spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / scsi / libfc / fc_exch.c
blob4d70d96fa5dc5730016a00a3c1753370ca5e980e
1 /*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 * Maintained at www.Open-FCoE.org
23 * Fibre Channel exchange and sequence handling.
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
31 #include <scsi/fc/fc_fc2.h>
33 #include <scsi/libfc.h>
34 #include <scsi/fc_encode.h>
36 #include "fc_libfc.h"
38 u16 fc_cpu_mask; /* cpu mask for possible cpus */
39 EXPORT_SYMBOL(fc_cpu_mask);
40 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
41 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
42 static struct workqueue_struct *fc_exch_workqueue;
45 * Structure and function definitions for managing Fibre Channel Exchanges
46 * and Sequences.
48 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
50 * fc_exch_mgr holds the exchange state for an N port
52 * fc_exch holds state for one exchange and links to its active sequence.
54 * fc_seq holds the state for an individual sequence.
57 /**
58 * struct fc_exch_pool - Per cpu exchange pool
59 * @next_index: Next possible free exchange index
60 * @total_exches: Total allocated exchanges
61 * @lock: Exch pool lock
62 * @ex_list: List of exchanges
64 * This structure manages per cpu exchanges in array of exchange pointers.
65 * This array is allocated followed by struct fc_exch_pool memory for
66 * assigned range of exchanges to per cpu pool.
68 struct fc_exch_pool {
69 spinlock_t lock;
70 struct list_head ex_list;
71 u16 next_index;
72 u16 total_exches;
74 /* two cache of free slot in exch array */
75 u16 left;
76 u16 right;
77 } ____cacheline_aligned_in_smp;
79 /**
80 * struct fc_exch_mgr - The Exchange Manager (EM).
81 * @class: Default class for new sequences
82 * @kref: Reference counter
83 * @min_xid: Minimum exchange ID
84 * @max_xid: Maximum exchange ID
85 * @ep_pool: Reserved exchange pointers
86 * @pool_max_index: Max exch array index in exch pool
87 * @pool: Per cpu exch pool
88 * @stats: Statistics structure
90 * This structure is the center for creating exchanges and sequences.
91 * It manages the allocation of exchange IDs.
93 struct fc_exch_mgr {
94 struct fc_exch_pool __percpu *pool;
95 mempool_t *ep_pool;
96 enum fc_class class;
97 struct kref kref;
98 u16 min_xid;
99 u16 max_xid;
100 u16 pool_max_index;
103 * currently exchange mgr stats are updated but not used.
104 * either stats can be expose via sysfs or remove them
105 * all together if not used XXX
107 struct {
108 atomic_t no_free_exch;
109 atomic_t no_free_exch_xid;
110 atomic_t xid_not_found;
111 atomic_t xid_busy;
112 atomic_t seq_not_found;
113 atomic_t non_bls_resp;
114 } stats;
118 * struct fc_exch_mgr_anchor - primary structure for list of EMs
119 * @ema_list: Exchange Manager Anchor list
120 * @mp: Exchange Manager associated with this anchor
121 * @match: Routine to determine if this anchor's EM should be used
123 * When walking the list of anchors the match routine will be called
124 * for each anchor to determine if that EM should be used. The last
125 * anchor in the list will always match to handle any exchanges not
126 * handled by other EMs. The non-default EMs would be added to the
127 * anchor list by HW that provides FCoE offloads.
129 struct fc_exch_mgr_anchor {
130 struct list_head ema_list;
131 struct fc_exch_mgr *mp;
132 bool (*match)(struct fc_frame *);
135 static void fc_exch_rrq(struct fc_exch *);
136 static void fc_seq_ls_acc(struct fc_frame *);
137 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
138 enum fc_els_rjt_explan);
139 static void fc_exch_els_rec(struct fc_frame *);
140 static void fc_exch_els_rrq(struct fc_frame *);
143 * Internal implementation notes.
145 * The exchange manager is one by default in libfc but LLD may choose
146 * to have one per CPU. The sequence manager is one per exchange manager
147 * and currently never separated.
149 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
150 * assigned by the Sequence Initiator that shall be unique for a specific
151 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
152 * qualified by exchange ID, which one might think it would be.
153 * In practice this limits the number of open sequences and exchanges to 256
154 * per session. For most targets we could treat this limit as per exchange.
156 * The exchange and its sequence are freed when the last sequence is received.
157 * It's possible for the remote port to leave an exchange open without
158 * sending any sequences.
160 * Notes on reference counts:
162 * Exchanges are reference counted and exchange gets freed when the reference
163 * count becomes zero.
165 * Timeouts:
166 * Sequences are timed out for E_D_TOV and R_A_TOV.
168 * Sequence event handling:
170 * The following events may occur on initiator sequences:
172 * Send.
173 * For now, the whole thing is sent.
174 * Receive ACK
175 * This applies only to class F.
176 * The sequence is marked complete.
177 * ULP completion.
178 * The upper layer calls fc_exch_done() when done
179 * with exchange and sequence tuple.
180 * RX-inferred completion.
181 * When we receive the next sequence on the same exchange, we can
182 * retire the previous sequence ID. (XXX not implemented).
183 * Timeout.
184 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
185 * E_D_TOV causes abort and calls upper layer response handler
186 * with FC_EX_TIMEOUT error.
187 * Receive RJT
188 * XXX defer.
189 * Send ABTS
190 * On timeout.
192 * The following events may occur on recipient sequences:
194 * Receive
195 * Allocate sequence for first frame received.
196 * Hold during receive handler.
197 * Release when final frame received.
198 * Keep status of last N of these for the ELS RES command. XXX TBD.
199 * Receive ABTS
200 * Deallocate sequence
201 * Send RJT
202 * Deallocate
204 * For now, we neglect conditions where only part of a sequence was
205 * received or transmitted, or where out-of-order receipt is detected.
209 * Locking notes:
211 * The EM code run in a per-CPU worker thread.
213 * To protect against concurrency between a worker thread code and timers,
214 * sequence allocation and deallocation must be locked.
215 * - exchange refcnt can be done atomicly without locks.
216 * - sequence allocation must be locked by exch lock.
217 * - If the EM pool lock and ex_lock must be taken at the same time, then the
218 * EM pool lock must be taken before the ex_lock.
222 * opcode names for debugging.
224 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
227 * fc_exch_name_lookup() - Lookup name by opcode
228 * @op: Opcode to be looked up
229 * @table: Opcode/name table
230 * @max_index: Index not to be exceeded
232 * This routine is used to determine a human-readable string identifying
233 * a R_CTL opcode.
235 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
236 unsigned int max_index)
238 const char *name = NULL;
240 if (op < max_index)
241 name = table[op];
242 if (!name)
243 name = "unknown";
244 return name;
248 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
249 * @op: The opcode to be looked up
251 static const char *fc_exch_rctl_name(unsigned int op)
253 return fc_exch_name_lookup(op, fc_exch_rctl_names,
254 ARRAY_SIZE(fc_exch_rctl_names));
258 * fc_exch_hold() - Increment an exchange's reference count
259 * @ep: Echange to be held
261 static inline void fc_exch_hold(struct fc_exch *ep)
263 atomic_inc(&ep->ex_refcnt);
267 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
268 * and determine SOF and EOF.
269 * @ep: The exchange to that will use the header
270 * @fp: The frame whose header is to be modified
271 * @f_ctl: F_CTL bits that will be used for the frame header
273 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
274 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
276 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
277 u32 f_ctl)
279 struct fc_frame_header *fh = fc_frame_header_get(fp);
280 u16 fill;
282 fr_sof(fp) = ep->class;
283 if (ep->seq.cnt)
284 fr_sof(fp) = fc_sof_normal(ep->class);
286 if (f_ctl & FC_FC_END_SEQ) {
287 fr_eof(fp) = FC_EOF_T;
288 if (fc_sof_needs_ack(ep->class))
289 fr_eof(fp) = FC_EOF_N;
291 * From F_CTL.
292 * The number of fill bytes to make the length a 4-byte
293 * multiple is the low order 2-bits of the f_ctl.
294 * The fill itself will have been cleared by the frame
295 * allocation.
296 * After this, the length will be even, as expected by
297 * the transport.
299 fill = fr_len(fp) & 3;
300 if (fill) {
301 fill = 4 - fill;
302 /* TODO, this may be a problem with fragmented skb */
303 skb_put(fp_skb(fp), fill);
304 hton24(fh->fh_f_ctl, f_ctl | fill);
306 } else {
307 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
308 fr_eof(fp) = FC_EOF_N;
312 * Initialize remainig fh fields
313 * from fc_fill_fc_hdr
315 fh->fh_ox_id = htons(ep->oxid);
316 fh->fh_rx_id = htons(ep->rxid);
317 fh->fh_seq_id = ep->seq.id;
318 fh->fh_seq_cnt = htons(ep->seq.cnt);
322 * fc_exch_release() - Decrement an exchange's reference count
323 * @ep: Exchange to be released
325 * If the reference count reaches zero and the exchange is complete,
326 * it is freed.
