spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
blob9b1b2b7a7807226717a6a1b463cdf9fdc7a70f2e
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 Module: rt2x00lib
25 Abstract: rt2x00 queue specific routines.
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
33 #include "rt2x00.h"
34 #include "rt2x00lib.h"
36 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry)
38 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
39 struct sk_buff *skb;
40 struct skb_frame_desc *skbdesc;
41 unsigned int frame_size;
42 unsigned int head_size = 0;
43 unsigned int tail_size = 0;
46 * The frame size includes descriptor size, because the
47 * hardware directly receive the frame into the skbuffer.
49 frame_size = entry->queue->data_size + entry->queue->desc_size;
52 * The payload should be aligned to a 4-byte boundary,
53 * this means we need at least 3 bytes for moving the frame
54 * into the correct offset.
56 head_size = 4;
59 * For IV/EIV/ICV assembly we must make sure there is
60 * at least 8 bytes bytes available in headroom for IV/EIV
61 * and 8 bytes for ICV data as tailroon.
63 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) {
64 head_size += 8;
65 tail_size += 8;
69 * Allocate skbuffer.
71 skb = dev_alloc_skb(frame_size + head_size + tail_size);
72 if (!skb)
73 return NULL;
76 * Make sure we not have a frame with the requested bytes
77 * available in the head and tail.
79 skb_reserve(skb, head_size);
80 skb_put(skb, frame_size);
83 * Populate skbdesc.
85 skbdesc = get_skb_frame_desc(skb);
86 memset(skbdesc, 0, sizeof(*skbdesc));
87 skbdesc->entry = entry;
89 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) {
90 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
91 skb->data,
92 skb->len,
93 DMA_FROM_DEVICE);
94 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
97 return skb;
100 void rt2x00queue_map_txskb(struct queue_entry *entry)
102 struct device *dev = entry->queue->rt2x00dev->dev;
103 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
105 skbdesc->skb_dma =
106 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
107 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
109 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
111 void rt2x00queue_unmap_skb(struct queue_entry *entry)
113 struct device *dev = entry->queue->rt2x00dev->dev;
114 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
116 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
117 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
118 DMA_FROM_DEVICE);
119 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
120 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
121 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
122 DMA_TO_DEVICE);
123 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
126 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
128 void rt2x00queue_free_skb(struct queue_entry *entry)
130 if (!entry->skb)
131 return;
133 rt2x00queue_unmap_skb(entry);
134 dev_kfree_skb_any(entry->skb);
135 entry->skb = NULL;
138 void rt2x00queue_align_frame(struct sk_buff *skb)
140 unsigned int frame_length = skb->len;
141 unsigned int align = ALIGN_SIZE(skb, 0);
143 if (!align)
144 return;
146 skb_push(skb, align);
147 memmove(skb->data, skb->data + align, frame_length);
148 skb_trim(skb, frame_length);
151 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
153 unsigned int payload_length = skb->len - header_length;
154 unsigned int header_align = ALIGN_SIZE(skb, 0);
155 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
156 unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
159 * Adjust the header alignment if the payload needs to be moved more
160 * than the header.
162 if (payload_align > header_align)
163 header_align += 4;
165 /* There is nothing to do if no alignment is needed */
166 if (!header_align)
167 return;
169 /* Reserve the amount of space needed in front of the frame */
170 skb_push(skb, header_align);
173 * Move the header.
175 memmove(skb->data, skb->data + header_align, header_length);
177 /* Move the payload, if present and if required */
178 if (payload_length && payload_align)
179 memmove(skb->data + header_length + l2pad,
180 skb->data + header_length + l2pad + payload_align,
181 payload_length);
183 /* Trim the skb to the correct size */
184 skb_trim(skb, header_length + l2pad + payload_length);
187 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
190 * L2 padding is only present if the skb contains more than just the
191 * IEEE 802.11 header.
193 unsigned int l2pad = (skb->len > header_length) ?
194 L2PAD_SIZE(header_length) : 0;
196 if (!l2pad)
197 return;
199 memmove(skb->data + l2pad, skb->data, header_length);
200 skb_pull(skb, l2pad);
203 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
204 struct sk_buff *skb,
205 struct txentry_desc *txdesc)
207 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
208 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
209 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
211 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
212 return;
214 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
216 if (!test_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags))
217 return;
220 * The hardware is not able to insert a sequence number. Assign a
221 * software generated one here.
