3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
5 * Copyright © 2005 Agere Systems Inc.
9 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
11 *------------------------------------------------------------------------------
15 * This software is provided subject to the following terms and conditions,
16 * which you should read carefully before using the software. Using this
17 * software indicates your acceptance of these terms and conditions. If you do
18 * not agree with these terms and conditions, do not use the software.
20 * Copyright © 2005 Agere Systems Inc.
21 * All rights reserved.
23 * Redistribution and use in source or binary forms, with or without
24 * modifications, are permitted provided that the following conditions are met:
26 * . Redistributions of source code must retain the above copyright notice, this
27 * list of conditions and the following Disclaimer as comments in the code as
28 * well as in the documentation and/or other materials provided with the
31 * . Redistributions in binary form must reproduce the above copyright notice,
32 * this list of conditions and the following Disclaimer in the documentation
33 * and/or other materials provided with the distribution.
35 * . Neither the name of Agere Systems Inc. nor the names of the contributors
36 * may be used to endorse or promote products derived from this software
37 * without specific prior written permission.
41 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
42 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
44 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
45 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
46 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
47 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
48 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
49 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
51 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
56 #include <linux/pci.h>
57 #include <linux/init.h>
58 #include <linux/module.h>
59 #include <linux/types.h>
60 #include <linux/kernel.h>
62 #include <linux/sched.h>
63 #include <linux/ptrace.h>
64 #include <linux/slab.h>
65 #include <linux/ctype.h>
66 #include <linux/string.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
70 #include <linux/delay.h>
71 #include <linux/bitops.h>
73 #include <asm/system.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_arp.h>
79 #include <linux/ioport.h>
80 #include <linux/crc32.h>
81 #include <linux/random.h>
82 #include <linux/phy.h>
86 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
87 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
88 MODULE_LICENSE("Dual BSD/GPL");
89 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver "
90 "for the ET1310 by Agere Systems");
93 #define MAX_NUM_REGISTER_POLLS 1000
94 #define MAX_NUM_WRITE_RETRIES 2
97 #define COUNTER_WRAP_16_BIT 0x10000
98 #define COUNTER_WRAP_12_BIT 0x1000
101 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
102 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
106 * For interrupts, normal running is:
107 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
108 * watchdog_interrupt & txdma_xfer_done
110 * In both cases, when flow control is enabled for either Tx or bi-direction,
111 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
112 * buffer rings are running low.
114 #define INT_MASK_DISABLE 0xffffffff
116 /* NOTE: Masking out MAC_STAT Interrupt for now...
117 * #define INT_MASK_ENABLE 0xfff6bf17
118 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
120 #define INT_MASK_ENABLE 0xfffebf17
121 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
123 /* General defines */
124 /* Packet and header sizes */
125 #define NIC_MIN_PACKET_SIZE 60
127 /* Multicast list size */
128 #define NIC_MAX_MCAST_LIST 128
130 /* Supported Filters */
131 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
132 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
133 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
134 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
135 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
138 #define ET131X_TX_TIMEOUT (1 * HZ)
139 #define NIC_SEND_HANG_THRESHOLD 0
142 #define fMP_DEST_MULTI 0x00000001
143 #define fMP_DEST_BROAD 0x00000002
145 /* MP_ADAPTER flags */
146 #define fMP_ADAPTER_RECV_LOOKASIDE 0x00000004
147 #define fMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
149 /* MP_SHARED flags */
150 #define fMP_ADAPTER_LOWER_POWER 0x00200000
152 #define fMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
153 #define fMP_ADAPTER_HARDWARE_ERROR 0x04000000
155 #define fMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
157 /* Some offsets in PCI config space that are actually used. */
158 #define ET1310_PCI_MAC_ADDRESS 0xA4
159 #define ET1310_PCI_EEPROM_STATUS 0xB2
160 #define ET1310_PCI_ACK_NACK 0xC0
161 #define ET1310_PCI_REPLAY 0xC2
162 #define ET1310_PCI_L0L1LATENCY 0xCF
164 /* PCI Product IDs */
165 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
166 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
168 /* Define order of magnitude converter */
169 #define NANO_IN_A_MICRO 1000
171 #define PARM_RX_NUM_BUFS_DEF 4
172 #define PARM_RX_TIME_INT_DEF 10
173 #define PARM_RX_MEM_END_DEF 0x2bc
174 #define PARM_TX_TIME_INT_DEF 40
175 #define PARM_TX_NUM_BUFS_DEF 4
176 #define PARM_DMA_CACHE_DEF 0
180 #define FBR_CHUNKS 32
181 #define MAX_DESC_PER_RING_RX 1024
183 /* number of RFDs - default and min */
185 #define RFD_LOW_WATER_MARK 40
186 #define NIC_DEFAULT_NUM_RFD 1024
189 #define RFD_LOW_WATER_MARK 20
190 #define NIC_DEFAULT_NUM_RFD 256
194 #define NIC_MIN_NUM_RFD 64
195 #define NUM_PACKETS_HANDLED 256
197 #define ALCATEL_MULTICAST_PKT 0x01000000
198 #define ALCATEL_BROADCAST_PKT 0x02000000
200 /* typedefs for Free Buffer Descriptors */
204 u32 word2
; /* Bits 10-31 reserved, 0-9 descriptor */
207 /* Packet Status Ring Descriptors
211 * top 16 bits are from the Alcatel Status Word as enumerated in
212 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
215 * 1: ipa IP checksum assist
216 * 2: ipp IP checksum pass
217 * 3: tcpa TCP checksum assist
218 * 4: tcpp TCP checksum pass
220 * 6: rxmac_error RXMAC Error Indicator
221 * 7: drop Drop packet
222 * 8: ft Frame Truncated
226 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
227 * 17: asw_RX_DV_event short receive event detected
228 * 18: asw_false_carrier_event bad carrier since last good packet
229 * 19: asw_code_err one or more nibbles signalled as errors
230 * 20: asw_CRC_err CRC error
231 * 21: asw_len_chk_err frame length field incorrect
232 * 22: asw_too_long frame length > 1518 bytes
233 * 23: asw_OK valid CRC + no code error
234 * 24: asw_multicast has a multicast address
235 * 25: asw_broadcast has a broadcast address
236 * 26: asw_dribble_nibble spurious bits after EOP
237 * 27: asw_control_frame is a control frame
238 * 28: asw_pause_frame is a pause frame
239 * 29: asw_unsupported_op unsupported OP code
240 * 30: asw_VLAN_tag VLAN tag detected
241 * 31: asw_long_evt Rx long event
244 * 0-15: length length in bytes
245 * 16-25: bi Buffer Index
246 * 26-27: ri Ring Index
250 struct pkt_stat_desc
{
255 /* Typedefs for the RX DMA status word */
258 * rx status word 0 holds part of the status bits of the Rx DMA engine
259 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
260 * which contains the Free Buffer ring 0 and 1 available offset.
262 * bit 0-9 FBR1 offset
263 * bit 10 Wrap flag for FBR1
264 * bit 16-25 FBR0 offset
265 * bit 26 Wrap flag for FBR0
269 * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
270 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
271 * which contains the Packet Status Ring available offset.
274 * bit 16-27 PSRoffset
280 * struct rx_status_block is a structure representing the status of the Rx
281 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
283 struct rx_status_block
{
289 * Structure for look-up table holding free buffer ring pointers, addresses
293 void *virt
[MAX_DESC_PER_RING_RX
];
294 void *buffer1
[MAX_DESC_PER_RING_RX
];
295 void *buffer2
[MAX_DESC_PER_RING_RX
];
296 u32 bus_high
[MAX_DESC_PER_RING_RX
];
297 u32 bus_low
[MAX_DESC_PER_RING_RX
];
299 dma_addr_t ring_physaddr
;
300 void *mem_virtaddrs
[MAX_DESC_PER_RING_RX
/ FBR_CHUNKS
];
301 dma_addr_t mem_physaddrs
[MAX_DESC_PER_RING_RX
/ FBR_CHUNKS
];
310 * struct rx_ring is the sructure representing the adaptor's local
311 * reference(s) to the rings
313 ******************************************************************************
314 * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
315 * and index 1 to refer to FRB0
316 ******************************************************************************
319 struct fbr_lookup
*fbr
[NUM_FBRS
];
320 void *ps_ring_virtaddr
;
321 dma_addr_t ps_ring_physaddr
;
325 struct rx_status_block
*rx_status_block
;
326 dma_addr_t rx_status_bus
;
329 struct list_head recv_list
;
334 bool unfinished_receives
;
336 /* lookaside lists */
337 struct kmem_cache
*recv_lookaside
;
342 * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
344 * 0-15: length of packet
347 * 29-31: VLAN priority
349 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
351 * 0: last packet in the sequence
352 * 1: first packet in the sequence
353 * 2: interrupt the processor when this pkt sent
354 * 3: Control word - no packet data
355 * 4: Issue half-duplex backpressure : XON/XOFF
356 * 5: send pause frame
357 * 6: Tx frame has error
361 * 10: Packet is a Huge packet
362 * 11: append VLAN tag
363 * 12: IP checksum assist
364 * 13: TCP checksum assist
365 * 14: UDP checksum assist
368 /* struct tx_desc represents each descriptor on the ring */
372 u32 len_vlan
; /* control words how to xmit the */
373 u32 flags
; /* data (detailed above) */
377 * The status of the Tx DMA engine it sits in free memory, and is pointed to
378 * by 0x101c / 0x1020. This is a DMA10 type
381 /* TCB (Transmit Control Block: Host Side) */
383 struct tcb
*next
; /* Next entry in ring */
384 u32 flags
; /* Our flags for the packet */
385 u32 count
; /* Used to spot stuck/lost packets */
386 u32 stale
; /* Used to spot stuck/lost packets */
387 struct sk_buff
*skb
; /* Network skb we are tied to */
388 u32 index
; /* Ring indexes */
392 /* Structure representing our local reference(s) to the ring */
394 /* TCB (Transmit Control Block) memory and lists */
395 struct tcb
*tcb_ring
;
397 /* List of TCBs that are ready to be used */
398 struct tcb
*tcb_qhead
;
399 struct tcb
*tcb_qtail
;
401 /* list of TCBs that are currently being sent. NOTE that access to all
402 * three of these (including used) are controlled via the
403 * TCBSendQLock. This lock should be secured prior to incementing /
404 * decrementing used, or any queue manipulation on send_head /
407 struct tcb
*send_head
;
408 struct tcb
*send_tail
;
411 /* The actual descriptor ring */
412 struct tx_desc
*tx_desc_ring
;
413 dma_addr_t tx_desc_ring_pa
;
415 /* send_idx indicates where we last wrote to in the descriptor ring. */
418 /* The location of the write-back status block */
420 dma_addr_t tx_status_pa
;
422 /* Packets since the last IRQ: used for interrupt coalescing */
427 * Do not change these values: if changed, then change also in respective
428 * TXdma and Rxdma engines
430 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
434 * These values are all superseded by registry entries to facilitate tuning.
435 * Once the desired performance has been achieved, the optimal registry values
436 * should be re-populated to these #defines:
438 #define TX_ERROR_PERIOD 1000
440 #define LO_MARK_PERCENT_FOR_PSR 15
441 #define LO_MARK_PERCENT_FOR_RX 15
443 /* RFD (Receive Frame Descriptor) */
445 struct list_head list_node
;
447 u32 len
; /* total size of receive frame */
454 #define FLOW_TXONLY 1
455 #define FLOW_RXONLY 2
458 /* Struct to define some device statistics */
462 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
463 * MUST have 32, then we'll need another way to perform atomic
466 u32 unicast_pkts_rcvd
;
467 atomic_t unicast_pkts_xmtd
;
468 u32 multicast_pkts_rcvd
;
469 atomic_t multicast_pkts_xmtd
;
470 u32 broadcast_pkts_rcvd
;
471 atomic_t broadcast_pkts_xmtd
;
472 u32 rcvd_pkts_dropped
;
478 u32 tx_excessive_collisions
;
479 u32 tx_first_collisions
;
480 u32 tx_late_collisions
;
490 u32 rx_code_violations
;
493 u32 synchronous_iterations
;
494 u32 interrupt_status
;
497 /* The private adapter structure */
498 struct et131x_adapter
{
499 struct net_device
*netdev
;
500 struct pci_dev
*pdev
;
501 struct mii_bus
*mii_bus
;
502 struct phy_device
*phydev
;
503 struct work_struct task
;
505 /* Flags that indicate current state of the adapter */
508 /* local link state, to determine if a state change has occurred */
512 u8 rom_addr
[ETH_ALEN
];
520 spinlock_t tcb_send_qlock
;
521 spinlock_t tcb_ready_qlock
;
522 spinlock_t send_hw_lock
;
525 spinlock_t rcv_pend_lock
;
530 /* Packet Filter and look ahead size */
534 u32 multicast_addr_count
;
535 u8 multicast_list
[NIC_MAX_MCAST_LIST
][ETH_ALEN
];
537 /* Pointer to the device's PCI register space */
538 struct address_map __iomem
*regs
;
540 /* Registry parameters */
541 u8 wanted_flow
; /* Flow we want for 802.3x flow control */
542 u32 registry_jumbo_packet
; /* Max supported ethernet packet size */
544 /* Derived from the registry: */
545 u8 flowcontrol
; /* flow control validated by the far-end */
547 /* Minimize init-time */
548 struct timer_list error_timer
;
550 /* variable putting the phy into coma mode when boot up with no cable
551 * plugged in after 5 seconds
555 /* Next two used to save power information at power down. This
556 * information will be used during power up to set up parts of Power
557 * Management in JAGCore
562 /* Tx Memory Variables */
563 struct tx_ring tx_ring
;
565 /* Rx Memory Variables */
566 struct rx_ring rx_ring
;
569 struct ce_stats stats
;
571 struct net_device_stats net_stats
;
574 static int eeprom_wait_ready(struct pci_dev
*pdev
, u32
*status
)
580 * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
581 * bits 7,1:0 both equal to 1, at least once after reset.
582 * Subsequent operations need only to check that bits 1:0 are equal
583 * to 1 prior to starting a single byte read/write
586 for (i
= 0; i
< MAX_NUM_REGISTER_POLLS
; i
++) {
587 /* Read registers grouped in DWORD1 */
588 if (pci_read_config_dword(pdev
, LBCIF_DWORD1_GROUP
, ®
))
591 /* I2C idle and Phy Queue Avail both true */
592 if ((reg
& 0x3000) == 0x3000) {
603 * eeprom_write - Write a byte to the ET1310's EEPROM
604 * @adapter: pointer to our private adapter structure
605 * @addr: the address to write
606 * @data: the value to write
608 * Returns 1 for a successful write.
610 static int eeprom_write(struct et131x_adapter
*adapter
, u32 addr
, u8 data
)
612 struct pci_dev
*pdev
= adapter
->pdev
;
622 * For an EEPROM, an I2C single byte write is defined as a START
623 * condition followed by the device address, EEPROM address, one byte
624 * of data and a STOP condition. The STOP condition will trigger the
625 * EEPROM's internally timed write cycle to the nonvolatile memory.
626 * All inputs are disabled during this write cycle and the EEPROM will
627 * not respond to any access until the internal write is complete.
630 err
= eeprom_wait_ready(pdev
, NULL
);
635 * 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
636 * and bits 1:0 both =0. Bit 5 should be set according to the
637 * type of EEPROM being accessed (1=two byte addressing, 0=one
640 if (pci_write_config_byte(pdev
, LBCIF_CONTROL_REGISTER
,
641 LBCIF_CONTROL_LBCIF_ENABLE
| LBCIF_CONTROL_I2C_WRITE
))
646 /* Prepare EEPROM address for Step 3 */
648 for (retries
= 0; retries
< MAX_NUM_WRITE_RETRIES
; retries
++) {
649 /* Write the address to the LBCIF Address Register */
650 if (pci_write_config_dword(pdev
, LBCIF_ADDRESS_REGISTER
, addr
))
653 * Write the data to the LBCIF Data Register (the I2C write
656 if (pci_write_config_byte(pdev
, LBCIF_DATA_REGISTER
, data
))
659 * Monitor bit 1:0 of the LBCIF Status Register. When bits
660 * 1:0 are both equal to 1, the I2C write has completed and the
661 * internal write cycle of the EEPROM is about to start.
662 * (bits 1:0 = 01 is a legal state while waiting from both
663 * equal to 1, but bits 1:0 = 10 is invalid and implies that
664 * something is broken).
666 err
= eeprom_wait_ready(pdev
, &status
);
671 * Check bit 3 of the LBCIF Status Register. If equal to 1,
672 * an error has occurred.Don't break here if we are revision
673 * 1, this is so we do a blind write for load bug.
675 if ((status
& LBCIF_STATUS_GENERAL_ERROR
)
676 && adapter
->pdev
->revision
== 0)
680 * Check bit 2 of the LBCIF Status Register. If equal to 1 an
681 * ACK error has occurred on the address phase of the write.
682 * This could be due to an actual hardware failure or the
683 * EEPROM may still be in its internal write cycle from a
684 * previous write. This write operation was ignored and must be
687 if (status
& LBCIF_STATUS_ACK_ERROR
) {
689 * This could be due to an actual hardware failure
690 * or the EEPROM may still be in its internal write
691 * cycle from a previous write. This write operation
692 * was ignored and must be repeated later.
703 * Set bit 6 of the LBCIF Control Register = 0.
708 if (pci_write_config_byte(pdev
, LBCIF_CONTROL_REGISTER
,
709 LBCIF_CONTROL_LBCIF_ENABLE
))
712 /* Do read until internal ACK_ERROR goes away meaning write
716 pci_write_config_dword(pdev
,
717 LBCIF_ADDRESS_REGISTER
,
720 pci_read_config_dword(pdev
,
721 LBCIF_DATA_REGISTER
, &val
);
722 } while ((val
& 0x00010000) == 0);
723 } while (val
& 0x00040000);
725 if ((val
& 0xFF00) != 0xC000 || index
== 10000)
729 return writeok
? 0 : -EIO
;
733 * eeprom_read - Read a byte from the ET1310's EEPROM
734 * @adapter: pointer to our private adapter structure
735 * @addr: the address from which to read
736 * @pdata: a pointer to a byte in which to store the value of the read
737 * @eeprom_id: the ID of the EEPROM
738 * @addrmode: how the EEPROM is to be accessed
740 * Returns 1 for a successful read
742 static int eeprom_read(struct et131x_adapter
*adapter
, u32 addr
, u8
*pdata
)
744 struct pci_dev
*pdev
= adapter
->pdev
;
749 * A single byte read is similar to the single byte write, with the
750 * exception of the data flow:
753 err
= eeprom_wait_ready(pdev
, NULL
);
757 * Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
758 * and bits 1:0 both =0. Bit 5 should be set according to the type
759 * of EEPROM being accessed (1=two byte addressing, 0=one byte
762 if (pci_write_config_byte(pdev
, LBCIF_CONTROL_REGISTER
,
763 LBCIF_CONTROL_LBCIF_ENABLE
))
766 * Write the address to the LBCIF Address Register (I2C read will
769 if (pci_write_config_dword(pdev
, LBCIF_ADDRESS_REGISTER
, addr
))
772 * Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
773 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
776 err
= eeprom_wait_ready(pdev
, &status
);
780 * Regardless of error status, read data byte from LBCIF Data
785 * Check bit 2 of the LBCIF Status Register. If = 1,
786 * then an error has occurred.