328 static void fc_exch_release(struct fc_exch *ep)
330 struct fc_exch_mgr *mp;
332 if (atomic_dec_and_test(&ep->ex_refcnt)) {
333 mp = ep->em;
334 if (ep->destructor)
335 ep->destructor(&ep->seq, ep->arg);
336 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
337 mempool_free(ep, mp->ep_pool);
342 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
343 * @ep: The exchange that is complete
345 static int fc_exch_done_locked(struct fc_exch *ep)
347 int rc = 1;
350 * We must check for completion in case there are two threads
351 * tyring to complete this. But the rrq code will reuse the
352 * ep, and in that case we only clear the resp and set it as
353 * complete, so it can be reused by the timer to send the rrq.
355 ep->resp = NULL;
356 if (ep->state & FC_EX_DONE)
357 return rc;
358 ep->esb_stat |= ESB_ST_COMPLETE;
360 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
361 ep->state |= FC_EX_DONE;
362 if (cancel_delayed_work(&ep->timeout_work))
363 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
364 rc = 0;
366 return rc;
370 * fc_exch_ptr_get() - Return an exchange from an exchange pool
371 * @pool: Exchange Pool to get an exchange from
372 * @index: Index of the exchange within the pool
374 * Use the index to get an exchange from within an exchange pool. exches
375 * will point to an array of exchange pointers. The index will select
376 * the exchange within the array.
378 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
379 u16 index)
381 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
382 return exches[index];
386 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
387 * @pool: The pool to assign the exchange to
388 * @index: The index in the pool where the exchange will be assigned
389 * @ep: The exchange to assign to the pool
391 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
392 struct fc_exch *ep)
394 ((struct fc_exch **)(pool + 1))[index] = ep;
398 * fc_exch_delete() - Delete an exchange
399 * @ep: The exchange to be deleted
401 static void fc_exch_delete(struct fc_exch *ep)
403 struct fc_exch_pool *pool;
404 u16 index;
406 pool = ep->pool;
407 spin_lock_bh(&pool->lock);
408 WARN_ON(pool->total_exches <= 0);
409 pool->total_exches--;
411 /* update cache of free slot */
412 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
413 if (pool->left == FC_XID_UNKNOWN)
414 pool->left = index;
415 else if (pool->right == FC_XID_UNKNOWN)
416 pool->right = index;
417 else
418 pool->next_index = index;
420 fc_exch_ptr_set(pool, index, NULL);
421 list_del(&ep->ex_list);
422 spin_unlock_bh(&pool->lock);
423 fc_exch_release(ep); /* drop hold for exch in mp */
427 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
428 * the exchange lock held
429 * @ep: The exchange whose timer will start
430 * @timer_msec: The timeout period
432 * Used for upper level protocols to time out the exchange.
433 * The timer is cancelled when it fires or when the exchange completes.
435 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
436 unsigned int timer_msec)
438 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
439 return;
441 FC_EXCH_DBG(ep, "Exchange timer armed\n");
443 if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
444 msecs_to_jiffies(timer_msec)))
445 fc_exch_hold(ep); /* hold for timer */
449 * fc_exch_timer_set() - Lock the exchange and set the timer
450 * @ep: The exchange whose timer will start
451 * @timer_msec: The timeout period
453 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
455 spin_lock_bh(&ep->ex_lock);
456 fc_exch_timer_set_locked(ep, timer_msec);
457 spin_unlock_bh(&ep->ex_lock);
461 * fc_seq_send() - Send a frame using existing sequence/exchange pair
462 * @lport: The local port that the exchange will be sent on
463 * @sp: The sequence to be sent
464 * @fp: The frame to be sent on the exchange
466 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
467 struct fc_frame *fp)
469 struct fc_exch *ep;
470 struct fc_frame_header *fh = fc_frame_header_get(fp);
471 int error;
472 u32 f_ctl;
473 u8 fh_type = fh->fh_type;
475 ep = fc_seq_exch(sp);
476 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
478 f_ctl = ntoh24(fh->fh_f_ctl);
479 fc_exch_setup_hdr(ep, fp, f_ctl);
480 fr_encaps(fp) = ep->encaps;
483 * update sequence count if this frame is carrying
484 * multiple FC frames when sequence offload is enabled
485 * by LLD.
487 if (fr_max_payload(fp))
488 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
489 fr_max_payload(fp));
490 else
491 sp->cnt++;
494 * Send the frame.
496 error = lport->tt.frame_send(lport, fp);
498 if (fh_type == FC_TYPE_BLS)
499 return error;
502 * Update the exchange and sequence flags,
503 * assuming all frames for the sequence have been sent.
504 * We can only be called to send once for each sequence.
506 spin_lock_bh(&ep->ex_lock);
507 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
508 if (f_ctl & FC_FC_SEQ_INIT)
509 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
510 spin_unlock_bh(&ep->ex_lock);
511 return error;
515 * fc_seq_alloc() - Allocate a sequence for a given exchange
516 * @ep: The exchange to allocate a new sequence for
517 * @seq_id: The sequence ID to be used
519 * We don't support multiple originated sequences on the same exchange.
520 * By implication, any previously originated sequence on this exchange
521 * is complete, and we reallocate the same sequence.
523 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
525 struct fc_seq *sp;
527 sp = &ep->seq;
528 sp->ssb_stat = 0;
529 sp->cnt = 0;
530 sp->id = seq_id;
531 return sp;
535 * fc_seq_start_next_locked() - Allocate a new sequence on the same
536 * exchange as the supplied sequence
537 * @sp: The sequence/exchange to get a new sequence for
539 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
541 struct fc_exch *ep = fc_seq_exch(sp);
543 sp = fc_seq_alloc(ep, ep->seq_id++);
544 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
545 ep->f_ctl, sp->id);
546 return sp;
550 * fc_seq_start_next() - Lock the exchange and get a new sequence
551 * for a given sequence/exchange pair
552 * @sp: The sequence/exchange to get a new exchange for
554 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
556 struct fc_exch *ep = fc_seq_exch(sp);
558 spin_lock_bh(&ep->ex_lock);
559 sp = fc_seq_start_next_locked(sp);
560 spin_unlock_bh(&ep->ex_lock);
562 return sp;
566 * Set the response handler for the exchange associated with a sequence.
568 static void fc_seq_set_resp(struct fc_seq *sp,
569 void (*resp)(struct fc_seq *, struct fc_frame *,
570 void *),
571 void *arg)
573 struct fc_exch *ep = fc_seq_exch(sp);
575 spin_lock_bh(&ep->ex_lock);
576 ep->resp = resp;
577 ep->arg = arg;
578 spin_unlock_bh(&ep->ex_lock);
582 * fc_exch_abort_locked() - Abort an exchange
583 * @ep: The exchange to be aborted
584 * @timer_msec: The period of time to wait before aborting
586 * Locking notes: Called with exch lock held
588 * Return value: 0 on success else error code
590 static int fc_exch_abort_locked(struct fc_exch *ep,
591 unsigned int timer_msec)
593 struct fc_seq *sp;
594 struct fc_frame *fp;
595 int error;
597 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
598 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
599 return -ENXIO;
602 * Send the abort on a new sequence if possible.
604 sp = fc_seq_start_next_locked(&ep->seq);
605 if (!sp)
606 return -ENOMEM;
608 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
609 if (timer_msec)
610 fc_exch_timer_set_locked(ep, timer_msec);
613 * If not logged into the fabric, don't send ABTS but leave
614 * sequence active until next timeout.
616 if (!ep->sid)
617 return 0;
620 * Send an abort for the sequence that timed out.
622 fp = fc_frame_alloc(ep->lp, 0);
623 if (fp) {
624 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
625 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
626 error = fc_seq_send(ep->lp, sp, fp);
627 } else
628 error = -ENOBUFS;
629 return error;
633 * fc_seq_exch_abort() - Abort an exchange and sequence
634 * @req_sp: The sequence to be aborted
635 * @timer_msec: The period of time to wait before aborting
637 * Generally called because of a timeout or an abort from the upper layer.
639 * Return value: 0 on success else error code
641 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
642 unsigned int timer_msec)
644 struct fc_exch *ep;
645 int error;
647 ep = fc_seq_exch(req_sp);
648 spin_lock_bh(&ep->ex_lock);
649 error = fc_exch_abort_locked(ep, timer_msec);
650 spin_unlock_bh(&ep->ex_lock);
651 return error;
655 * fc_exch_timeout() - Handle exchange timer expiration
656 * @work: The work_struct identifying the exchange that timed out
658 static void fc_exch_timeout(struct work_struct *work)
660 struct fc_exch *ep = container_of(work, struct fc_exch,
661 timeout_work.work);
662 struct fc_seq *sp = &ep->seq;
663 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
664 void *arg;
665 u32 e_stat;
666 int rc = 1;
668 FC_EXCH_DBG(ep, "Exchange timed out\n");
670 spin_lock_bh(&ep->ex_lock);
671 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
672 goto unlock;
674 e_stat = ep->esb_stat;
675 if (e_stat & ESB_ST_COMPLETE) {
676 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
677 spin_unlock_bh(&ep->ex_lock);
678 if (e_stat & ESB_ST_REC_QUAL)
679 fc_exch_rrq(ep);
680 goto done;
681 } else {
682 resp = ep->resp;
683 arg = ep->arg;
684 ep->resp = NULL;
685 if (e_stat & ESB_ST_ABNORMAL)
686 rc = fc_exch_done_locked(ep);
687 spin_unlock_bh(&ep->ex_lock);
688 if (!rc)
689 fc_exch_delete(ep);
690 if (resp)
691 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
692 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
693 goto done;
695 unlock:
696 spin_unlock_bh(&ep->ex_lock);
697 done:
699 * This release matches the hold taken when the timer was set.
