spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / net / wireless / rtlwifi / efuse.c
blobed1058b7158700c6eb65cc1f373472577b85ab1f
1 /******************************************************************************
3 * Copyright(c) 2009-2010 Realtek Corporation.
5 * Tmis program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * tmis program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
18 * Tme full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
26 * Larry Finger <Larry.Finger@lwfinger.net>
28 *****************************************************************************/
30 #include <linux/export.h>
31 #include "wifi.h"
32 #include "efuse.h"
34 static const u8 MAX_PGPKT_SIZE = 9;
35 static const u8 PGPKT_DATA_SIZE = 8;
36 static const int EFUSE_MAX_SIZE = 512;
38 static const u8 EFUSE_OOB_PROTECT_BYTES = 15;
40 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
41 {0, 0, 0, 2},
42 {0, 1, 0, 2},
43 {0, 2, 0, 2},
44 {1, 0, 0, 1},
45 {1, 0, 1, 1},
46 {1, 1, 0, 1},
47 {1, 1, 1, 3},
48 {1, 3, 0, 17},
49 {3, 3, 1, 48},
50 {10, 0, 0, 6},
51 {10, 3, 0, 1},
52 {10, 3, 1, 1},
53 {11, 0, 0, 28}
56 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
57 u8 *value);
58 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
59 u16 *value);
60 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
61 u32 *value);
62 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
63 u8 value);
64 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
65 u16 value);
66 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
67 u32 value);
68 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
69 u8 *data);
70 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
71 u8 data);
72 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
73 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
74 u8 *data);
75 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
76 u8 word_en, u8 *data);
77 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
78 u8 *targetdata);
79 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
80 u16 efuse_addr, u8 word_en, u8 *data);
81 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
82 u8 pwrstate);
83 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
84 static u8 efuse_calculate_word_cnts(u8 word_en);
86 void efuse_initialize(struct ieee80211_hw *hw)
88 struct rtl_priv *rtlpriv = rtl_priv(hw);
89 u8 bytetemp;
90 u8 temp;
92 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
93 temp = bytetemp | 0x20;
94 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
96 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
97 temp = bytetemp & 0xFE;
98 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
100 bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
101 temp = bytetemp | 0x80;
102 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
104 rtl_write_byte(rtlpriv, 0x2F8, 0x3);
106 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
110 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
112 struct rtl_priv *rtlpriv = rtl_priv(hw);
113 u8 data;
114 u8 bytetemp;
115 u8 temp;
116 u32 k = 0;
117 const u32 efuse_len =
118 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
120 if (address < efuse_len) {
121 temp = address & 0xFF;
122 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
123 temp);
124 bytetemp = rtl_read_byte(rtlpriv,
125 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
126 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
127 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
128 temp);
130 bytetemp = rtl_read_byte(rtlpriv,
131 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
132 temp = bytetemp & 0x7F;
133 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
134 temp);
136 bytetemp = rtl_read_byte(rtlpriv,
137 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
138 while (!(bytetemp & 0x80)) {
139 bytetemp = rtl_read_byte(rtlpriv,
140 rtlpriv->cfg->
141 maps[EFUSE_CTRL] + 3);
142 k++;
143 if (k == 1000) {
144 k = 0;
145 break;
148 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
149 return data;
150 } else
151 return 0xFF;
154 EXPORT_SYMBOL(efuse_read_1byte);
156 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
158 struct rtl_priv *rtlpriv = rtl_priv(hw);
159 u8 bytetemp;
160 u8 temp;
161 u32 k = 0;
162 const u32 efuse_len =
163 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
165 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
166 ("Addr=%x Data =%x\n", address, value));
168 if (address < efuse_len) {
