spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / drivers / scsi / sym53c8xx_2 / sym_fw2.h
blobc87d72443a16826c1bbd8e8790740b8104cb38a1
1 /*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
7 * This driver is derived from the Linux sym53c8xx driver.
8 * Copyright (C) 1998-2000 Gerard Roudier
10 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11 * a port of the FreeBSD ncr driver to Linux-1.2.13.
13 * The original ncr driver has been written for 386bsd and FreeBSD by
14 * Wolfgang Stanglmeier <wolf@cologne.de>
15 * Stefan Esser <se@mi.Uni-Koeln.de>
16 * Copyright (C) 1994 Wolfgang Stanglmeier
18 * Other major contributions:
20 * NVRAM detection and reading.
21 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23 *-----------------------------------------------------------------------------
25 * This program is free software; you can redistribute it and/or modify
26 * it under the terms of the GNU General Public License as published by
27 * the Free Software Foundation; either version 2 of the License, or
28 * (at your option) any later version.
30 * This program is distributed in the hope that it will be useful,
31 * but WITHOUT ANY WARRANTY; without even the implied warranty of
32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
33 * GNU General Public License for more details.
35 * You should have received a copy of the GNU General Public License
36 * along with this program; if not, write to the Free Software
37 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
41 * Scripts for SYMBIOS-Processor
43 * We have to know the offsets of all labels before we reach
44 * them (for forward jumps). Therefore we declare a struct
45 * here. If you make changes inside the script,
47 * DONT FORGET TO CHANGE THE LENGTHS HERE!
51 * Script fragments which are loaded into the on-chip RAM
52 * of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
53 * Must not exceed 4K bytes.
55 struct SYM_FWA_SCR {
56 u32 start [ 14];
57 u32 getjob_begin [ 4];
58 u32 getjob_end [ 4];
59 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
60 u32 select [ 6];
61 #else
62 u32 select [ 4];
63 #endif
64 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
65 u32 is_dmap_dirty [ 4];
66 #endif
67 u32 wf_sel_done [ 2];
68 u32 sel_done [ 2];
69 u32 send_ident [ 2];
70 #ifdef SYM_CONF_IARB_SUPPORT
71 u32 select2 [ 8];
72 #else
73 u32 select2 [ 2];
74 #endif
75 u32 command [ 2];
76 u32 dispatch [ 28];
77 u32 sel_no_cmd [ 10];
78 u32 init [ 6];
79 u32 clrack [ 4];
80 u32 datai_done [ 10];
81 u32 datai_done_wsr [ 20];
82 u32 datao_done [ 10];
83 u32 datao_done_wss [ 6];
84 u32 datai_phase [ 4];
85 u32 datao_phase [ 6];
86 u32 msg_in [ 2];
87 u32 msg_in2 [ 10];
88 #ifdef SYM_CONF_IARB_SUPPORT
89 u32 status [ 14];
90 #else
91 u32 status [ 10];
92 #endif
93 u32 complete [ 6];
94 u32 complete2 [ 12];
95 u32 done [ 14];
96 u32 done_end [ 2];
97 u32 complete_error [ 4];
98 u32 save_dp [ 12];
99 u32 restore_dp [ 8];
100 u32 disconnect [ 12];
101 #ifdef SYM_CONF_IARB_SUPPORT
102 u32 idle [ 4];
103 #else
104 u32 idle [ 2];
105 #endif
106 #ifdef SYM_CONF_IARB_SUPPORT
107 u32 ungetjob [ 6];
108 #else
109 u32 ungetjob [ 4];
110 #endif
111 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
112 u32 reselect [ 4];
113 #else
114 u32 reselect [ 2];
115 #endif
116 u32 reselected [ 22];
117 u32 resel_scntl4 [ 20];
118 u32 resel_lun0 [ 6];
119 #if SYM_CONF_MAX_TASK*4 > 512
120 u32 resel_tag [ 26];
121 #elif SYM_CONF_MAX_TASK*4 > 256
122 u32 resel_tag [ 20];
123 #else
124 u32 resel_tag [ 16];
125 #endif
126 u32 resel_dsa [ 2];
127 u32 resel_dsa1 [ 4];
128 u32 resel_no_tag [ 6];
129 u32 data_in [SYM_CONF_MAX_SG * 2];
130 u32 data_in2 [ 4];
131 u32 data_out [SYM_CONF_MAX_SG * 2];
132 u32 data_out2 [ 4];
133 u32 pm0_data [ 12];
134 u32 pm0_data_out [ 6];
135 u32 pm0_data_end [ 6];
136 u32 pm1_data [ 12];
137 u32 pm1_data_out [ 6];
138 u32 pm1_data_end [ 6];
142 * Script fragments which stay in main memory for all chips
143 * except for chips that support 8K on-chip RAM.
145 struct SYM_FWB_SCR {
146 u32 start64 [ 2];
147 u32 no_data [ 2];
148 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
149 u32 sel_for_abort [ 18];
150 #else
151 u32 sel_for_abort [ 16];
152 #endif
153 u32 sel_for_abort_1 [ 2];
154 u32 msg_in_etc [ 12];
155 u32 msg_received [ 4];
156 u32 msg_weird_seen [ 4];
157 u32 msg_extended [ 20];
158 u32 msg_bad [ 6];
159 u32 msg_weird [ 4];
160 u32 msg_weird1 [ 8];
162 u32 wdtr_resp [ 6];
163 u32 send_wdtr [ 4];
164 u32 sdtr_resp [ 6];
165 u32 send_sdtr [ 4];
166 u32 ppr_resp [ 6];
167 u32 send_ppr [ 4];
168 u32 nego_bad_phase [ 4];
169 u32 msg_out [ 4];
170 u32 msg_out_done [ 4];
171 u32 data_ovrun [ 2];
172 u32 data_ovrun1 [ 22];
173 u32 data_ovrun2 [ 8];
174 u32 abort_resel [ 16];
175 u32 resend_ident [ 4];
176 u32 ident_break [ 4];
177 u32 ident_break_atn [ 4];
178 u32 sdata_in [ 6];
179 u32 resel_bad_lun [ 4];
180 u32 bad_i_t_l [ 4];
181 u32 bad_i_t_l_q [ 4];
182 u32 bad_status [ 6];
183 u32 pm_handle [ 20];
184 u32 pm_handle1 [ 4];
185 u32 pm_save [ 4];
186 u32 pm0_save [ 12];
187 u32 pm_save_end [ 4];
188 u32 pm1_save [ 14];
190 /* WSR handling */
191 u32 pm_wsr_handle [ 38];
192 u32 wsr_ma_helper [ 4];
194 /* Data area */
195 u32 zero [ 1];
196 u32 scratch [ 1];
197 u32 pm0_data_addr [ 1];
198 u32 pm1_data_addr [ 1];
199 u32 done_pos [ 1];
200 u32 startpos [ 1];
201 u32 targtbl [ 1];
205 * Script fragments used at initialisations.
206 * Only runs out of main memory.
208 struct SYM_FWZ_SCR {
209 u32 snooptest [ 6];
210 u32 snoopend [ 2];
213 static struct SYM_FWA_SCR SYM_FWA_SCR = {
214 /*--------------------------< START >----------------------------*/ {
216 * Switch the LED on.