701 fc_exch_release(ep);
705 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
706 * @lport: The local port that the exchange is for
707 * @mp: The exchange manager that will allocate the exchange
709 * Returns pointer to allocated fc_exch with exch lock held.
711 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
712 struct fc_exch_mgr *mp)
714 struct fc_exch *ep;
715 unsigned int cpu;
716 u16 index;
717 struct fc_exch_pool *pool;
719 /* allocate memory for exchange */
720 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
721 if (!ep) {
722 atomic_inc(&mp->stats.no_free_exch);
723 goto out;
725 memset(ep, 0, sizeof(*ep));
727 cpu = get_cpu();
728 pool = per_cpu_ptr(mp->pool, cpu);
729 spin_lock_bh(&pool->lock);
730 put_cpu();
732 /* peek cache of free slot */
733 if (pool->left != FC_XID_UNKNOWN) {
734 index = pool->left;
735 pool->left = FC_XID_UNKNOWN;
736 goto hit;
738 if (pool->right != FC_XID_UNKNOWN) {
739 index = pool->right;
740 pool->right = FC_XID_UNKNOWN;
741 goto hit;
744 index = pool->next_index;
745 /* allocate new exch from pool */
746 while (fc_exch_ptr_get(pool, index)) {
747 index = index == mp->pool_max_index ? 0 : index + 1;
748 if (index == pool->next_index)
749 goto err;
751 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
752 hit:
753 fc_exch_hold(ep); /* hold for exch in mp */
754 spin_lock_init(&ep->ex_lock);
756 * Hold exch lock for caller to prevent fc_exch_reset()
757 * from releasing exch while fc_exch_alloc() caller is
758 * still working on exch.
760 spin_lock_bh(&ep->ex_lock);
762 fc_exch_ptr_set(pool, index, ep);
763 list_add_tail(&ep->ex_list, &pool->ex_list);
764 fc_seq_alloc(ep, ep->seq_id++);
765 pool->total_exches++;
766 spin_unlock_bh(&pool->lock);
769 * update exchange
771 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
772 ep->em = mp;
773 ep->pool = pool;
774 ep->lp = lport;
775 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
776 ep->rxid = FC_XID_UNKNOWN;
777 ep->class = mp->class;
778 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
779 out:
780 return ep;
781 err:
782 spin_unlock_bh(&pool->lock);
783 atomic_inc(&mp->stats.no_free_exch_xid);
784 mempool_free(ep, mp->ep_pool);
785 return NULL;
789 * fc_exch_alloc() - Allocate an exchange from an EM on a
790 * local port's list of EMs.
791 * @lport: The local port that will own the exchange
792 * @fp: The FC frame that the exchange will be for
794 * This function walks the list of exchange manager(EM)
795 * anchors to select an EM for a new exchange allocation. The
796 * EM is selected when a NULL match function pointer is encountered
797 * or when a call to a match function returns true.
799 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
800 struct fc_frame *fp)
802 struct fc_exch_mgr_anchor *ema;
804 list_for_each_entry(ema, &lport->ema_list, ema_list)
805 if (!ema->match || ema->match(fp))
806 return fc_exch_em_alloc(lport, ema->mp);
807 return NULL;
811 * fc_exch_find() - Lookup and hold an exchange
812 * @mp: The exchange manager to lookup the exchange from
813 * @xid: The XID of the exchange to look up
815 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
817 struct fc_exch_pool *pool;
818 struct fc_exch *ep = NULL;
820 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
821 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
822 spin_lock_bh(&pool->lock);
823 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
824 if (ep && ep->xid == xid)
825 fc_exch_hold(ep);
826 spin_unlock_bh(&pool->lock);
828 return ep;
833 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
834 * the memory allocated for the related objects may be freed.
835 * @sp: The sequence that has completed
837 static void fc_exch_done(struct fc_seq *sp)
839 struct fc_exch *ep = fc_seq_exch(sp);
840 int rc;
842 spin_lock_bh(&ep->ex_lock);
843 rc = fc_exch_done_locked(ep);
844 spin_unlock_bh(&ep->ex_lock);
845 if (!rc)
846 fc_exch_delete(ep);
850 * fc_exch_resp() - Allocate a new exchange for a response frame
851 * @lport: The local port that the exchange was for
852 * @mp: The exchange manager to allocate the exchange from
853 * @fp: The response frame
855 * Sets the responder ID in the frame header.
857 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
858 struct fc_exch_mgr *mp,
859 struct fc_frame *fp)
861 struct fc_exch *ep;
862 struct fc_frame_header *fh;
864 ep = fc_exch_alloc(lport, fp);
865 if (ep) {
866 ep->class = fc_frame_class(fp);
869 * Set EX_CTX indicating we're responding on this exchange.
871 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
872 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
873 fh = fc_frame_header_get(fp);
874 ep->sid = ntoh24(fh->fh_d_id);
875 ep->did = ntoh24(fh->fh_s_id);
876 ep->oid = ep->did;
879 * Allocated exchange has placed the XID in the
880 * originator field. Move it to the responder field,
881 * and set the originator XID from the frame.
883 ep->rxid = ep->xid;
884 ep->oxid = ntohs(fh->fh_ox_id);
885 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
886 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
887 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
889 fc_exch_hold(ep); /* hold for caller */
890 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
892 return ep;
896 * fc_seq_lookup_recip() - Find a sequence where the other end
897 * originated the sequence
898 * @lport: The local port that the frame was sent to
899 * @mp: The Exchange Manager to lookup the exchange from
900 * @fp: The frame associated with the sequence we're looking for
902 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
903 * on the ep that should be released by the caller.
905 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
906 struct fc_exch_mgr *mp,
907 struct fc_frame *fp)
909 struct fc_frame_header *fh = fc_frame_header_get(fp);
910 struct fc_exch *ep = NULL;
911 struct fc_seq *sp = NULL;
912 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
913 u32 f_ctl;
914 u16 xid;
916 f_ctl = ntoh24(fh->fh_f_ctl);
917 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
920 * Lookup or create the exchange if we will be creating the sequence.
922 if (f_ctl & FC_FC_EX_CTX) {
923 xid = ntohs(fh->fh_ox_id); /* we originated exch */
924 ep = fc_exch_find(mp, xid);
925 if (!ep) {
926 atomic_inc(&mp->stats.xid_not_found);
927 reject = FC_RJT_OX_ID;
928 goto out;
930 if (ep->rxid == FC_XID_UNKNOWN)
931 ep->rxid = ntohs(fh->fh_rx_id);
932 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
933 reject = FC_RJT_OX_ID;
934 goto rel;
936 } else {
937 xid = ntohs(fh->fh_rx_id); /* we are the responder */
940 * Special case for MDS issuing an ELS TEST with a
941 * bad rxid of 0.
942 * XXX take this out once we do the proper reject.
944 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
945 fc_frame_payload_op(fp) == ELS_TEST) {
946 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
947 xid = FC_XID_UNKNOWN;
951 * new sequence - find the exchange
953 ep = fc_exch_find(mp, xid);
954 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
955 if (ep) {
956 atomic_inc(&mp->stats.xid_busy);
957 reject = FC_RJT_RX_ID;
958 goto rel;
960 ep = fc_exch_resp(lport, mp, fp);
961 if (!ep) {
962 reject = FC_RJT_EXCH_EST; /* XXX */
963 goto out;
965 xid = ep->xid; /* get our XID */
966 } else if (!ep) {
967 atomic_inc(&mp->stats.xid_not_found);
968 reject = FC_RJT_RX_ID; /* XID not found */
969 goto out;
974 * At this point, we have the exchange held.
975 * Find or create the sequence.
977 if (fc_sof_is_init(fr_sof(fp))) {
978 sp = &ep->seq;
979 sp->ssb_stat |= SSB_ST_RESP;
980 sp->id = fh->fh_seq_id;
981 } else {
982 sp = &ep->seq;
983 if (sp->id != fh->fh_seq_id) {
984 atomic_inc(&mp->stats.seq_not_found);
985 if (f_ctl & FC_FC_END_SEQ) {
987 * Update sequence_id based on incoming last
988 * frame of sequence exchange. This is needed
989 * for FCoE target where DDP has been used
990 * on target where, stack is indicated only
991 * about last frame's (payload _header) header.