788 return (status
& LBCIF_STATUS_ACK_ERROR
) ? -EIO
: 0;
791 static int et131x_init_eeprom(struct et131x_adapter
*adapter
)
793 struct pci_dev
*pdev
= adapter
->pdev
;
796 /* We first need to check the EEPROM Status code located at offset
797 * 0xB2 of config space
799 pci_read_config_byte(pdev
, ET1310_PCI_EEPROM_STATUS
,
802 /* THIS IS A WORKAROUND:
803 * I need to call this function twice to get my card in a
804 * LG M1 Express Dual running. I tried also a msleep before this
805 * function, because I thougth there could be some time condidions
806 * but it didn't work. Call the whole function twice also work.
808 if (pci_read_config_byte(pdev
, ET1310_PCI_EEPROM_STATUS
, &eestatus
)) {
810 "Could not read PCI config space for EEPROM Status\n");
814 /* Determine if the error(s) we care about are present. If they are
815 * present we need to fail.
817 if (eestatus
& 0x4C) {
818 int write_failed
= 0;
819 if (pdev
->revision
== 0x01) {
821 static const u8 eedata
[4] = { 0xFE, 0x13, 0x10, 0xFF };
823 /* Re-write the first 4 bytes if we have an eeprom
824 * present and the revision id is 1, this fixes the
825 * corruption seen with 1310 B Silicon
827 for (i
= 0; i
< 3; i
++)
828 if (eeprom_write(adapter
, i
, eedata
[i
]) < 0)
831 if (pdev
->revision
!= 0x01 || write_failed
) {
833 "Fatal EEPROM Status Error - 0x%04x\n", eestatus
);
835 /* This error could mean that there was an error
836 * reading the eeprom or that the eeprom doesn't exist.
837 * We will treat each case the same and not try to
838 * gather additional information that normally would
839 * come from the eeprom, like MAC Address
841 adapter
->has_eeprom
= 0;
845 adapter
->has_eeprom
= 1;
847 /* Read the EEPROM for information regarding LED behavior. Refer to
848 * ET1310_phy.c, et131x_xcvr_init(), for its use.
850 eeprom_read(adapter
, 0x70, &adapter
->eeprom_data
[0]);
851 eeprom_read(adapter
, 0x71, &adapter
->eeprom_data
[1]);
853 if (adapter
->eeprom_data
[0] != 0xcd)
854 /* Disable all optional features */
855 adapter
->eeprom_data
[1] = 0x00;
861 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
862 * @adapter: pointer to our adapter structure
864 static void et131x_rx_dma_enable(struct et131x_adapter
*adapter
)
866 /* Setup the receive dma configuration register for normal operation */
867 u32 csr
= 0x2000; /* FBR1 enable */
869 if (adapter
->rx_ring
.fbr
[0]->buffsize
== 4096)
871 else if (adapter
->rx_ring
.fbr
[0]->buffsize
== 8192)
873 else if (adapter
->rx_ring
.fbr
[0]->buffsize
== 16384)
876 csr
|= 0x0400; /* FBR0 enable */
877 if (adapter
->rx_ring
.fbr
[1]->buffsize
== 256)
879 else if (adapter
->rx_ring
.fbr
[1]->buffsize
== 512)
881 else if (adapter
->rx_ring
.fbr
[1]->buffsize
== 1024)
884 writel(csr
, &adapter
->regs
->rxdma
.csr
);
886 csr
= readl(&adapter
->regs
->rxdma
.csr
);
887 if ((csr
& 0x00020000) != 0) {
889 csr
= readl(&adapter
->regs
->rxdma
.csr
);
890 if ((csr
& 0x00020000) != 0) {
891 dev_err(&adapter
->pdev
->dev
,
892 "RX Dma failed to exit halt state. CSR 0x%08x\n",
899 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
900 * @adapter: pointer to our adapter structure
902 static void et131x_rx_dma_disable(struct et131x_adapter
*adapter
)
905 /* Setup the receive dma configuration register */
906 writel(0x00002001, &adapter
->regs
->rxdma
.csr
);
907 csr
= readl(&adapter
->regs
->rxdma
.csr
);
908 if ((csr
& 0x00020000) == 0) { /* Check halt status (bit 17) */
910 csr
= readl(&adapter
->regs
->rxdma
.csr
);
911 if ((csr
& 0x00020000) == 0)
912 dev_err(&adapter
->pdev
->dev
,
913 "RX Dma failed to enter halt state. CSR 0x%08x\n",
919 * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
920 * @adapter: pointer to our adapter structure
922 * Mainly used after a return to the D0 (full-power) state from a lower state.
924 static void et131x_tx_dma_enable(struct et131x_adapter
*adapter
)
926 /* Setup the transmit dma configuration register for normal
929 writel(ET_TXDMA_SNGL_EPKT
|(PARM_DMA_CACHE_DEF
<< ET_TXDMA_CACHE_SHIFT
),
930 &adapter
->regs
->txdma
.csr
);
933 static inline void add_10bit(u32
*v
, int n
)
935 *v
= INDEX10(*v
+ n
) | (*v
& ET_DMA10_WRAP
);
938 static inline void add_12bit(u32
*v
, int n
)
940 *v
= INDEX12(*v
+ n
) | (*v
& ET_DMA12_WRAP
);
944 * et1310_config_mac_regs1 - Initialize the first part of MAC regs
945 * @adapter: pointer to our adapter structure
947 static void et1310_config_mac_regs1(struct et131x_adapter
*adapter
)
949 struct mac_regs __iomem
*macregs
= &adapter
->regs
->mac
;
954 /* First we need to reset everything. Write to MAC configuration
955 * register 1 to perform reset.
957 writel(0xC00F0000, ¯egs
->cfg1
);
959 /* Next lets configure the MAC Inter-packet gap register */
960 ipg
= 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
961 ipg
|= 0x50 << 8; /* ifg enforce 0x50 */
962 writel(ipg
, ¯egs
->ipg
);
964 /* Next lets configure the MAC Half Duplex register */
965 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
966 writel(0x00A1F037, ¯egs
->hfdp
);
968 /* Next lets configure the MAC Interface Control register */
969 writel(0, ¯egs
->if_ctrl
);
971 /* Let's move on to setting up the mii management configuration */
972 writel(0x07, ¯egs
->mii_mgmt_cfg
); /* Clock reset 0x7 */
974 /* Next lets configure the MAC Station Address register. These
975 * values are read from the EEPROM during initialization and stored
976 * in the adapter structure. We write what is stored in the adapter
977 * structure to the MAC Station Address registers high and low. This
978 * station address is used for generating and checking pause control
981 station2
= (adapter
->addr
[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT
) |
982 (adapter
->addr
[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT
);
983 station1
= (adapter
->addr
[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT
) |
984 (adapter
->addr
[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT
) |
985 (adapter
->addr
[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT
) |
987 writel(station1
, ¯egs
->station_addr_1
);
988 writel(station2
, ¯egs
->station_addr_2
);
990 /* Max ethernet packet in bytes that will passed by the mac without
991 * being truncated. Allow the MAC to pass 4 more than our max packet
992 * size. This is 4 for the Ethernet CRC.
994 * Packets larger than (registry_jumbo_packet) that do not contain a
995 * VLAN ID will be dropped by the Rx function.
997 writel(adapter
->registry_jumbo_packet
+ 4, ¯egs
->max_fm_len
);
999 /* clear out MAC config reset */
1000 writel(0, ¯egs
->cfg1
);
1004 * et1310_config_mac_regs2 - Initialize the second part of MAC regs
1005 * @adapter: pointer to our adapter structure
1007 static void et1310_config_mac_regs2(struct et131x_adapter
*adapter
)
1010 struct mac_regs __iomem
*mac
= &adapter
->regs
->mac
;
1011 struct phy_device
*phydev
= adapter
->phydev
;
1017 ctl
= readl(&adapter
->regs
->txmac
.ctl
);
1018 cfg1
= readl(&mac
->cfg1
);
1019 cfg2
= readl(&mac
->cfg2
);
1020 ifctrl
= readl(&mac
->if_ctrl
);
1022 /* Set up the if mode bits */
1024 if (phydev
&& phydev
->speed
== SPEED_1000
) {
1027 ifctrl
&= ~(1 << 24);
1030 ifctrl
|= (1 << 24);
1033 /* We need to enable Rx/Tx */
1034 cfg1
|= CFG1_RX_ENABLE
| CFG1_TX_ENABLE
| CFG1_TX_FLOW
;
1035 /* Initialize loop back to off */
1036 cfg1
&= ~(CFG1_LOOPBACK
| CFG1_RX_FLOW
);
1037 if (adapter
->flowcontrol
== FLOW_RXONLY
||
1038 adapter
->flowcontrol
== FLOW_BOTH
)
1039 cfg1
|= CFG1_RX_FLOW
;
1040 writel(cfg1
, &mac
->cfg1
);
1042 /* Now we need to initialize the MAC Configuration 2 register */
1043 /* preamble 7, check length, huge frame off, pad crc, crc enable
1048 /* Turn on duplex if needed */
1049 if (phydev
&& phydev
->duplex
== DUPLEX_FULL
)
1052 ifctrl
&= ~(1 << 26);
1053 if (phydev
&& phydev
->duplex
== DUPLEX_HALF
)
1054 ifctrl
|= (1<<26); /* Enable ghd */
1056 writel(ifctrl
, &mac
->if_ctrl
);
1057 writel(cfg2
, &mac
->cfg2
);
1062 cfg1
= readl(&mac
->cfg1
);
1063 } while ((cfg1
& CFG1_WAIT
) != CFG1_WAIT
&& delay
< 100);
1066 dev_warn(&adapter
->pdev
->dev
,
1067 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1072 ctl
|= 0x09; /* TX mac enable, FC disable */
1073 writel(ctl
, &adapter
->regs
->txmac
.ctl
);
1075 /* Ready to start the RXDMA/TXDMA engine */
1076 if (adapter
->flags
& fMP_ADAPTER_LOWER_POWER
) {
1077 et131x_rx_dma_enable(adapter
);
1078 et131x_tx_dma_enable(adapter
);
1083 * et1310_in_phy_coma - check if the device is in phy coma
1084 * @adapter: pointer to our adapter structure
1086 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1088 static int et1310_in_phy_coma(struct et131x_adapter
*adapter
)
1092 pmcsr
= readl(&adapter
->regs
->global
.pm_csr
);
1094 return ET_PM_PHY_SW_COMA
& pmcsr
? 1 : 0;
1097 static void et1310_setup_device_for_multicast(struct et131x_adapter
*adapter
)
1099 struct rxmac_regs __iomem
*rxmac
= &adapter
->regs
->rxmac
;
1106 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1107 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1108 * specified) then we should pass NO multi-cast addresses to the
1111 if (adapter
->packet_filter
& ET131X_PACKET_TYPE_MULTICAST
) {
1114 /* Loop through our multicast array and set up the device */
1115 for (i
= 0; i
< adapter
->multicast_addr_count
; i
++) {
1118 result
= ether_crc(6, adapter
->multicast_list
[i
]);
1120 result
= (result
& 0x3F800000) >> 23;
1123 hash1
|= (1 << result
);
1124 } else if ((31 < result
) && (result
< 64)) {
1126 hash2
|= (1 << result
);
1127 } else if ((63 < result
) && (result
< 96)) {
1129 hash3
|= (1 << result
);
1132 hash4
|= (1 << result
);
1137 /* Write out the new hash to the device */
1138 pm_csr
= readl(&adapter
->regs
->global
.pm_csr
);
1139 if (!et1310_in_phy_coma(adapter
)) {
1140 writel(hash1
, &rxmac
->multi_hash1
);
1141 writel(hash2
, &rxmac
->multi_hash2
);
1142 writel(hash3
, &rxmac
->multi_hash3
);
1143 writel(hash4
, &rxmac
->multi_hash4
);
1147 static void et1310_setup_device_for_unicast(struct et131x_adapter
*adapter
)
1149 struct rxmac_regs __iomem
*rxmac
= &adapter
->regs
->rxmac
;
1155 /* Set up unicast packet filter reg 3 to be the first two octets of
1156 * the MAC address for both address
1158 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1159 * MAC address for second address
1161 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1162 * MAC address for first address
1164 uni_pf3
= (adapter
->addr
[0] << ET_UNI_PF_ADDR2_1_SHIFT
) |
1165 (adapter
->addr
[1] << ET_UNI_PF_ADDR2_2_SHIFT
) |
1166 (adapter
->addr
[0] << ET_UNI_PF_ADDR1_1_SHIFT
) |
1169 uni_pf2
= (adapter
->addr
[2] << ET_UNI_PF_ADDR2_3_SHIFT
) |
1170 (adapter
->addr
[3] << ET_UNI_PF_ADDR2_4_SHIFT
) |
1171 (adapter
->addr
[4] << ET_UNI_PF_ADDR2_5_SHIFT
) |
1174 uni_pf1
= (adapter
->addr
[2] << ET_UNI_PF_ADDR1_3_SHIFT
) |
1175 (adapter
->addr
[3] << ET_UNI_PF_ADDR1_4_SHIFT
) |
1176 (adapter
->addr
[4] << ET_UNI_PF_ADDR1_5_SHIFT
) |
1179 pm_csr
= readl(&adapter
->regs
->global
.pm_csr
);
1180 if (!et1310_in_phy_coma(adapter
)) {
1181 writel(uni_pf1
, &rxmac
->uni_pf_addr1
);
1182 writel(uni_pf2
, &rxmac
->uni_pf_addr2
);
1183 writel(uni_pf3
, &rxmac
->uni_pf_addr3
);
1187 static void et1310_config_rxmac_regs(struct et131x_adapter
*adapter
)
1189 struct rxmac_regs __iomem
*rxmac
= &adapter
->regs
->rxmac
;
1190 struct phy_device
*phydev
= adapter
->phydev
;
1195 /* Disable the MAC while it is being configured (also disable WOL) */
1196 writel(0x8, &rxmac
->ctrl
);
1198 /* Initialize WOL to disabled. */
1199 writel(0, &rxmac
->crc0
);
1200 writel(0, &rxmac
->crc12
);
1201 writel(0, &rxmac
->crc34
);
1203 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1204 * its default Values of 0x00000000 because there are not WOL masks
1207 writel(0, &rxmac
->mask0_word0
);
1208 writel(0, &rxmac
->mask0_word1
);
1209 writel(0, &rxmac
->mask0_word2
);
1210 writel(0, &rxmac
->mask0_word3
);
1212 writel(0, &rxmac
->mask1_word0
);
1213 writel(0, &rxmac
->mask1_word1
);
1214 writel(0, &rxmac
->mask1_word2
);
1215 writel(0, &rxmac
->mask1_word3
);
1217 writel(0, &rxmac
->mask2_word0
);
1218 writel(0, &rxmac
->mask2_word1
);
1219 writel(0, &rxmac
->mask2_word2
);
1220 writel(0, &rxmac
->mask2_word3
);
1222 writel(0, &rxmac
->mask3_word0
);
1223 writel(0, &rxmac
->mask3_word1
);
1224 writel(0, &rxmac
->mask3_word2
);
1225 writel(0, &rxmac
->mask3_word3
);
1227 writel(0, &rxmac
->mask4_word0
);
1228 writel(0, &rxmac
->mask4_word1
);
1229 writel(0, &rxmac
->mask4_word2
);
1230 writel(0, &rxmac
->mask4_word3
);
1232 /* Lets setup the WOL Source Address */
1233 sa_lo
= (adapter
->addr
[2] << ET_WOL_LO_SA3_SHIFT
) |
1234 (adapter
->addr
[3] << ET_WOL_LO_SA4_SHIFT
) |
1235 (adapter
->addr
[4] << ET_WOL_LO_SA5_SHIFT
) |
1237 writel(sa_lo
, &rxmac
->sa_lo
);
1239 sa_hi
= (u32
) (adapter
->addr
[0] << ET_WOL_HI_SA1_SHIFT
) |
1241 writel(sa_hi
, &rxmac
->sa_hi
);
1243 /* Disable all Packet Filtering */
1244 writel(0, &rxmac
->pf_ctrl
);
1246 /* Let's initialize the Unicast Packet filtering address */
1247 if (adapter
->packet_filter
& ET131X_PACKET_TYPE_DIRECTED
) {
1248 et1310_setup_device_for_unicast(adapter
);
1249 pf_ctrl
|= 4; /* Unicast filter */
1251 writel(0, &rxmac
->uni_pf_addr1
);
1252 writel(0, &rxmac
->uni_pf_addr2
);
1253 writel(0, &rxmac
->uni_pf_addr3
);
1256 /* Let's initialize the Multicast hash */
1257 if (!(adapter
->packet_filter
& ET131X_PACKET_TYPE_ALL_MULTICAST
)) {
1258 pf_ctrl
|= 2; /* Multicast filter */
1259 et1310_setup_device_for_multicast(adapter
);
1262 /* Runt packet filtering. Didn't work in version A silicon. */
1263 pf_ctrl
|= (NIC_MIN_PACKET_SIZE
+ 4) << 16;
1264 pf_ctrl
|= 8; /* Fragment filter */
1266 if (adapter
->registry_jumbo_packet
> 8192)
1267 /* In order to transmit jumbo packets greater than 8k, the
1268 * FIFO between RxMAC and RxDMA needs to be reduced in size
1269 * to (16k - Jumbo packet size). In order to implement this,
1270 * we must use "cut through" mode in the RxMAC, which chops
1271 * packets down into segments which are (max_size * 16). In
1272 * this case we selected 256 bytes, since this is the size of
1273 * the PCI-Express TLP's that the 1310 uses.
1275 * seg_en on, fc_en off, size 0x10
1277 writel(0x41, &rxmac
->mcif_ctrl_max_seg
);
1279 writel(0, &rxmac
->mcif_ctrl_max_seg
);
1281 /* Initialize the MCIF water marks */
1282 writel(0, &rxmac
->mcif_water_mark
);
1284 /* Initialize the MIF control */
1285 writel(0, &rxmac
->mif_ctrl
);
1287 /* Initialize the Space Available Register */
1288 writel(0, &rxmac
->space_avail
);
1290 /* Initialize the the mif_ctrl register
1291 * bit 3: Receive code error. One or more nibbles were signaled as
1292 * errors during the reception of the packet. Clear this
1293 * bit in Gigabit, set it in 100Mbit. This was derived
1294 * experimentally at UNH.