217 * Will be patched with a NO_OP if LED
218 * not needed or not desired.
220 SCR_REG_REG (gpreg, SCR_AND, 0xfe),
223 * Clear SIGP.
225 SCR_FROM_REG (ctest2),
228 * Stop here if the C code wants to perform
229 * some error recovery procedure manually.
230 * (Indicate this by setting SEM in ISTAT)
232 SCR_FROM_REG (istat),
235 * Report to the C code the next position in
236 * the start queue the SCRIPTS will schedule.
237 * The C code must not change SCRATCHA.
239 SCR_LOAD_ABS (scratcha, 4),
240 PADDR_B (startpos),
241 SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
242 SIR_SCRIPT_STOPPED,
244 * Start the next job.
246 * @DSA = start point for this job.
247 * SCRATCHA = address of this job in the start queue.
249 * We will restore startpos with SCRATCHA if we fails the
250 * arbitration or if it is the idle job.
252 * The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
253 * is a critical path. If it is partially executed, it then
254 * may happen that the job address is not yet in the DSA
255 * and the next queue position points to the next JOB.
257 SCR_LOAD_ABS (dsa, 4),
258 PADDR_B (startpos),
259 SCR_LOAD_REL (temp, 4),
261 }/*-------------------------< GETJOB_BEGIN >---------------------*/,{
262 SCR_STORE_ABS (temp, 4),
263 PADDR_B (startpos),
264 SCR_LOAD_REL (dsa, 4),
266 }/*-------------------------< GETJOB_END >-----------------------*/,{
267 SCR_LOAD_REL (temp, 4),
269 SCR_RETURN,
271 }/*-------------------------< SELECT >---------------------------*/,{
273 * DSA contains the address of a scheduled
274 * data structure.
276 * SCRATCHA contains the address of the start queue
277 * entry which points to the next job.
279 * Set Initiator mode.
281 * (Target mode is left as an exercise for the reader)
283 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
284 SCR_CLR (SCR_TRG),
286 #endif
288 * And try to select this target.
290 SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
291 PADDR_A (ungetjob),
293 * Now there are 4 possibilities:
295 * (1) The chip loses arbitration.
296 * This is ok, because it will try again,
297 * when the bus becomes idle.
298 * (But beware of the timeout function!)
300 * (2) The chip is reselected.
301 * Then the script processor takes the jump
302 * to the RESELECT label.
304 * (3) The chip wins arbitration.
305 * Then it will execute SCRIPTS instruction until
306 * the next instruction that checks SCSI phase.
307 * Then will stop and wait for selection to be
308 * complete or selection time-out to occur.
310 * After having won arbitration, the SCRIPTS
311 * processor is able to execute instructions while
312 * the SCSI core is performing SCSI selection.
315 * Initialize the status registers
317 SCR_LOAD_REL (scr0, 4),
318 offsetof (struct sym_ccb, phys.head.status),
320 * We may need help from CPU if the DMA segment
321 * registers aren't up-to-date for this IO.
322 * Patched with NOOP for chips that donnot
323 * support DAC addressing.
325 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
326 }/*-------------------------< IS_DMAP_DIRTY >--------------------*/,{
327 SCR_FROM_REG (HX_REG),
329 SCR_INT ^ IFTRUE (MASK (HX_DMAP_DIRTY, HX_DMAP_DIRTY)),
330 SIR_DMAP_DIRTY,
331 #endif
332 }/*-------------------------< WF_SEL_DONE >----------------------*/,{
333 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
334 SIR_SEL_ATN_NO_MSG_OUT,
335 }/*-------------------------< SEL_DONE >-------------------------*/,{
337 * C1010-33 errata work-around.
338 * Due to a race, the SCSI core may not have
339 * loaded SCNTL3 on SEL_TBL instruction.
340 * We reload it once phase is stable.
341 * Patched with a NOOP for other chips.
343 SCR_LOAD_REL (scntl3, 1),
344 offsetof(struct sym_dsb, select.sel_scntl3),
345 }/*-------------------------< SEND_IDENT >-----------------------*/,{
347 * Selection complete.
348 * Send the IDENTIFY and possibly the TAG message
349 * and negotiation message if present.
351 SCR_MOVE_TBL ^ SCR_MSG_OUT,
352 offsetof (struct sym_dsb, smsg),
353 }/*-------------------------< SELECT2 >--------------------------*/,{
354 #ifdef SYM_CONF_IARB_SUPPORT
356 * Set IMMEDIATE ARBITRATION if we have been given
357 * a hint to do so. (Some job to do after this one).
359 SCR_FROM_REG (HF_REG),
361 SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
363 SCR_REG_REG (scntl1, SCR_OR, IARB),
365 #endif
367 * Anticipate the COMMAND phase.
368 * This is the PHASE we expect at this point.
370 SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
371 PADDR_A (sel_no_cmd),
372 }/*-------------------------< COMMAND >--------------------------*/,{
374 * ... and send the command
376 SCR_MOVE_TBL ^ SCR_COMMAND,
377 offsetof (struct sym_dsb, cmd),
378 }/*-------------------------< DISPATCH >-------------------------*/,{
380 * MSG_IN is the only phase that shall be
381 * entered at least once for each (re)selection.
382 * So we test it first.
384 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
385 PADDR_A (msg_in),
386 SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
387 PADDR_A (datao_phase),
388 SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
389 PADDR_A (datai_phase),
390 SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
391 PADDR_A (status),
392 SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
393 PADDR_A (command),
394 SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
395 PADDR_B (msg_out),
397 * Discard as many illegal phases as
398 * required and tell the C code about.
400 SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
402 SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
403 HADDR_1 (scratch),
404 SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
405 -16,
406 SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
408 SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
409 HADDR_1 (scratch),
410 SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
411 -16,
412 SCR_INT,
413 SIR_BAD_PHASE,
414 SCR_JUMP,
415 PADDR_A (dispatch),
416 }/*-------------------------< SEL_NO_CMD >-----------------------*/,{
418 * The target does not switch to command
419 * phase after IDENTIFY has been sent.
421 * If it stays in MSG OUT phase send it
422 * the IDENTIFY again.
424 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
425 PADDR_B (resend_ident),
427 * If target does not switch to MSG IN phase
428 * and we sent a negotiation, assert the
429 * failure immediately.
431 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
432 PADDR_A (dispatch),
433 SCR_FROM_REG (HS_REG),
435 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
436 SIR_NEGO_FAILED,
438 * Jump to dispatcher.
440 SCR_JUMP,
441 PADDR_A (dispatch),
442 }/*-------------------------< INIT >-----------------------------*/,{
444 * Wait for the SCSI RESET signal to be
445 * inactive before restarting operations,
446 * since the chip may hang on SEL_ATN
447 * if SCSI RESET is active.
449 SCR_FROM_REG (sstat0),
451 SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
452 -16,
453 SCR_JUMP,
454 PADDR_A (start),
455 }/*-------------------------< CLRACK >---------------------------*/,{
457 * Terminate possible pending message phase.