992 * Whereas "seq_id" which is part of
993 * frame_header is allocated by initiator
994 * which is totally different from "seq_id"
995 * allocated when XFER_RDY was sent by target.
996 * To avoid false -ve which results into not
997 * sending RSP, hence write request on other
998 * end never finishes.
1000 spin_lock_bh(&ep->ex_lock);
1001 sp->ssb_stat |= SSB_ST_RESP;
1002 sp->id = fh->fh_seq_id;
1003 spin_unlock_bh(&ep->ex_lock);
1004 } else {
1005 /* sequence/exch should exist */
1006 reject = FC_RJT_SEQ_ID;
1007 goto rel;
1011 WARN_ON(ep != fc_seq_exch(sp));
1013 if (f_ctl & FC_FC_SEQ_INIT)
1014 ep->esb_stat |= ESB_ST_SEQ_INIT;
1016 fr_seq(fp) = sp;
1017 out:
1018 return reject;
1019 rel:
1020 fc_exch_done(&ep->seq);
1021 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1022 return reject;
1026 * fc_seq_lookup_orig() - Find a sequence where this end
1027 * originated the sequence
1028 * @mp: The Exchange Manager to lookup the exchange from
1029 * @fp: The frame associated with the sequence we're looking for
1031 * Does not hold the sequence for the caller.
1033 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1034 struct fc_frame *fp)
1036 struct fc_frame_header *fh = fc_frame_header_get(fp);
1037 struct fc_exch *ep;
1038 struct fc_seq *sp = NULL;
1039 u32 f_ctl;
1040 u16 xid;
1042 f_ctl = ntoh24(fh->fh_f_ctl);
1043 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1044 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1045 ep = fc_exch_find(mp, xid);
1046 if (!ep)
1047 return NULL;
1048 if (ep->seq.id == fh->fh_seq_id) {
1050 * Save the RX_ID if we didn't previously know it.
1052 sp = &ep->seq;
1053 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1054 ep->rxid == FC_XID_UNKNOWN) {
1055 ep->rxid = ntohs(fh->fh_rx_id);
1058 fc_exch_release(ep);
1059 return sp;
1063 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1064 * @ep: The exchange to set the addresses for
1065 * @orig_id: The originator's ID
1066 * @resp_id: The responder's ID
1068 * Note this must be done before the first sequence of the exchange is sent.
1070 static void fc_exch_set_addr(struct fc_exch *ep,
1071 u32 orig_id, u32 resp_id)
1073 ep->oid = orig_id;
1074 if (ep->esb_stat & ESB_ST_RESP) {
1075 ep->sid = resp_id;
1076 ep->did = orig_id;
1077 } else {
1078 ep->sid = orig_id;
1079 ep->did = resp_id;
1084 * fc_seq_els_rsp_send() - Send an ELS response using information from
1085 * the existing sequence/exchange.
1086 * @fp: The received frame
1087 * @els_cmd: The ELS command to be sent
1088 * @els_data: The ELS data to be sent
1090 * The received frame is not freed.
1092 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1093 struct fc_seq_els_data *els_data)
1095 switch (els_cmd) {
1096 case ELS_LS_RJT:
1097 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1098 break;
1099 case ELS_LS_ACC:
1100 fc_seq_ls_acc(fp);
1101 break;
1102 case ELS_RRQ:
1103 fc_exch_els_rrq(fp);
1104 break;
1105 case ELS_REC:
1106 fc_exch_els_rec(fp);
1107 break;
1108 default:
1109 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1114 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1115 * @sp: The sequence that is to be sent
1116 * @fp: The frame that will be sent on the sequence
1117 * @rctl: The R_CTL information to be sent
1118 * @fh_type: The frame header type
1120 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1121 enum fc_rctl rctl, enum fc_fh_type fh_type)
1123 u32 f_ctl;
1124 struct fc_exch *ep = fc_seq_exch(sp);
1126 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1127 f_ctl |= ep->f_ctl;
1128 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1129 fc_seq_send(ep->lp, sp, fp);
1133 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1134 * @sp: The sequence to send the ACK on
1135 * @rx_fp: The received frame that is being acknoledged
1137 * Send ACK_1 (or equiv.) indicating we received something.
1139 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1141 struct fc_frame *fp;
1142 struct fc_frame_header *rx_fh;
1143 struct fc_frame_header *fh;
1144 struct fc_exch *ep = fc_seq_exch(sp);
1145 struct fc_lport *lport = ep->lp;
1146 unsigned int f_ctl;
1149 * Don't send ACKs for class 3.
1151 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1152 fp = fc_frame_alloc(lport, 0);
1153 if (!fp)
1154 return;
1156 fh = fc_frame_header_get(fp);
1157 fh->fh_r_ctl = FC_RCTL_ACK_1;
1158 fh->fh_type = FC_TYPE_BLS;
1161 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1162 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1163 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1164 * Last ACK uses bits 7-6 (continue sequence),
1165 * bits 5-4 are meaningful (what kind of ACK to use).
1167 rx_fh = fc_frame_header_get(rx_fp);
1168 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1169 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1170 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1171 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1172 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1173 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1174 hton24(fh->fh_f_ctl, f_ctl);
1176 fc_exch_setup_hdr(ep, fp, f_ctl);
1177 fh->fh_seq_id = rx_fh->fh_seq_id;
1178 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1179 fh->fh_parm_offset = htonl(1); /* ack single frame */
1181 fr_sof(fp) = fr_sof(rx_fp);
1182 if (f_ctl & FC_FC_END_SEQ)
1183 fr_eof(fp) = FC_EOF_T;
1184 else
1185 fr_eof(fp) = FC_EOF_N;
1187 lport->tt.frame_send(lport, fp);
1192 * fc_exch_send_ba_rjt() - Send BLS Reject
1193 * @rx_fp: The frame being rejected
1194 * @reason: The reason the frame is being rejected
1195 * @explan: The explanation for the rejection
1197 * This is for rejecting BA_ABTS only.
1199 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1200 enum fc_ba_rjt_reason reason,
1201 enum fc_ba_rjt_explan explan)
1203 struct fc_frame *fp;
1204 struct fc_frame_header *rx_fh;
1205 struct fc_frame_header *fh;
1206 struct fc_ba_rjt *rp;
1207 struct fc_lport *lport;
1208 unsigned int f_ctl;
1210 lport = fr_dev(rx_fp);
1211 fp = fc_frame_alloc(lport, sizeof(*rp));
1212 if (!fp)
1213 return;
1214 fh = fc_frame_header_get(fp);
1215 rx_fh = fc_frame_header_get(rx_fp);
1217 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1219 rp = fc_frame_payload_get(fp, sizeof(*rp));
1220 rp->br_reason = reason;
1221 rp->br_explan = explan;
1224 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1226 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1227 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1228 fh->fh_ox_id = rx_fh->fh_ox_id;
1229 fh->fh_rx_id = rx_fh->fh_rx_id;
1230 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1231 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1232 fh->fh_type = FC_TYPE_BLS;
1235 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1236 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1237 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1238 * Last ACK uses bits 7-6 (continue sequence),
1239 * bits 5-4 are meaningful (what kind of ACK to use).
1240 * Always set LAST_SEQ, END_SEQ.
1242 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1243 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1244 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1245 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1246 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1247 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1248 f_ctl &= ~FC_FC_FIRST_SEQ;
1249 hton24(fh->fh_f_ctl, f_ctl);
1251 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1252 fr_eof(fp) = FC_EOF_T;
1253 if (fc_sof_needs_ack(fr_sof(fp)))
1254 fr_eof(fp) = FC_EOF_N;
1256 lport->tt.frame_send(lport, fp);
1260 * fc_exch_recv_abts() - Handle an incoming ABTS
1261 * @ep: The exchange the abort was on
1262 * @rx_fp: The ABTS frame
1264 * This would be for target mode usually, but could be due to lost
1265 * FCP transfer ready, confirm or RRQ. We always handle this as an
1266 * exchange abort, ignoring the parameter.
1268 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1270 struct fc_frame *fp;
1271 struct fc_ba_acc *ap;
1272 struct fc_frame_header *fh;
1273 struct fc_seq *sp;
1275 if (!ep)
1276 goto reject;
1277 spin_lock_bh(&ep->ex_lock);
1278 if (ep->esb_stat & ESB_ST_COMPLETE) {
1279 spin_unlock_bh(&ep->ex_lock);
1280 goto reject;
1282 if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1283 fc_exch_hold(ep); /* hold for REC_QUAL */
1284 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1285 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1287 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1288 if (!fp) {
1289 spin_unlock_bh(&ep->ex_lock);
1290 goto free;
1292 fh = fc_frame_header_get(fp);
1293 ap = fc_frame_payload_get(fp, sizeof(*ap));
1294 memset(ap, 0, sizeof(*ap));
1295 sp = &ep->seq;
1296 ap->ba_high_seq_cnt = htons(0xffff);
1297 if (sp->ssb_stat & SSB_ST_RESP) {
1298 ap->ba_seq_id = sp->id;
1299 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1300 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1301 ap->ba_low_seq_cnt = htons(sp->cnt);
1303 sp = fc_seq_start_next_locked(sp);
1304 spin_unlock_bh(&ep->ex_lock);
1305 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1306 fc_frame_free(rx_fp);
1307 return;
1309 reject:
1310 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1311 free:
1312 fc_frame_free(rx_fp);
1316 * fc_seq_assign() - Assign exchange and sequence for incoming request
1317 * @lport: The local port that received the request
1318 * @fp: The request frame
1320 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1321 * A reference will be held on the exchange/sequence for the caller, which
1322 * must call fc_seq_release().