223 * This is wrong because beacons are not getting sequence
224 * numbers assigned properly.
226 * A secondary problem exists for drivers that cannot toggle
227 * sequence counting per-frame, since those will override the
228 * sequence counter given by mac80211.
230 spin_lock(&intf->seqlock);
232 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
233 intf->seqno += 0x10;
234 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
235 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
237 spin_unlock(&intf->seqlock);
241 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
242 struct sk_buff *skb,
243 struct txentry_desc *txdesc,
244 const struct rt2x00_rate *hwrate)
246 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
247 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
248 unsigned int data_length;
249 unsigned int duration;
250 unsigned int residual;
253 * Determine with what IFS priority this frame should be send.
254 * Set ifs to IFS_SIFS when the this is not the first fragment,
255 * or this fragment came after RTS/CTS.
257 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
258 txdesc->u.plcp.ifs = IFS_BACKOFF;
259 else
260 txdesc->u.plcp.ifs = IFS_SIFS;
262 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
263 data_length = skb->len + 4;
264 data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
267 * PLCP setup
268 * Length calculation depends on OFDM/CCK rate.
270 txdesc->u.plcp.signal = hwrate->plcp;
271 txdesc->u.plcp.service = 0x04;
273 if (hwrate->flags & DEV_RATE_OFDM) {
274 txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
275 txdesc->u.plcp.length_low = data_length & 0x3f;
276 } else {
278 * Convert length to microseconds.
280 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
281 duration = GET_DURATION(data_length, hwrate->bitrate);
283 if (residual != 0) {
284 duration++;
287 * Check if we need to set the Length Extension
289 if (hwrate->bitrate == 110 && residual <= 30)
290 txdesc->u.plcp.service |= 0x80;
293 txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
294 txdesc->u.plcp.length_low = duration & 0xff;
297 * When preamble is enabled we should set the
298 * preamble bit for the signal.
300 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
301 txdesc->u.plcp.signal |= 0x08;
305 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
306 struct sk_buff *skb,
307 struct txentry_desc *txdesc,
308 const struct rt2x00_rate *hwrate)
310 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
311 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
312 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
313 struct rt2x00_sta *sta_priv = NULL;
315 if (tx_info->control.sta) {
316 txdesc->u.ht.mpdu_density =
317 tx_info->control.sta->ht_cap.ampdu_density;
319 sta_priv = sta_to_rt2x00_sta(tx_info->control.sta);
320 txdesc->u.ht.wcid = sta_priv->wcid;
323 txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
326 * Only one STBC stream is supported for now.
328 if (tx_info->flags & IEEE80211_TX_CTL_STBC)
329 txdesc->u.ht.stbc = 1;
332 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
333 * mcs rate to be used
335 if (txrate->flags & IEEE80211_TX_RC_MCS) {
336 txdesc->u.ht.mcs = txrate->idx;
339 * MIMO PS should be set to 1 for STA's using dynamic SM PS
340 * when using more then one tx stream (>MCS7).
342 if (tx_info->control.sta && txdesc->u.ht.mcs > 7 &&
343 ((tx_info->control.sta->ht_cap.cap &
344 IEEE80211_HT_CAP_SM_PS) >>
345 IEEE80211_HT_CAP_SM_PS_SHIFT) ==
346 WLAN_HT_CAP_SM_PS_DYNAMIC)
347 __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
348 } else {
349 txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
350 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
351 txdesc->u.ht.mcs |= 0x08;
355 * This frame is eligible for an AMPDU, however, don't aggregate
356 * frames that are intended to probe a specific tx rate.
358 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
359 !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
360 __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
363 * Set 40Mhz mode if necessary (for legacy rates this will
364 * duplicate the frame to both channels).
366 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
367 txrate->flags & IEEE80211_TX_RC_DUP_DATA)
368 __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
369 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
370 __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
373 * Determine IFS values
374 * - Use TXOP_BACKOFF for management frames except beacons
375 * - Use TXOP_SIFS for fragment bursts
376 * - Use TXOP_HTTXOP for everything else
378 * Note: rt2800 devices won't use CTS protection (if used)
379 * for frames not transmitted with TXOP_HTTXOP
381 if (ieee80211_is_mgmt(hdr->frame_control) &&
382 !ieee80211_is_beacon(hdr->frame_control))
383 txdesc->u.ht.txop = TXOP_BACKOFF;
384 else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
385 txdesc->u.ht.txop = TXOP_SIFS;
386 else
387 txdesc->u.ht.txop = TXOP_HTTXOP;
390 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
391 struct sk_buff *skb,
392 struct txentry_desc *txdesc)
394 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
395 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
396 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
397 struct ieee80211_rate *rate;
398 const struct rt2x00_rate *hwrate = NULL;
400 memset(txdesc, 0, sizeof(*txdesc));
403 * Header and frame information.