459 SCR_CLR (SCR_ACK),
461 SCR_JUMP,
462 PADDR_A (dispatch),
463 }/*-------------------------< DATAI_DONE >-----------------------*/,{
465 * Save current pointer to LASTP.
467 SCR_STORE_REL (temp, 4),
468 offsetof (struct sym_ccb, phys.head.lastp),
470 * If the SWIDE is not full, jump to dispatcher.
471 * We anticipate a STATUS phase.
473 SCR_FROM_REG (scntl2),
475 SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)),
476 PADDR_A (datai_done_wsr),
477 SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
478 PADDR_A (status),
479 SCR_JUMP,
480 PADDR_A (dispatch),
481 }/*-------------------------< DATAI_DONE_WSR >-------------------*/,{
483 * The SWIDE is full.
484 * Clear this condition.
486 SCR_REG_REG (scntl2, SCR_OR, WSR),
489 * We are expecting an IGNORE RESIDUE message
490 * from the device, otherwise we are in data
491 * overrun condition. Check against MSG_IN phase.
493 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
494 SIR_SWIDE_OVERRUN,
495 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
496 PADDR_A (dispatch),
498 * We are in MSG_IN phase,
499 * Read the first byte of the message.
500 * If it is not an IGNORE RESIDUE message,
501 * signal overrun and jump to message
502 * processing.
504 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
505 HADDR_1 (msgin[0]),
506 SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
507 SIR_SWIDE_OVERRUN,
508 SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
509 PADDR_A (msg_in2),
511 * We got the message we expected.
512 * Read the 2nd byte, and jump to dispatcher.
514 SCR_CLR (SCR_ACK),
516 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
517 HADDR_1 (msgin[1]),
518 SCR_CLR (SCR_ACK),
520 SCR_JUMP,
521 PADDR_A (dispatch),
522 }/*-------------------------< DATAO_DONE >-----------------------*/,{
524 * Save current pointer to LASTP.
526 SCR_STORE_REL (temp, 4),
527 offsetof (struct sym_ccb, phys.head.lastp),
529 * If the SODL is not full jump to dispatcher.
530 * We anticipate a STATUS phase.
532 SCR_FROM_REG (scntl2),
534 SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)),
535 PADDR_A (datao_done_wss),
536 SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
537 PADDR_A (status),
538 SCR_JUMP,
539 PADDR_A (dispatch),
540 }/*-------------------------< DATAO_DONE_WSS >-------------------*/,{
542 * The SODL is full, clear this condition.
544 SCR_REG_REG (scntl2, SCR_OR, WSS),
547 * And signal a DATA UNDERRUN condition
548 * to the C code.
550 SCR_INT,
551 SIR_SODL_UNDERRUN,
552 SCR_JUMP,
553 PADDR_A (dispatch),
554 }/*-------------------------< DATAI_PHASE >----------------------*/,{
556 * Jump to current pointer.
558 SCR_LOAD_REL (temp, 4),
559 offsetof (struct sym_ccb, phys.head.lastp),
560 SCR_RETURN,
562 }/*-------------------------< DATAO_PHASE >----------------------*/,{
564 * C1010-66 errata work-around.
565 * Extra clocks of data hold must be inserted
566 * in DATA OUT phase on 33 MHz PCI BUS.
567 * Patched with a NOOP for other chips.
569 SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
572 * Jump to current pointer.
574 SCR_LOAD_REL (temp, 4),
575 offsetof (struct sym_ccb, phys.head.lastp),
576 SCR_RETURN,
578 }/*-------------------------< MSG_IN >---------------------------*/,{
580 * Get the first byte of the message.
582 * The script processor doesn't negate the
583 * ACK signal after this transfer.
585 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
586 HADDR_1 (msgin[0]),
587 }/*-------------------------< MSG_IN2 >--------------------------*/,{
589 * Check first against 1 byte messages
590 * that we handle from SCRIPTS.
592 SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
593 PADDR_A (complete),
594 SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
595 PADDR_A (disconnect),
596 SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
597 PADDR_A (save_dp),
598 SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
599 PADDR_A (restore_dp),
601 * We handle all other messages from the
602 * C code, so no need to waste on-chip RAM
603 * for those ones.
605 SCR_JUMP,
606 PADDR_B (msg_in_etc),
607 }/*-------------------------< STATUS >---------------------------*/,{
609 * get the status
611 SCR_MOVE_ABS (1) ^ SCR_STATUS,
612 HADDR_1 (scratch),
613 #ifdef SYM_CONF_IARB_SUPPORT
615 * If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
616 * since we may have to tamper the start queue from
617 * the C code.
619 SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
621 SCR_REG_REG (scntl1, SCR_AND, ~IARB),
623 #endif
625 * save status to scsi_status.
626 * mark as complete.
628 SCR_TO_REG (SS_REG),
630 SCR_LOAD_REG (HS_REG, HS_COMPLETE),
633 * Anticipate the MESSAGE PHASE for
634 * the TASK COMPLETE message.
636 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
637 PADDR_A (msg_in),
638 SCR_JUMP,
639 PADDR_A (dispatch),
640 }/*-------------------------< COMPLETE >-------------------------*/,{
642 * Complete message.
644 * When we terminate the cycle by clearing ACK,
645 * the target may disconnect immediately.
647 * We don't want to be told of an "unexpected disconnect",
648 * so we disable this feature.
650 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
653 * Terminate cycle ...
655 SCR_CLR (SCR_ACK|SCR_ATN),
658 * ... and wait for the disconnect.
660 SCR_WAIT_DISC,
662 }/*-------------------------< COMPLETE2 >------------------------*/,{
664 * Save host status.
666 SCR_STORE_REL (scr0, 4),
667 offsetof (struct sym_ccb, phys.head.status),
669 * Some bridges may reorder DMA writes to memory.
670 * We donnot want the CPU to deal with completions
671 * without all the posted write having been flushed
672 * to memory. This DUMMY READ should flush posted
673 * buffers prior to the CPU having to deal with
674 * completions.
676 SCR_LOAD_REL (scr0, 4), /* DUMMY READ */
677 offsetof (struct sym_ccb, phys.head.status),
680 * If command resulted in not GOOD status,
681 * call the C code if needed.
683 SCR_FROM_REG (SS_REG),
685 SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
686 PADDR_B (bad_status),
688 * If we performed an auto-sense, call
689 * the C code to synchronyze task aborts
690 * with UNIT ATTENTION conditions.
692 SCR_FROM_REG (HF_REG),
694 SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
695 PADDR_A (complete_error),
696 }/*-------------------------< DONE >-----------------------------*/,{
698 * Copy the DSA to the DONE QUEUE and
699 * signal completion to the host.
700 * If we are interrupted between DONE
701 * and DONE_END, we must reset, otherwise
702 * the completed CCB may be lost.
704 SCR_STORE_ABS (dsa, 4),
705 PADDR_B (scratch),
706 SCR_LOAD_ABS (dsa, 4),
707 PADDR_B (done_pos),
708 SCR_LOAD_ABS (scratcha, 4),
709 PADDR_B (scratch),
710 SCR_STORE_REL (scratcha, 4),
713 * The instruction below reads the DONE QUEUE next
714 * free position from memory.