1295 * bit 4: Receive CRC error. The packet's CRC did not match the
1296 * internally generated CRC.
1297 * bit 5: Receive length check error. Indicates that frame length
1298 * field value in the packet does not match the actual data
1299 * byte length and is not a type field.
1300 * bit 16: Receive frame truncated.
1301 * bit 17: Drop packet enable
1303 if (phydev
&& phydev
->speed
== SPEED_100
)
1304 writel(0x30038, &rxmac
->mif_ctrl
);
1306 writel(0x30030, &rxmac
->mif_ctrl
);
1308 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1309 * filter is always enabled since it is where the runt packets are
1310 * supposed to be dropped. For version A silicon, runt packet
1311 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1312 * but we still leave the packet filter on.
1314 writel(pf_ctrl
, &rxmac
->pf_ctrl
);
1315 writel(0x9, &rxmac
->ctrl
);
1318 static void et1310_config_txmac_regs(struct et131x_adapter
*adapter
)
1320 struct txmac_regs __iomem
*txmac
= &adapter
->regs
->txmac
;
1322 /* We need to update the Control Frame Parameters
1323 * cfpt - control frame pause timer set to 64 (0x40)
1324 * cfep - control frame extended pause timer set to 0x0
1326 if (adapter
->flowcontrol
== FLOW_NONE
)
1327 writel(0, &txmac
->cf_param
);
1329 writel(0x40, &txmac
->cf_param
);
1332 static void et1310_config_macstat_regs(struct et131x_adapter
*adapter
)
1334 struct macstat_regs __iomem
*macstat
=
1335 &adapter
->regs
->macstat
;
1337 /* Next we need to initialize all the macstat registers to zero on
1340 writel(0, &macstat
->txrx_0_64_byte_frames
);
1341 writel(0, &macstat
->txrx_65_127_byte_frames
);
1342 writel(0, &macstat
->txrx_128_255_byte_frames
);
1343 writel(0, &macstat
->txrx_256_511_byte_frames
);
1344 writel(0, &macstat
->txrx_512_1023_byte_frames
);
1345 writel(0, &macstat
->txrx_1024_1518_byte_frames
);
1346 writel(0, &macstat
->txrx_1519_1522_gvln_frames
);
1348 writel(0, &macstat
->rx_bytes
);
1349 writel(0, &macstat
->rx_packets
);
1350 writel(0, &macstat
->rx_fcs_errs
);
1351 writel(0, &macstat
->rx_multicast_packets
);
1352 writel(0, &macstat
->rx_broadcast_packets
);
1353 writel(0, &macstat
->rx_control_frames
);
1354 writel(0, &macstat
->rx_pause_frames
);
1355 writel(0, &macstat
->rx_unknown_opcodes
);
1356 writel(0, &macstat
->rx_align_errs
);
1357 writel(0, &macstat
->rx_frame_len_errs
);
1358 writel(0, &macstat
->rx_code_errs
);
1359 writel(0, &macstat
->rx_carrier_sense_errs
);
1360 writel(0, &macstat
->rx_undersize_packets
);
1361 writel(0, &macstat
->rx_oversize_packets
);
1362 writel(0, &macstat
->rx_fragment_packets
);
1363 writel(0, &macstat
->rx_jabbers
);
1364 writel(0, &macstat
->rx_drops
);
1366 writel(0, &macstat
->tx_bytes
);
1367 writel(0, &macstat
->tx_packets
);
1368 writel(0, &macstat
->tx_multicast_packets
);
1369 writel(0, &macstat
->tx_broadcast_packets
);
1370 writel(0, &macstat
->tx_pause_frames
);
1371 writel(0, &macstat
->tx_deferred
);
1372 writel(0, &macstat
->tx_excessive_deferred
);
1373 writel(0, &macstat
->tx_single_collisions
);
1374 writel(0, &macstat
->tx_multiple_collisions
);
1375 writel(0, &macstat
->tx_late_collisions
);
1376 writel(0, &macstat
->tx_excessive_collisions
);
1377 writel(0, &macstat
->tx_total_collisions
);
1378 writel(0, &macstat
->tx_pause_honored_frames
);
1379 writel(0, &macstat
->tx_drops
);
1380 writel(0, &macstat
->tx_jabbers
);
1381 writel(0, &macstat
->tx_fcs_errs
);
1382 writel(0, &macstat
->tx_control_frames
);
1383 writel(0, &macstat
->tx_oversize_frames
);
1384 writel(0, &macstat
->tx_undersize_frames
);
1385 writel(0, &macstat
->tx_fragments
);
1386 writel(0, &macstat
->carry_reg1
);
1387 writel(0, &macstat
->carry_reg2
);
1389 /* Unmask any counters that we want to track the overflow of.
1390 * Initially this will be all counters. It may become clear later
1391 * that we do not need to track all counters.
1393 writel(0xFFFFBE32, &macstat
->carry_reg1_mask
);
1394 writel(0xFFFE7E8B, &macstat
->carry_reg2_mask
);
1398 * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1399 * @adapter: pointer to our private adapter structure
1400 * @addr: the address of the transceiver
1401 * @reg: the register to read
1402 * @value: pointer to a 16-bit value in which the value will be stored
1404 * Returns 0 on success, errno on failure (as defined in errno.h)
1406 static int et131x_phy_mii_read(struct et131x_adapter
*adapter
, u8 addr
,
1409 struct mac_regs __iomem
*mac
= &adapter
->regs
->mac
;
1416 /* Save a local copy of the registers we are dealing with so we can
1419 mii_addr
= readl(&mac
->mii_mgmt_addr
);
1420 mii_cmd
= readl(&mac
->mii_mgmt_cmd
);
1422 /* Stop the current operation */
1423 writel(0, &mac
->mii_mgmt_cmd
);
1425 /* Set up the register we need to read from on the correct PHY */
1426 writel(MII_ADDR(addr
, reg
), &mac
->mii_mgmt_addr
);
1428 writel(0x1, &mac
->mii_mgmt_cmd
);
1433 mii_indicator
= readl(&mac
->mii_mgmt_indicator
);
1434 } while ((mii_indicator
& MGMT_WAIT
) && delay
< 50);
1436 /* If we hit the max delay, we could not read the register */
1438 dev_warn(&adapter
->pdev
->dev
,
1439 "reg 0x%08x could not be read\n", reg
);
1440 dev_warn(&adapter
->pdev
->dev
, "status is 0x%08x\n",
1446 /* If we hit here we were able to read the register and we need to
1447 * return the value to the caller */
1448 *value
= readl(&mac
->mii_mgmt_stat
) & 0xFFFF;
1450 /* Stop the read operation */
1451 writel(0, &mac
->mii_mgmt_cmd
);
1453 /* set the registers we touched back to the state at which we entered
1456 writel(mii_addr
, &mac
->mii_mgmt_addr
);
1457 writel(mii_cmd
, &mac
->mii_mgmt_cmd
);
1462 static int et131x_mii_read(struct et131x_adapter
*adapter
, u8 reg
, u16
*value
)
1464 struct phy_device
*phydev
= adapter
->phydev
;
1469 return et131x_phy_mii_read(adapter
, phydev
->addr
, reg
, value
);
1473 * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1474 * @adapter: pointer to our private adapter structure
1475 * @reg: the register to read
1476 * @value: 16-bit value to write
1478 * FIXME: one caller in netdev still
1480 * Return 0 on success, errno on failure (as defined in errno.h)
1482 static int et131x_mii_write(struct et131x_adapter
*adapter
, u8 reg
, u16 value
)
1484 struct mac_regs __iomem
*mac
= &adapter
->regs
->mac
;
1485 struct phy_device
*phydev
= adapter
->phydev
;
1496 addr
= phydev
->addr
;
1498 /* Save a local copy of the registers we are dealing with so we can
1501 mii_addr
= readl(&mac
->mii_mgmt_addr
);
1502 mii_cmd
= readl(&mac
->mii_mgmt_cmd
);
1504 /* Stop the current operation */
1505 writel(0, &mac
->mii_mgmt_cmd
);
1507 /* Set up the register we need to write to on the correct PHY */
1508 writel(MII_ADDR(addr
, reg
), &mac
->mii_mgmt_addr
);
1510 /* Add the value to write to the registers to the mac */
1511 writel(value
, &mac
->mii_mgmt_ctrl
);
1516 mii_indicator
= readl(&mac
->mii_mgmt_indicator
);
1517 } while ((mii_indicator
& MGMT_BUSY
) && delay
< 100);
1519 /* If we hit the max delay, we could not write the register */
1523 dev_warn(&adapter
->pdev
->dev
,
1524 "reg 0x%08x could not be written", reg
);
1525 dev_warn(&adapter
->pdev
->dev
, "status is 0x%08x\n",
1527 dev_warn(&adapter
->pdev
->dev
, "command is 0x%08x\n",
1528 readl(&mac
->mii_mgmt_cmd
));
1530 et131x_mii_read(adapter
, reg
, &tmp
);
1534 /* Stop the write operation */
1535 writel(0, &mac
->mii_mgmt_cmd
);
1538 * set the registers we touched back to the state at which we entered
1541 writel(mii_addr
, &mac
->mii_mgmt_addr
);
1542 writel(mii_cmd
, &mac
->mii_mgmt_cmd
);
1547 /* Still used from _mac for BIT_READ */
1548 static void et1310_phy_access_mii_bit(struct et131x_adapter
*adapter
,
1549 u16 action
, u16 regnum
, u16 bitnum
,
1553 u16 mask
= 0x0001 << bitnum
;
1555 /* Read the requested register */
1556 et131x_mii_read(adapter
, regnum
, ®
);
1559 case TRUEPHY_BIT_READ
:
1560 *value
= (reg
& mask
) >> bitnum
;
1563 case TRUEPHY_BIT_SET
:
1564 et131x_mii_write(adapter
, regnum
, reg
| mask
);
1567 case TRUEPHY_BIT_CLEAR
:
1568 et131x_mii_write(adapter
, regnum
, reg
& ~mask
);
1576 static void et1310_config_flow_control(struct et131x_adapter
*adapter
)
1578 struct phy_device
*phydev
= adapter
->phydev
;
1580 if (phydev
->duplex
== DUPLEX_HALF
) {
1581 adapter
->flowcontrol
= FLOW_NONE
;
1583 char remote_pause
, remote_async_pause
;
1585 et1310_phy_access_mii_bit(adapter
,
1586 TRUEPHY_BIT_READ
, 5, 10, &remote_pause
);
1587 et1310_phy_access_mii_bit(adapter
,
1588 TRUEPHY_BIT_READ
, 5, 11,
1589 &remote_async_pause
);
1591 if ((remote_pause
== TRUEPHY_BIT_SET
) &&
1592 (remote_async_pause
== TRUEPHY_BIT_SET
)) {
1593 adapter
->flowcontrol
= adapter
->wanted_flow
;
1594 } else if ((remote_pause
== TRUEPHY_BIT_SET
) &&
1595 (remote_async_pause
== TRUEPHY_BIT_CLEAR
)) {
1596 if (adapter
->wanted_flow
== FLOW_BOTH
)
1597 adapter
->flowcontrol
= FLOW_BOTH
;
1599 adapter
->flowcontrol
= FLOW_NONE
;
1600 } else if ((remote_pause
== TRUEPHY_BIT_CLEAR
) &&
1601 (remote_async_pause
== TRUEPHY_BIT_CLEAR
)) {
1602 adapter
->flowcontrol
= FLOW_NONE
;
1603 } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1604 remote_async_pause == TRUEPHY_SET_BIT) */
1605 if (adapter
->wanted_flow
== FLOW_BOTH
)
1606 adapter
->flowcontrol
= FLOW_RXONLY
;
1608 adapter
->flowcontrol
= FLOW_NONE
;
1614 * et1310_update_macstat_host_counters - Update the local copy of the statistics
1615 * @adapter: pointer to the adapter structure
1617 static void et1310_update_macstat_host_counters(struct et131x_adapter
*adapter
)
1619 struct ce_stats
*stats
= &adapter
->stats
;
1620 struct macstat_regs __iomem
*macstat
=
1621 &adapter
->regs
->macstat
;
1623 stats
->tx_collisions
+= readl(&macstat
->tx_total_collisions
);
1624 stats
->tx_first_collisions
+= readl(&macstat
->tx_single_collisions
);
1625 stats
->tx_deferred
+= readl(&macstat
->tx_deferred
);
1626 stats
->tx_excessive_collisions
+=
1627 readl(&macstat
->tx_multiple_collisions
);
1628 stats
->tx_late_collisions
+= readl(&macstat
->tx_late_collisions
);
1629 stats
->tx_underflows
+= readl(&macstat
->tx_undersize_frames
);
1630 stats
->tx_max_pkt_errs
+= readl(&macstat
->tx_oversize_frames
);
1632 stats
->rx_align_errs
+= readl(&macstat
->rx_align_errs
);
1633 stats
->rx_crc_errs
+= readl(&macstat
->rx_code_errs
);
1634 stats
->rcvd_pkts_dropped
+= readl(&macstat
->rx_drops
);
1635 stats
->rx_overflows
+= readl(&macstat
->rx_oversize_packets
);
1636 stats
->rx_code_violations
+= readl(&macstat
->rx_fcs_errs
);
1637 stats
->rx_length_errs
+= readl(&macstat
->rx_frame_len_errs
);
1638 stats
->rx_other_errs
+= readl(&macstat
->rx_fragment_packets
);
1642 * et1310_handle_macstat_interrupt
1643 * @adapter: pointer to the adapter structure
1645 * One of the MACSTAT counters has wrapped. Update the local copy of
1646 * the statistics held in the adapter structure, checking the "wrap"
1647 * bit for each counter.
1649 static void et1310_handle_macstat_interrupt(struct et131x_adapter
*adapter
)
1654 /* Read the interrupt bits from the register(s). These are Clear On
1657 carry_reg1
= readl(&adapter
->regs
->macstat
.carry_reg1
);
1658 carry_reg2
= readl(&adapter
->regs
->macstat
.carry_reg2
);
1660 writel(carry_reg1
, &adapter
->regs
->macstat
.carry_reg1
);
1661 writel(carry_reg2
, &adapter
->regs
->macstat
.carry_reg2
);
1663 /* We need to do update the host copy of all the MAC_STAT counters.
1664 * For each counter, check it's overflow bit. If the overflow bit is
1665 * set, then increment the host version of the count by one complete
1666 * revolution of the counter. This routine is called when the counter
1667 * block indicates that one of the counters has wrapped.
1669 if (carry_reg1
& (1 << 14))
1670 adapter
->stats
.rx_code_violations
+= COUNTER_WRAP_16_BIT
;
1671 if (carry_reg1
& (1 << 8))
1672 adapter
->stats
.rx_align_errs
+= COUNTER_WRAP_12_BIT
;
1673 if (carry_reg1
& (1 << 7))
1674 adapter
->stats
.rx_length_errs
+= COUNTER_WRAP_16_BIT
;
1675 if (carry_reg1
& (1 << 2))
1676 adapter
->stats
.rx_other_errs
+= COUNTER_WRAP_16_BIT
;
1677 if (carry_reg1
& (1 << 6))
1678 adapter
->stats
.rx_crc_errs
+= COUNTER_WRAP_16_BIT
;
1679 if (carry_reg1
& (1 << 3))
1680 adapter
->stats
.rx_overflows
+= COUNTER_WRAP_16_BIT
;
1681 if (carry_reg1
& (1 << 0))
1682 adapter
->stats
.rcvd_pkts_dropped
+= COUNTER_WRAP_16_BIT
;
1683 if (carry_reg2
& (1 << 16))
1684 adapter
->stats
.tx_max_pkt_errs
+= COUNTER_WRAP_12_BIT
;
1685 if (carry_reg2
& (1 << 15))
1686 adapter
->stats
.tx_underflows
+= COUNTER_WRAP_12_BIT
;
1687 if (carry_reg2
& (1 << 6))
1688 adapter
->stats
.tx_first_collisions
+= COUNTER_WRAP_12_BIT
;
1689 if (carry_reg2
& (1 << 8))
1690 adapter
->stats
.tx_deferred
+= COUNTER_WRAP_12_BIT
;
1691 if (carry_reg2
& (1 << 5))
1692 adapter
->stats
.tx_excessive_collisions
+= COUNTER_WRAP_12_BIT
;
1693 if (carry_reg2
& (1 << 4))
1694 adapter
->stats
.tx_late_collisions
+= COUNTER_WRAP_12_BIT
;
1695 if (carry_reg2
& (1 << 2))
1696 adapter
->stats
.tx_collisions
+= COUNTER_WRAP_12_BIT
;
1699 static int et131x_mdio_read(struct mii_bus
*bus
, int phy_addr
, int reg
)
1701 struct net_device
*netdev
= bus
->priv
;
1702 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
1706 ret
= et131x_phy_mii_read(adapter
, phy_addr
, reg
, &value
);
1714 static int et131x_mdio_write(struct mii_bus
*bus
, int phy_addr
, int reg
, u16 value
)
1716 struct net_device
*netdev
= bus
->priv
;
1717 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
1719 return et131x_mii_write(adapter
, reg
, value
);
1722 static int et131x_mdio_reset(struct mii_bus
*bus
)
1724 struct net_device
*netdev
= bus
->priv
;
1725 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
1727 et131x_mii_write(adapter
, MII_BMCR
, BMCR_RESET
);
1733 * et1310_phy_power_down - PHY power control
1734 * @adapter: device to control
1735 * @down: true for off/false for back on
1737 * one hundred, ten, one thousand megs
1738 * How would you like to have your LAN accessed
1739 * Can't you see that this code processed
1740 * Phy power, phy power..
1742 static void et1310_phy_power_down(struct et131x_adapter
*adapter
, bool down
)
1746 et131x_mii_read(adapter
, MII_BMCR
, &data
);
1747 data
&= ~BMCR_PDOWN
;
1750 et131x_mii_write(adapter
, MII_BMCR
, data
);
1754 * et131x_xcvr_init - Init the phy if we are setting it into force mode
1755 * @adapter: pointer to our private adapter structure
1758 static void et131x_xcvr_init(struct et131x_adapter
*adapter
)
1764 et131x_mii_read(adapter
, PHY_INTERRUPT_STATUS
, &isr
);
1765 et131x_mii_read(adapter
, PHY_INTERRUPT_MASK
, &imr
);
1767 /* Set the link status interrupt only. Bad behavior when link status
1768 * and auto neg are set, we run into a nested interrupt problem
1770 imr
|= (ET_PHY_INT_MASK_AUTONEGSTAT
&
1771 ET_PHY_INT_MASK_LINKSTAT
&
1772 ET_PHY_INT_MASK_ENABLE
);
1774 et131x_mii_write(adapter
, PHY_INTERRUPT_MASK
, imr
);
1776 /* Set the LED behavior such that LED 1 indicates speed (off =
1777 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1778 * link and activity (on for link, blink off for activity).