169 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
171 temp = address & 0xFF;
172 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
173 temp);
174 bytetemp = rtl_read_byte(rtlpriv,
175 rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
177 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
178 rtl_write_byte(rtlpriv,
179 rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
181 bytetemp = rtl_read_byte(rtlpriv,
182 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
183 temp = bytetemp | 0x80;
184 rtl_write_byte(rtlpriv,
185 rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
187 bytetemp = rtl_read_byte(rtlpriv,
188 rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
190 while (bytetemp & 0x80) {
191 bytetemp = rtl_read_byte(rtlpriv,
192 rtlpriv->cfg->
193 maps[EFUSE_CTRL] + 3);
194 k++;
195 if (k == 100) {
196 k = 0;
197 break;
204 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
206 struct rtl_priv *rtlpriv = rtl_priv(hw);
207 u32 value32;
208 u8 readbyte;
209 u16 retry;
211 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
212 (_offset & 0xff));
213 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
214 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
215 ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
217 readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
218 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
219 (readbyte & 0x7f));
221 retry = 0;
222 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
223 while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
224 value32 = rtl_read_dword(rtlpriv,
225 rtlpriv->cfg->maps[EFUSE_CTRL]);
226 retry++;
229 udelay(50);
230 value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
232 *pbuf = (u8) (value32 & 0xff);
235 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
237 struct rtl_priv *rtlpriv = rtl_priv(hw);
238 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
239 u8 *efuse_tbl;
240 u8 rtemp8[1];
241 u16 efuse_addr = 0;
242 u8 offset, wren;
243 u16 i;
244 u16 j;
245 const u16 efuse_max_section =
246 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
247 const u32 efuse_len =
248 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
249 u16 **efuse_word;
250 u16 efuse_utilized = 0;
251 u8 efuse_usage;
253 if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
254 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
255 ("read_efuse(): Invalid offset(%#x) with read "
256 "bytes(%#x)!!\n", _offset, _size_byte));
257 return;
260 /* allocate memory for efuse_tbl and efuse_word */
261 efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
262 sizeof(u8), GFP_ATOMIC);
263 if (!efuse_tbl)
264 return;
265 efuse_word = kmalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
266 if (!efuse_word)
267 goto done;
268 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
269 efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
270 GFP_ATOMIC);
271 if (!efuse_word[i])
272 goto done;
275 for (i = 0; i < efuse_max_section; i++)
276 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
277 efuse_word[j][i] = 0xFFFF;
279 read_efuse_byte(hw, efuse_addr, rtemp8);
280 if (*rtemp8 != 0xFF) {
281 efuse_utilized++;
282 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
283 ("Addr=%d\n", efuse_addr));
284 efuse_addr++;
287 while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
288 offset = ((*rtemp8 >> 4) & 0x0f);
290 if (offset < efuse_max_section) {
291 wren = (*rtemp8 & 0x0f);
292 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
293 ("offset-%d Worden=%x\n", offset, wren));
295 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
296 if (!(wren & 0x01)) {
297 RTPRINT(rtlpriv, FEEPROM,
298 EFUSE_READ_ALL, ("Addr=%d\n",
299 efuse_addr));
301 read_efuse_byte(hw, efuse_addr, rtemp8);
302 efuse_addr++;
303 efuse_utilized++;
304 efuse_word[i][offset] =
305 (*rtemp8 & 0xff);
307 if (efuse_addr >= efuse_len)
308 break;
310 RTPRINT(rtlpriv, FEEPROM,
311 EFUSE_READ_ALL, ("Addr=%d\n",
312 efuse_addr));
314 read_efuse_byte(hw, efuse_addr, rtemp8);
315 efuse_addr++;
316 efuse_utilized++;
317 efuse_word[i][offset] |=
318 (((u16)*rtemp8 << 8) & 0xff00);
320 if (efuse_addr >= efuse_len)
321 break;
324 wren >>= 1;
328 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
329 ("Addr=%d\n", efuse_addr));
330 read_efuse_byte(hw, efuse_addr, rtemp8);
331 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
332 efuse_utilized++;
333 efuse_addr++;
337 for (i = 0; i < efuse_max_section; i++) {
338 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