1324 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1326 struct fc_exch_mgr_anchor *ema;
1328 WARN_ON(lport != fr_dev(fp));
1329 WARN_ON(fr_seq(fp));
1330 fr_seq(fp) = NULL;
1332 list_for_each_entry(ema, &lport->ema_list, ema_list)
1333 if ((!ema->match || ema->match(fp)) &&
1334 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1335 break;
1336 return fr_seq(fp);
1340 * fc_seq_release() - Release the hold
1341 * @sp: The sequence.
1343 static void fc_seq_release(struct fc_seq *sp)
1345 fc_exch_release(fc_seq_exch(sp));
1349 * fc_exch_recv_req() - Handler for an incoming request
1350 * @lport: The local port that received the request
1351 * @mp: The EM that the exchange is on
1352 * @fp: The request frame
1354 * This is used when the other end is originating the exchange
1355 * and the sequence.
1357 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1358 struct fc_frame *fp)
1360 struct fc_frame_header *fh = fc_frame_header_get(fp);
1361 struct fc_seq *sp = NULL;
1362 struct fc_exch *ep = NULL;
1363 enum fc_pf_rjt_reason reject;
1365 /* We can have the wrong fc_lport at this point with NPIV, which is a
1366 * problem now that we know a new exchange needs to be allocated
1368 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1369 if (!lport) {
1370 fc_frame_free(fp);
1371 return;
1373 fr_dev(fp) = lport;
1375 BUG_ON(fr_seq(fp)); /* XXX remove later */
1378 * If the RX_ID is 0xffff, don't allocate an exchange.
1379 * The upper-level protocol may request one later, if needed.
1381 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1382 return lport->tt.lport_recv(lport, fp);
1384 reject = fc_seq_lookup_recip(lport, mp, fp);
1385 if (reject == FC_RJT_NONE) {
1386 sp = fr_seq(fp); /* sequence will be held */
1387 ep = fc_seq_exch(sp);
1388 fc_seq_send_ack(sp, fp);
1389 ep->encaps = fr_encaps(fp);
1392 * Call the receive function.
1394 * The receive function may allocate a new sequence
1395 * over the old one, so we shouldn't change the
1396 * sequence after this.
1398 * The frame will be freed by the receive function.
1399 * If new exch resp handler is valid then call that
1400 * first.
1402 if (ep->resp)
1403 ep->resp(sp, fp, ep->arg);
1404 else
1405 lport->tt.lport_recv(lport, fp);
1406 fc_exch_release(ep); /* release from lookup */
1407 } else {
1408 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1409 reject);
1410 fc_frame_free(fp);
1415 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1416 * end is the originator of the sequence that is a
1417 * response to our initial exchange
1418 * @mp: The EM that the exchange is on
1419 * @fp: The response frame
1421 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1423 struct fc_frame_header *fh = fc_frame_header_get(fp);
1424 struct fc_seq *sp;
1425 struct fc_exch *ep;
1426 enum fc_sof sof;
1427 u32 f_ctl;
1428 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1429 void *ex_resp_arg;
1430 int rc;
1432 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1433 if (!ep) {
1434 atomic_inc(&mp->stats.xid_not_found);
1435 goto out;
1437 if (ep->esb_stat & ESB_ST_COMPLETE) {
1438 atomic_inc(&mp->stats.xid_not_found);
1439 goto rel;
1441 if (ep->rxid == FC_XID_UNKNOWN)
1442 ep->rxid = ntohs(fh->fh_rx_id);
1443 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1444 atomic_inc(&mp->stats.xid_not_found);
1445 goto rel;
1447 if (ep->did != ntoh24(fh->fh_s_id) &&
1448 ep->did != FC_FID_FLOGI) {
1449 atomic_inc(&mp->stats.xid_not_found);
1450 goto rel;
1452 sof = fr_sof(fp);
1453 sp = &ep->seq;
1454 if (fc_sof_is_init(sof)) {
1455 sp->ssb_stat |= SSB_ST_RESP;
1456 sp->id = fh->fh_seq_id;
1457 } else if (sp->id != fh->fh_seq_id) {
1458 atomic_inc(&mp->stats.seq_not_found);
1459 goto rel;
1462 f_ctl = ntoh24(fh->fh_f_ctl);
1463 fr_seq(fp) = sp;
1464 if (f_ctl & FC_FC_SEQ_INIT)
1465 ep->esb_stat |= ESB_ST_SEQ_INIT;
1467 if (fc_sof_needs_ack(sof))
1468 fc_seq_send_ack(sp, fp);
1469 resp = ep->resp;
1470 ex_resp_arg = ep->arg;
1472 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1473 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1474 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1475 spin_lock_bh(&ep->ex_lock);
1476 resp = ep->resp;
1477 rc = fc_exch_done_locked(ep);
1478 WARN_ON(fc_seq_exch(sp) != ep);
1479 spin_unlock_bh(&ep->ex_lock);
1480 if (!rc)
1481 fc_exch_delete(ep);
1485 * Call the receive function.
1486 * The sequence is held (has a refcnt) for us,
1487 * but not for the receive function.
1489 * The receive function may allocate a new sequence
1490 * over the old one, so we shouldn't change the
1491 * sequence after this.
1493 * The frame will be freed by the receive function.
1494 * If new exch resp handler is valid then call that
1495 * first.
1497 if (resp)
1498 resp(sp, fp, ex_resp_arg);
1499 else
1500 fc_frame_free(fp);
1501 fc_exch_release(ep);
1502 return;
1503 rel:
1504 fc_exch_release(ep);
1505 out:
1506 fc_frame_free(fp);
1510 * fc_exch_recv_resp() - Handler for a sequence where other end is
1511 * responding to our sequence
1512 * @mp: The EM that the exchange is on
1513 * @fp: The response frame
1515 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1517 struct fc_seq *sp;
1519 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1521 if (!sp)
1522 atomic_inc(&mp->stats.xid_not_found);
1523 else
1524 atomic_inc(&mp->stats.non_bls_resp);
1526 fc_frame_free(fp);
1530 * fc_exch_abts_resp() - Handler for a response to an ABT
1531 * @ep: The exchange that the frame is on
1532 * @fp: The response frame
1534 * This response would be to an ABTS cancelling an exchange or sequence.
1535 * The response can be either BA_ACC or BA_RJT
1537 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1539 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1540 void *ex_resp_arg;
1541 struct fc_frame_header *fh;
1542 struct fc_ba_acc *ap;
1543 struct fc_seq *sp;
1544 u16 low;
1545 u16 high;
1546 int rc = 1, has_rec = 0;
1548 fh = fc_frame_header_get(fp);
1549 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1550 fc_exch_rctl_name(fh->fh_r_ctl));
1552 if (cancel_delayed_work_sync(&ep->timeout_work))
1553 fc_exch_release(ep); /* release from pending timer hold */
1555 spin_lock_bh(&ep->ex_lock);
1556 switch (fh->fh_r_ctl) {
1557 case FC_RCTL_BA_ACC:
1558 ap = fc_frame_payload_get(fp, sizeof(*ap));
1559 if (!ap)
1560 break;
1563 * Decide whether to establish a Recovery Qualifier.
1564 * We do this if there is a non-empty SEQ_CNT range and
1565 * SEQ_ID is the same as the one we aborted.
1567 low = ntohs(ap->ba_low_seq_cnt);
1568 high = ntohs(ap->ba_high_seq_cnt);
1569 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1570 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1571 ap->ba_seq_id == ep->seq_id) && low != high) {
1572 ep->esb_stat |= ESB_ST_REC_QUAL;
1573 fc_exch_hold(ep); /* hold for recovery qualifier */
1574 has_rec = 1;
1576 break;
1577 case FC_RCTL_BA_RJT:
1578 break;
1579 default:
1580 break;
1583 resp = ep->resp;
1584 ex_resp_arg = ep->arg;
1586 /* do we need to do some other checks here. Can we reuse more of
1587 * fc_exch_recv_seq_resp
1589 sp = &ep->seq;
1591 * do we want to check END_SEQ as well as LAST_SEQ here?