1780 * NOTE: Some customizations have been added here for specific
1781 * vendors; The LED behavior is now determined by vendor data in the
1782 * EEPROM. However, the above description is the default.
1784 if ((adapter
->eeprom_data
[1] & 0x4) == 0) {
1785 et131x_mii_read(adapter
, PHY_LED_2
, &lcr2
);
1787 lcr2
&= (ET_LED2_LED_100TX
& ET_LED2_LED_1000T
);
1788 lcr2
|= (LED_VAL_LINKON_ACTIVE
<< LED_LINK_SHIFT
);
1790 if ((adapter
->eeprom_data
[1] & 0x8) == 0)
1791 lcr2
|= (LED_VAL_1000BT_100BTX
<< LED_TXRX_SHIFT
);
1793 lcr2
|= (LED_VAL_LINKON
<< LED_TXRX_SHIFT
);
1795 et131x_mii_write(adapter
, PHY_LED_2
, lcr2
);
1800 * et131x_configure_global_regs - configure JAGCore global regs
1801 * @adapter: pointer to our adapter structure
1803 * Used to configure the global registers on the JAGCore
1805 static void et131x_configure_global_regs(struct et131x_adapter
*adapter
)
1807 struct global_regs __iomem
*regs
= &adapter
->regs
->global
;
1809 writel(0, ®s
->rxq_start_addr
);
1810 writel(INTERNAL_MEM_SIZE
- 1, ®s
->txq_end_addr
);
1812 if (adapter
->registry_jumbo_packet
< 2048) {
1813 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1814 * block of RAM that the driver can split between Tx
1815 * and Rx as it desires. Our default is to split it
1818 writel(PARM_RX_MEM_END_DEF
, ®s
->rxq_end_addr
);
1819 writel(PARM_RX_MEM_END_DEF
+ 1, ®s
->txq_start_addr
);
1820 } else if (adapter
->registry_jumbo_packet
< 8192) {
1821 /* For jumbo packets > 2k but < 8k, split 50-50. */
1822 writel(INTERNAL_MEM_RX_OFFSET
, ®s
->rxq_end_addr
);
1823 writel(INTERNAL_MEM_RX_OFFSET
+ 1, ®s
->txq_start_addr
);
1825 /* 9216 is the only packet size greater than 8k that
1826 * is available. The Tx buffer has to be big enough
1827 * for one whole packet on the Tx side. We'll make
1828 * the Tx 9408, and give the rest to Rx
1830 writel(0x01b3, ®s
->rxq_end_addr
);
1831 writel(0x01b4, ®s
->txq_start_addr
);
1834 /* Initialize the loopback register. Disable all loopbacks. */
1835 writel(0, ®s
->loopback
);
1838 writel(0, ®s
->msi_config
);
1840 /* By default, disable the watchdog timer. It will be enabled when
1841 * a packet is queued.
1843 writel(0, ®s
->watchdog_timer
);
1847 * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1848 * @adapter: pointer to our adapter structure
1850 static void et131x_config_rx_dma_regs(struct et131x_adapter
*adapter
)
1852 struct rxdma_regs __iomem
*rx_dma
= &adapter
->regs
->rxdma
;
1853 struct rx_ring
*rx_local
= &adapter
->rx_ring
;
1854 struct fbr_desc
*fbr_entry
;
1857 unsigned long flags
;
1859 /* Halt RXDMA to perform the reconfigure. */
1860 et131x_rx_dma_disable(adapter
);
1862 /* Load the completion writeback physical address
1864 * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
1865 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
1866 * are ever returned, make sure the high part is retrieved here
1867 * before storing the adjusted address.
1869 writel((u32
) ((u64
)rx_local
->rx_status_bus
>> 32),
1870 &rx_dma
->dma_wb_base_hi
);
1871 writel((u32
) rx_local
->rx_status_bus
, &rx_dma
->dma_wb_base_lo
);
1873 memset(rx_local
->rx_status_block
, 0, sizeof(struct rx_status_block
));
1875 /* Set the address and parameters of the packet status ring into the
1878 writel((u32
) ((u64
)rx_local
->ps_ring_physaddr
>> 32),
1879 &rx_dma
->psr_base_hi
);
1880 writel((u32
) rx_local
->ps_ring_physaddr
, &rx_dma
->psr_base_lo
);
1881 writel(rx_local
->psr_num_entries
- 1, &rx_dma
->psr_num_des
);
1882 writel(0, &rx_dma
->psr_full_offset
);
1884 psr_num_des
= readl(&rx_dma
->psr_num_des
) & 0xFFF;
1885 writel((psr_num_des
* LO_MARK_PERCENT_FOR_PSR
) / 100,
1886 &rx_dma
->psr_min_des
);
1888 spin_lock_irqsave(&adapter
->rcv_lock
, flags
);
1890 /* These local variables track the PSR in the adapter structure */
1891 rx_local
->local_psr_full
= 0;
1893 /* Now's the best time to initialize FBR1 contents */
1894 fbr_entry
= (struct fbr_desc
*) rx_local
->fbr
[0]->ring_virtaddr
;
1895 for (entry
= 0; entry
< rx_local
->fbr
[0]->num_entries
; entry
++) {
1896 fbr_entry
->addr_hi
= rx_local
->fbr
[0]->bus_high
[entry
];
1897 fbr_entry
->addr_lo
= rx_local
->fbr
[0]->bus_low
[entry
];
1898 fbr_entry
->word2
= entry
;
1902 /* Set the address and parameters of Free buffer ring 1 (and 0 if
1903 * required) into the 1310's registers
1905 writel((u32
) (rx_local
->fbr
[0]->real_physaddr
>> 32),
1906 &rx_dma
->fbr1_base_hi
);
1907 writel((u32
) rx_local
->fbr
[0]->real_physaddr
, &rx_dma
->fbr1_base_lo
);
1908 writel(rx_local
->fbr
[0]->num_entries
- 1, &rx_dma
->fbr1_num_des
);
1909 writel(ET_DMA10_WRAP
, &rx_dma
->fbr1_full_offset
);
1911 /* This variable tracks the free buffer ring 1 full position, so it
1912 * has to match the above.
1914 rx_local
->fbr
[0]->local_full
= ET_DMA10_WRAP
;
1916 ((rx_local
->fbr
[0]->num_entries
* LO_MARK_PERCENT_FOR_RX
) / 100) - 1,
1917 &rx_dma
->fbr1_min_des
);
1920 /* Now's the best time to initialize FBR0 contents */
1921 fbr_entry
= (struct fbr_desc
*) rx_local
->fbr
[1]->ring_virtaddr
;
1922 for (entry
= 0; entry
< rx_local
->fbr
[1]->num_entries
; entry
++) {
1923 fbr_entry
->addr_hi
= rx_local
->fbr
[1]->bus_high
[entry
];
1924 fbr_entry
->addr_lo
= rx_local
->fbr
[1]->bus_low
[entry
];
1925 fbr_entry
->word2
= entry
;
1929 writel((u32
) (rx_local
->fbr
[1]->real_physaddr
>> 32),
1930 &rx_dma
->fbr0_base_hi
);
1931 writel((u32
) rx_local
->fbr
[1]->real_physaddr
, &rx_dma
->fbr0_base_lo
);
1932 writel(rx_local
->fbr
[1]->num_entries
- 1, &rx_dma
->fbr0_num_des
);
1933 writel(ET_DMA10_WRAP
, &rx_dma
->fbr0_full_offset
);
1935 /* This variable tracks the free buffer ring 0 full position, so it
1936 * has to match the above.
1938 rx_local
->fbr
[1]->local_full
= ET_DMA10_WRAP
;
1940 ((rx_local
->fbr
[1]->num_entries
* LO_MARK_PERCENT_FOR_RX
) / 100) - 1,
1941 &rx_dma
->fbr0_min_des
);
1944 /* Program the number of packets we will receive before generating an
1946 * For version B silicon, this value gets updated once autoneg is
1949 writel(PARM_RX_NUM_BUFS_DEF
, &rx_dma
->num_pkt_done
);
1951 /* The "time_done" is not working correctly to coalesce interrupts
1952 * after a given time period, but rather is giving us an interrupt
1953 * regardless of whether we have received packets.
1954 * This value gets updated once autoneg is complete.
1956 writel(PARM_RX_TIME_INT_DEF
, &rx_dma
->max_pkt_time
);
1958 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
1962 * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1963 * @adapter: pointer to our private adapter structure
1965 * Configure the transmit engine with the ring buffers we have created
1966 * and prepare it for use.
1968 static void et131x_config_tx_dma_regs(struct et131x_adapter
*adapter
)
1970 struct txdma_regs __iomem
*txdma
= &adapter
->regs
->txdma
;
1972 /* Load the hardware with the start of the transmit descriptor ring. */
1973 writel((u32
) ((u64
)adapter
->tx_ring
.tx_desc_ring_pa
>> 32),
1974 &txdma
->pr_base_hi
);
1975 writel((u32
) adapter
->tx_ring
.tx_desc_ring_pa
,
1976 &txdma
->pr_base_lo
);
1978 /* Initialise the transmit DMA engine */
1979 writel(NUM_DESC_PER_RING_TX
- 1, &txdma
->pr_num_des
);
1981 /* Load the completion writeback physical address */
1982 writel((u32
)((u64
)adapter
->tx_ring
.tx_status_pa
>> 32),
1983 &txdma
->dma_wb_base_hi
);
1984 writel((u32
)adapter
->tx_ring
.tx_status_pa
, &txdma
->dma_wb_base_lo
);
1986 *adapter
->tx_ring
.tx_status
= 0;
1988 writel(0, &txdma
->service_request
);
1989 adapter
->tx_ring
.send_idx
= 0;
1993 * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
1994 * @adapter: pointer to our private adapter structure
1996 * Returns 0 on success, errno on failure (as defined in errno.h)
1998 static void et131x_adapter_setup(struct et131x_adapter
*adapter
)
2000 /* Configure the JAGCore */
2001 et131x_configure_global_regs(adapter
);
2003 et1310_config_mac_regs1(adapter
);
2005 /* Configure the MMC registers */
2006 /* All we need to do is initialize the Memory Control Register */
2007 writel(ET_MMC_ENABLE
, &adapter
->regs
->mmc
.mmc_ctrl
);
2009 et1310_config_rxmac_regs(adapter
);
2010 et1310_config_txmac_regs(adapter
);
2012 et131x_config_rx_dma_regs(adapter
);
2013 et131x_config_tx_dma_regs(adapter
);
2015 et1310_config_macstat_regs(adapter
);
2017 et1310_phy_power_down(adapter
, 0);
2018 et131x_xcvr_init(adapter
);
2022 * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
2023 * @adapter: pointer to our private adapter structure
2025 static void et131x_soft_reset(struct et131x_adapter
*adapter
)
2027 /* Disable MAC Core */
2028 writel(0xc00f0000, &adapter
->regs
->mac
.cfg1
);
2030 /* Set everything to a reset value */
2031 writel(0x7F, &adapter
->regs
->global
.sw_reset
);
2032 writel(0x000f0000, &adapter
->regs
->mac
.cfg1
);
2033 writel(0x00000000, &adapter
->regs
->mac
.cfg1
);
2037 * et131x_enable_interrupts - enable interrupt
2038 * @adapter: et131x device
2040 * Enable the appropriate interrupts on the ET131x according to our
2043 static void et131x_enable_interrupts(struct et131x_adapter
*adapter
)
2047 /* Enable all global interrupts */
2048 if (adapter
->flowcontrol
== FLOW_TXONLY
||
2049 adapter
->flowcontrol
== FLOW_BOTH
)
2050 mask
= INT_MASK_ENABLE
;
2052 mask
= INT_MASK_ENABLE_NO_FLOW
;
2054 writel(mask
, &adapter
->regs
->global
.int_mask
);
2058 * et131x_disable_interrupts - interrupt disable
2059 * @adapter: et131x device
2061 * Block all interrupts from the et131x device at the device itself
2063 static void et131x_disable_interrupts(struct et131x_adapter
*adapter
)
2065 /* Disable all global interrupts */
2066 writel(INT_MASK_DISABLE
, &adapter
->regs
->global
.int_mask
);
2070 * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
2071 * @adapter: pointer to our adapter structure
2073 static void et131x_tx_dma_disable(struct et131x_adapter
*adapter
)
2075 /* Setup the tramsmit dma configuration register */
2076 writel(ET_TXDMA_CSR_HALT
|ET_TXDMA_SNGL_EPKT
,
2077 &adapter
->regs
->txdma
.csr
);
2081 * et131x_enable_txrx - Enable tx/rx queues
2082 * @netdev: device to be enabled
2084 static void et131x_enable_txrx(struct net_device
*netdev
)
2086 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
2088 /* Enable the Tx and Rx DMA engines (if not already enabled) */
2089 et131x_rx_dma_enable(adapter
);
2090 et131x_tx_dma_enable(adapter
);
2092 /* Enable device interrupts */
2093 if (adapter
->flags
& fMP_ADAPTER_INTERRUPT_IN_USE
)
2094 et131x_enable_interrupts(adapter
);
2096 /* We're ready to move some data, so start the queue */
2097 netif_start_queue(netdev
);
2101 * et131x_disable_txrx - Disable tx/rx queues
2102 * @netdev: device to be disabled
2104 static void et131x_disable_txrx(struct net_device
*netdev
)
2106 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
2108 /* First thing is to stop the queue */
2109 netif_stop_queue(netdev
);
2111 /* Stop the Tx and Rx DMA engines */
2112 et131x_rx_dma_disable(adapter
);
2113 et131x_tx_dma_disable(adapter
);
2115 /* Disable device interrupts */
2116 et131x_disable_interrupts(adapter
);
2120 * et131x_init_send - Initialize send data structures
2121 * @adapter: pointer to our private adapter structure
2123 static void et131x_init_send(struct et131x_adapter
*adapter
)
2127 struct tx_ring
*tx_ring
;
2129 /* Setup some convenience pointers */
2130 tx_ring
= &adapter
->tx_ring
;
2131 tcb
= adapter
->tx_ring
.tcb_ring
;
2133 tx_ring
->tcb_qhead
= tcb
;
2135 memset(tcb
, 0, sizeof(struct tcb
) * NUM_TCB
);
2137 /* Go through and set up each TCB */
2138 for (ct
= 0; ct
++ < NUM_TCB
; tcb
++)
2139 /* Set the link pointer in HW TCB to the next TCB in the
2142 tcb
->next
= tcb
+ 1;
2144 /* Set the tail pointer */
2146 tx_ring
->tcb_qtail
= tcb
;
2148 /* Curr send queue should now be empty */
2149 tx_ring
->send_head
= NULL
;
2150 tx_ring
->send_tail
= NULL
;
2154 * et1310_enable_phy_coma - called when network cable is unplugged
2155 * @adapter: pointer to our adapter structure
2157 * driver receive an phy status change interrupt while in D0 and check that
2158 * phy_status is down.
2160 * -- gate off JAGCore;
2161 * -- set gigE PHY in Coma mode
2162 * -- wake on phy_interrupt; Perform software reset JAGCore,
2163 * re-initialize jagcore and gigE PHY
2165 * Add D0-ASPM-PhyLinkDown Support:
2166 * -- while in D0, when there is a phy_interrupt indicating phy link
2167 * down status, call the MPSetPhyComa routine to enter this active
2168 * state power saving mode
2169 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2170 * indicating linkup status, call the MPDisablePhyComa routine to
2171 * restore JAGCore and gigE PHY
2173 static void et1310_enable_phy_coma(struct et131x_adapter
*adapter
)
2175 unsigned long flags
;
2178 pmcsr
= readl(&adapter
->regs
->global
.pm_csr
);
2180 /* Save the GbE PHY speed and duplex modes. Need to restore this
2181 * when cable is plugged back in
2184 * TODO - when PM is re-enabled, check if we need to
2185 * perform a similar task as this -
2186 * adapter->pdown_speed = adapter->ai_force_speed;
2187 * adapter->pdown_duplex = adapter->ai_force_duplex;
2190 /* Stop sending packets. */
2191 spin_lock_irqsave(&adapter
->send_hw_lock
, flags
);
2192 adapter
->flags
|= fMP_ADAPTER_LOWER_POWER
;
2193 spin_unlock_irqrestore(&adapter
->send_hw_lock
, flags
);
2195 /* Wait for outstanding Receive packets */
2197 et131x_disable_txrx(adapter
->netdev
);
2199 /* Gate off JAGCore 3 clock domains */
2200 pmcsr
&= ~ET_PMCSR_INIT
;
2201 writel(pmcsr
, &adapter
->regs
->global
.pm_csr
);
2203 /* Program gigE PHY in to Coma mode */
2204 pmcsr
|= ET_PM_PHY_SW_COMA
;
2205 writel(pmcsr
, &adapter
->regs
->global
.pm_csr
);
2209 * et1310_disable_phy_coma - Disable the Phy Coma Mode
2210 * @adapter: pointer to our adapter structure
2212 static void et1310_disable_phy_coma(struct et131x_adapter
*adapter
)
2216 pmcsr
= readl(&adapter
->regs
->global
.pm_csr
);
2218 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2219 pmcsr
|= ET_PMCSR_INIT
;
2220 pmcsr
&= ~ET_PM_PHY_SW_COMA
;
2221 writel(pmcsr
, &adapter
->regs
->global
.pm_csr
);
2223 /* Restore the GbE PHY speed and duplex modes;
2224 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2226 /* TODO - when PM is re-enabled, check if we need to
2227 * perform a similar task as this -
2228 * adapter->ai_force_speed = adapter->pdown_speed;
2229 * adapter->ai_force_duplex = adapter->pdown_duplex;
2232 /* Re-initialize the send structures */
2233 et131x_init_send(adapter
);
2235 /* Bring the device back to the state it was during init prior to
2236 * autonegotiation being complete. This way, when we get the auto-neg
2237 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2239 et131x_soft_reset(adapter
);
2241 /* setup et1310 as per the documentation ?? */
2242 et131x_adapter_setup(adapter
);
2244 /* Allow Tx to restart */
2245 adapter
->flags
&= ~fMP_ADAPTER_LOWER_POWER
;
2247 et131x_enable_txrx(adapter
->netdev
);
2250 static inline u32
bump_free_buff_ring(u32
*free_buff_ring
, u32 limit
)
2252 u32 tmp_free_buff_ring
= *free_buff_ring
;
2253 tmp_free_buff_ring
++;
2254 /* This works for all cases where limit < 1024. The 1023 case
2255 works because 1023++ is 1024 which means the if condition is not
2256 taken but the carry of the bit into the wrap bit toggles the wrap
2258 if ((tmp_free_buff_ring
& ET_DMA10_MASK
) > limit
) {
2259 tmp_free_buff_ring
&= ~ET_DMA10_MASK
;
2260 tmp_free_buff_ring
^= ET_DMA10_WRAP
;
2262 /* For the 1023 case */
2263 tmp_free_buff_ring
&= (ET_DMA10_MASK
|ET_DMA10_WRAP
);
2264 *free_buff_ring
= tmp_free_buff_ring
;
2265 return tmp_free_buff_ring
;
2269 * et131x_align_allocated_memory - Align allocated memory on a given boundary
2270 * @adapter: pointer to our adapter structure
2271 * @phys_addr: pointer to Physical address
2272 * @offset: pointer to the offset variable
2273 * @mask: correct mask
2275 static void et131x_align_allocated_memory(struct et131x_adapter
*adapter
,
2276 u64
*phys_addr
, u64
*offset
,
2279 u64 new_addr
= *phys_addr
& ~mask
;
2283 if (new_addr
!= *phys_addr
) {
2284 /* Move to next aligned block */
2285 new_addr
+= mask
+ 1;
2286 /* Return offset for adjusting virt addr */
2287 *offset
= new_addr
- *phys_addr
;
2288 /* Return new physical address */
2289 *phys_addr
= new_addr
;
2294 * et131x_rx_dma_memory_alloc
2295 * @adapter: pointer to our private adapter structure
2297 * Returns 0 on success and errno on failure (as defined in errno.h)
2299 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2300 * and the Packet Status Ring.