339 efuse_tbl[(i * 8) + (j * 2)] =
340 (efuse_word[j][i] & 0xff);
341 efuse_tbl[(i * 8) + ((j * 2) + 1)] =
342 ((efuse_word[j][i] >> 8) & 0xff);
346 for (i = 0; i < _size_byte; i++)
347 pbuf[i] = efuse_tbl[_offset + i];
349 rtlefuse->efuse_usedbytes = efuse_utilized;
350 efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
351 rtlefuse->efuse_usedpercentage = efuse_usage;
352 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
353 (u8 *)&efuse_utilized);
354 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
355 (u8 *)&efuse_usage);
356 done:
357 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
358 kfree(efuse_word[i]);
359 kfree(efuse_word);
360 kfree(efuse_tbl);
363 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
365 struct rtl_priv *rtlpriv = rtl_priv(hw);
366 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
367 u8 section_idx, i, Base;
368 u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
369 bool wordchanged, result = true;
371 for (section_idx = 0; section_idx < 16; section_idx++) {
372 Base = section_idx * 8;
373 wordchanged = false;
375 for (i = 0; i < 8; i = i + 2) {
376 if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
377 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
378 (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
379 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
380 1])) {
381 words_need++;
382 wordchanged = true;
386 if (wordchanged)
387 hdr_num++;
390 totalbytes = hdr_num + words_need * 2;
391 efuse_used = rtlefuse->efuse_usedbytes;
393 if ((totalbytes + efuse_used) >=
394 (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))
395 result = false;
397 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
398 ("efuse_shadow_update_chk(): totalbytes(%#x), "
399 "hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
400 totalbytes, hdr_num, words_need, efuse_used));
402 return result;
405 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
406 u16 offset, u32 *value)
408 if (type == 1)
409 efuse_shadow_read_1byte(hw, offset, (u8 *) value);
410 else if (type == 2)
411 efuse_shadow_read_2byte(hw, offset, (u16 *) value);
412 else if (type == 4)
413 efuse_shadow_read_4byte(hw, offset, (u32 *) value);
417 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
418 u32 value)
420 if (type == 1)
421 efuse_shadow_write_1byte(hw, offset, (u8) value);
422 else if (type == 2)
423 efuse_shadow_write_2byte(hw, offset, (u16) value);
424 else if (type == 4)
425 efuse_shadow_write_4byte(hw, offset, value);
429 bool efuse_shadow_update(struct ieee80211_hw *hw)
431 struct rtl_priv *rtlpriv = rtl_priv(hw);
432 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
433 u16 i, offset, base;
434 u8 word_en = 0x0F;
435 u8 first_pg = false;
437 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("--->\n"));
439 if (!efuse_shadow_update_chk(hw)) {
440 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
441 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
442 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
443 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
445 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
446 ("<---efuse out of capacity!!\n"));
447 return false;
449 efuse_power_switch(hw, true, true);
451 for (offset = 0; offset < 16; offset++) {
453 word_en = 0x0F;
454 base = offset * 8;
456 for (i = 0; i < 8; i++) {
457 if (first_pg) {
459 word_en &= ~(BIT(i / 2));
461 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
462 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
463 } else {
465 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
466 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
467 word_en &= ~(BIT(i / 2));
469 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
470 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
475 if (word_en != 0x0F) {
476 u8 tmpdata[8];
477 memcpy(tmpdata,
478 &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
480 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
481 ("U-efuse\n"), tmpdata, 8);
483 if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
484 tmpdata)) {
485 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
486 ("PG section(%#x) fail!!\n", offset));
487 break;
493 efuse_power_switch(hw, true, false);
494 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
496 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
497 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
498 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