405 txdesc->length = skb->len;
406 txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
409 * Check whether this frame is to be acked.
411 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
412 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
415 * Check if this is a RTS/CTS frame
417 if (ieee80211_is_rts(hdr->frame_control) ||
418 ieee80211_is_cts(hdr->frame_control)) {
419 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
420 if (ieee80211_is_rts(hdr->frame_control))
421 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
422 else
423 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
424 if (tx_info->control.rts_cts_rate_idx >= 0)
425 rate =
426 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
430 * Determine retry information.
432 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
433 if (txdesc->retry_limit >= rt2x00dev->long_retry)
434 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
437 * Check if more fragments are pending
439 if (ieee80211_has_morefrags(hdr->frame_control)) {
440 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
441 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
445 * Check if more frames (!= fragments) are pending
447 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
448 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
451 * Beacons and probe responses require the tsf timestamp
452 * to be inserted into the frame.
454 if (ieee80211_is_beacon(hdr->frame_control) ||
455 ieee80211_is_probe_resp(hdr->frame_control))
456 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
458 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
459 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
460 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
463 * Determine rate modulation.
465 if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
466 txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
467 else if (txrate->flags & IEEE80211_TX_RC_MCS)
468 txdesc->rate_mode = RATE_MODE_HT_MIX;
469 else {
470 rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
471 hwrate = rt2x00_get_rate(rate->hw_value);
472 if (hwrate->flags & DEV_RATE_OFDM)
473 txdesc->rate_mode = RATE_MODE_OFDM;
474 else
475 txdesc->rate_mode = RATE_MODE_CCK;
479 * Apply TX descriptor handling by components
481 rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
482 rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
484 if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags))
485 rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
486 hwrate);
487 else
488 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
489 hwrate);
492 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
493 struct txentry_desc *txdesc)
495 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
498 * This should not happen, we already checked the entry
499 * was ours. When the hardware disagrees there has been
500 * a queue corruption!
502 if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
503 rt2x00dev->ops->lib->get_entry_state(entry))) {
504 ERROR(rt2x00dev,
505 "Corrupt queue %d, accessing entry which is not ours.\n"
506 "Please file bug report to %s.\n",
507 entry->queue->qid, DRV_PROJECT);
508 return -EINVAL;
512 * Add the requested extra tx headroom in front of the skb.
514 skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
515 memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
518 * Call the driver's write_tx_data function, if it exists.
520 if (rt2x00dev->ops->lib->write_tx_data)
521 rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
524 * Map the skb to DMA.
526 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
527 rt2x00queue_map_txskb(entry);
529 return 0;
532 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
533 struct txentry_desc *txdesc)
535 struct data_queue *queue = entry->queue;
537 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
540 * All processing on the frame has been completed, this means
541 * it is now ready to be dumped to userspace through debugfs.
543 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
546 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
547 struct txentry_desc *txdesc)
550 * Check if we need to kick the queue, there are however a few rules
551 * 1) Don't kick unless this is the last in frame in a burst.
552 * When the burst flag is set, this frame is always followed
553 * by another frame which in some way are related to eachother.
554 * This is true for fragments, RTS or CTS-to-self frames.
555 * 2) Rule 1 can be broken when the available entries
556 * in the queue are less then a certain threshold.
558 if (rt2x00queue_threshold(queue) ||
559 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
560 queue->rt2x00dev->ops->lib->kick_queue(queue);
563 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
564 bool local)
566 struct ieee80211_tx_info *tx_info;
567 struct queue_entry *entry;
568 struct txentry_desc txdesc;
569 struct skb_frame_desc *skbdesc;
570 u8 rate_idx, rate_flags;
571 int ret = 0;
574 * Copy all TX descriptor information into txdesc,
575 * after that we are free to use the skb->cb array
576 * for our information.