2302 static int et131x_rx_dma_memory_alloc(struct et131x_adapter
*adapter
)
2306 u32 pktstat_ringsize
, fbr_chunksize
;
2307 struct rx_ring
*rx_ring
;
2309 /* Setup some convenience pointers */
2310 rx_ring
= &adapter
->rx_ring
;
2312 /* Alloc memory for the lookup table */
2314 rx_ring
->fbr
[1] = kmalloc(sizeof(struct fbr_lookup
), GFP_KERNEL
);
2316 rx_ring
->fbr
[0] = kmalloc(sizeof(struct fbr_lookup
), GFP_KERNEL
);
2318 /* The first thing we will do is configure the sizes of the buffer
2319 * rings. These will change based on jumbo packet support. Larger
2320 * jumbo packets increases the size of each entry in FBR0, and the
2321 * number of entries in FBR0, while at the same time decreasing the
2322 * number of entries in FBR1.
2324 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2325 * entries are huge in order to accommodate a "jumbo" frame, then it
2326 * will have less entries. Conversely, FBR1 will now be relied upon
2327 * to carry more "normal" frames, thus it's entry size also increases
2328 * and the number of entries goes up too (since it now carries
2329 * "small" + "regular" packets.
2331 * In this scheme, we try to maintain 512 entries between the two
2332 * rings. Also, FBR1 remains a constant size - when it's size doubles
2333 * the number of entries halves. FBR0 increases in size, however.
2336 if (adapter
->registry_jumbo_packet
< 2048) {
2338 rx_ring
->fbr
[1]->buffsize
= 256;
2339 rx_ring
->fbr
[1]->num_entries
= 512;
2341 rx_ring
->fbr
[0]->buffsize
= 2048;
2342 rx_ring
->fbr
[0]->num_entries
= 512;
2343 } else if (adapter
->registry_jumbo_packet
< 4096) {
2345 rx_ring
->fbr
[1]->buffsize
= 512;
2346 rx_ring
->fbr
[1]->num_entries
= 1024;
2348 rx_ring
->fbr
[0]->buffsize
= 4096;
2349 rx_ring
->fbr
[0]->num_entries
= 512;
2352 rx_ring
->fbr
[1]->buffsize
= 1024;
2353 rx_ring
->fbr
[1]->num_entries
= 768;
2355 rx_ring
->fbr
[0]->buffsize
= 16384;
2356 rx_ring
->fbr
[0]->num_entries
= 128;
2360 adapter
->rx_ring
.psr_num_entries
=
2361 adapter
->rx_ring
.fbr
[1]->num_entries
+
2362 adapter
->rx_ring
.fbr
[0]->num_entries
;
2364 adapter
->rx_ring
.psr_num_entries
= adapter
->rx_ring
.fbr
[0]->num_entries
;
2367 /* Allocate an area of memory for Free Buffer Ring 1 */
2368 bufsize
= (sizeof(struct fbr_desc
) * rx_ring
->fbr
[0]->num_entries
) +
2370 rx_ring
->fbr
[0]->ring_virtaddr
= dma_alloc_coherent(&adapter
->pdev
->dev
,
2372 &rx_ring
->fbr
[0]->ring_physaddr
,
2374 if (!rx_ring
->fbr
[0]->ring_virtaddr
) {
2375 dev_err(&adapter
->pdev
->dev
,
2376 "Cannot alloc memory for Free Buffer Ring 1\n");
2380 /* Save physical address
2382 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2383 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2384 * are ever returned, make sure the high part is retrieved here
2385 * before storing the adjusted address.
2387 rx_ring
->fbr
[0]->real_physaddr
= rx_ring
->fbr
[0]->ring_physaddr
;
2389 /* Align Free Buffer Ring 1 on a 4K boundary */
2390 et131x_align_allocated_memory(adapter
,
2391 &rx_ring
->fbr
[0]->real_physaddr
,
2392 &rx_ring
->fbr
[0]->offset
, 0x0FFF);
2394 rx_ring
->fbr
[0]->ring_virtaddr
=
2395 (void *)((u8
*) rx_ring
->fbr
[0]->ring_virtaddr
+
2396 rx_ring
->fbr
[0]->offset
);
2399 /* Allocate an area of memory for Free Buffer Ring 0 */
2400 bufsize
= (sizeof(struct fbr_desc
) * rx_ring
->fbr
[1]->num_entries
) +
2402 rx_ring
->fbr
[1]->ring_virtaddr
= dma_alloc_coherent(&adapter
->pdev
->dev
,
2404 &rx_ring
->fbr
[1]->ring_physaddr
,
2406 if (!rx_ring
->fbr
[1]->ring_virtaddr
) {
2407 dev_err(&adapter
->pdev
->dev
,
2408 "Cannot alloc memory for Free Buffer Ring 0\n");
2412 /* Save physical address
2414 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2415 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2416 * are ever returned, make sure the high part is retrieved here before
2417 * storing the adjusted address.
2419 rx_ring
->fbr
[1]->real_physaddr
= rx_ring
->fbr
[1]->ring_physaddr
;
2421 /* Align Free Buffer Ring 0 on a 4K boundary */
2422 et131x_align_allocated_memory(adapter
,
2423 &rx_ring
->fbr
[1]->real_physaddr
,
2424 &rx_ring
->fbr
[1]->offset
, 0x0FFF);
2426 rx_ring
->fbr
[1]->ring_virtaddr
=
2427 (void *)((u8
*) rx_ring
->fbr
[1]->ring_virtaddr
+
2428 rx_ring
->fbr
[1]->offset
);
2430 for (i
= 0; i
< (rx_ring
->fbr
[0]->num_entries
/ FBR_CHUNKS
); i
++) {
2431 u64 fbr1_tmp_physaddr
;
2435 /* This code allocates an area of memory big enough for N
2436 * free buffers + (buffer_size - 1) so that the buffers can
2437 * be aligned on 4k boundaries. If each buffer were aligned
2438 * to a buffer_size boundary, the effect would be to double
2439 * the size of FBR0. By allocating N buffers at once, we
2440 * reduce this overhead.
2442 if (rx_ring
->fbr
[0]->buffsize
> 4096)
2445 fbr1_align
= rx_ring
->fbr
[0]->buffsize
;
2448 (FBR_CHUNKS
* rx_ring
->fbr
[0]->buffsize
) + fbr1_align
- 1;
2449 rx_ring
->fbr
[0]->mem_virtaddrs
[i
] =
2450 dma_alloc_coherent(&adapter
->pdev
->dev
, fbr_chunksize
,
2451 &rx_ring
->fbr
[0]->mem_physaddrs
[i
],
2454 if (!rx_ring
->fbr
[0]->mem_virtaddrs
[i
]) {
2455 dev_err(&adapter
->pdev
->dev
,
2456 "Could not alloc memory\n");
2460 /* See NOTE in "Save Physical Address" comment above */
2461 fbr1_tmp_physaddr
= rx_ring
->fbr
[0]->mem_physaddrs
[i
];
2463 et131x_align_allocated_memory(adapter
,
2465 &fbr1_offset
, (fbr1_align
- 1));
2467 for (j
= 0; j
< FBR_CHUNKS
; j
++) {
2468 u32 index
= (i
* FBR_CHUNKS
) + j
;
2470 /* Save the Virtual address of this index for quick
2473 rx_ring
->fbr
[0]->virt
[index
] =
2474 (u8
*) rx_ring
->fbr
[0]->mem_virtaddrs
[i
] +
2475 (j
* rx_ring
->fbr
[0]->buffsize
) + fbr1_offset
;
2477 /* now store the physical address in the descriptor
2478 * so the device can access it
2480 rx_ring
->fbr
[0]->bus_high
[index
] =
2481 (u32
) (fbr1_tmp_physaddr
>> 32);
2482 rx_ring
->fbr
[0]->bus_low
[index
] =
2483 (u32
) fbr1_tmp_physaddr
;
2485 fbr1_tmp_physaddr
+= rx_ring
->fbr
[0]->buffsize
;
2487 rx_ring
->fbr
[0]->buffer1
[index
] =
2488 rx_ring
->fbr
[0]->virt
[index
];
2489 rx_ring
->fbr
[0]->buffer2
[index
] =
2490 rx_ring
->fbr
[0]->virt
[index
] - 4;
2495 /* Same for FBR0 (if in use) */
2496 for (i
= 0; i
< (rx_ring
->fbr
[1]->num_entries
/ FBR_CHUNKS
); i
++) {
2497 u64 fbr0_tmp_physaddr
;
2501 ((FBR_CHUNKS
+ 1) * rx_ring
->fbr
[1]->buffsize
) - 1;
2502 rx_ring
->fbr
[1]->mem_virtaddrs
[i
] =
2503 dma_alloc_coherent(&adapter
->pdev
->dev
, fbr_chunksize
,
2504 &rx_ring
->fbr
[1]->mem_physaddrs
[i
],
2507 if (!rx_ring
->fbr
[1]->mem_virtaddrs
[i
]) {
2508 dev_err(&adapter
->pdev
->dev
,
2509 "Could not alloc memory\n");
2513 /* See NOTE in "Save Physical Address" comment above */
2514 fbr0_tmp_physaddr
= rx_ring
->fbr
[1]->mem_physaddrs
[i
];
2516 et131x_align_allocated_memory(adapter
,
2519 rx_ring
->fbr
[1]->buffsize
- 1);
2521 for (j
= 0; j
< FBR_CHUNKS
; j
++) {
2522 u32 index
= (i
* FBR_CHUNKS
) + j
;
2524 rx_ring
->fbr
[1]->virt
[index
] =
2525 (u8
*) rx_ring
->fbr
[1]->mem_virtaddrs
[i
] +
2526 (j
* rx_ring
->fbr
[1]->buffsize
) + fbr0_offset
;
2528 rx_ring
->fbr
[1]->bus_high
[index
] =
2529 (u32
) (fbr0_tmp_physaddr
>> 32);
2530 rx_ring
->fbr
[1]->bus_low
[index
] =
2531 (u32
) fbr0_tmp_physaddr
;
2533 fbr0_tmp_physaddr
+= rx_ring
->fbr
[1]->buffsize
;
2535 rx_ring
->fbr
[1]->buffer1
[index
] =
2536 rx_ring
->fbr
[1]->virt
[index
];
2537 rx_ring
->fbr
[1]->buffer2
[index
] =
2538 rx_ring
->fbr
[1]->virt
[index
] - 4;
2543 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2545 sizeof(struct pkt_stat_desc
) * adapter
->rx_ring
.psr_num_entries
;
2547 rx_ring
->ps_ring_virtaddr
= dma_alloc_coherent(&adapter
->pdev
->dev
,
2549 &rx_ring
->ps_ring_physaddr
,
2552 if (!rx_ring
->ps_ring_virtaddr
) {
2553 dev_err(&adapter
->pdev
->dev
,
2554 "Cannot alloc memory for Packet Status Ring\n");
2557 printk(KERN_INFO
"Packet Status Ring %lx\n",
2558 (unsigned long) rx_ring
->ps_ring_physaddr
);
2561 * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2562 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2563 * are ever returned, make sure the high part is retrieved here before
2564 * storing the adjusted address.
2567 /* Allocate an area of memory for writeback of status information */
2568 rx_ring
->rx_status_block
= dma_alloc_coherent(&adapter
->pdev
->dev
,
2569 sizeof(struct rx_status_block
),
2570 &rx_ring
->rx_status_bus
,
2572 if (!rx_ring
->rx_status_block
) {
2573 dev_err(&adapter
->pdev
->dev
,
2574 "Cannot alloc memory for Status Block\n");
2577 rx_ring
->num_rfd
= NIC_DEFAULT_NUM_RFD
;
2578 printk(KERN_INFO
"PRS %lx\n", (unsigned long)rx_ring
->rx_status_bus
);
2581 * kmem_cache_create initializes a lookaside list. After successful
2582 * creation, nonpaged fixed-size blocks can be allocated from and
2583 * freed to the lookaside list.
2584 * RFDs will be allocated from this pool.
2586 rx_ring
->recv_lookaside
= kmem_cache_create(adapter
->netdev
->name
,
2593 adapter
->flags
|= fMP_ADAPTER_RECV_LOOKASIDE
;
2595 /* The RFDs are going to be put on lists later on, so initialize the
2598 INIT_LIST_HEAD(&rx_ring
->recv_list
);
2603 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2604 * @adapter: pointer to our private adapter structure
2606 static void et131x_rx_dma_memory_free(struct et131x_adapter
*adapter
)
2610 u32 pktstat_ringsize
;
2612 struct rx_ring
*rx_ring
;
2614 /* Setup some convenience pointers */
2615 rx_ring
= &adapter
->rx_ring
;
2617 /* Free RFDs and associated packet descriptors */
2618 WARN_ON(rx_ring
->num_ready_recv
!= rx_ring
->num_rfd
);
2620 while (!list_empty(&rx_ring
->recv_list
)) {
2621 rfd
= (struct rfd
*) list_entry(rx_ring
->recv_list
.next
,
2622 struct rfd
, list_node
);
2624 list_del(&rfd
->list_node
);
2626 kmem_cache_free(adapter
->rx_ring
.recv_lookaside
, rfd
);
2629 /* Free Free Buffer Ring 1 */
2630 if (rx_ring
->fbr
[0]->ring_virtaddr
) {
2631 /* First the packet memory */
2632 for (index
= 0; index
<
2633 (rx_ring
->fbr
[0]->num_entries
/ FBR_CHUNKS
); index
++) {
2634 if (rx_ring
->fbr
[0]->mem_virtaddrs
[index
]) {
2637 if (rx_ring
->fbr
[0]->buffsize
> 4096)
2640 fbr1_align
= rx_ring
->fbr
[0]->buffsize
;
2643 (rx_ring
->fbr
[0]->buffsize
* FBR_CHUNKS
) +
2646 dma_free_coherent(&adapter
->pdev
->dev
,
2648 rx_ring
->fbr
[0]->mem_virtaddrs
[index
],
2649 rx_ring
->fbr
[0]->mem_physaddrs
[index
]);
2651 rx_ring
->fbr
[0]->mem_virtaddrs
[index
] = NULL
;
2655 /* Now the FIFO itself */
2656 rx_ring
->fbr
[0]->ring_virtaddr
= (void *)((u8
*)
2657 rx_ring
->fbr
[0]->ring_virtaddr
- rx_ring
->fbr
[0]->offset
);
2660 (sizeof(struct fbr_desc
) * rx_ring
->fbr
[0]->num_entries
) +
2663 dma_free_coherent(&adapter
->pdev
->dev
, bufsize
,
2664 rx_ring
->fbr
[0]->ring_virtaddr
,
2665 rx_ring
->fbr
[0]->ring_physaddr
);
2667 rx_ring
->fbr
[0]->ring_virtaddr
= NULL
;
2671 /* Now the same for Free Buffer Ring 0 */
2672 if (rx_ring
->fbr
[1]->ring_virtaddr
) {
2673 /* First the packet memory */
2674 for (index
= 0; index
<
2675 (rx_ring
->fbr
[1]->num_entries
/ FBR_CHUNKS
); index
++) {
2676 if (rx_ring
->fbr
[1]->mem_virtaddrs
[index
]) {
2678 (rx_ring
->fbr
[1]->buffsize
*
2679 (FBR_CHUNKS
+ 1)) - 1;
2681 dma_free_coherent(&adapter
->pdev
->dev
,
2683 rx_ring
->fbr
[1]->mem_virtaddrs
[index
],
2684 rx_ring
->fbr
[1]->mem_physaddrs
[index
]);
2686 rx_ring
->fbr
[1]->mem_virtaddrs
[index
] = NULL
;
2690 /* Now the FIFO itself */
2691 rx_ring
->fbr
[1]->ring_virtaddr
= (void *)((u8
*)
2692 rx_ring
->fbr
[1]->ring_virtaddr
- rx_ring
->fbr
[1]->offset
);
2695 (sizeof(struct fbr_desc
) * rx_ring
->fbr
[1]->num_entries
) +
2698 dma_free_coherent(&adapter
->pdev
->dev
,
2700 rx_ring
->fbr
[1]->ring_virtaddr
,
2701 rx_ring
->fbr
[1]->ring_physaddr
);
2703 rx_ring
->fbr
[1]->ring_virtaddr
= NULL
;
2707 /* Free Packet Status Ring */
2708 if (rx_ring
->ps_ring_virtaddr
) {
2710 sizeof(struct pkt_stat_desc
) *
2711 adapter
->rx_ring
.psr_num_entries
;
2713 dma_free_coherent(&adapter
->pdev
->dev
, pktstat_ringsize
,
2714 rx_ring
->ps_ring_virtaddr
,
2715 rx_ring
->ps_ring_physaddr
);
2717 rx_ring
->ps_ring_virtaddr
= NULL
;
2720 /* Free area of memory for the writeback of status information */
2721 if (rx_ring
->rx_status_block
) {
2722 dma_free_coherent(&adapter
->pdev
->dev
,
2723 sizeof(struct rx_status_block
),
2724 rx_ring
->rx_status_block
, rx_ring
->rx_status_bus
);
2725 rx_ring
->rx_status_block
= NULL
;
2728 /* Destroy the lookaside (RFD) pool */
2729 if (adapter
->flags
& fMP_ADAPTER_RECV_LOOKASIDE
) {
2730 kmem_cache_destroy(rx_ring
->recv_lookaside
);
2731 adapter
->flags
&= ~fMP_ADAPTER_RECV_LOOKASIDE
;
2734 /* Free the FBR Lookup Table */
2736 kfree(rx_ring
->fbr
[1]);
2739 kfree(rx_ring
->fbr
[0]);
2741 /* Reset Counters */
2742 rx_ring
->num_ready_recv
= 0;
2746 * et131x_init_recv - Initialize receive data structures.