715 * In addition it ensures that all PCI posted writes
716 * are flushed and so the DSA value of the done
717 * CCB is visible by the CPU before INTFLY is raised.
719 SCR_LOAD_REL (scratcha, 4),
721 SCR_INT_FLY,
723 SCR_STORE_ABS (scratcha, 4),
724 PADDR_B (done_pos),
725 }/*-------------------------< DONE_END >-------------------------*/,{
726 SCR_JUMP,
727 PADDR_A (start),
728 }/*-------------------------< COMPLETE_ERROR >-------------------*/,{
729 SCR_LOAD_ABS (scratcha, 4),
730 PADDR_B (startpos),
731 SCR_INT,
732 SIR_COMPLETE_ERROR,
733 }/*-------------------------< SAVE_DP >--------------------------*/,{
735 * Clear ACK immediately.
736 * No need to delay it.
738 SCR_CLR (SCR_ACK),
741 * Keep track we received a SAVE DP, so
742 * we will switch to the other PM context
743 * on the next PM since the DP may point
744 * to the current PM context.
746 SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
749 * SAVE_DP message:
750 * Copy LASTP to SAVEP.
752 SCR_LOAD_REL (scratcha, 4),
753 offsetof (struct sym_ccb, phys.head.lastp),
754 SCR_STORE_REL (scratcha, 4),
755 offsetof (struct sym_ccb, phys.head.savep),
757 * Anticipate the MESSAGE PHASE for
758 * the DISCONNECT message.
760 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
761 PADDR_A (msg_in),
762 SCR_JUMP,
763 PADDR_A (dispatch),
764 }/*-------------------------< RESTORE_DP >-----------------------*/,{
766 * Clear ACK immediately.
767 * No need to delay it.
769 SCR_CLR (SCR_ACK),
772 * Copy SAVEP to LASTP.
774 SCR_LOAD_REL (scratcha, 4),
775 offsetof (struct sym_ccb, phys.head.savep),
776 SCR_STORE_REL (scratcha, 4),
777 offsetof (struct sym_ccb, phys.head.lastp),
778 SCR_JUMP,
779 PADDR_A (dispatch),
780 }/*-------------------------< DISCONNECT >-----------------------*/,{
782 * DISCONNECTing ...
784 * disable the "unexpected disconnect" feature,
785 * and remove the ACK signal.
787 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
789 SCR_CLR (SCR_ACK|SCR_ATN),
792 * Wait for the disconnect.
794 SCR_WAIT_DISC,
797 * Status is: DISCONNECTED.
799 SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
802 * Save host status.
804 SCR_STORE_REL (scr0, 4),
805 offsetof (struct sym_ccb, phys.head.status),
806 SCR_JUMP,
807 PADDR_A (start),
808 }/*-------------------------< IDLE >-----------------------------*/,{
810 * Nothing to do?
811 * Switch the LED off and wait for reselect.
812 * Will be patched with a NO_OP if LED
813 * not needed or not desired.
815 SCR_REG_REG (gpreg, SCR_OR, 0x01),
817 #ifdef SYM_CONF_IARB_SUPPORT
818 SCR_JUMPR,
820 #endif
821 }/*-------------------------< UNGETJOB >-------------------------*/,{
822 #ifdef SYM_CONF_IARB_SUPPORT
824 * Set IMMEDIATE ARBITRATION, for the next time.
825 * This will give us better chance to win arbitration
826 * for the job we just wanted to do.
828 SCR_REG_REG (scntl1, SCR_OR, IARB),
830 #endif
832 * We are not able to restart the SCRIPTS if we are
833 * interrupted and these instruction haven't been
834 * all executed. BTW, this is very unlikely to
835 * happen, but we check that from the C code.
837 SCR_LOAD_REG (dsa, 0xff),
839 SCR_STORE_ABS (scratcha, 4),
840 PADDR_B (startpos),
841 }/*-------------------------< RESELECT >-------------------------*/,{
842 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
844 * Make sure we are in initiator mode.
846 SCR_CLR (SCR_TRG),
848 #endif
850 * Sleep waiting for a reselection.
852 SCR_WAIT_RESEL,
853 PADDR_A(start),
854 }/*-------------------------< RESELECTED >-----------------------*/,{
856 * Switch the LED on.
857 * Will be patched with a NO_OP if LED
858 * not needed or not desired.
860 SCR_REG_REG (gpreg, SCR_AND, 0xfe),
863 * load the target id into the sdid
865 SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
867 SCR_TO_REG (sdid),
870 * Load the target control block address
872 SCR_LOAD_ABS (dsa, 4),
873 PADDR_B (targtbl),
874 SCR_SFBR_REG (dsa, SCR_SHL, 0),
876 SCR_REG_REG (dsa, SCR_SHL, 0),
878 SCR_REG_REG (dsa, SCR_AND, 0x3c),
880 SCR_LOAD_REL (dsa, 4),
883 * We expect MESSAGE IN phase.
884 * If not, get help from the C code.
886 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
887 SIR_RESEL_NO_MSG_IN,
889 * Load the legacy synchronous transfer registers.
891 SCR_LOAD_REL (scntl3, 1),
892 offsetof(struct sym_tcb, head.wval),
893 SCR_LOAD_REL (sxfer, 1),
894 offsetof(struct sym_tcb, head.sval),
895 }/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
897 * The C1010 uses a new synchronous timing scheme.
898 * Will be patched with a NO_OP if not a C1010.
900 SCR_LOAD_REL (scntl4, 1),
901 offsetof(struct sym_tcb, head.uval),
903 * Get the IDENTIFY message.
905 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
906 HADDR_1 (msgin),
908 * If IDENTIFY LUN #0, use a faster path
909 * to find the LCB structure.
911 SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
912 PADDR_A (resel_lun0),
914 * If message isn't an IDENTIFY,
915 * tell the C code about.
917 SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
918 SIR_RESEL_NO_IDENTIFY,
920 * It is an IDENTIFY message,
921 * Load the LUN control block address.
923 SCR_LOAD_REL (dsa, 4),
924 offsetof(struct sym_tcb, head.luntbl_sa),
925 SCR_SFBR_REG (dsa, SCR_SHL, 0),
927 SCR_REG_REG (dsa, SCR_SHL, 0),
929 SCR_REG_REG (dsa, SCR_AND, 0xfc),
931 SCR_LOAD_REL (dsa, 4),
933 SCR_JUMPR,
935 }/*-------------------------< RESEL_LUN0 >-----------------------*/,{
937 * LUN 0 special case (but usual one :))
939 SCR_LOAD_REL (dsa, 4),
940 offsetof(struct sym_tcb, head.lun0_sa),
942 * Jump indirectly to the reselect action for this LUN.
944 SCR_LOAD_REL (temp, 4),
945 offsetof(struct sym_lcb, head.resel_sa),
946 SCR_RETURN,
948 /* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
949 }/*-------------------------< RESEL_TAG >------------------------*/,{
951 * ACK the IDENTIFY previously received.
953 SCR_CLR (SCR_ACK),
956 * It shall be a tagged command.
957 * Read SIMPLE+TAG.
958 * The C code will deal with errors.