578 rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc);
581 * All information is retrieved from the skb->cb array,
582 * now we should claim ownership of the driver part of that
583 * array, preserving the bitrate index and flags.
585 tx_info = IEEE80211_SKB_CB(skb);
586 rate_idx = tx_info->control.rates[0].idx;
587 rate_flags = tx_info->control.rates[0].flags;
588 skbdesc = get_skb_frame_desc(skb);
589 memset(skbdesc, 0, sizeof(*skbdesc));
590 skbdesc->tx_rate_idx = rate_idx;
591 skbdesc->tx_rate_flags = rate_flags;
593 if (local)
594 skbdesc->flags |= SKBDESC_NOT_MAC80211;
597 * When hardware encryption is supported, and this frame
598 * is to be encrypted, we should strip the IV/EIV data from
599 * the frame so we can provide it to the driver separately.
601 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
602 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
603 if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags))
604 rt2x00crypto_tx_copy_iv(skb, &txdesc);
605 else
606 rt2x00crypto_tx_remove_iv(skb, &txdesc);
610 * When DMA allocation is required we should guarantee to the
611 * driver that the DMA is aligned to a 4-byte boundary.
612 * However some drivers require L2 padding to pad the payload
613 * rather then the header. This could be a requirement for
614 * PCI and USB devices, while header alignment only is valid
615 * for PCI devices.
617 if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags))
618 rt2x00queue_insert_l2pad(skb, txdesc.header_length);
619 else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags))
620 rt2x00queue_align_frame(skb);
623 * That function must be called with bh disabled.
625 spin_lock(&queue->tx_lock);
627 if (unlikely(rt2x00queue_full(queue))) {
628 ERROR(queue->rt2x00dev,
629 "Dropping frame due to full tx queue %d.\n", queue->qid);
630 ret = -ENOBUFS;
631 goto out;
634 entry = rt2x00queue_get_entry(queue, Q_INDEX);
636 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
637 &entry->flags))) {
638 ERROR(queue->rt2x00dev,
639 "Arrived at non-free entry in the non-full queue %d.\n"
640 "Please file bug report to %s.\n",
641 queue->qid, DRV_PROJECT);
642 ret = -EINVAL;
643 goto out;
646 skbdesc->entry = entry;
647 entry->skb = skb;
650 * It could be possible that the queue was corrupted and this
651 * call failed. Since we always return NETDEV_TX_OK to mac80211,
652 * this frame will simply be dropped.
654 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
655 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
656 entry->skb = NULL;
657 ret = -EIO;
658 goto out;
661 set_bit(ENTRY_DATA_PENDING, &entry->flags);
663 rt2x00queue_index_inc(entry, Q_INDEX);
664 rt2x00queue_write_tx_descriptor(entry, &txdesc);
665 rt2x00queue_kick_tx_queue(queue, &txdesc);
667 out:
668 spin_unlock(&queue->tx_lock);
669 return ret;
672 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
673 struct ieee80211_vif *vif)
675 struct rt2x00_intf *intf = vif_to_intf(vif);
677 if (unlikely(!intf->beacon))
678 return -ENOBUFS;
680 mutex_lock(&intf->beacon_skb_mutex);
683 * Clean up the beacon skb.
685 rt2x00queue_free_skb(intf->beacon);
688 * Clear beacon (single bssid devices don't need to clear the beacon
689 * since the beacon queue will get stopped anyway).
691 if (rt2x00dev->ops->lib->clear_beacon)
692 rt2x00dev->ops->lib->clear_beacon(intf->beacon);
694 mutex_unlock(&intf->beacon_skb_mutex);
696 return 0;
699 int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
700 struct ieee80211_vif *vif)
702 struct rt2x00_intf *intf = vif_to_intf(vif);
703 struct skb_frame_desc *skbdesc;
704 struct txentry_desc txdesc;
706 if (unlikely(!intf->beacon))
707 return -ENOBUFS;
710 * Clean up the beacon skb.
712 rt2x00queue_free_skb(intf->beacon);
714 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
715 if (!intf->beacon->skb)
716 return -ENOMEM;
719 * Copy all TX descriptor information into txdesc,
720 * after that we are free to use the skb->cb array
721 * for our information.