1593 if (ep->fh_type != FC_TYPE_FCP &&
1594 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1595 rc = fc_exch_done_locked(ep);
1596 spin_unlock_bh(&ep->ex_lock);
1597 if (!rc)
1598 fc_exch_delete(ep);
1600 if (resp)
1601 resp(sp, fp, ex_resp_arg);
1602 else
1603 fc_frame_free(fp);
1605 if (has_rec)
1606 fc_exch_timer_set(ep, ep->r_a_tov);
1611 * fc_exch_recv_bls() - Handler for a BLS sequence
1612 * @mp: The EM that the exchange is on
1613 * @fp: The request frame
1615 * The BLS frame is always a sequence initiated by the remote side.
1616 * We may be either the originator or recipient of the exchange.
1618 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1620 struct fc_frame_header *fh;
1621 struct fc_exch *ep;
1622 u32 f_ctl;
1624 fh = fc_frame_header_get(fp);
1625 f_ctl = ntoh24(fh->fh_f_ctl);
1626 fr_seq(fp) = NULL;
1628 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1629 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1630 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1631 spin_lock_bh(&ep->ex_lock);
1632 ep->esb_stat |= ESB_ST_SEQ_INIT;
1633 spin_unlock_bh(&ep->ex_lock);
1635 if (f_ctl & FC_FC_SEQ_CTX) {
1637 * A response to a sequence we initiated.
1638 * This should only be ACKs for class 2 or F.
1640 switch (fh->fh_r_ctl) {
1641 case FC_RCTL_ACK_1:
1642 case FC_RCTL_ACK_0:
1643 break;
1644 default:
1645 FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1646 fh->fh_r_ctl,
1647 fc_exch_rctl_name(fh->fh_r_ctl));
1648 break;
1650 fc_frame_free(fp);
1651 } else {
1652 switch (fh->fh_r_ctl) {
1653 case FC_RCTL_BA_RJT:
1654 case FC_RCTL_BA_ACC:
1655 if (ep)
1656 fc_exch_abts_resp(ep, fp);
1657 else
1658 fc_frame_free(fp);
1659 break;
1660 case FC_RCTL_BA_ABTS:
1661 fc_exch_recv_abts(ep, fp);
1662 break;
1663 default: /* ignore junk */
1664 fc_frame_free(fp);
1665 break;
1668 if (ep)
1669 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1673 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1674 * @rx_fp: The received frame, not freed here.
1676 * If this fails due to allocation or transmit congestion, assume the
1677 * originator will repeat the sequence.
1679 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1681 struct fc_lport *lport;
1682 struct fc_els_ls_acc *acc;
1683 struct fc_frame *fp;
1685 lport = fr_dev(rx_fp);
1686 fp = fc_frame_alloc(lport, sizeof(*acc));
1687 if (!fp)
1688 return;
1689 acc = fc_frame_payload_get(fp, sizeof(*acc));
1690 memset(acc, 0, sizeof(*acc));
1691 acc->la_cmd = ELS_LS_ACC;
1692 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1693 lport->tt.frame_send(lport, fp);
1697 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1698 * @rx_fp: The received frame, not freed here.
1699 * @reason: The reason the sequence is being rejected
1700 * @explan: The explanation for the rejection
1702 * If this fails due to allocation or transmit congestion, assume the
1703 * originator will repeat the sequence.
1705 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1706 enum fc_els_rjt_explan explan)
1708 struct fc_lport *lport;
1709 struct fc_els_ls_rjt *rjt;
1710 struct fc_frame *fp;
1712 lport = fr_dev(rx_fp);
1713 fp = fc_frame_alloc(lport, sizeof(*rjt));
1714 if (!fp)
1715 return;
1716 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1717 memset(rjt, 0, sizeof(*rjt));
1718 rjt->er_cmd = ELS_LS_RJT;
1719 rjt->er_reason = reason;
1720 rjt->er_explan = explan;
1721 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1722 lport->tt.frame_send(lport, fp);
1726 * fc_exch_reset() - Reset an exchange
1727 * @ep: The exchange to be reset
1729 static void fc_exch_reset(struct fc_exch *ep)
1731 struct fc_seq *sp;
1732 void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1733 void *arg;
1734 int rc = 1;
1736 spin_lock_bh(&ep->ex_lock);
1737 fc_exch_abort_locked(ep, 0);
1738 ep->state |= FC_EX_RST_CLEANUP;
1739 if (cancel_delayed_work(&ep->timeout_work))
1740 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
1741 resp = ep->resp;
1742 ep->resp = NULL;
1743 if (ep->esb_stat & ESB_ST_REC_QUAL)
1744 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1745 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1746 arg = ep->arg;
1747 sp = &ep->seq;
1748 rc = fc_exch_done_locked(ep);
1749 spin_unlock_bh(&ep->ex_lock);
1750 if (!rc)
1751 fc_exch_delete(ep);
1753 if (resp)
1754 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1758 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1759 * @lport: The local port that the exchange pool is on
1760 * @pool: The exchange pool to be reset
1761 * @sid: The source ID
1762 * @did: The destination ID
1764 * Resets a per cpu exches pool, releasing all of its sequences
1765 * and exchanges. If sid is non-zero then reset only exchanges
1766 * we sourced from the local port's FID. If did is non-zero then
1767 * only reset exchanges destined for the local port's FID.
1769 static void fc_exch_pool_reset(struct fc_lport *lport,
1770 struct fc_exch_pool *pool,
1771 u32 sid, u32 did)
1773 struct fc_exch *ep;
1774 struct fc_exch *next;
1776 spin_lock_bh(&pool->lock);
1777 restart:
1778 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1779 if ((lport == ep->lp) &&
1780 (sid == 0 || sid == ep->sid) &&
1781 (did == 0 || did == ep->did)) {
1782 fc_exch_hold(ep);
1783 spin_unlock_bh(&pool->lock);
1785 fc_exch_reset(ep);
1787 fc_exch_release(ep);
1788 spin_lock_bh(&pool->lock);
1791 * must restart loop incase while lock
1792 * was down multiple eps were released.
1794 goto restart;
1797 pool->next_index = 0;
1798 pool->left = FC_XID_UNKNOWN;
1799 pool->right = FC_XID_UNKNOWN;
1800 spin_unlock_bh(&pool->lock);
1804 * fc_exch_mgr_reset() - Reset all EMs of a local port
1805 * @lport: The local port whose EMs are to be reset
1806 * @sid: The source ID
1807 * @did: The destination ID
1809 * Reset all EMs associated with a given local port. Release all
1810 * sequences and exchanges. If sid is non-zero then reset only the
1811 * exchanges sent from the local port's FID. If did is non-zero then
1812 * reset only exchanges destined for the local port's FID.
1814 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1816 struct fc_exch_mgr_anchor *ema;
1817 unsigned int cpu;
1819 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1820 for_each_possible_cpu(cpu)
1821 fc_exch_pool_reset(lport,
1822 per_cpu_ptr(ema->mp->pool, cpu),
1823 sid, did);
1826 EXPORT_SYMBOL(fc_exch_mgr_reset);
1829 * fc_exch_lookup() - find an exchange
1830 * @lport: The local port
1831 * @xid: The exchange ID
1833 * Returns exchange pointer with hold for caller, or NULL if not found.
1835 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1837 struct fc_exch_mgr_anchor *ema;
1839 list_for_each_entry(ema, &lport->ema_list, ema_list)
1840 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1841 return fc_exch_find(ema->mp, xid);
1842 return NULL;
1846 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1847 * @rfp: The REC frame, not freed here.
1849 * Note that the requesting port may be different than the S_ID in the request.
1851 static void fc_exch_els_rec(struct fc_frame *rfp)
1853 struct fc_lport *lport;
1854 struct fc_frame *fp;
1855 struct fc_exch *ep;
1856 struct fc_els_rec *rp;
1857 struct fc_els_rec_acc *acc;
1858 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1859 enum fc_els_rjt_explan explan;
1860 u32 sid;
1861 u16 rxid;
1862 u16 oxid;
1864 lport = fr_dev(rfp);
1865 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1866 explan = ELS_EXPL_INV_LEN;
1867 if (!rp)
1868 goto reject;
1869 sid = ntoh24(rp->rec_s_id);
1870 rxid = ntohs(rp->rec_rx_id);
1871 oxid = ntohs(rp->rec_ox_id);
1873 ep = fc_exch_lookup(lport,
1874 sid == fc_host_port_id(lport->host) ? oxid : rxid);
1875 explan = ELS_EXPL_OXID_RXID;
1876 if (!ep)
1877 goto reject;
1878 if (ep->oid != sid || oxid != ep->oxid)
1879 goto rel;
1880 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1881 goto rel;
1882 fp = fc_frame_alloc(lport, sizeof(*acc));
1883 if (!fp)
1884 goto out;
1886 acc = fc_frame_payload_get(fp, sizeof(*acc));
1887 memset(acc, 0, sizeof(*acc));
1888 acc->reca_cmd = ELS_LS_ACC;
1889 acc->reca_ox_id = rp->rec_ox_id;
1890 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1891 acc->reca_rx_id = htons(ep->rxid);
1892 if (ep->sid == ep->oid)
1893 hton24(acc->reca_rfid, ep->did);
1894 else
1895 hton24(acc->reca_rfid, ep->sid);
1896 acc->reca_fc4value = htonl(ep->seq.rec_data);
1897 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1898 ESB_ST_SEQ_INIT |
1899 ESB_ST_COMPLETE));
1900 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1901 lport->tt.frame_send(lport, fp);
1902 out:
1903 fc_exch_release(ep);
1904 return;
1906 rel:
1907 fc_exch_release(ep);
1908 reject:
1909 fc_seq_ls_rjt(rfp, reason, explan);
1913 * fc_exch_rrq_resp() - Handler for RRQ responses
1914 * @sp: The sequence that the RRQ is on
1915 * @fp: The RRQ frame
1916 * @arg: The exchange that the RRQ is on
1918 * TODO: fix error handler.