500 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("<---\n"));
501 return true;
504 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
506 struct rtl_priv *rtlpriv = rtl_priv(hw);
507 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
509 if (rtlefuse->autoload_failflag)
510 memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
511 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
512 else
513 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
515 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
516 &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
517 rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
520 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
522 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
524 u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
526 efuse_power_switch(hw, true, true);
528 efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
530 efuse_power_switch(hw, true, false);
534 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
538 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
539 u16 offset, u8 *value)
541 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
542 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
545 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
546 u16 offset, u16 *value)
548 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
550 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
551 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
555 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
556 u16 offset, u32 *value)
558 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
560 *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
561 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
562 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
563 *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
566 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
567 u16 offset, u8 value)
569 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
571 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
574 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
575 u16 offset, u16 value)
577 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
579 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
580 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
584 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
585 u16 offset, u32 value)
587 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
589 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
590 (u8) (value & 0x000000FF);
591 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
592 (u8) ((value >> 8) & 0x0000FF);
593 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
594 (u8) ((value >> 16) & 0x00FF);
595 rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
596 (u8) ((value >> 24) & 0xFF);
600 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
602 struct rtl_priv *rtlpriv = rtl_priv(hw);
603 u8 tmpidx = 0;
604 int result;
606 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
607 (u8) (addr & 0xff));
608 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
609 ((u8) ((addr >> 8) & 0x03)) |
610 (rtl_read_byte(rtlpriv,
611 rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
612 0xFC));
614 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
616 while (!(0x80 & rtl_read_byte(rtlpriv,
617 rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
618 && (tmpidx < 100)) {
619 tmpidx++;
622 if (tmpidx < 100) {
623 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
624 result = true;
625 } else {
626 *data = 0xff;
627 result = false;
629 return result;
632 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
634 struct rtl_priv *rtlpriv = rtl_priv(hw);
635 u8 tmpidx = 0;
637 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
638 ("Addr = %x Data=%x\n", addr, data));
640 rtl_write_byte(rtlpriv,
641 rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
642 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
643 (rtl_read_byte(rtlpriv,
644 rtlpriv->cfg->maps[EFUSE_CTRL] +
645 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
647 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
648 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
650 while ((0x80 & rtl_read_byte(rtlpriv,
651 rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
652 && (tmpidx < 100)) {
653 tmpidx++;
656 if (tmpidx < 100)
657 return true;
659 return false;
662 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
664 struct rtl_priv *rtlpriv = rtl_priv(hw);