723 rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc);
726 * Fill in skb descriptor
728 skbdesc = get_skb_frame_desc(intf->beacon->skb);
729 memset(skbdesc, 0, sizeof(*skbdesc));
730 skbdesc->entry = intf->beacon;
733 * Send beacon to hardware.
735 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
737 return 0;
741 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
742 struct ieee80211_vif *vif)
744 struct rt2x00_intf *intf = vif_to_intf(vif);
745 int ret;
747 mutex_lock(&intf->beacon_skb_mutex);
748 ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
749 mutex_unlock(&intf->beacon_skb_mutex);
751 return ret;
754 bool rt2x00queue_for_each_entry(struct data_queue *queue,
755 enum queue_index start,
756 enum queue_index end,
757 void *data,
758 bool (*fn)(struct queue_entry *entry,
759 void *data))
761 unsigned long irqflags;
762 unsigned int index_start;
763 unsigned int index_end;
764 unsigned int i;
766 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
767 ERROR(queue->rt2x00dev,
768 "Entry requested from invalid index range (%d - %d)\n",
769 start, end);
770 return true;
774 * Only protect the range we are going to loop over,
775 * if during our loop a extra entry is set to pending
776 * it should not be kicked during this run, since it
777 * is part of another TX operation.
779 spin_lock_irqsave(&queue->index_lock, irqflags);
780 index_start = queue->index[start];
781 index_end = queue->index[end];
782 spin_unlock_irqrestore(&queue->index_lock, irqflags);
785 * Start from the TX done pointer, this guarantees that we will
786 * send out all frames in the correct order.
788 if (index_start < index_end) {
789 for (i = index_start; i < index_end; i++) {
790 if (fn(&queue->entries[i], data))
791 return true;
793 } else {
794 for (i = index_start; i < queue->limit; i++) {
795 if (fn(&queue->entries[i], data))
796 return true;
799 for (i = 0; i < index_end; i++) {
800 if (fn(&queue->entries[i], data))
801 return true;
805 return false;
807 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
809 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
810 enum queue_index index)
812 struct queue_entry *entry;
813 unsigned long irqflags;
815 if (unlikely(index >= Q_INDEX_MAX)) {
816 ERROR(queue->rt2x00dev,
817 "Entry requested from invalid index type (%d)\n", index);
818 return NULL;
821 spin_lock_irqsave(&queue->index_lock, irqflags);
823 entry = &queue->entries[queue->index[index]];
825 spin_unlock_irqrestore(&queue->index_lock, irqflags);
827 return entry;
829 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
831 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
833 struct data_queue *queue = entry->queue;
834 unsigned long irqflags;
836 if (unlikely(index >= Q_INDEX_MAX)) {
837 ERROR(queue->rt2x00dev,
838 "Index change on invalid index type (%d)\n", index);
839 return;
842 spin_lock_irqsave(&queue->index_lock, irqflags);
844 queue->index[index]++;
845 if (queue->index[index] >= queue->limit)
846 queue->index[index] = 0;
848 entry->last_action = jiffies;
850 if (index == Q_INDEX) {
851 queue->length++;
852 } else if (index == Q_INDEX_DONE) {
853 queue->length--;
854 queue->count++;
857 spin_unlock_irqrestore(&queue->index_lock, irqflags);
860 void rt2x00queue_pause_queue(struct data_queue *queue)
862 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
863 !test_bit(QUEUE_STARTED, &queue->flags) ||
864 test_and_set_bit(QUEUE_PAUSED, &queue->flags))
865 return;
867 switch (queue->qid) {
868 case QID_AC_VO:
869 case QID_AC_VI:
870 case QID_AC_BE:
871 case QID_AC_BK:
873 * For TX queues, we have to disable the queue
874 * inside mac80211.
876 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
877 break;
878 default:
879 break;
882 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
884 void rt2x00queue_unpause_queue(struct data_queue *queue)
886 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
887 !test_bit(QUEUE_STARTED, &queue->flags) ||
888 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
889 return;
891 switch (queue->qid) {
892 case QID_AC_VO:
893 case QID_AC_VI:
894 case QID_AC_BE:
895 case QID_AC_BK:
897 * For TX queues, we have to enable the queue
898 * inside mac80211.
900 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
901 break;
902 case QID_RX:
904 * For RX we need to kick the queue now in order to
905 * receive frames.