959 * Aggressive optimization, isn't it? :)
961 SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
962 HADDR_1 (msgin),
964 * Load the pointer to the tagged task
965 * table for this LUN.
967 SCR_LOAD_REL (dsa, 4),
968 offsetof(struct sym_lcb, head.itlq_tbl_sa),
970 * The SIDL still contains the TAG value.
971 * Aggressive optimization, isn't it? :):)
973 SCR_REG_SFBR (sidl, SCR_SHL, 0),
975 #if SYM_CONF_MAX_TASK*4 > 512
976 SCR_JUMPR ^ IFFALSE (CARRYSET),
978 SCR_REG_REG (dsa1, SCR_OR, 2),
980 SCR_REG_REG (sfbr, SCR_SHL, 0),
982 SCR_JUMPR ^ IFFALSE (CARRYSET),
984 SCR_REG_REG (dsa1, SCR_OR, 1),
986 #elif SYM_CONF_MAX_TASK*4 > 256
987 SCR_JUMPR ^ IFFALSE (CARRYSET),
989 SCR_REG_REG (dsa1, SCR_OR, 1),
991 #endif
993 * Retrieve the DSA of this task.
994 * JUMP indirectly to the restart point of the CCB.
996 SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
998 SCR_LOAD_REL (dsa, 4),
1000 SCR_LOAD_REL (temp, 4),
1001 offsetof(struct sym_ccb, phys.head.go.restart),
1002 SCR_RETURN,
1004 /* In normal situations we branch to RESEL_DSA */
1005 }/*-------------------------< RESEL_DSA >------------------------*/,{
1007 * ACK the IDENTIFY or TAG previously received.
1009 SCR_CLR (SCR_ACK),
1011 }/*-------------------------< RESEL_DSA1 >-----------------------*/,{
1013 * Initialize the status registers
1015 SCR_LOAD_REL (scr0, 4),
1016 offsetof (struct sym_ccb, phys.head.status),
1018 * Jump to dispatcher.
1020 SCR_JUMP,
1021 PADDR_A (dispatch),
1022 }/*-------------------------< RESEL_NO_TAG >---------------------*/,{
1024 * Load the DSA with the unique ITL task.
1026 SCR_LOAD_REL (dsa, 4),
1027 offsetof(struct sym_lcb, head.itl_task_sa),
1029 * JUMP indirectly to the restart point of the CCB.
1031 SCR_LOAD_REL (temp, 4),
1032 offsetof(struct sym_ccb, phys.head.go.restart),
1033 SCR_RETURN,
1035 /* In normal situations we branch to RESEL_DSA */
1036 }/*-------------------------< DATA_IN >--------------------------*/,{
1038 * Because the size depends on the
1039 * #define SYM_CONF_MAX_SG parameter,
1040 * it is filled in at runtime.
1042 * ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1043 * || SCR_CHMOV_TBL ^ SCR_DATA_IN,
1044 * || offsetof (struct sym_dsb, data[ i]),
1045 * ##==========================================
1048 }/*-------------------------< DATA_IN2 >-------------------------*/,{
1049 SCR_CALL,
1050 PADDR_A (datai_done),
1051 SCR_JUMP,
1052 PADDR_B (data_ovrun),
1053 }/*-------------------------< DATA_OUT >-------------------------*/,{
1055 * Because the size depends on the
1056 * #define SYM_CONF_MAX_SG parameter,
1057 * it is filled in at runtime.
1059 * ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1060 * || SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1061 * || offsetof (struct sym_dsb, data[ i]),
1062 * ##==========================================
1065 }/*-------------------------< DATA_OUT2 >------------------------*/,{
1066 SCR_CALL,
1067 PADDR_A (datao_done),
1068 SCR_JUMP,
1069 PADDR_B (data_ovrun),
1070 }/*-------------------------< PM0_DATA >-------------------------*/,{
1072 * Read our host flags to SFBR, so we will be able
1073 * to check against the data direction we expect.
1075 SCR_FROM_REG (HF_REG),
1078 * Check against actual DATA PHASE.
1080 SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1081 PADDR_A (pm0_data_out),
1083 * Actual phase is DATA IN.
1084 * Check against expected direction.
1086 SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1087 PADDR_B (data_ovrun),
1089 * Keep track we are moving data from the
1090 * PM0 DATA mini-script.
1092 SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1095 * Move the data to memory.
1097 SCR_CHMOV_TBL ^ SCR_DATA_IN,
1098 offsetof (struct sym_ccb, phys.pm0.sg),
1099 SCR_JUMP,
1100 PADDR_A (pm0_data_end),
1101 }/*-------------------------< PM0_DATA_OUT >---------------------*/,{
1103 * Actual phase is DATA OUT.
1104 * Check against expected direction.
1106 SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1107 PADDR_B (data_ovrun),
1109 * Keep track we are moving data from the
1110 * PM0 DATA mini-script.
1112 SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1115 * Move the data from memory.
1117 SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1118 offsetof (struct sym_ccb, phys.pm0.sg),
1119 }/*-------------------------< PM0_DATA_END >---------------------*/,{
1121 * Clear the flag that told we were moving
1122 * data from the PM0 DATA mini-script.
1124 SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
1127 * Return to the previous DATA script which
1128 * is guaranteed by design (if no bug) to be
1129 * the main DATA script for this transfer.
1131 SCR_LOAD_REL (temp, 4),
1132 offsetof (struct sym_ccb, phys.pm0.ret),
1133 SCR_RETURN,
1135 }/*-------------------------< PM1_DATA >-------------------------*/,{
1137 * Read our host flags to SFBR, so we will be able
1138 * to check against the data direction we expect.
1140 SCR_FROM_REG (HF_REG),
1143 * Check against actual DATA PHASE.
1145 SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1146 PADDR_A (pm1_data_out),
1148 * Actual phase is DATA IN.
1149 * Check against expected direction.
1151 SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1152 PADDR_B (data_ovrun),
1154 * Keep track we are moving data from the
1155 * PM1 DATA mini-script.
1157 SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1160 * Move the data to memory.
1162 SCR_CHMOV_TBL ^ SCR_DATA_IN,
1163 offsetof (struct sym_ccb, phys.pm1.sg),
1164 SCR_JUMP,
1165 PADDR_A (pm1_data_end),
1166 }/*-------------------------< PM1_DATA_OUT >---------------------*/,{
1168 * Actual phase is DATA OUT.
1169 * Check against expected direction.
1171 SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1172 PADDR_B (data_ovrun),
1174 * Keep track we are moving data from the
1175 * PM1 DATA mini-script.
1177 SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1180 * Move the data from memory.
1182 SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1183 offsetof (struct sym_ccb, phys.pm1.sg),
1184 }/*-------------------------< PM1_DATA_END >---------------------*/,{
1186 * Clear the flag that told we were moving
1187 * data from the PM1 DATA mini-script.
1189 SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
1192 * Return to the previous DATA script which
1193 * is guaranteed by design (if no bug) to be
1194 * the main DATA script for this transfer.
