1454 return;
1456 if (oper_chan_type == NL80211_CHAN_HT40MINUS ||
1457 oper_chan_type == NL80211_CHAN_HT40PLUS)
1458 oper_cw40 = true;
1460 if (oper_cw40)
1461 oper_sgi = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1462 true : false;
1463 else if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
1464 oper_sgi = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1465 true : false;
1466 else
1467 oper_sgi = false;
1469 if ((local_cw40 != oper_cw40) || (local_sgi != oper_sgi)) {
1470 rate_table = ath_choose_rate_table(sc, sband->band,
1471 sta->ht_cap.ht_supported);
1472 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta,
1473 oper_cw40, oper_sgi);
1474 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1476 ath_dbg(ath9k_hw_common(sc->sc_ah), CONFIG,
1477 "Operating HT Bandwidth changed to: %d\n",
1478 sc->hw->conf.channel_type);
1483 #ifdef CONFIG_ATH9K_DEBUGFS
1485 static int ath9k_debugfs_open(struct inode *inode, struct file *file)
1487 file->private_data = inode->i_private;
1488 return 0;
1491 static ssize_t read_file_rcstat(struct file *file, char __user *user_buf,
1492 size_t count, loff_t *ppos)
1494 struct ath_rate_priv *rc = file->private_data;
1495 char *buf;
1496 unsigned int len = 0, max;
1497 int i = 0;
1498 ssize_t retval;
1500 if (rc->rate_table == NULL)
1501 return 0;
1503 max = 80 + rc->rate_table_size * 1024 + 1;
1504 buf = kmalloc(max, GFP_KERNEL);
1505 if (buf == NULL)
1506 return -ENOMEM;
1508 len += sprintf(buf, "%6s %6s %6s "
1509 "%10s %10s %10s %10s\n",
1510 "HT", "MCS", "Rate",
1511 "Success", "Retries", "XRetries", "PER");
1513 for (i = 0; i < rc->rate_table_size; i++) {
1514 u32 ratekbps = rc->rate_table->info[i].ratekbps;
1515 struct ath_rc_stats *stats = &rc->rcstats[i];
1516 char mcs[5];
1517 char htmode[5];
1518 int used_mcs = 0, used_htmode = 0;
1520 if (WLAN_RC_PHY_HT(rc->rate_table->info[i].phy)) {
1521 used_mcs = snprintf(mcs, 5, "%d",
1522 rc->rate_table->info[i].ratecode);
1524 if (WLAN_RC_PHY_40(rc->rate_table->info[i].phy))
1525 used_htmode = snprintf(htmode, 5, "HT40");
1526 else if (WLAN_RC_PHY_20(rc->rate_table->info[i].phy))
1527 used_htmode = snprintf(htmode, 5, "HT20");
1528 else
1529 used_htmode = snprintf(htmode, 5, "????");
1532 mcs[used_mcs] = '\0';
1533 htmode[used_htmode] = '\0';
1535 len += snprintf(buf + len, max - len,
1536 "%6s %6s %3u.%d: "
1537 "%10u %10u %10u %10u\n",
1538 htmode,
1539 mcs,
1540 ratekbps / 1000,
1541 (ratekbps % 1000) / 100,
1542 stats->success,
1543 stats->retries,
1544 stats->xretries,
1545 stats->per);
1548 if (len > max)
1549 len = max;
1551 retval = simple_read_from_buffer(user_buf, count, ppos, buf, len);
1552 kfree(buf);
1553 return retval;
1556 static const struct file_operations fops_rcstat = {
1557 .read = read_file_rcstat,
1558 .open = ath9k_debugfs_open,
1559 .owner = THIS_MODULE
1562 static void ath_rate_add_sta_debugfs(void *priv, void *priv_sta,
1563 struct dentry *dir)
1565 struct ath_rate_priv *rc = priv_sta;
1566 debugfs_create_file("rc_stats", S_IRUGO, dir, rc, &fops_rcstat);
1569 #endif /* CONFIG_ATH9K_DEBUGFS */
1571 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1573 return hw->priv;
1576 static void ath_rate_free(void *priv)
1578 return;
1581 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1583 struct ath_softc *sc = priv;
1584 struct ath_rate_priv *rate_priv;
1586 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1587 if (!rate_priv) {
1588 ath_err(ath9k_hw_common(sc->sc_ah),
1589 "Unable to allocate private rc structure\n");
1590 return NULL;
1593 return rate_priv;
1596 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1597 void *priv_sta)
1599 struct ath_rate_priv *rate_priv = priv_sta;
1600 kfree(rate_priv);
1603 static struct rate_control_ops ath_rate_ops = {
1604 .module = NULL,
1605 .name = "ath9k_rate_control",
1606 .tx_status = ath_tx_status,
1607 .get_rate = ath_get_rate,
1608 .rate_init = ath_rate_init,
1609 .rate_update = ath_rate_update,
1610 .alloc = ath_rate_alloc,
1611 .free = ath_rate_free,
1612 .alloc_sta = ath_rate_alloc_sta,
1613 .free_sta = ath_rate_free_sta,
1614 #ifdef CONFIG_ATH9K_DEBUGFS
1615 .add_sta_debugfs = ath_rate_add_sta_debugfs,
1616 #endif
1619 int ath_rate_control_register(void)
1621 return ieee80211_rate_control_register(&ath_rate_ops);
1624 void ath_rate_control_unregister(void)
1626 ieee80211_rate_control_unregister(&ath_rate_ops);