1920 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1922 struct fc_exch *aborted_ep = arg;
1923 unsigned int op;
1925 if (IS_ERR(fp)) {
1926 int err = PTR_ERR(fp);
1928 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1929 goto cleanup;
1930 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1931 "frame error %d\n", err);
1932 return;
1935 op = fc_frame_payload_op(fp);
1936 fc_frame_free(fp);
1938 switch (op) {
1939 case ELS_LS_RJT:
1940 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1941 /* fall through */
1942 case ELS_LS_ACC:
1943 goto cleanup;
1944 default:
1945 FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1946 "for RRQ", op);
1947 return;
1950 cleanup:
1951 fc_exch_done(&aborted_ep->seq);
1952 /* drop hold for rec qual */
1953 fc_exch_release(aborted_ep);
1958 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1959 * @lport: The local port to send the frame on
1960 * @fp: The frame to be sent
1961 * @resp: The response handler for this request
1962 * @destructor: The destructor for the exchange
1963 * @arg: The argument to be passed to the response handler
1964 * @timer_msec: The timeout period for the exchange
1966 * The frame pointer with some of the header's fields must be
1967 * filled before calling this routine, those fields are:
1969 * - routing control
1970 * - FC port did
1971 * - FC port sid
1972 * - FC header type
1973 * - frame control
1974 * - parameter or relative offset
1976 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1977 struct fc_frame *fp,
1978 void (*resp)(struct fc_seq *,
1979 struct fc_frame *fp,
1980 void *arg),
1981 void (*destructor)(struct fc_seq *,
1982 void *),
1983 void *arg, u32 timer_msec)
1985 struct fc_exch *ep;
1986 struct fc_seq *sp = NULL;
1987 struct fc_frame_header *fh;
1988 struct fc_fcp_pkt *fsp = NULL;
1989 int rc = 1;
1991 ep = fc_exch_alloc(lport, fp);
1992 if (!ep) {
1993 fc_frame_free(fp);
1994 return NULL;
1996 ep->esb_stat |= ESB_ST_SEQ_INIT;
1997 fh = fc_frame_header_get(fp);
1998 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1999 ep->resp = resp;
2000 ep->destructor = destructor;
2001 ep->arg = arg;
2002 ep->r_a_tov = FC_DEF_R_A_TOV;
2003 ep->lp = lport;
2004 sp = &ep->seq;
2006 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2007 ep->f_ctl = ntoh24(fh->fh_f_ctl);
2008 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2009 sp->cnt++;
2011 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2012 fsp = fr_fsp(fp);
2013 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2016 if (unlikely(lport->tt.frame_send(lport, fp)))
2017 goto err;
2019 if (timer_msec)
2020 fc_exch_timer_set_locked(ep, timer_msec);
2021 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
2023 if (ep->f_ctl & FC_FC_SEQ_INIT)
2024 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2025 spin_unlock_bh(&ep->ex_lock);
2026 return sp;
2027 err:
2028 if (fsp)
2029 fc_fcp_ddp_done(fsp);
2030 rc = fc_exch_done_locked(ep);
2031 spin_unlock_bh(&ep->ex_lock);
2032 if (!rc)
2033 fc_exch_delete(ep);
2034 return NULL;
2038 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2039 * @ep: The exchange to send the RRQ on
2041 * This tells the remote port to stop blocking the use of
2042 * the exchange and the seq_cnt range.
2044 static void fc_exch_rrq(struct fc_exch *ep)
2046 struct fc_lport *lport;
2047 struct fc_els_rrq *rrq;
2048 struct fc_frame *fp;
2049 u32 did;
2051 lport = ep->lp;
2053 fp = fc_frame_alloc(lport, sizeof(*rrq));
2054 if (!fp)
2055 goto retry;
2057 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2058 memset(rrq, 0, sizeof(*rrq));
2059 rrq->rrq_cmd = ELS_RRQ;
2060 hton24(rrq->rrq_s_id, ep->sid);
2061 rrq->rrq_ox_id = htons(ep->oxid);
2062 rrq->rrq_rx_id = htons(ep->rxid);
2064 did = ep->did;
2065 if (ep->esb_stat & ESB_ST_RESP)
2066 did = ep->sid;
2068 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2069 lport->port_id, FC_TYPE_ELS,
2070 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2072 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2073 lport->e_d_tov))
2074 return;
2076 retry:
2077 spin_lock_bh(&ep->ex_lock);
2078 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2079 spin_unlock_bh(&ep->ex_lock);
2080 /* drop hold for rec qual */
2081 fc_exch_release(ep);
2082 return;
2084 ep->esb_stat |= ESB_ST_REC_QUAL;
2085 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2086 spin_unlock_bh(&ep->ex_lock);
2090 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2091 * @fp: The RRQ frame, not freed here.
2093 static void fc_exch_els_rrq(struct fc_frame *fp)
2095 struct fc_lport *lport;
2096 struct fc_exch *ep = NULL; /* request or subject exchange */
2097 struct fc_els_rrq *rp;
2098 u32 sid;
2099 u16 xid;
2100 enum fc_els_rjt_explan explan;
2102 lport = fr_dev(fp);
2103 rp = fc_frame_payload_get(fp, sizeof(*rp));
2104 explan = ELS_EXPL_INV_LEN;
2105 if (!rp)
2106 goto reject;
2109 * lookup subject exchange.
2111 sid = ntoh24(rp->rrq_s_id); /* subject source */
2112 xid = fc_host_port_id(lport->host) == sid ?
2113 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2114 ep = fc_exch_lookup(lport, xid);
2115 explan = ELS_EXPL_OXID_RXID;
2116 if (!ep)
2117 goto reject;
2118 spin_lock_bh(&ep->ex_lock);
2119 if (ep->oxid != ntohs(rp->rrq_ox_id))
2120 goto unlock_reject;
2121 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2122 ep->rxid != FC_XID_UNKNOWN)
2123 goto unlock_reject;
2124 explan = ELS_EXPL_SID;
2125 if (ep->sid != sid)
2126 goto unlock_reject;
2129 * Clear Recovery Qualifier state, and cancel timer if complete.
2131 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2132 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2133 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2135 if (ep->esb_stat & ESB_ST_COMPLETE) {
2136 if (cancel_delayed_work(&ep->timeout_work))
2137 atomic_dec(&ep->ex_refcnt); /* drop timer hold */
2140 spin_unlock_bh(&ep->ex_lock);
2143 * Send LS_ACC.