1196 SCR_LOAD_REL (temp, 4),
1197 offsetof (struct sym_ccb, phys.pm1.ret),
1198 SCR_RETURN,
1200 }/*-------------------------<>-----------------------------------*/
1203 static struct SYM_FWB_SCR SYM_FWB_SCR = {
1204 /*--------------------------< START64 >--------------------------*/ {
1206 * SCRIPT entry point for the 895A, 896 and 1010.
1207 * For now, there is no specific stuff for those
1208 * chips at this point, but this may come.
1210 SCR_JUMP,
1211 PADDR_A (init),
1212 }/*-------------------------< NO_DATA >--------------------------*/,{
1213 SCR_JUMP,
1214 PADDR_B (data_ovrun),
1215 }/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
1217 * We are jumped here by the C code, if we have
1218 * some target to reset or some disconnected
1219 * job to abort. Since error recovery is a serious
1220 * busyness, we will really reset the SCSI BUS, if
1221 * case of a SCSI interrupt occurring in this path.
1223 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
1225 * Set initiator mode.
1227 SCR_CLR (SCR_TRG),
1229 #endif
1231 * And try to select this target.
1233 SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
1234 PADDR_A (reselect),
1236 * Wait for the selection to complete or
1237 * the selection to time out.
1239 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1242 * Call the C code.
1244 SCR_INT,
1245 SIR_TARGET_SELECTED,
1247 * The C code should let us continue here.
1248 * Send the 'kiss of death' message.
1249 * We expect an immediate disconnect once
1250 * the target has eaten the message.
1252 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1254 SCR_MOVE_TBL ^ SCR_MSG_OUT,
1255 offsetof (struct sym_hcb, abrt_tbl),
1256 SCR_CLR (SCR_ACK|SCR_ATN),
1258 SCR_WAIT_DISC,
1261 * Tell the C code that we are done.
1263 SCR_INT,
1264 SIR_ABORT_SENT,
1265 }/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
1267 * Jump at scheduler.
1269 SCR_JUMP,
1270 PADDR_A (start),
1271 }/*-------------------------< MSG_IN_ETC >-----------------------*/,{
1273 * If it is an EXTENDED (variable size message)
1274 * Handle it.
1276 SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
1277 PADDR_B (msg_extended),
1279 * Let the C code handle any other
1280 * 1 byte message.
1282 SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
1283 PADDR_B (msg_received),
1284 SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
1285 PADDR_B (msg_received),
1287 * We donnot handle 2 bytes messages from SCRIPTS.
1288 * So, let the C code deal with these ones too.
1290 SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
1291 PADDR_B (msg_weird_seen),
1292 SCR_CLR (SCR_ACK),
1294 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1295 HADDR_1 (msgin[1]),
1296 }/*-------------------------< MSG_RECEIVED >---------------------*/,{
1297 SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
1299 SCR_INT,
1300 SIR_MSG_RECEIVED,
1301 }/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
1302 SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
1304 SCR_INT,
1305 SIR_MSG_WEIRD,
1306 }/*-------------------------< MSG_EXTENDED >---------------------*/,{
1308 * Clear ACK and get the next byte
1309 * assumed to be the message length.
1311 SCR_CLR (SCR_ACK),
1313 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1314 HADDR_1 (msgin[1]),
1316 * Try to catch some unlikely situations as 0 length
1317 * or too large the length.
1319 SCR_JUMP ^ IFTRUE (DATA (0)),
1320 PADDR_B (msg_weird_seen),
1321 SCR_TO_REG (scratcha),
1323 SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
1325 SCR_JUMP ^ IFTRUE (CARRYSET),
1326 PADDR_B (msg_weird_seen),
1328 * We donnot handle extended messages from SCRIPTS.
1329 * Read the amount of data corresponding to the
1330 * message length and call the C code.
1332 SCR_STORE_REL (scratcha, 1),
1333 offsetof (struct sym_dsb, smsg_ext.size),
1334 SCR_CLR (SCR_ACK),
1336 SCR_MOVE_TBL ^ SCR_MSG_IN,
1337 offsetof (struct sym_dsb, smsg_ext),
1338 SCR_JUMP,
1339 PADDR_B (msg_received),
1340 }/*-------------------------< MSG_BAD >--------------------------*/,{
1342 * unimplemented message - reject it.
1344 SCR_INT,
1345 SIR_REJECT_TO_SEND,
1346 SCR_SET (SCR_ATN),
1348 SCR_JUMP,
1349 PADDR_A (clrack),
1350 }/*-------------------------< MSG_WEIRD >------------------------*/,{
1352 * weird message received
1353 * ignore all MSG IN phases and reject it.
1355 SCR_INT,
1356 SIR_REJECT_TO_SEND,
1357 SCR_SET (SCR_ATN),
1359 }/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
1360 SCR_CLR (SCR_ACK),
1362 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
1363 PADDR_A (dispatch),
1364 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1365 HADDR_1 (scratch),
1366 SCR_JUMP,
1367 PADDR_B (msg_weird1),
1368 }/*-------------------------< WDTR_RESP >------------------------*/,{
1370 * let the target fetch our answer.
1372 SCR_SET (SCR_ATN),
1374 SCR_CLR (SCR_ACK),
1376 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1377 PADDR_B (nego_bad_phase),
1378 }/*-------------------------< SEND_WDTR >------------------------*/,{
1380 * Send the M_X_WIDE_REQ
1382 SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
1383 HADDR_1 (msgout),
1384 SCR_JUMP,
1385 PADDR_B (msg_out_done),
1386 }/*-------------------------< SDTR_RESP >------------------------*/,{
1388 * let the target fetch our answer.
1390 SCR_SET (SCR_ATN),
1392 SCR_CLR (SCR_ACK),
1394 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1395 PADDR_B (nego_bad_phase),
1396 }/*-------------------------< SEND_SDTR >------------------------*/,{
1398 * Send the M_X_SYNC_REQ
1400 SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
1401 HADDR_1 (msgout),
1402 SCR_JUMP,
1403 PADDR_B (msg_out_done),
1404 }/*-------------------------< PPR_RESP >-------------------------*/,{
1406 * let the target fetch our answer.
1408 SCR_SET (SCR_ATN),
1410 SCR_CLR (SCR_ACK),
1412 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1413 PADDR_B (nego_bad_phase),
1414 }/*-------------------------< SEND_PPR >-------------------------*/,{
1416 * Send the M_X_PPR_REQ
1418 SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
1419 HADDR_1 (msgout),
1420 SCR_JUMP,
1421 PADDR_B (msg_out_done),
1422 }/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
1423 SCR_INT,
1424 SIR_NEGO_PROTO,
1425 SCR_JUMP,
1426 PADDR_A (dispatch),
1427 }/*-------------------------< MSG_OUT >--------------------------*/,{
1429 * The target requests a message.
1430 * We donnot send messages that may
1431 * require the device to go to bus free.
1433 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1434 HADDR_1 (msgout),
1436 * ... wait for the next phase
1437 * if it's a message out, send it again, ...
1439 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
1440 PADDR_B (msg_out),
1441 }/*-------------------------< MSG_OUT_DONE >---------------------*/,{
1443 * Let the C code be aware of the
1444 * sent message and clear the message.