665 efuse_power_switch(hw, false, true);
666 read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
667 efuse_power_switch(hw, false, false);
670 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
671 u8 efuse_data, u8 offset, u8 *tmpdata,
672 u8 *readstate)
674 bool dataempty = true;
675 u8 hoffset;
676 u8 tmpidx;
677 u8 hworden;
678 u8 word_cnts;
680 hoffset = (efuse_data >> 4) & 0x0F;
681 hworden = efuse_data & 0x0F;
682 word_cnts = efuse_calculate_word_cnts(hworden);
684 if (hoffset == offset) {
685 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
686 if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
687 &efuse_data)) {
688 tmpdata[tmpidx] = efuse_data;
689 if (efuse_data != 0xff)
690 dataempty = true;
694 if (dataempty) {
695 *readstate = PG_STATE_DATA;
696 } else {
697 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
698 *readstate = PG_STATE_HEADER;
701 } else {
702 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
703 *readstate = PG_STATE_HEADER;
707 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
709 u8 readstate = PG_STATE_HEADER;
710 bool continual = true;
711 u8 efuse_data, word_cnts = 0;
712 u16 efuse_addr = 0;
713 u8 tmpdata[8];
715 if (data == NULL)
716 return false;
717 if (offset > 15)
718 return false;
720 memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
721 memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
723 while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
724 if (readstate & PG_STATE_HEADER) {
725 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
726 && (efuse_data != 0xFF))
727 efuse_read_data_case1(hw, &efuse_addr,
728 efuse_data,
729 offset, tmpdata,
730 &readstate);
731 else
732 continual = false;
733 } else if (readstate & PG_STATE_DATA) {
734 efuse_word_enable_data_read(0, tmpdata, data);
735 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
736 readstate = PG_STATE_HEADER;
741 if ((data[0] == 0xff) && (data[1] == 0xff) &&
742 (data[2] == 0xff) && (data[3] == 0xff) &&
743 (data[4] == 0xff) && (data[5] == 0xff) &&
744 (data[6] == 0xff) && (data[7] == 0xff))
745 return false;
746 else
747 return true;
751 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
752 u8 efuse_data, u8 offset, int *continual,
753 u8 *write_state, struct pgpkt_struct *target_pkt,
754 int *repeat_times, int *result, u8 word_en)
756 struct rtl_priv *rtlpriv = rtl_priv(hw);
757 struct pgpkt_struct tmp_pkt;
758 bool dataempty = true;
759 u8 originaldata[8 * sizeof(u8)];
760 u8 badworden = 0x0F;
761 u8 match_word_en, tmp_word_en;
762 u8 tmpindex;
763 u8 tmp_header = efuse_data;
764 u8 tmp_word_cnts;
766 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
767 tmp_pkt.word_en = tmp_header & 0x0F;
768 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
770 if (tmp_pkt.offset != target_pkt->offset) {
771 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
772 *write_state = PG_STATE_HEADER;
773 } else {
774 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
775 u16 address = *efuse_addr + 1 + tmpindex;
776 if (efuse_one_byte_read(hw, address,
777 &efuse_data) && (efuse_data != 0xFF))
778 dataempty = false;
781 if (dataempty == false) {
782 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
783 *write_state = PG_STATE_HEADER;
784 } else {
785 match_word_en = 0x0F;
786 if (!((target_pkt->word_en & BIT(0)) |
787 (tmp_pkt.word_en & BIT(0))))
788 match_word_en &= (~BIT(0));
790 if (!((target_pkt->word_en & BIT(1)) |
791 (tmp_pkt.word_en & BIT(1))))
792 match_word_en &= (~BIT(1));
794 if (!((target_pkt->word_en & BIT(2)) |
795 (tmp_pkt.word_en & BIT(2))))
796 match_word_en &= (~BIT(2));
798 if (!((target_pkt->word_en & BIT(3)) |
799 (tmp_pkt.word_en & BIT(3))))
800 match_word_en &= (~BIT(3));
802 if ((match_word_en & 0x0F) != 0x0F) {
803 badworden = efuse_word_enable_data_write(
804 hw, *efuse_addr + 1,
805 tmp_pkt.word_en,
806 target_pkt->data);
808 if (0x0F != (badworden & 0x0F)) {
809 u8 reorg_offset = offset;
810 u8 reorg_worden = badworden;
811 efuse_pg_packet_write(hw, reorg_offset,
812 reorg_worden,
813 originaldata);
816 tmp_word_en = 0x0F;
817 if ((target_pkt->word_en & BIT(0)) ^
818 (match_word_en & BIT(0)))
819 tmp_word_en &= (~BIT(0));
821 if ((target_pkt->word_en & BIT(1)) ^
822 (match_word_en & BIT(1)))
823 tmp_word_en &= (~BIT(1));
825 if ((target_pkt->word_en & BIT(2)) ^
826 (match_word_en & BIT(2)))
827 tmp_word_en &= (~BIT(2));
829 if ((target_pkt->word_en & BIT(3)) ^
830 (match_word_en & BIT(3)))
831 tmp_word_en &= (~BIT(3));