907 queue->rt2x00dev->ops->lib->kick_queue(queue);
908 default:
909 break;
912 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
914 void rt2x00queue_start_queue(struct data_queue *queue)
916 mutex_lock(&queue->status_lock);
918 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
919 test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
920 mutex_unlock(&queue->status_lock);
921 return;
924 set_bit(QUEUE_PAUSED, &queue->flags);
926 queue->rt2x00dev->ops->lib->start_queue(queue);
928 rt2x00queue_unpause_queue(queue);
930 mutex_unlock(&queue->status_lock);
932 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
934 void rt2x00queue_stop_queue(struct data_queue *queue)
936 mutex_lock(&queue->status_lock);
938 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
939 mutex_unlock(&queue->status_lock);
940 return;
943 rt2x00queue_pause_queue(queue);
945 queue->rt2x00dev->ops->lib->stop_queue(queue);
947 mutex_unlock(&queue->status_lock);
949 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
951 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
953 bool started;
954 bool tx_queue =
955 (queue->qid == QID_AC_VO) ||
956 (queue->qid == QID_AC_VI) ||
957 (queue->qid == QID_AC_BE) ||
958 (queue->qid == QID_AC_BK);
960 mutex_lock(&queue->status_lock);
963 * If the queue has been started, we must stop it temporarily
964 * to prevent any new frames to be queued on the device. If
965 * we are not dropping the pending frames, the queue must
966 * only be stopped in the software and not the hardware,
967 * otherwise the queue will never become empty on its own.
969 started = test_bit(QUEUE_STARTED, &queue->flags);
970 if (started) {
972 * Pause the queue
974 rt2x00queue_pause_queue(queue);
977 * If we are not supposed to drop any pending
978 * frames, this means we must force a start (=kick)
979 * to the queue to make sure the hardware will
980 * start transmitting.
982 if (!drop && tx_queue)
983 queue->rt2x00dev->ops->lib->kick_queue(queue);
987 * Check if driver supports flushing, if that is the case we can
988 * defer the flushing to the driver. Otherwise we must use the
989 * alternative which just waits for the queue to become empty.
991 if (likely(queue->rt2x00dev->ops->lib->flush_queue))
992 queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
995 * The queue flush has failed...
997 if (unlikely(!rt2x00queue_empty(queue)))
998 WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
1001 * Restore the queue to the previous status
1003 if (started)
1004 rt2x00queue_unpause_queue(queue);
1006 mutex_unlock(&queue->status_lock);
1008 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1010 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1012 struct data_queue *queue;
1015 * rt2x00queue_start_queue will call ieee80211_wake_queue
1016 * for each queue after is has been properly initialized.
1018 tx_queue_for_each(rt2x00dev, queue)
1019 rt2x00queue_start_queue(queue);
1021 rt2x00queue_start_queue(rt2x00dev->rx);
1023 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1025 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1027 struct data_queue *queue;
1030 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1031 * as well, but we are completely shutting doing everything
1032 * now, so it is much safer to stop all TX queues at once,
1033 * and use rt2x00queue_stop_queue for cleaning up.
1035 ieee80211_stop_queues(rt2x00dev->hw);
1037 tx_queue_for_each(rt2x00dev, queue)
1038 rt2x00queue_stop_queue(queue);
1040 rt2x00queue_stop_queue(rt2x00dev->rx);
1042 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1044 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1046 struct data_queue *queue;
1048 tx_queue_for_each(rt2x00dev, queue)
1049 rt2x00queue_flush_queue(queue, drop);
1051 rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1053 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1055 static void rt2x00queue_reset(struct data_queue *queue)
1057 unsigned long irqflags;
1058 unsigned int i;
1060 spin_lock_irqsave(&queue->index_lock, irqflags);
1062 queue->count = 0;
1063 queue->length = 0;
1065 for (i = 0; i < Q_INDEX_MAX; i++)
1066 queue->index[i] = 0;
1068 spin_unlock_irqrestore(&queue->index_lock, irqflags);
1071 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1073 struct data_queue *queue;
1074 unsigned int i;
1076 queue_for_each(rt2x00dev, queue) {
1077 rt2x00queue_reset(queue);
1079 for (i = 0; i < queue->limit; i++)
1080 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1084 static int rt2x00queue_alloc_entries(struct data_queue *queue,
1085 const struct data_queue_desc *qdesc)
1087 struct queue_entry *entries;
1088 unsigned int entry_size;
1089 unsigned int i;
1091 rt2x00queue_reset(queue);
1093 queue->limit = qdesc->entry_num;
1094 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
1095 queue->data_size = qdesc->data_size;
1096 queue->desc_size = qdesc->desc_size;
1099 * Allocate all queue entries.