1446 SCR_INT,
1447 SIR_MSG_OUT_DONE,
1449 * ... and process the next phase
1451 SCR_JUMP,
1452 PADDR_A (dispatch),
1453 }/*-------------------------< DATA_OVRUN >-----------------------*/,{
1455 * Use scratcha to count the extra bytes.
1457 SCR_LOAD_ABS (scratcha, 4),
1458 PADDR_B (zero),
1459 }/*-------------------------< DATA_OVRUN1 >----------------------*/,{
1461 * The target may want to transfer too much data.
1463 * If phase is DATA OUT write 1 byte and count it.
1465 SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
1467 SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
1468 HADDR_1 (scratch),
1469 SCR_JUMP,
1470 PADDR_B (data_ovrun2),
1472 * If WSR is set, clear this condition, and
1473 * count this byte.
1475 SCR_FROM_REG (scntl2),
1477 SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
1479 SCR_REG_REG (scntl2, SCR_OR, WSR),
1481 SCR_JUMP,
1482 PADDR_B (data_ovrun2),
1484 * Finally check against DATA IN phase.
1485 * Signal data overrun to the C code
1486 * and jump to dispatcher if not so.
1487 * Read 1 byte otherwise and count it.
1489 SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
1491 SCR_INT,
1492 SIR_DATA_OVERRUN,
1493 SCR_JUMP,
1494 PADDR_A (dispatch),
1495 SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
1496 HADDR_1 (scratch),
1497 }/*-------------------------< DATA_OVRUN2 >----------------------*/,{
1499 * Count this byte.
1500 * This will allow to return a negative
1501 * residual to user.
1503 SCR_REG_REG (scratcha, SCR_ADD, 0x01),
1505 SCR_REG_REG (scratcha1, SCR_ADDC, 0),
1507 SCR_REG_REG (scratcha2, SCR_ADDC, 0),
1510 * .. and repeat as required.
1512 SCR_JUMP,
1513 PADDR_B (data_ovrun1),
1514 }/*-------------------------< ABORT_RESEL >----------------------*/,{
1515 SCR_SET (SCR_ATN),
1517 SCR_CLR (SCR_ACK),
1520 * send the abort/abortag/reset message
1521 * we expect an immediate disconnect
1523 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1525 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1526 HADDR_1 (msgout),
1527 SCR_CLR (SCR_ACK|SCR_ATN),
1529 SCR_WAIT_DISC,
1531 SCR_INT,
1532 SIR_RESEL_ABORTED,
1533 SCR_JUMP,
1534 PADDR_A (start),
1535 }/*-------------------------< RESEND_IDENT >---------------------*/,{
1537 * The target stays in MSG OUT phase after having acked
1538 * Identify [+ Tag [+ Extended message ]]. Targets shall
1539 * behave this way on parity error.
1540 * We must send it again all the messages.
1542 SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
1543 0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
1544 SCR_JUMP,
1545 PADDR_A (send_ident),
1546 }/*-------------------------< IDENT_BREAK >----------------------*/,{
1547 SCR_CLR (SCR_ATN),
1549 SCR_JUMP,
1550 PADDR_A (select2),
1551 }/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
1552 SCR_SET (SCR_ATN),
1554 SCR_JUMP,
1555 PADDR_A (select2),
1556 }/*-------------------------< SDATA_IN >-------------------------*/,{
1557 SCR_CHMOV_TBL ^ SCR_DATA_IN,
1558 offsetof (struct sym_dsb, sense),
1559 SCR_CALL,
1560 PADDR_A (datai_done),
1561 SCR_JUMP,
1562 PADDR_B (data_ovrun),
1563 }/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
1565 * Message is an IDENTIFY, but lun is unknown.
1566 * Signal problem to C code for logging the event.
1567 * Send a M_ABORT to clear all pending tasks.
1569 SCR_INT,
1570 SIR_RESEL_BAD_LUN,
1571 SCR_JUMP,
1572 PADDR_B (abort_resel),
1573 }/*-------------------------< BAD_I_T_L >------------------------*/,{
1575 * We donnot have a task for that I_T_L.
1576 * Signal problem to C code for logging the event.
1577 * Send a M_ABORT message.
1579 SCR_INT,
1580 SIR_RESEL_BAD_I_T_L,
1581 SCR_JUMP,
1582 PADDR_B (abort_resel),
1583 }/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
1585 * We donnot have a task that matches the tag.
1586 * Signal problem to C code for logging the event.
1587 * Send a M_ABORTTAG message.
1589 SCR_INT,
1590 SIR_RESEL_BAD_I_T_L_Q,
1591 SCR_JUMP,
1592 PADDR_B (abort_resel),
1593 }/*-------------------------< BAD_STATUS >-----------------------*/,{
1595 * Anything different from INTERMEDIATE
1596 * CONDITION MET should be a bad SCSI status,
1597 * given that GOOD status has already been tested.
1598 * Call the C code.
1600 SCR_LOAD_ABS (scratcha, 4),
1601 PADDR_B (startpos),
1602 SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
1603 SIR_BAD_SCSI_STATUS,
1604 SCR_RETURN,
1606 }/*-------------------------< PM_HANDLE >------------------------*/,{
1608 * Phase mismatch handling.
1610 * Since we have to deal with 2 SCSI data pointers
1611 * (current and saved), we need at least 2 contexts.
1612 * Each context (pm0 and pm1) has a saved area, a
1613 * SAVE mini-script and a DATA phase mini-script.
1616 * Get the PM handling flags.
1618 SCR_FROM_REG (HF_REG),
1621 * If no flags (1rst PM for example), avoid
1622 * all the below heavy flags testing.
1623 * This makes the normal case a bit faster.
1625 SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
1626 PADDR_B (pm_handle1),
1628 * If we received a SAVE DP, switch to the
1629 * other PM context since the savep may point
1630 * to the current PM context.
1632 SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
1634 SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
1637 * If we have been interrupt in a PM DATA mini-script,
1638 * we take the return address from the corresponding
1639 * saved area.
1640 * This ensure the return address always points to the
1641 * main DATA script for this transfer.
1643 SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
1644 PADDR_B (pm_handle1),
1645 SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
1647 SCR_LOAD_REL (ia, 4),
1648 offsetof(struct sym_ccb, phys.pm0.ret),
1649 SCR_JUMP,
1650 PADDR_B (pm_save),
1651 SCR_LOAD_REL (ia, 4),
1652 offsetof(struct sym_ccb, phys.pm1.ret),
1653 SCR_JUMP,
1654 PADDR_B (pm_save),
1655 }/*-------------------------< PM_HANDLE1 >-----------------------*/,{
1657 * Normal case.
1658 * Update the return address so that it
1659 * will point after the interrupted MOVE.
1661 SCR_REG_REG (ia, SCR_ADD, 8),
1663 SCR_REG_REG (ia1, SCR_ADDC, 0),
1665 }/*-------------------------< PM_SAVE >--------------------------*/,{
1667 * Clear all the flags that told us if we were
1668 * interrupted in a PM DATA mini-script and/or
1669 * we received a SAVE DP.
1671 SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
1674 * Choose the current PM context.