833 if ((tmp_word_en & 0x0F) != 0x0F) {
834 *efuse_addr = efuse_get_current_size(hw);
835 target_pkt->offset = offset;
836 target_pkt->word_en = tmp_word_en;
837 } else {
838 *continual = false;
840 *write_state = PG_STATE_HEADER;
841 *repeat_times += 1;
842 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
843 *continual = false;
844 *result = false;
846 } else {
847 *efuse_addr += (2 * tmp_word_cnts) + 1;
848 target_pkt->offset = offset;
849 target_pkt->word_en = word_en;
850 *write_state = PG_STATE_HEADER;
854 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse PG_STATE_HEADER-1\n"));
857 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
858 int *continual, u8 *write_state,
859 struct pgpkt_struct target_pkt,
860 int *repeat_times, int *result)
862 struct rtl_priv *rtlpriv = rtl_priv(hw);
863 struct pgpkt_struct tmp_pkt;
864 u8 pg_header;
865 u8 tmp_header;
866 u8 originaldata[8 * sizeof(u8)];
867 u8 tmp_word_cnts;
868 u8 badworden = 0x0F;
870 pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
871 efuse_one_byte_write(hw, *efuse_addr, pg_header);
872 efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
874 if (tmp_header == pg_header) {
875 *write_state = PG_STATE_DATA;
876 } else if (tmp_header == 0xFF) {
877 *write_state = PG_STATE_HEADER;
878 *repeat_times += 1;
879 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
880 *continual = false;
881 *result = false;
883 } else {
884 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
885 tmp_pkt.word_en = tmp_header & 0x0F;
887 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
889 memset(originaldata, 0xff, 8 * sizeof(u8));
891 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
892 badworden = efuse_word_enable_data_write(hw,
893 *efuse_addr + 1, tmp_pkt.word_en,
894 originaldata);
896 if (0x0F != (badworden & 0x0F)) {
897 u8 reorg_offset = tmp_pkt.offset;
898 u8 reorg_worden = badworden;
899 efuse_pg_packet_write(hw, reorg_offset,
900 reorg_worden,
901 originaldata);
902 *efuse_addr = efuse_get_current_size(hw);
903 } else {
904 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
905 + 1;
907 } else {
908 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
911 *write_state = PG_STATE_HEADER;
912 *repeat_times += 1;
913 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
914 *continual = false;
915 *result = false;
918 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
919 ("efuse PG_STATE_HEADER-2\n"));
923 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
924 u8 offset, u8 word_en, u8 *data)
926 struct rtl_priv *rtlpriv = rtl_priv(hw);
927 struct pgpkt_struct target_pkt;
928 u8 write_state = PG_STATE_HEADER;
929 int continual = true, result = true;
930 u16 efuse_addr = 0;
931 u8 efuse_data;
932 u8 target_word_cnts = 0;
933 u8 badworden = 0x0F;
934 static int repeat_times;
936 if (efuse_get_current_size(hw) >=
937 (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
938 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
939 ("efuse_pg_packet_write error\n"));
940 return false;
943 target_pkt.offset = offset;
944 target_pkt.word_en = word_en;
946 memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
948 efuse_word_enable_data_read(word_en, data, target_pkt.data);
949 target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
951 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse Power ON\n"));
953 while (continual && (efuse_addr <
954 (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))) {
956 if (write_state == PG_STATE_HEADER) {
957 badworden = 0x0F;
958 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
959 ("efuse PG_STATE_HEADER\n"));
961 if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
962 (efuse_data != 0xFF))
963 efuse_write_data_case1(hw, &efuse_addr,
964 efuse_data, offset,
965 &continual,
966 &write_state, &target_pkt,
967 &repeat_times, &result,
968 word_en);
969 else
970 efuse_write_data_case2(hw, &efuse_addr,
971 &continual,
972 &write_state,
973 target_pkt,
974 &repeat_times,
975 &result);
977 } else if (write_state == PG_STATE_DATA) {
978 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
979 ("efuse PG_STATE_DATA\n"));
980 badworden =
981 efuse_word_enable_data_write(hw, efuse_addr + 1,
982 target_pkt.word_en,
983 target_pkt.data);
985 if ((badworden & 0x0F) == 0x0F) {
986 continual = false;
987 } else {
988 efuse_addr += (2 * target_word_cnts) + 1;
990 target_pkt.offset = offset;
991 target_pkt.word_en = badworden;
992 target_word_cnts =
993 efuse_calculate_word_cnts(target_pkt.