1101 entry_size = sizeof(*entries) + qdesc->priv_size;
1102 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1103 if (!entries)
1104 return -ENOMEM;
1106 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1107 (((char *)(__base)) + ((__limit) * (__esize)) + \
1108 ((__index) * (__psize)))
1110 for (i = 0; i < queue->limit; i++) {
1111 entries[i].flags = 0;
1112 entries[i].queue = queue;
1113 entries[i].skb = NULL;
1114 entries[i].entry_idx = i;
1115 entries[i].priv_data =
1116 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1117 sizeof(*entries), qdesc->priv_size);
1120 #undef QUEUE_ENTRY_PRIV_OFFSET
1122 queue->entries = entries;
1124 return 0;
1127 static void rt2x00queue_free_skbs(struct data_queue *queue)
1129 unsigned int i;
1131 if (!queue->entries)
1132 return;
1134 for (i = 0; i < queue->limit; i++) {
1135 rt2x00queue_free_skb(&queue->entries[i]);
1139 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1141 unsigned int i;
1142 struct sk_buff *skb;
1144 for (i = 0; i < queue->limit; i++) {
1145 skb = rt2x00queue_alloc_rxskb(&queue->entries[i]);
1146 if (!skb)
1147 return -ENOMEM;
1148 queue->entries[i].skb = skb;
1151 return 0;
1154 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1156 struct data_queue *queue;
1157 int status;
1159 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
1160 if (status)
1161 goto exit;
1163 tx_queue_for_each(rt2x00dev, queue) {
1164 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
1165 if (status)
1166 goto exit;
1169 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
1170 if (status)
1171 goto exit;
1173 if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) {
1174 status = rt2x00queue_alloc_entries(rt2x00dev->atim,
1175 rt2x00dev->ops->atim);
1176 if (status)
1177 goto exit;
1180 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1181 if (status)
1182 goto exit;
1184 return 0;
1186 exit:
1187 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
1189 rt2x00queue_uninitialize(rt2x00dev);
1191 return status;
1194 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1196 struct data_queue *queue;
1198 rt2x00queue_free_skbs(rt2x00dev->rx);
1200 queue_for_each(rt2x00dev, queue) {
1201 kfree(queue->entries);
1202 queue->entries = NULL;
1206 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1207 struct data_queue *queue, enum data_queue_qid qid)
1209 mutex_init(&queue->status_lock);
1210 spin_lock_init(&queue->tx_lock);
1211 spin_lock_init(&queue->index_lock);
1213 queue->rt2x00dev = rt2x00dev;
1214 queue->qid = qid;
1215 queue->txop = 0;
1216 queue->aifs = 2;
1217 queue->cw_min = 5;
1218 queue->cw_max = 10;
1221 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1223 struct data_queue *queue;
1224 enum data_queue_qid qid;
1225 unsigned int req_atim =
1226 !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1229 * We need the following queues:
1230 * RX: 1
1231 * TX: ops->tx_queues
1232 * Beacon: 1
1233 * Atim: 1 (if required)
1235 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1237 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1238 if (!queue) {
1239 ERROR(rt2x00dev, "Queue allocation failed.\n");
1240 return -ENOMEM;
1244 * Initialize pointers
1246 rt2x00dev->rx = queue;
1247 rt2x00dev->tx = &queue[1];
1248 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1249 rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1252 * Initialize queue parameters.
1253 * RX: qid = QID_RX
1254 * TX: qid = QID_AC_VO + index
1255 * TX: cw_min: 2^5 = 32.
1256 * TX: cw_max: 2^10 = 1024.
1257 * BCN: qid = QID_BEACON
1258 * ATIM: qid = QID_ATIM
1260 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1262 qid = QID_AC_VO;
1263 tx_queue_for_each(rt2x00dev, queue)
1264 rt2x00queue_init(rt2x00dev, queue, qid++);
1266 rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1267 if (req_atim)
1268 rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1270 return 0;
1273 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1275 kfree(rt2x00dev->rx);
1276 rt2x00dev->rx = NULL;
1277 rt2x00dev->tx = NULL;
1278 rt2x00dev->bcn = NULL;