2747 * @adapter: pointer to our private adapter structure
2749 * Returns 0 on success and errno on failure (as defined in errno.h)
2751 static int et131x_init_recv(struct et131x_adapter
*adapter
)
2753 int status
= -ENOMEM
;
2754 struct rfd
*rfd
= NULL
;
2757 struct rx_ring
*rx_ring
;
2759 /* Setup some convenience pointers */
2760 rx_ring
= &adapter
->rx_ring
;
2762 /* Setup each RFD */
2763 for (rfdct
= 0; rfdct
< rx_ring
->num_rfd
; rfdct
++) {
2764 rfd
= kmem_cache_alloc(rx_ring
->recv_lookaside
,
2765 GFP_ATOMIC
| GFP_DMA
);
2768 dev_err(&adapter
->pdev
->dev
,
2769 "Couldn't alloc RFD out of kmem_cache\n");
2776 /* Add this RFD to the recv_list */
2777 list_add_tail(&rfd
->list_node
, &rx_ring
->recv_list
);
2779 /* Increment both the available RFD's, and the total RFD's. */
2780 rx_ring
->num_ready_recv
++;
2784 if (numrfd
> NIC_MIN_NUM_RFD
)
2787 rx_ring
->num_rfd
= numrfd
;
2790 kmem_cache_free(rx_ring
->recv_lookaside
, rfd
);
2791 dev_err(&adapter
->pdev
->dev
,
2792 "Allocation problems in et131x_init_recv\n");
2798 * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2799 * @adapter: pointer to our adapter structure
2801 static void et131x_set_rx_dma_timer(struct et131x_adapter
*adapter
)
2803 struct phy_device
*phydev
= adapter
->phydev
;
2808 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2809 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2811 if ((phydev
->speed
== SPEED_100
) || (phydev
->speed
== SPEED_10
)) {
2812 writel(0, &adapter
->regs
->rxdma
.max_pkt_time
);
2813 writel(1, &adapter
->regs
->rxdma
.num_pkt_done
);
2818 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2819 * @adapter: pointer to our adapter
2820 * @rfd: pointer to the RFD
2822 static void nic_return_rfd(struct et131x_adapter
*adapter
, struct rfd
*rfd
)
2824 struct rx_ring
*rx_local
= &adapter
->rx_ring
;
2825 struct rxdma_regs __iomem
*rx_dma
= &adapter
->regs
->rxdma
;
2826 u16 buff_index
= rfd
->bufferindex
;
2827 u8 ring_index
= rfd
->ringindex
;
2828 unsigned long flags
;
2830 /* We don't use any of the OOB data besides status. Otherwise, we
2831 * need to clean up OOB data
2835 (ring_index
== 0 && buff_index
< rx_local
->fbr
[1]->num_entries
) ||
2837 (ring_index
== 1 && buff_index
< rx_local
->fbr
[0]->num_entries
)) {
2838 spin_lock_irqsave(&adapter
->fbr_lock
, flags
);
2840 if (ring_index
== 1) {
2841 struct fbr_desc
*next
= (struct fbr_desc
*)
2842 (rx_local
->fbr
[0]->ring_virtaddr
) +
2843 INDEX10(rx_local
->fbr
[0]->local_full
);
2845 /* Handle the Free Buffer Ring advancement here. Write
2846 * the PA / Buffer Index for the returned buffer into
2847 * the oldest (next to be freed)FBR entry
2849 next
->addr_hi
= rx_local
->fbr
[0]->bus_high
[buff_index
];
2850 next
->addr_lo
= rx_local
->fbr
[0]->bus_low
[buff_index
];
2851 next
->word2
= buff_index
;
2853 writel(bump_free_buff_ring(
2854 &rx_local
->fbr
[0]->local_full
,
2855 rx_local
->fbr
[0]->num_entries
- 1),
2856 &rx_dma
->fbr1_full_offset
);
2860 struct fbr_desc
*next
= (struct fbr_desc
*)
2861 rx_local
->fbr
[1]->ring_virtaddr
+
2862 INDEX10(rx_local
->fbr
[1]->local_full
);
2864 /* Handle the Free Buffer Ring advancement here. Write
2865 * the PA / Buffer Index for the returned buffer into
2866 * the oldest (next to be freed) FBR entry
2868 next
->addr_hi
= rx_local
->fbr
[1]->bus_high
[buff_index
];
2869 next
->addr_lo
= rx_local
->fbr
[1]->bus_low
[buff_index
];
2870 next
->word2
= buff_index
;
2872 writel(bump_free_buff_ring(
2873 &rx_local
->fbr
[1]->local_full
,
2874 rx_local
->fbr
[1]->num_entries
- 1),
2875 &rx_dma
->fbr0_full_offset
);
2878 spin_unlock_irqrestore(&adapter
->fbr_lock
, flags
);
2880 dev_err(&adapter
->pdev
->dev
,
2881 "%s illegal Buffer Index returned\n", __func__
);
2884 /* The processing on this RFD is done, so put it back on the tail of
2887 spin_lock_irqsave(&adapter
->rcv_lock
, flags
);
2888 list_add_tail(&rfd
->list_node
, &rx_local
->recv_list
);
2889 rx_local
->num_ready_recv
++;
2890 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
2892 WARN_ON(rx_local
->num_ready_recv
> rx_local
->num_rfd
);
2896 * nic_rx_pkts - Checks the hardware for available packets
2897 * @adapter: pointer to our adapter
2899 * Returns rfd, a pointer to our MPRFD.
2901 * Checks the hardware for available packets, using completion ring
2902 * If packets are available, it gets an RFD from the recv_list, attaches
2903 * the packet to it, puts the RFD in the RecvPendList, and also returns
2904 * the pointer to the RFD.
2906 static struct rfd
*nic_rx_pkts(struct et131x_adapter
*adapter
)
2908 struct rx_ring
*rx_local
= &adapter
->rx_ring
;
2909 struct rx_status_block
*status
;
2910 struct pkt_stat_desc
*psr
;
2914 unsigned long flags
;
2915 struct list_head
*element
;
2922 /* RX Status block is written by the DMA engine prior to every
2923 * interrupt. It contains the next to be used entry in the Packet
2924 * Status Ring, and also the two Free Buffer rings.
2926 status
= rx_local
->rx_status_block
;
2927 word1
= status
->word1
>> 16; /* Get the useful bits */
2929 /* Check the PSR and wrap bits do not match */
2930 if ((word1
& 0x1FFF) == (rx_local
->local_psr_full
& 0x1FFF))
2931 /* Looks like this ring is not updated yet */
2934 /* The packet status ring indicates that data is available. */
2935 psr
= (struct pkt_stat_desc
*) (rx_local
->ps_ring_virtaddr
) +
2936 (rx_local
->local_psr_full
& 0xFFF);
2938 /* Grab any information that is required once the PSR is
2939 * advanced, since we can no longer rely on the memory being
2942 len
= psr
->word1
& 0xFFFF;
2943 ring_index
= (psr
->word1
>> 26) & 0x03;
2944 buff_index
= (psr
->word1
>> 16) & 0x3FF;
2947 /* Indicate that we have used this PSR entry. */
2949 add_12bit(&rx_local
->local_psr_full
, 1);
2951 (rx_local
->local_psr_full
& 0xFFF) > rx_local
->psr_num_entries
- 1) {
2952 /* Clear psr full and toggle the wrap bit */
2953 rx_local
->local_psr_full
&= ~0xFFF;
2954 rx_local
->local_psr_full
^= 0x1000;
2957 writel(rx_local
->local_psr_full
,
2958 &adapter
->regs
->rxdma
.psr_full_offset
);
2961 if (ring_index
!= 1)
2966 if (ring_index
> 1 ||
2968 buff_index
> rx_local
->fbr
[1]->num_entries
- 1) ||
2970 buff_index
> rx_local
->fbr
[0]->num_entries
- 1))
2972 if (ring_index
!= 1 || buff_index
> rx_local
->fbr
[0]->num_entries
- 1)
2975 /* Illegal buffer or ring index cannot be used by S/W*/
2976 dev_err(&adapter
->pdev
->dev
,
2977 "NICRxPkts PSR Entry %d indicates "
2978 "length of %d and/or bad bi(%d)\n",
2979 rx_local
->local_psr_full
& 0xFFF,
2984 /* Get and fill the RFD. */
2985 spin_lock_irqsave(&adapter
->rcv_lock
, flags
);
2988 element
= rx_local
->recv_list
.next
;
2989 rfd
= (struct rfd
*) list_entry(element
, struct rfd
, list_node
);
2992 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
2996 list_del(&rfd
->list_node
);
2997 rx_local
->num_ready_recv
--;
2999 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
3001 rfd
->bufferindex
= buff_index
;
3002 rfd
->ringindex
= ring_index
;
3004 /* In V1 silicon, there is a bug which screws up filtering of
3005 * runt packets. Therefore runt packet filtering is disabled
3006 * in the MAC and the packets are dropped here. They are
3007 * also counted here.
3009 if (len
< (NIC_MIN_PACKET_SIZE
+ 4)) {
3010 adapter
->stats
.rx_other_errs
++;
3015 /* Determine if this is a multicast packet coming in */
3016 if ((word0
& ALCATEL_MULTICAST_PKT
) &&
3017 !(word0
& ALCATEL_BROADCAST_PKT
)) {
3018 /* Promiscuous mode and Multicast mode are
3019 * not mutually exclusive as was first
3020 * thought. I guess Promiscuous is just
3021 * considered a super-set of the other
3022 * filters. Generally filter is 0x2b when in
3025 if ((adapter
->packet_filter
&
3026 ET131X_PACKET_TYPE_MULTICAST
)
3027 && !(adapter
->packet_filter
&
3028 ET131X_PACKET_TYPE_PROMISCUOUS
)
3029 && !(adapter
->packet_filter
&
3030 ET131X_PACKET_TYPE_ALL_MULTICAST
)) {
3032 * Note - ring_index for fbr[] array is reversed
3035 buf
= rx_local
->fbr
[(ring_index
== 0 ? 1 : 0)]->
3038 /* Loop through our list to see if the
3039 * destination address of this packet
3040 * matches one in our list.
3042 for (i
= 0; i
< adapter
->multicast_addr_count
;
3045 adapter
->multicast_list
[i
][0]
3047 adapter
->multicast_list
[i
][1]
3049 adapter
->multicast_list
[i
][2]
3051 adapter
->multicast_list
[i
][3]
3053 adapter
->multicast_list
[i
][4]
3055 adapter
->multicast_list
[i
][5]) {
3060 /* If our index is equal to the number
3061 * of Multicast address we have, then
3062 * this means we did not find this
3063 * packet's matching address in our
3064 * list. Set the len to zero,
3065 * so we free our RFD when we return
3066 * from this function.
3068 if (i
== adapter
->multicast_addr_count
)
3073 adapter
->stats
.multicast_pkts_rcvd
++;
3074 } else if (word0
& ALCATEL_BROADCAST_PKT
)
3075 adapter
->stats
.broadcast_pkts_rcvd
++;
3077 /* Not sure what this counter measures in
3078 * promiscuous mode. Perhaps we should check
3079 * the MAC address to see if it is directed
3080 * to us in promiscuous mode.
3082 adapter
->stats
.unicast_pkts_rcvd
++;
3086 struct sk_buff
*skb
= NULL
;
3088 /*rfd->len = len - 4; */
3091 skb
= dev_alloc_skb(rfd
->len
+ 2);
3093 dev_err(&adapter
->pdev
->dev
,
3094 "Couldn't alloc an SKB for Rx\n");
3098 adapter
->net_stats
.rx_bytes
+= rfd
->len
;
3101 * Note - ring_index for fbr[] array is reversed,
3104 memcpy(skb_put(skb
, rfd
->len
),
3105 rx_local
->fbr
[(ring_index
== 0 ? 1 : 0)]->virt
[buff_index
],
3108 skb
->dev
= adapter
->netdev
;
3109 skb
->protocol
= eth_type_trans(skb
, adapter
->netdev
);
3110 skb
->ip_summed
= CHECKSUM_NONE
;
3117 nic_return_rfd(adapter
, rfd
);
3122 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
3123 * @adapter: pointer to our adapter
3125 * Assumption, Rcv spinlock has been acquired.
3127 static void et131x_handle_recv_interrupt(struct et131x_adapter
*adapter
)
3129 struct rfd
*rfd
= NULL
;
3133 /* Process up to available RFD's */
3134 while (count
< NUM_PACKETS_HANDLED
) {
3135 if (list_empty(&adapter
->rx_ring
.recv_list
)) {
3136 WARN_ON(adapter
->rx_ring
.num_ready_recv
!= 0);
3141 rfd
= nic_rx_pkts(adapter
);
3146 /* Do not receive any packets until a filter has been set.
3147 * Do not receive any packets until we have link.
3148 * If length is zero, return the RFD in order to advance the
3151 if (!adapter
->packet_filter
||
3152 !netif_carrier_ok(adapter
->netdev
) ||
3156 /* Increment the number of packets we received */
3157 adapter
->net_stats
.rx_packets
++;
3159 /* Set the status on the packet, either resources or success */
3160 if (adapter
->rx_ring
.num_ready_recv
< RFD_LOW_WATER_MARK
) {
3161 dev_warn(&adapter
->pdev
->dev
,
3162 "RFD's are running out\n");
3167 if (count
== NUM_PACKETS_HANDLED
|| !done
) {
3168 adapter
->rx_ring
.unfinished_receives
= true;
3169 writel(PARM_TX_TIME_INT_DEF
* NANO_IN_A_MICRO
,
3170 &adapter
->regs
->global
.watchdog_timer
);
3172 /* Watchdog timer will disable itself if appropriate. */
3173 adapter
->rx_ring
.unfinished_receives
= false;
3177 * et131x_tx_dma_memory_alloc
3178 * @adapter: pointer to our private adapter structure
3180 * Returns 0 on success and errno on failure (as defined in errno.h).
3182 * Allocates memory that will be visible both to the device and to the CPU.
3183 * The OS will pass us packets, pointers to which we will insert in the Tx
3184 * Descriptor queue. The device will read this queue to find the packets in
3185 * memory. The device will update the "status" in memory each time it xmits a
3188 static int et131x_tx_dma_memory_alloc(struct et131x_adapter
*adapter
)
3191 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
3193 /* Allocate memory for the TCB's (Transmit Control Block) */
3194 adapter
->tx_ring
.tcb_ring
=
3195 kcalloc(NUM_TCB
, sizeof(struct tcb
), GFP_ATOMIC
| GFP_DMA
);
3196 if (!adapter
->tx_ring
.tcb_ring
) {
3197 dev_err(&adapter
->pdev
->dev
, "Cannot alloc memory for TCBs\n");
3201 /* Allocate enough memory for the Tx descriptor ring, and allocate
3202 * some extra so that the ring can be aligned on a 4k boundary.
3204 desc_size
= (sizeof(struct tx_desc
) * NUM_DESC_PER_RING_TX
) + 4096 - 1;
3205 tx_ring
->tx_desc_ring
=
3206 (struct tx_desc
*) dma_alloc_coherent(&adapter
->pdev
->dev
,
3208 &tx_ring
->tx_desc_ring_pa
,
3210 if (!adapter
->tx_ring
.tx_desc_ring
) {
3211 dev_err(&adapter
->pdev
->dev
,
3212 "Cannot alloc memory for Tx Ring\n");
3216 /* Save physical address
3218 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
3219 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
3220 * are ever returned, make sure the high part is retrieved here before
3221 * storing the adjusted address.
3223 /* Allocate memory for the Tx status block */
3224 tx_ring
->tx_status
= dma_alloc_coherent(&adapter
->pdev
->dev
,
3226 &tx_ring
->tx_status_pa
,
3228 if (!adapter
->tx_ring
.tx_status_pa
) {
3229 dev_err(&adapter
->pdev
->dev
,
3230 "Cannot alloc memory for Tx status block\n");
3237 * et131x_tx_dma_memory_free - Free all memory allocated within this module
3238 * @adapter: pointer to our private adapter structure
3240 * Returns 0 on success and errno on failure (as defined in errno.h).
3242 static void et131x_tx_dma_memory_free(struct et131x_adapter
*adapter
)
3246 if (adapter
->tx_ring
.tx_desc_ring
) {
3247 /* Free memory relating to Tx rings here */
3248 desc_size
= (sizeof(struct tx_desc
) * NUM_DESC_PER_RING_TX
)
3250 dma_free_coherent(&adapter
->pdev
->dev
,
3252 adapter
->tx_ring
.tx_desc_ring
,
3253 adapter
->tx_ring
.tx_desc_ring_pa
);
3254 adapter
->tx_ring
.tx_desc_ring
= NULL
;
3257 /* Free memory for the Tx status block */
3258 if (adapter
->tx_ring
.tx_status
) {
3259 dma_free_coherent(&adapter
->pdev
->dev
,
3261 adapter
->tx_ring
.tx_status
,
3262 adapter
->tx_ring
.tx_status_pa
);
3264 adapter
->tx_ring
.tx_status
= NULL
;
3266 /* Free the memory for the tcb structures */
3267 kfree(adapter
->tx_ring
.tcb_ring
);
3271 * nic_send_packet - NIC specific send handler for version B silicon.
3272 * @adapter: pointer to our adapter
3273 * @tcb: pointer to struct tcb
3275 * Returns 0 or errno.
3277 static int nic_send_packet(struct et131x_adapter
*adapter
, struct tcb
*tcb
)
3280 struct tx_desc desc
[24]; /* 24 x 16 byte */
3282 u32 thiscopy
, remainder
;
3283 struct sk_buff
*skb
= tcb
->skb
;
3284 u32 nr_frags
= skb_shinfo(skb
)->nr_frags
+ 1;
3285 struct skb_frag_struct
*frags
= &skb_shinfo(skb
)->frags
[0];
3286 unsigned long flags
;
3287 struct phy_device
*phydev
= adapter
->phydev
;
3289 /* Part of the optimizations of this send routine restrict us to
3290 * sending 24 fragments at a pass. In practice we should never see
3291 * more than 5 fragments.
3293 * NOTE: The older version of this function (below) can handle any
3294 * number of fragments. If needed, we can call this function,
3295 * although it is less efficient.
3300 memset(desc
, 0, sizeof(struct tx_desc
) * (nr_frags
+ 1));
3302 for (i
= 0; i
< nr_frags
; i
++) {
3303 /* If there is something in this element, lets get a
3304 * descriptor from the ring and get the necessary data
3307 /* If the fragments are smaller than a standard MTU,
3308 * then map them to a single descriptor in the Tx
3309 * Desc ring. However, if they're larger, as is
3310 * possible with support for jumbo packets, then
3311 * split them each across 2 descriptors.