994 word_en);
995 write_state = PG_STATE_HEADER;
996 repeat_times++;
997 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
998 continual = false;
999 result = false;
1001 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1002 ("efuse PG_STATE_HEADER-3\n"));
1007 if (efuse_addr >= (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
1008 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1009 ("efuse_addr(%#x) Out of size!!\n", efuse_addr));
1012 return true;
1015 static void efuse_word_enable_data_read(u8 word_en,
1016 u8 *sourdata, u8 *targetdata)
1018 if (!(word_en & BIT(0))) {
1019 targetdata[0] = sourdata[0];
1020 targetdata[1] = sourdata[1];
1023 if (!(word_en & BIT(1))) {
1024 targetdata[2] = sourdata[2];
1025 targetdata[3] = sourdata[3];
1028 if (!(word_en & BIT(2))) {
1029 targetdata[4] = sourdata[4];
1030 targetdata[5] = sourdata[5];
1033 if (!(word_en & BIT(3))) {
1034 targetdata[6] = sourdata[6];
1035 targetdata[7] = sourdata[7];
1039 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
1040 u16 efuse_addr, u8 word_en, u8 *data)
1042 struct rtl_priv *rtlpriv = rtl_priv(hw);
1043 u16 tmpaddr;
1044 u16 start_addr = efuse_addr;
1045 u8 badworden = 0x0F;
1046 u8 tmpdata[8];
1048 memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1049 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1050 ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr));
1052 if (!(word_en & BIT(0))) {
1053 tmpaddr = start_addr;
1054 efuse_one_byte_write(hw, start_addr++, data[0]);
1055 efuse_one_byte_write(hw, start_addr++, data[1]);
1057 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1058 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1059 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1060 badworden &= (~BIT(0));
1063 if (!(word_en & BIT(1))) {
1064 tmpaddr = start_addr;
1065 efuse_one_byte_write(hw, start_addr++, data[2]);
1066 efuse_one_byte_write(hw, start_addr++, data[3]);
1068 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1069 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1070 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1071 badworden &= (~BIT(1));
1074 if (!(word_en & BIT(2))) {
1075 tmpaddr = start_addr;
1076 efuse_one_byte_write(hw, start_addr++, data[4]);
1077 efuse_one_byte_write(hw, start_addr++, data[5]);
1079 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1080 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1081 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1082 badworden &= (~BIT(2));
1085 if (!(word_en & BIT(3))) {
1086 tmpaddr = start_addr;
1087 efuse_one_byte_write(hw, start_addr++, data[6]);
1088 efuse_one_byte_write(hw, start_addr++, data[7]);
1090 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1091 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1092 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1093 badworden &= (~BIT(3));
1096 return badworden;
1099 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1101 struct rtl_priv *rtlpriv = rtl_priv(hw);
1102 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1103 u8 tempval;
1104 u16 tmpV16;
1106 if (pwrstate && (rtlhal->hw_type !=
1107 HARDWARE_TYPE_RTL8192SE)) {
1108 tmpV16 = rtl_read_word(rtlpriv,
1109 rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1110 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1111 tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1112 rtl_write_word(rtlpriv,
1113 rtlpriv->cfg->maps[SYS_ISO_CTRL],
1114 tmpV16);
1117 tmpV16 = rtl_read_word(rtlpriv,
1118 rtlpriv->cfg->maps[SYS_FUNC_EN]);
1119 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1120 tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1121 rtl_write_word(rtlpriv,
1122 rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1125 tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1126 if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1127 (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1128 tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1129 rtlpriv->cfg->maps[EFUSE_ANA8M]);
1130 rtl_write_word(rtlpriv,
1131 rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1135 if (pwrstate) {
1136 if (write) {
1137 tempval = rtl_read_byte(rtlpriv,
1138 rtlpriv->cfg->maps[EFUSE_TEST] +
1141 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1142 tempval &= 0x0F;
1143 tempval |= (VOLTAGE_V25 << 4);
1146 rtl_write_byte(rtlpriv,
1147 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1148 (tempval | 0x80));
1151 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1152 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1153 0x03);
1156 } else {
1157 if (write) {
1158 tempval = rtl_read_byte(rtlpriv,
1159 rtlpriv->cfg->maps[EFUSE_TEST] +
1161 rtl_write_byte(rtlpriv,
1162 rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1163 (tempval & 0x7F));
1166 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1167 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1168 0x02);
1175 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1177 int continual = true;
1178 u16 efuse_addr = 0;
1179 u8 hworden;
1180 u8 efuse_data, word_cnts;
1182 while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
1183 && (efuse_addr < EFUSE_MAX_SIZE)) {
1184 if (efuse_data != 0xFF) {
1185 hworden = efuse_data & 0x0F;
1186 word_cnts = efuse_calculate_word_cnts(hworden);
1187 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1188 } else {
1189 continual = false;
1193 return efuse_addr;
1196 static u8 efuse_calculate_word_cnts(u8 word_en)
1198 u8 word_cnts = 0;
1199 if (!(word_en & BIT(0)))
1200 word_cnts++;
1201 if (!(word_en & BIT(1)))
1202 word_cnts++;
1203 if (!(word_en & BIT(2)))
1204 word_cnts++;
1205 if (!(word_en & BIT(3)))
1206 word_cnts++;
1207 return word_cnts;