2145 fc_seq_ls_acc(fp);
2146 goto out;
2148 unlock_reject:
2149 spin_unlock_bh(&ep->ex_lock);
2150 reject:
2151 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2152 out:
2153 if (ep)
2154 fc_exch_release(ep); /* drop hold from fc_exch_find */
2158 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2159 * @lport: The local port to add the exchange manager to
2160 * @mp: The exchange manager to be added to the local port
2161 * @match: The match routine that indicates when this EM should be used
2163 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2164 struct fc_exch_mgr *mp,
2165 bool (*match)(struct fc_frame *))
2167 struct fc_exch_mgr_anchor *ema;
2169 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2170 if (!ema)
2171 return ema;
2173 ema->mp = mp;
2174 ema->match = match;
2175 /* add EM anchor to EM anchors list */
2176 list_add_tail(&ema->ema_list, &lport->ema_list);
2177 kref_get(&mp->kref);
2178 return ema;
2180 EXPORT_SYMBOL(fc_exch_mgr_add);
2183 * fc_exch_mgr_destroy() - Destroy an exchange manager
2184 * @kref: The reference to the EM to be destroyed
2186 static void fc_exch_mgr_destroy(struct kref *kref)
2188 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2190 mempool_destroy(mp->ep_pool);
2191 free_percpu(mp->pool);
2192 kfree(mp);
2196 * fc_exch_mgr_del() - Delete an EM from a local port's list
2197 * @ema: The exchange manager anchor identifying the EM to be deleted
2199 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2201 /* remove EM anchor from EM anchors list */
2202 list_del(&ema->ema_list);
2203 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2204 kfree(ema);
2206 EXPORT_SYMBOL(fc_exch_mgr_del);
2209 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2210 * @src: Source lport to clone exchange managers from
2211 * @dst: New lport that takes references to all the exchange managers
2213 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2215 struct fc_exch_mgr_anchor *ema, *tmp;
2217 list_for_each_entry(ema, &src->ema_list, ema_list) {
2218 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2219 goto err;
2221 return 0;
2222 err:
2223 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2224 fc_exch_mgr_del(ema);
2225 return -ENOMEM;
2227 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2230 * fc_exch_mgr_alloc() - Allocate an exchange manager
2231 * @lport: The local port that the new EM will be associated with
2232 * @class: The default FC class for new exchanges
2233 * @min_xid: The minimum XID for exchanges from the new EM
2234 * @max_xid: The maximum XID for exchanges from the new EM
2235 * @match: The match routine for the new EM
2237 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2238 enum fc_class class,
2239 u16 min_xid, u16 max_xid,
2240 bool (*match)(struct fc_frame *))
2242 struct fc_exch_mgr *mp;
2243 u16 pool_exch_range;
2244 size_t pool_size;
2245 unsigned int cpu;
2246 struct fc_exch_pool *pool;
2248 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2249 (min_xid & fc_cpu_mask) != 0) {
2250 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2251 min_xid, max_xid);
2252 return NULL;
2256 * allocate memory for EM
2258 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2259 if (!mp)
2260 return NULL;
2262 mp->class = class;
2263 /* adjust em exch xid range for offload */
2264 mp->min_xid = min_xid;
2265 mp->max_xid = max_xid;
2267 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2268 if (!mp->ep_pool)
2269 goto free_mp;
2272 * Setup per cpu exch pool with entire exchange id range equally
2273 * divided across all cpus. The exch pointers array memory is
2274 * allocated for exch range per pool.
2276 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2277 mp->pool_max_index = pool_exch_range - 1;
2280 * Allocate and initialize per cpu exch pool
2282 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2283 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2284 if (!mp->pool)
2285 goto free_mempool;
2286 for_each_possible_cpu(cpu) {
2287 pool = per_cpu_ptr(mp->pool, cpu);
2288 pool->next_index = 0;
2289 pool->left = FC_XID_UNKNOWN;
2290 pool->right = FC_XID_UNKNOWN;
2291 spin_lock_init(&pool->lock);
2292 INIT_LIST_HEAD(&pool->ex_list);
2295 kref_init(&mp->kref);
2296 if (!fc_exch_mgr_add(lport, mp, match)) {
2297 free_percpu(mp->pool);
2298 goto free_mempool;
2302 * Above kref_init() sets mp->kref to 1 and then
2303 * call to fc_exch_mgr_add incremented mp->kref again,
2304 * so adjust that extra increment.
2306 kref_put(&mp->kref, fc_exch_mgr_destroy);
2307 return mp;
2309 free_mempool:
2310 mempool_destroy(mp->ep_pool);
2311 free_mp:
2312 kfree(mp);
2313 return NULL;
2315 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2318 * fc_exch_mgr_free() - Free all exchange managers on a local port
2319 * @lport: The local port whose EMs are to be freed
2321 void fc_exch_mgr_free(struct fc_lport *lport)
2323 struct fc_exch_mgr_anchor *ema, *next;
2325 flush_workqueue(fc_exch_workqueue);
2326 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2327 fc_exch_mgr_del(ema);
2329 EXPORT_SYMBOL(fc_exch_mgr_free);
2332 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2333 * upon 'xid'.
2334 * @f_ctl: f_ctl
2335 * @lport: The local port the frame was received on
2336 * @fh: The received frame header
2338 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2339 struct fc_lport *lport,
2340 struct fc_frame_header *fh)
2342 struct fc_exch_mgr_anchor *ema;
2343 u16 xid;
2345 if (f_ctl & FC_FC_EX_CTX)
2346 xid = ntohs(fh->fh_ox_id);
2347 else {
2348 xid = ntohs(fh->fh_rx_id);
2349 if (xid == FC_XID_UNKNOWN)
2350 return list_entry(lport->ema_list.prev,
2351 typeof(*ema), ema_list);
2354 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2355 if ((xid >= ema->mp->min_xid) &&
2356 (xid <= ema->mp->max_xid))
2357 return ema;
2359 return NULL;
2362 * fc_exch_recv() - Handler for received frames
2363 * @lport: The local port the frame was received on
2364 * @fp: The received frame
2366 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2368 struct fc_frame_header *fh = fc_frame_header_get(fp);
2369 struct fc_exch_mgr_anchor *ema;
2370 u32 f_ctl;
2372 /* lport lock ? */
2373 if (!lport || lport->state == LPORT_ST_DISABLED) {
2374 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2375 "has not been initialized correctly\n");
2376 fc_frame_free(fp);
2377 return;
2380 f_ctl = ntoh24(fh->fh_f_ctl);
2381 ema = fc_find_ema(f_ctl, lport, fh);
2382 if (!ema) {
2383 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2384 "fc_ctl <0x%x>, xid <0x%x>\n",
2385 f_ctl,
2386 (f_ctl & FC_FC_EX_CTX) ?
2387 ntohs(fh->fh_ox_id) :
2388 ntohs(fh->fh_rx_id));
2389 fc_frame_free(fp);
2390 return;
2394 * If frame is marked invalid, just drop it.
2396 switch (fr_eof(fp)) {
2397 case FC_EOF_T:
2398 if (f_ctl & FC_FC_END_SEQ)
2399 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2400 /* fall through */
2401 case FC_EOF_N:
2402 if (fh->fh_type == FC_TYPE_BLS)
2403 fc_exch_recv_bls(ema->mp, fp);
2404 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2405 FC_FC_EX_CTX)
2406 fc_exch_recv_seq_resp(ema->mp, fp);
2407 else if (f_ctl & FC_FC_SEQ_CTX)
2408 fc_exch_recv_resp(ema->mp, fp);
2409 else /* no EX_CTX and no SEQ_CTX */
2410 fc_exch_recv_req(lport, ema->mp, fp);
2411 break;
2412 default:
2413 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2414 fr_eof(fp));
2415 fc_frame_free(fp);
2418 EXPORT_SYMBOL(fc_exch_recv);
2421 * fc_exch_init() - Initialize the exchange layer for a local port
2422 * @lport: The local port to initialize the exchange layer for
2424 int fc_exch_init(struct fc_lport *lport)
2426 if (!lport->tt.seq_start_next)
2427 lport->tt.seq_start_next = fc_seq_start_next;
2429 if (!lport->tt.seq_set_resp)
2430 lport->tt.seq_set_resp = fc_seq_set_resp;
2432 if (!lport->tt.exch_seq_send)
2433 lport->tt.exch_seq_send = fc_exch_seq_send;
2435 if (!lport->tt.seq_send)
2436 lport->tt.seq_send = fc_seq_send;
2438 if (!lport->tt.seq_els_rsp_send)
2439 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2441 if (!lport->tt.exch_done)
2442 lport->tt.exch_done = fc_exch_done;
2444 if (!lport->tt.exch_mgr_reset)
2445 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2447 if (!lport->tt.seq_exch_abort)
2448 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2450 if (!lport->tt.seq_assign)
2451 lport->tt.seq_assign = fc_seq_assign;
2453 if (!lport->tt.seq_release)
2454 lport->tt.seq_release = fc_seq_release;
2456 return 0;
2458 EXPORT_SYMBOL(fc_exch_init);
2461 * fc_setup_exch_mgr() - Setup an exchange manager
2463 int fc_setup_exch_mgr(void)
2465 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2466 0, SLAB_HWCACHE_ALIGN, NULL);
2467 if (!fc_em_cachep)
2468 return -ENOMEM;
2471 * Initialize fc_cpu_mask and fc_cpu_order. The
2472 * fc_cpu_mask is set for nr_cpu_ids rounded up
2473 * to order of 2's * power and order is stored
2474 * in fc_cpu_order as this is later required in
2475 * mapping between an exch id and exch array index
2476 * in per cpu exch pool.
2478 * This round up is required to align fc_cpu_mask
2479 * to exchange id's lower bits such that all incoming
2480 * frames of an exchange gets delivered to the same
2481 * cpu on which exchange originated by simple bitwise
2482 * AND operation between fc_cpu_mask and exchange id.
2484 fc_cpu_mask = 1;
2485 fc_cpu_order = 0;
2486 while (fc_cpu_mask < nr_cpu_ids) {
2487 fc_cpu_mask <<= 1;
2488 fc_cpu_order++;
2490 fc_cpu_mask--;
2492 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2493 if (!fc_exch_workqueue)
2494 goto err;
2495 return 0;
2496 err:
2497 kmem_cache_destroy(fc_em_cachep);
2498 return -ENOMEM;
2502 * fc_destroy_exch_mgr() - Destroy an exchange manager
2504 void fc_destroy_exch_mgr(void)
2506 destroy_workqueue(fc_exch_workqueue);
2507 kmem_cache_destroy(fc_em_cachep);