3313 * This will work until we determine why the hardware
3314 * doesn't seem to like large fragments.
3316 if ((skb
->len
- skb
->data_len
) <= 1514) {
3317 desc
[frag
].addr_hi
= 0;
3318 /* Low 16bits are length, high is vlan and
3319 unused currently so zero */
3320 desc
[frag
].len_vlan
=
3321 skb
->len
- skb
->data_len
;
3323 /* NOTE: Here, the dma_addr_t returned from
3324 * dma_map_single() is implicitly cast as a
3325 * u32. Although dma_addr_t can be
3326 * 64-bit, the address returned by
3327 * dma_map_single() is always 32-bit
3328 * addressable (as defined by the pci/dma
3331 desc
[frag
++].addr_lo
=
3332 dma_map_single(&adapter
->pdev
->dev
,
3338 desc
[frag
].addr_hi
= 0;
3339 desc
[frag
].len_vlan
=
3340 (skb
->len
- skb
->data_len
) / 2;
3342 /* NOTE: Here, the dma_addr_t returned from
3343 * dma_map_single() is implicitly cast as a
3344 * u32. Although dma_addr_t can be
3345 * 64-bit, the address returned by
3346 * dma_map_single() is always 32-bit
3347 * addressable (as defined by the pci/dma
3350 desc
[frag
++].addr_lo
=
3351 dma_map_single(&adapter
->pdev
->dev
,
3354 skb
->data_len
) / 2),
3356 desc
[frag
].addr_hi
= 0;
3358 desc
[frag
].len_vlan
=
3359 (skb
->len
- skb
->data_len
) / 2;
3361 /* NOTE: Here, the dma_addr_t returned from
3362 * dma_map_single() is implicitly cast as a
3363 * u32. Although dma_addr_t can be
3364 * 64-bit, the address returned by
3365 * dma_map_single() is always 32-bit
3366 * addressable (as defined by the pci/dma
3369 desc
[frag
++].addr_lo
=
3370 dma_map_single(&adapter
->pdev
->dev
,
3373 skb
->data_len
) / 2),
3375 skb
->data_len
) / 2),
3379 desc
[frag
].addr_hi
= 0;
3380 desc
[frag
].len_vlan
=
3383 /* NOTE: Here, the dma_addr_t returned from
3384 * dma_map_page() is implicitly cast as a u32.
3385 * Although dma_addr_t can be 64-bit, the address
3386 * returned by dma_map_page() is always 32-bit
3387 * addressable (as defined by the pci/dma subsystem)
3389 desc
[frag
++].addr_lo
= skb_frag_dma_map(
3390 &adapter
->pdev
->dev
,
3398 if (phydev
&& phydev
->speed
== SPEED_1000
) {
3399 if (++adapter
->tx_ring
.since_irq
== PARM_TX_NUM_BUFS_DEF
) {
3400 /* Last element & Interrupt flag */
3401 desc
[frag
- 1].flags
= 0x5;
3402 adapter
->tx_ring
.since_irq
= 0;
3403 } else { /* Last element */
3404 desc
[frag
- 1].flags
= 0x1;
3407 desc
[frag
- 1].flags
= 0x5;
3409 desc
[0].flags
|= 2; /* First element flag */
3411 tcb
->index_start
= adapter
->tx_ring
.send_idx
;
3414 spin_lock_irqsave(&adapter
->send_hw_lock
, flags
);
3416 thiscopy
= NUM_DESC_PER_RING_TX
-
3417 INDEX10(adapter
->tx_ring
.send_idx
);
3419 if (thiscopy
>= frag
) {
3423 remainder
= frag
- thiscopy
;
3426 memcpy(adapter
->tx_ring
.tx_desc_ring
+
3427 INDEX10(adapter
->tx_ring
.send_idx
), desc
,
3428 sizeof(struct tx_desc
) * thiscopy
);
3430 add_10bit(&adapter
->tx_ring
.send_idx
, thiscopy
);
3432 if (INDEX10(adapter
->tx_ring
.send_idx
) == 0 ||
3433 INDEX10(adapter
->tx_ring
.send_idx
) == NUM_DESC_PER_RING_TX
) {
3434 adapter
->tx_ring
.send_idx
&= ~ET_DMA10_MASK
;
3435 adapter
->tx_ring
.send_idx
^= ET_DMA10_WRAP
;
3439 memcpy(adapter
->tx_ring
.tx_desc_ring
,
3441 sizeof(struct tx_desc
) * remainder
);
3443 add_10bit(&adapter
->tx_ring
.send_idx
, remainder
);
3446 if (INDEX10(adapter
->tx_ring
.send_idx
) == 0) {
3447 if (adapter
->tx_ring
.send_idx
)
3448 tcb
->index
= NUM_DESC_PER_RING_TX
- 1;
3450 tcb
->index
= ET_DMA10_WRAP
|(NUM_DESC_PER_RING_TX
- 1);
3452 tcb
->index
= adapter
->tx_ring
.send_idx
- 1;
3454 spin_lock(&adapter
->tcb_send_qlock
);
3456 if (adapter
->tx_ring
.send_tail
)
3457 adapter
->tx_ring
.send_tail
->next
= tcb
;
3459 adapter
->tx_ring
.send_head
= tcb
;
3461 adapter
->tx_ring
.send_tail
= tcb
;
3463 WARN_ON(tcb
->next
!= NULL
);
3465 adapter
->tx_ring
.used
++;
3467 spin_unlock(&adapter
->tcb_send_qlock
);
3469 /* Write the new write pointer back to the device. */
3470 writel(adapter
->tx_ring
.send_idx
,
3471 &adapter
->regs
->txdma
.service_request
);
3473 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
3474 * timer to wake us up if this packet isn't followed by N more.
3476 if (phydev
&& phydev
->speed
== SPEED_1000
) {
3477 writel(PARM_TX_TIME_INT_DEF
* NANO_IN_A_MICRO
,
3478 &adapter
->regs
->global
.watchdog_timer
);
3480 spin_unlock_irqrestore(&adapter
->send_hw_lock
, flags
);
3486 * send_packet - Do the work to send a packet
3487 * @skb: the packet(s) to send
3488 * @adapter: a pointer to the device's private adapter structure
3490 * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3492 * Assumption: Send spinlock has been acquired
3494 static int send_packet(struct sk_buff
*skb
, struct et131x_adapter
*adapter
)
3497 struct tcb
*tcb
= NULL
;
3499 unsigned long flags
;
3501 /* All packets must have at least a MAC address and a protocol type */
3502 if (skb
->len
< ETH_HLEN
)
3505 /* Get a TCB for this packet */
3506 spin_lock_irqsave(&adapter
->tcb_ready_qlock
, flags
);
3508 tcb
= adapter
->tx_ring
.tcb_qhead
;
3511 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
3515 adapter
->tx_ring
.tcb_qhead
= tcb
->next
;
3517 if (adapter
->tx_ring
.tcb_qhead
== NULL
)
3518 adapter
->tx_ring
.tcb_qtail
= NULL
;
3520 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
3524 if (skb
->data
!= NULL
&& skb
->len
- skb
->data_len
>= 6) {
3525 shbufva
= (u16
*) skb
->data
;
3527 if ((shbufva
[0] == 0xffff) &&
3528 (shbufva
[1] == 0xffff) && (shbufva
[2] == 0xffff)) {
3529 tcb
->flags
|= fMP_DEST_BROAD
;
3530 } else if ((shbufva
[0] & 0x3) == 0x0001) {
3531 tcb
->flags
|= fMP_DEST_MULTI
;
3537 /* Call the NIC specific send handler. */
3538 status
= nic_send_packet(adapter
, tcb
);
3541 spin_lock_irqsave(&adapter
->tcb_ready_qlock
, flags
);
3543 if (adapter
->tx_ring
.tcb_qtail
)
3544 adapter
->tx_ring
.tcb_qtail
->next
= tcb
;
3546 /* Apparently ready Q is empty. */
3547 adapter
->tx_ring
.tcb_qhead
= tcb
;
3549 adapter
->tx_ring
.tcb_qtail
= tcb
;
3550 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
3553 WARN_ON(adapter
->tx_ring
.used
> NUM_TCB
);
3558 * et131x_send_packets - This function is called by the OS to send packets
3559 * @skb: the packet(s) to send
3560 * @netdev:device on which to TX the above packet(s)
3562 * Return 0 in almost all cases; non-zero value in extreme hard failure only
3564 static int et131x_send_packets(struct sk_buff
*skb
, struct net_device
*netdev
)
3567 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3569 /* Send these packets
3571 * NOTE: The Linux Tx entry point is only given one packet at a time
3572 * to Tx, so the PacketCount and it's array used makes no sense here
3575 /* TCB is not available */
3576 if (adapter
->tx_ring
.used
>= NUM_TCB
) {
3577 /* NOTE: If there's an error on send, no need to queue the
3578 * packet under Linux; if we just send an error up to the
3579 * netif layer, it will resend the skb to us.
3583 /* We need to see if the link is up; if it's not, make the
3584 * netif layer think we're good and drop the packet
3586 if ((adapter
->flags
& fMP_ADAPTER_FAIL_SEND_MASK
) ||
3587 !netif_carrier_ok(netdev
)) {
3588 dev_kfree_skb_any(skb
);
3591 adapter
->net_stats
.tx_dropped
++;
3593 status
= send_packet(skb
, adapter
);
3594 if (status
!= 0 && status
!= -ENOMEM
) {
3595 /* On any other error, make netif think we're
3596 * OK and drop the packet
3598 dev_kfree_skb_any(skb
);
3600 adapter
->net_stats
.tx_dropped
++;
3608 * free_send_packet - Recycle a struct tcb
3609 * @adapter: pointer to our adapter
3610 * @tcb: pointer to struct tcb
3612 * Complete the packet if necessary
3613 * Assumption - Send spinlock has been acquired
3615 static inline void free_send_packet(struct et131x_adapter
*adapter
,
3618 unsigned long flags
;
3619 struct tx_desc
*desc
= NULL
;
3620 struct net_device_stats
*stats
= &adapter
->net_stats
;
3622 if (tcb
->flags
& fMP_DEST_BROAD
)
3623 atomic_inc(&adapter
->stats
.broadcast_pkts_xmtd
);
3624 else if (tcb
->flags
& fMP_DEST_MULTI
)
3625 atomic_inc(&adapter
->stats
.multicast_pkts_xmtd
);
3627 atomic_inc(&adapter
->stats
.unicast_pkts_xmtd
);
3630 stats
->tx_bytes
+= tcb
->skb
->len
;
3632 /* Iterate through the TX descriptors on the ring
3633 * corresponding to this packet and umap the fragments
3637 desc
= (struct tx_desc
*)
3638 (adapter
->tx_ring
.tx_desc_ring
+
3639 INDEX10(tcb
->index_start
));
3641 dma_unmap_single(&adapter
->pdev
->dev
,
3643 desc
->len_vlan
, DMA_TO_DEVICE
);
3645 add_10bit(&tcb
->index_start
, 1);
3646 if (INDEX10(tcb
->index_start
) >=
3647 NUM_DESC_PER_RING_TX
) {
3648 tcb
->index_start
&= ~ET_DMA10_MASK
;
3649 tcb
->index_start
^= ET_DMA10_WRAP
;
3651 } while (desc
!= (adapter
->tx_ring
.tx_desc_ring
+
3652 INDEX10(tcb
->index
)));
3654 dev_kfree_skb_any(tcb
->skb
);
3657 memset(tcb
, 0, sizeof(struct tcb
));
3659 /* Add the TCB to the Ready Q */
3660 spin_lock_irqsave(&adapter
->tcb_ready_qlock
, flags
);
3662 adapter
->net_stats
.tx_packets
++;
3664 if (adapter
->tx_ring
.tcb_qtail
)
3665 adapter
->tx_ring
.tcb_qtail
->next
= tcb
;
3667 /* Apparently ready Q is empty. */
3668 adapter
->tx_ring
.tcb_qhead
= tcb
;
3670 adapter
->tx_ring
.tcb_qtail
= tcb
;
3672 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
3673 WARN_ON(adapter
->tx_ring
.used
< 0);
3677 * et131x_free_busy_send_packets - Free and complete the stopped active sends
3678 * @adapter: pointer to our adapter
3680 * Assumption - Send spinlock has been acquired
3682 static void et131x_free_busy_send_packets(struct et131x_adapter
*adapter
)
3685 unsigned long flags
;
3688 /* Any packets being sent? Check the first TCB on the send list */
3689 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3691 tcb
= adapter
->tx_ring
.send_head
;
3693 while (tcb
!= NULL
&& freed
< NUM_TCB
) {
3694 struct tcb
*next
= tcb
->next
;
3696 adapter
->tx_ring
.send_head
= next
;
3699 adapter
->tx_ring
.send_tail
= NULL
;
3701 adapter
->tx_ring
.used
--;
3703 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3706 free_send_packet(adapter
, tcb
);
3708 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3710 tcb
= adapter
->tx_ring
.send_head
;
3713 WARN_ON(freed
== NUM_TCB
);
3715 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3717 adapter
->tx_ring
.used
= 0;
3721 * et131x_handle_send_interrupt - Interrupt handler for sending processing
3722 * @adapter: pointer to our adapter
3724 * Re-claim the send resources, complete sends and get more to send from
3725 * the send wait queue.