1676 SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
1677 PADDR_B (pm1_save),
1678 }/*-------------------------< PM0_SAVE >-------------------------*/,{
1679 SCR_STORE_REL (ia, 4),
1680 offsetof(struct sym_ccb, phys.pm0.ret),
1682 * If WSR bit is set, either UA and RBC may
1683 * have to be changed whether the device wants
1684 * to ignore this residue or not.
1686 SCR_FROM_REG (scntl2),
1688 SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1689 PADDR_B (pm_wsr_handle),
1691 * Save the remaining byte count, the updated
1692 * address and the return address.
1694 SCR_STORE_REL (rbc, 4),
1695 offsetof(struct sym_ccb, phys.pm0.sg.size),
1696 SCR_STORE_REL (ua, 4),
1697 offsetof(struct sym_ccb, phys.pm0.sg.addr),
1699 * Set the current pointer at the PM0 DATA mini-script.
1701 SCR_LOAD_ABS (ia, 4),
1702 PADDR_B (pm0_data_addr),
1703 }/*-------------------------< PM_SAVE_END >----------------------*/,{
1704 SCR_STORE_REL (ia, 4),
1705 offsetof(struct sym_ccb, phys.head.lastp),
1706 SCR_JUMP,
1707 PADDR_A (dispatch),
1708 }/*-------------------------< PM1_SAVE >-------------------------*/,{
1709 SCR_STORE_REL (ia, 4),
1710 offsetof(struct sym_ccb, phys.pm1.ret),
1712 * If WSR bit is set, either UA and RBC may
1713 * have to be changed whether the device wants
1714 * to ignore this residue or not.
1716 SCR_FROM_REG (scntl2),
1718 SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1719 PADDR_B (pm_wsr_handle),
1721 * Save the remaining byte count, the updated
1722 * address and the return address.
1724 SCR_STORE_REL (rbc, 4),
1725 offsetof(struct sym_ccb, phys.pm1.sg.size),
1726 SCR_STORE_REL (ua, 4),
1727 offsetof(struct sym_ccb, phys.pm1.sg.addr),
1729 * Set the current pointer at the PM1 DATA mini-script.
1731 SCR_LOAD_ABS (ia, 4),
1732 PADDR_B (pm1_data_addr),
1733 SCR_JUMP,
1734 PADDR_B (pm_save_end),
1735 }/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
1737 * Phase mismatch handling from SCRIPT with WSR set.
1738 * Such a condition can occur if the chip wants to
1739 * execute a CHMOV(size > 1) when the WSR bit is
1740 * set and the target changes PHASE.
1742 * We must move the residual byte to memory.
1744 * UA contains bit 0..31 of the address to
1745 * move the residual byte.
1746 * Move it to the table indirect.
1748 SCR_STORE_REL (ua, 4),
1749 offsetof (struct sym_ccb, phys.wresid.addr),
1751 * Increment UA (move address to next position).
1753 SCR_REG_REG (ua, SCR_ADD, 1),
1755 SCR_REG_REG (ua1, SCR_ADDC, 0),
1757 SCR_REG_REG (ua2, SCR_ADDC, 0),
1759 SCR_REG_REG (ua3, SCR_ADDC, 0),
1762 * Compute SCRATCHA as:
1763 * - size to transfer = 1 byte.
1764 * - bit 24..31 = high address bit [32...39].
1766 SCR_LOAD_ABS (scratcha, 4),
1767 PADDR_B (zero),
1768 SCR_REG_REG (scratcha, SCR_OR, 1),
1770 SCR_FROM_REG (rbc3),
1772 SCR_TO_REG (scratcha3),
1775 * Move this value to the table indirect.
1777 SCR_STORE_REL (scratcha, 4),
1778 offsetof (struct sym_ccb, phys.wresid.size),
1780 * Wait for a valid phase.
1781 * While testing with bogus QUANTUM drives, the C1010
1782 * sometimes raised a spurious phase mismatch with
1783 * WSR and the CHMOV(1) triggered another PM.
1784 * Waiting explicitly for the PHASE seemed to avoid
1785 * the nested phase mismatch. Btw, this didn't happen
1786 * using my IBM drives.
1788 SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
1791 * Perform the move of the residual byte.
1793 SCR_CHMOV_TBL ^ SCR_DATA_IN,
1794 offsetof (struct sym_ccb, phys.wresid),
1796 * We can now handle the phase mismatch with UA fixed.
1797 * RBC[0..23]=0 is a special case that does not require
1798 * a PM context. The C code also checks against this.
1800 SCR_FROM_REG (rbc),
1802 SCR_RETURN ^ IFFALSE (DATA (0)),
1804 SCR_FROM_REG (rbc1),
1806 SCR_RETURN ^ IFFALSE (DATA (0)),
1808 SCR_FROM_REG (rbc2),
1810 SCR_RETURN ^ IFFALSE (DATA (0)),
1813 * RBC[0..23]=0.
1814 * Not only we donnot need a PM context, but this would
1815 * lead to a bogus CHMOV(0). This condition means that
1816 * the residual was the last byte to move from this CHMOV.
1817 * So, we just have to move the current data script pointer
1818 * (i.e. TEMP) to the SCRIPTS address following the
1819 * interrupted CHMOV and jump to dispatcher.
1820 * IA contains the data pointer to save.
1822 SCR_JUMP,
1823 PADDR_B (pm_save_end),
1824 }/*-------------------------< WSR_MA_HELPER >--------------------*/,{
1826 * Helper for the C code when WSR bit is set.
1827 * Perform the move of the residual byte.
1829 SCR_CHMOV_TBL ^ SCR_DATA_IN,
1830 offsetof (struct sym_ccb, phys.wresid),
1831 SCR_JUMP,
1832 PADDR_A (dispatch),
1834 }/*-------------------------< ZERO >-----------------------------*/,{
1835 SCR_DATA_ZERO,
1836 }/*-------------------------< SCRATCH >--------------------------*/,{
1837 SCR_DATA_ZERO,
1838 }/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
1839 SCR_DATA_ZERO,
1840 }/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
1841 SCR_DATA_ZERO,
1842 }/*-------------------------< DONE_POS >-------------------------*/,{
1843 SCR_DATA_ZERO,
1844 }/*-------------------------< STARTPOS >-------------------------*/,{
1845 SCR_DATA_ZERO,
1846 }/*-------------------------< TARGTBL >--------------------------*/,{
1847 SCR_DATA_ZERO,
1848 }/*-------------------------<>-----------------------------------*/
1851 static struct SYM_FWZ_SCR SYM_FWZ_SCR = {
1852 /*-------------------------< SNOOPTEST >------------------------*/{
1854 * Read the variable from memory.
1856 SCR_LOAD_REL (scratcha, 4),
1857 offsetof(struct sym_hcb, scratch),
1859 * Write the variable to memory.
1861 SCR_STORE_REL (temp, 4),
1862 offsetof(struct sym_hcb, scratch),
1864 * Read back the variable from memory.
1866 SCR_LOAD_REL (temp, 4),
1867 offsetof(struct sym_hcb, scratch),
1868 }/*-------------------------< SNOOPEND >-------------------------*/,{
1870 * And stop.
1872 SCR_INT,
1874 }/*-------------------------<>-----------------------------------*/