3727 * Assumption - Send spinlock has been acquired
3729 static void et131x_handle_send_interrupt(struct et131x_adapter
*adapter
)
3731 unsigned long flags
;
3736 serviced
= readl(&adapter
->regs
->txdma
.new_service_complete
);
3737 index
= INDEX10(serviced
);
3739 /* Has the ring wrapped? Process any descriptors that do not have
3740 * the same "wrap" indicator as the current completion indicator
3742 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3744 tcb
= adapter
->tx_ring
.send_head
;
3747 ((serviced
^ tcb
->index
) & ET_DMA10_WRAP
) &&
3748 index
< INDEX10(tcb
->index
)) {
3749 adapter
->tx_ring
.used
--;
3750 adapter
->tx_ring
.send_head
= tcb
->next
;
3751 if (tcb
->next
== NULL
)
3752 adapter
->tx_ring
.send_tail
= NULL
;
3754 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3755 free_send_packet(adapter
, tcb
);
3756 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3758 /* Goto the next packet */
3759 tcb
= adapter
->tx_ring
.send_head
;
3762 !((serviced
^ tcb
->index
) & ET_DMA10_WRAP
)
3763 && index
> (tcb
->index
& ET_DMA10_MASK
)) {
3764 adapter
->tx_ring
.used
--;
3765 adapter
->tx_ring
.send_head
= tcb
->next
;
3766 if (tcb
->next
== NULL
)
3767 adapter
->tx_ring
.send_tail
= NULL
;
3769 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3770 free_send_packet(adapter
, tcb
);
3771 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3773 /* Goto the next packet */
3774 tcb
= adapter
->tx_ring
.send_head
;
3777 /* Wake up the queue when we hit a low-water mark */
3778 if (adapter
->tx_ring
.used
<= NUM_TCB
/ 3)
3779 netif_wake_queue(adapter
->netdev
);
3781 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3784 static int et131x_get_settings(struct net_device
*netdev
,
3785 struct ethtool_cmd
*cmd
)
3787 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3789 return phy_ethtool_gset(adapter
->phydev
, cmd
);
3792 static int et131x_set_settings(struct net_device
*netdev
,
3793 struct ethtool_cmd
*cmd
)
3795 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3797 return phy_ethtool_sset(adapter
->phydev
, cmd
);
3800 static int et131x_get_regs_len(struct net_device
*netdev
)
3802 #define ET131X_REGS_LEN 256
3803 return ET131X_REGS_LEN
* sizeof(u32
);
3806 static void et131x_get_regs(struct net_device
*netdev
,
3807 struct ethtool_regs
*regs
, void *regs_data
)
3809 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3810 struct address_map __iomem
*aregs
= adapter
->regs
;
3811 u32
*regs_buff
= regs_data
;
3814 memset(regs_data
, 0, et131x_get_regs_len(netdev
));
3816 regs
->version
= (1 << 24) | (adapter
->pdev
->revision
<< 16) |
3817 adapter
->pdev
->device
;
3820 et131x_mii_read(adapter
, MII_BMCR
, (u16
*)®s_buff
[num
++]);
3821 et131x_mii_read(adapter
, MII_BMSR
, (u16
*)®s_buff
[num
++]);
3822 et131x_mii_read(adapter
, MII_PHYSID1
, (u16
*)®s_buff
[num
++]);
3823 et131x_mii_read(adapter
, MII_PHYSID2
, (u16
*)®s_buff
[num
++]);
3824 et131x_mii_read(adapter
, MII_ADVERTISE
, (u16
*)®s_buff
[num
++]);
3825 et131x_mii_read(adapter
, MII_LPA
, (u16
*)®s_buff
[num
++]);
3826 et131x_mii_read(adapter
, MII_EXPANSION
, (u16
*)®s_buff
[num
++]);
3827 /* Autoneg next page transmit reg */
3828 et131x_mii_read(adapter
, 0x07, (u16
*)®s_buff
[num
++]);
3829 /* Link partner next page reg */
3830 et131x_mii_read(adapter
, 0x08, (u16
*)®s_buff
[num
++]);
3831 et131x_mii_read(adapter
, MII_CTRL1000
, (u16
*)®s_buff
[num
++]);
3832 et131x_mii_read(adapter
, MII_STAT1000
, (u16
*)®s_buff
[num
++]);
3833 et131x_mii_read(adapter
, MII_ESTATUS
, (u16
*)®s_buff
[num
++]);
3834 et131x_mii_read(adapter
, PHY_INDEX_REG
, (u16
*)®s_buff
[num
++]);
3835 et131x_mii_read(adapter
, PHY_DATA_REG
, (u16
*)®s_buff
[num
++]);
3836 et131x_mii_read(adapter
, PHY_MPHY_CONTROL_REG
,
3837 (u16
*)®s_buff
[num
++]);
3838 et131x_mii_read(adapter
, PHY_LOOPBACK_CONTROL
,
3839 (u16
*)®s_buff
[num
++]);
3840 et131x_mii_read(adapter
, PHY_LOOPBACK_CONTROL
+1,
3841 (u16
*)®s_buff
[num
++]);
3842 et131x_mii_read(adapter
, PHY_REGISTER_MGMT_CONTROL
,
3843 (u16
*)®s_buff
[num
++]);
3844 et131x_mii_read(adapter
, PHY_CONFIG
, (u16
*)®s_buff
[num
++]);
3845 et131x_mii_read(adapter
, PHY_PHY_CONTROL
, (u16
*)®s_buff
[num
++]);
3846 et131x_mii_read(adapter
, PHY_INTERRUPT_MASK
, (u16
*)®s_buff
[num
++]);
3847 et131x_mii_read(adapter
, PHY_INTERRUPT_STATUS
,
3848 (u16
*)®s_buff
[num
++]);
3849 et131x_mii_read(adapter
, PHY_PHY_STATUS
, (u16
*)®s_buff
[num
++]);
3850 et131x_mii_read(adapter
, PHY_LED_1
, (u16
*)®s_buff
[num
++]);
3851 et131x_mii_read(adapter
, PHY_LED_2
, (u16
*)®s_buff
[num
++]);
3854 regs_buff
[num
++] = readl(&aregs
->global
.txq_start_addr
);
3855 regs_buff
[num
++] = readl(&aregs
->global
.txq_end_addr
);
3856 regs_buff
[num
++] = readl(&aregs
->global
.rxq_start_addr
);
3857 regs_buff
[num
++] = readl(&aregs
->global
.rxq_end_addr
);
3858 regs_buff
[num
++] = readl(&aregs
->global
.pm_csr
);
3859 regs_buff
[num
++] = adapter
->stats
.interrupt_status
;
3860 regs_buff
[num
++] = readl(&aregs
->global
.int_mask
);
3861 regs_buff
[num
++] = readl(&aregs
->global
.int_alias_clr_en
);
3862 regs_buff
[num
++] = readl(&aregs
->global
.int_status_alias
);
3863 regs_buff
[num
++] = readl(&aregs
->global
.sw_reset
);
3864 regs_buff
[num
++] = readl(&aregs
->global
.slv_timer
);
3865 regs_buff
[num
++] = readl(&aregs
->global
.msi_config
);
3866 regs_buff
[num
++] = readl(&aregs
->global
.loopback
);
3867 regs_buff
[num
++] = readl(&aregs
->global
.watchdog_timer
);
3870 regs_buff
[num
++] = readl(&aregs
->txdma
.csr
);
3871 regs_buff
[num
++] = readl(&aregs
->txdma
.pr_base_hi
);
3872 regs_buff
[num
++] = readl(&aregs
->txdma
.pr_base_lo
);
3873 regs_buff
[num
++] = readl(&aregs
->txdma
.pr_num_des
);
3874 regs_buff
[num
++] = readl(&aregs
->txdma
.txq_wr_addr
);
3875 regs_buff
[num
++] = readl(&aregs
->txdma
.txq_wr_addr_ext
);
3876 regs_buff
[num
++] = readl(&aregs
->txdma
.txq_rd_addr
);
3877 regs_buff
[num
++] = readl(&aregs
->txdma
.dma_wb_base_hi
);
3878 regs_buff
[num
++] = readl(&aregs
->txdma
.dma_wb_base_lo
);
3879 regs_buff
[num
++] = readl(&aregs
->txdma
.service_request
);
3880 regs_buff
[num
++] = readl(&aregs
->txdma
.service_complete
);
3881 regs_buff
[num
++] = readl(&aregs
->txdma
.cache_rd_index
);
3882 regs_buff
[num
++] = readl(&aregs
->txdma
.cache_wr_index
);
3883 regs_buff
[num
++] = readl(&aregs
->txdma
.tx_dma_error
);
3884 regs_buff
[num
++] = readl(&aregs
->txdma
.desc_abort_cnt
);
3885 regs_buff
[num
++] = readl(&aregs
->txdma
.payload_abort_cnt
);
3886 regs_buff
[num
++] = readl(&aregs
->txdma
.writeback_abort_cnt
);
3887 regs_buff
[num
++] = readl(&aregs
->txdma
.desc_timeout_cnt
);
3888 regs_buff
[num
++] = readl(&aregs
->txdma
.payload_timeout_cnt
);
3889 regs_buff
[num
++] = readl(&aregs
->txdma
.writeback_timeout_cnt
);
3890 regs_buff
[num
++] = readl(&aregs
->txdma
.desc_error_cnt
);
3891 regs_buff
[num
++] = readl(&aregs
->txdma
.payload_error_cnt
);
3892 regs_buff
[num
++] = readl(&aregs
->txdma
.writeback_error_cnt
);
3893 regs_buff
[num
++] = readl(&aregs
->txdma
.dropped_tlp_cnt
);
3894 regs_buff
[num
++] = readl(&aregs
->txdma
.new_service_complete
);
3895 regs_buff
[num
++] = readl(&aregs
->txdma
.ethernet_packet_cnt
);
3898 regs_buff
[num
++] = readl(&aregs
->rxdma
.csr
);
3899 regs_buff
[num
++] = readl(&aregs
->rxdma
.dma_wb_base_hi
);
3900 regs_buff
[num
++] = readl(&aregs
->rxdma
.dma_wb_base_lo
);
3901 regs_buff
[num
++] = readl(&aregs
->rxdma
.num_pkt_done
);
3902 regs_buff
[num
++] = readl(&aregs
->rxdma
.max_pkt_time
);
3903 regs_buff
[num
++] = readl(&aregs
->rxdma
.rxq_rd_addr
);
3904 regs_buff
[num
++] = readl(&aregs
->rxdma
.rxq_rd_addr_ext
);
3905 regs_buff
[num
++] = readl(&aregs
->rxdma
.rxq_wr_addr
);
3906 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_base_hi
);
3907 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_base_lo
);
3908 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_num_des
);
3909 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_avail_offset
);
3910 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_full_offset
);
3911 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_access_index
);
3912 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_min_des
);
3913 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_base_lo
);
3914 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_base_hi
);
3915 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_num_des
);
3916 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_avail_offset
);
3917 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_full_offset
);
3918 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_rd_index
);
3919 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_min_des
);
3920 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_base_lo
);
3921 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_base_hi
);
3922 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_num_des
);
3923 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_avail_offset
);
3924 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_full_offset
);
3925 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_rd_index
);
3926 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_min_des
);
3929 #define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3930 static void et131x_get_drvinfo(struct net_device
*netdev
,
3931 struct ethtool_drvinfo
*info
)
3933 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3935 strncpy(info
->driver
, DRIVER_NAME
, ET131X_DRVINFO_LEN
);
3936 strncpy(info
->version
, DRIVER_VERSION
, ET131X_DRVINFO_LEN
);
3937 strncpy(info
->bus_info
, pci_name(adapter
->pdev
), ET131X_DRVINFO_LEN
);
3940 static struct ethtool_ops et131x_ethtool_ops
= {
3941 .get_settings
= et131x_get_settings
,
3942 .set_settings
= et131x_set_settings
,
3943 .get_drvinfo
= et131x_get_drvinfo
,
3944 .get_regs_len
= et131x_get_regs_len
,
3945 .get_regs
= et131x_get_regs
,
3946 .get_link
= ethtool_op_get_link
,
3949 static void et131x_set_ethtool_ops(struct net_device
*netdev
)
3951 SET_ETHTOOL_OPS(netdev
, &et131x_ethtool_ops
);
3955 * et131x_hwaddr_init - set up the MAC Address on the ET1310
3956 * @adapter: pointer to our private adapter structure
3958 static void et131x_hwaddr_init(struct et131x_adapter
*adapter
)
3960 /* If have our default mac from init and no mac address from
3961 * EEPROM then we need to generate the last octet and set it on the
3964 if (adapter
->rom_addr
[0] == 0x00 &&
3965 adapter
->rom_addr
[1] == 0x00 &&
3966 adapter
->rom_addr
[2] == 0x00 &&
3967 adapter
->rom_addr
[3] == 0x00 &&
3968 adapter
->rom_addr
[4] == 0x00 &&
3969 adapter
->rom_addr
[5] == 0x00) {
3971 * We need to randomly generate the last octet so we
3972 * decrease our chances of setting the mac address to
3973 * same as another one of our cards in the system
3975 get_random_bytes(&adapter
->addr
[5], 1);
3977 * We have the default value in the register we are
3978 * working with so we need to copy the current
3979 * address into the permanent address
3981 memcpy(adapter
->rom_addr
,
3982 adapter
->addr
, ETH_ALEN
);
3984 /* We do not have an override address, so set the
3985 * current address to the permanent address and add
3988 memcpy(adapter
->addr
,
3989 adapter
->rom_addr
, ETH_ALEN
);
3994 * et131x_pci_init - initial PCI setup
3995 * @adapter: pointer to our private adapter structure
3996 * @pdev: our PCI device
3998 * Perform the initial setup of PCI registers and if possible initialise
3999 * the MAC address. At this point the I/O registers have yet to be mapped
4001 static int et131x_pci_init(struct et131x_adapter
*adapter
,
4002 struct pci_dev
*pdev
)
4004 int cap
= pci_pcie_cap(pdev
);
4009 rc
= et131x_init_eeprom(adapter
);
4014 dev_err(&pdev
->dev
, "Missing PCIe capabilities\n");
4018 /* Let's set up the PORT LOGIC Register. First we need to know what
4019 * the max_payload_size is
4021 if (pci_read_config_word(pdev
, cap
+ PCI_EXP_DEVCAP
, &max_payload
)) {
4023 "Could not read PCI config space for Max Payload Size\n");
4027 /* Program the Ack/Nak latency and replay timers */
4028 max_payload
&= 0x07;
4030 if (max_payload
< 2) {
4031 static const u16 acknak
[2] = { 0x76, 0xD0 };
4032 static const u16 replay
[2] = { 0x1E0, 0x2ED };
4034 if (pci_write_config_word(pdev
, ET1310_PCI_ACK_NACK
,
4035 acknak
[max_payload
])) {
4037 "Could not write PCI config space for ACK/NAK\n");
4040 if (pci_write_config_word(pdev
, ET1310_PCI_REPLAY
,
4041 replay
[max_payload
])) {
4043 "Could not write PCI config space for Replay Timer\n");
4048 /* l0s and l1 latency timers. We are using default values.
4049 * Representing 001 for L0s and 010 for L1
4051 if (pci_write_config_byte(pdev
, ET1310_PCI_L0L1LATENCY
, 0x11)) {
4053 "Could not write PCI config space for Latency Timers\n");
4057 /* Change the max read size to 2k */
4058 if (pci_read_config_word(pdev
, cap
+ PCI_EXP_DEVCTL
, &ctl
)) {
4060 "Could not read PCI config space for Max read size\n");
4064 ctl
= (ctl
& ~PCI_EXP_DEVCTL_READRQ
) | ( 0x04 << 12);
4066 if (pci_write_config_word(pdev
, cap
+ PCI_EXP_DEVCTL
, ctl
)) {
4068 "Could not write PCI config space for Max read size\n");
4072 /* Get MAC address from config space if an eeprom exists, otherwise
4073 * the MAC address there will not be valid
4075 if (!adapter
->has_eeprom
) {
4076 et131x_hwaddr_init(adapter
);
4080 for (i
= 0; i
< ETH_ALEN
; i
++) {
4081 if (pci_read_config_byte(pdev
, ET1310_PCI_MAC_ADDRESS
+ i
,
4082 adapter
->rom_addr
+ i
)) {
4083 dev_err(&pdev
->dev
, "Could not read PCI config space for MAC address\n");
4087 memcpy(adapter
->addr
, adapter
->rom_addr
, ETH_ALEN
);
4096 * et131x_error_timer_handler
4097 * @data: timer-specific variable; here a pointer to our adapter structure
4099 * The routine called when the error timer expires, to track the number of
4102 static void et131x_error_timer_handler(unsigned long data
)
4104 struct et131x_adapter
*adapter
= (struct et131x_adapter
*) data
;
4105 struct phy_device
*phydev
= adapter
->phydev
;
4107 if (et1310_in_phy_coma(adapter
)) {
4108 /* Bring the device immediately out of coma, to
4109 * prevent it from sleeping indefinitely, this
4110 * mechanism could be improved! */
4111 et1310_disable_phy_coma(adapter
);
4112 adapter
->boot_coma
= 20;
4114 et1310_update_macstat_host_counters(adapter
);
4117 if (!phydev
->link
&& adapter
->boot_coma
< 11)
4118 adapter
->boot_coma
++;
4120 if (adapter
->boot_coma
== 10) {
4121 if (!phydev
->link
) {
4122 if (!et1310_in_phy_coma(adapter
)) {
4123 /* NOTE - This was originally a 'sync with
4124 * interrupt'. How to do that under Linux?
4126 et131x_enable_interrupts(adapter
);
4127 et1310_enable_phy_coma(adapter
);
4132 /* This is a periodic timer, so reschedule */
4133 mod_timer(&adapter
->error_timer
, jiffies
+
4134 TX_ERROR_PERIOD
* HZ
/ 1000);
4138 * et131x_adapter_memory_alloc
4139 * @adapter: pointer to our private adapter structure
4141 * Returns 0 on success, errno on failure (as defined in errno.h).
4143 * Allocate all the memory blocks for send, receive and others.
4145 static int et131x_adapter_memory_alloc(struct et131x_adapter
*adapter
)
4149 /* Allocate memory for the Tx Ring */
4150 status
= et131x_tx_dma_memory_alloc(adapter
);
4152 dev_err(&adapter
->pdev
->dev
,
4153 "et131x_tx_dma_memory_alloc FAILED\n");
4156 /* Receive buffer memory allocation */
4157 status
= et131x_rx_dma_memory_alloc(adapter
);
4159 dev_err(&adapter
->pdev
->dev
,
4160 "et131x_rx_dma_memory_alloc FAILED\n");
4161 et131x_tx_dma_memory_free(adapter
);
4165 /* Init receive data structures */
4166 status
= et131x_init_recv(adapter
);
4168 dev_err(&adapter
->pdev
->dev
,
4169 "et131x_init_recv FAILED\n");
4170 et131x_tx_dma_memory_free(adapter
);
4171 et131x_rx_dma_memory_free(adapter
);
4177 * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
4178 * @adapter: pointer to our private adapter structure
4180 static void et131x_adapter_memory_free(struct et131x_adapter
*adapter
)
4182 /* Free DMA memory */
4183 et131x_tx_dma_memory_free(adapter
);
4184 et131x_rx_dma_memory_free(adapter
);
4187 static void et131x_adjust_link(struct net_device
*netdev
)
4189 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4190 struct phy_device
*phydev
= adapter
->phydev
;
4192 if (netif_carrier_ok(netdev
)) {
4193 adapter
->boot_coma
= 20;
4195 if (phydev
&& phydev
->speed
== SPEED_10
) {
4197 * NOTE - Is there a way to query this without
4199 * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
4200 * EMI_TRUEPHY_A13O) {
4204 et131x_mii_read(adapter
, PHY_MPHY_CONTROL_REG
,
4206 et131x_mii_write(adapter
, PHY_MPHY_CONTROL_REG
,
4208 et131x_mii_write(adapter
, PHY_INDEX_REG
,
4209 register18
| 0x8402);
4210 et131x_mii_write(adapter
, PHY_DATA_REG
,
4212 et131x_mii_write(adapter
, PHY_MPHY_CONTROL_REG
,
4216 et1310_config_flow_control(adapter
);
4218 if (phydev
&& phydev
->speed
== SPEED_1000
&&
4219 adapter
->registry_jumbo_packet
> 2048) {
4222 et131x_mii_read(adapter
, PHY_CONFIG
, ®
);
4223 reg
&= ~ET_PHY_CONFIG_TX_FIFO_DEPTH
;
4224 reg
|= ET_PHY_CONFIG_FIFO_DEPTH_32
;
4225 et131x_mii_write(adapter
, PHY_CONFIG
, reg
);
4228 et131x_set_rx_dma_timer(adapter
);
4229 et1310_config_mac_regs2(adapter
);
4232 if (phydev
&& phydev
->link
!= adapter
->link
) {
4234 * Check to see if we are in coma mode and if
4235 * so, disable it because we will not be able
4236 * to read PHY values until we are out.
4238 if (et1310_in_phy_coma(adapter
))
4239 et1310_disable_phy_coma(adapter
);
4242 adapter
->boot_coma
= 20;
4244 dev_warn(&adapter
->pdev
->dev
,
4245 "Link down - cable problem ?\n");
4246 adapter
->boot_coma
= 0;
4248 if (phydev
->speed
== SPEED_10
) {
4249 /* NOTE - Is there a way to query this without
4251 * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
4256 et131x_mii_read(adapter
, PHY_MPHY_CONTROL_REG
,
4258 et131x_mii_write(adapter
, PHY_MPHY_CONTROL_REG
,
4260 et131x_mii_write(adapter
, PHY_INDEX_REG
,
4261 register18
| 0x8402);
4262 et131x_mii_write(adapter
, PHY_DATA_REG
,
4264 et131x_mii_write(adapter
, PHY_MPHY_CONTROL_REG
,
4268 /* Free the packets being actively sent & stopped */
4269 et131x_free_busy_send_packets(adapter
);
4271 /* Re-initialize the send structures */
4272 et131x_init_send(adapter
);
4275 * Bring the device back to the state it was during
4276 * init prior to autonegotiation being complete. This
4277 * way, when we get the auto-neg complete interrupt,
4278 * we can complete init by calling config_mac_regs2.
4280 et131x_soft_reset(adapter
);
4282 /* Setup ET1310 as per the documentation */
4283 et131x_adapter_setup(adapter
);
4285 /* perform reset of tx/rx */
4286 et131x_disable_txrx(netdev
);
4287 et131x_enable_txrx(netdev
);
4290 adapter
->link
= phydev
->link
;
4292 phy_print_status(phydev
);
4296 static int et131x_mii_probe(struct net_device
*netdev
)
4298 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4299 struct phy_device
*phydev
= NULL
;
4301 phydev
= phy_find_first(adapter
->mii_bus
);
4303 dev_err(&adapter
->pdev
->dev
, "no PHY found\n");
4307 phydev
= phy_connect(netdev
, dev_name(&phydev
->dev
),
4308 &et131x_adjust_link
, 0, PHY_INTERFACE_MODE_MII
);
4310 if (IS_ERR(phydev
)) {
4311 dev_err(&adapter
->pdev
->dev
, "Could not attach to PHY\n");
4312 return PTR_ERR(phydev
);
4315 phydev
->supported
&= (SUPPORTED_10baseT_Half
4316 | SUPPORTED_10baseT_Full
4317 | SUPPORTED_100baseT_Half
4318 | SUPPORTED_100baseT_Full
4323 if (adapter
->pdev
->device
!= ET131X_PCI_DEVICE_ID_FAST
)
4324 phydev
->supported
|= SUPPORTED_1000baseT_Full
;
4326 phydev
->advertising
= phydev
->supported
;
4327 adapter
->phydev
= phydev
;
4329 dev_info(&adapter
->pdev
->dev
, "attached PHY driver [%s] "
4330 "(mii_bus:phy_addr=%s)\n",
4331 phydev
->drv
->name
, dev_name(&phydev
->dev
));
4337 * et131x_adapter_init
4338 * @adapter: pointer to the private adapter struct
4339 * @pdev: pointer to the PCI device
4341 * Initialize the data structures for the et131x_adapter object and link
4342 * them together with the platform provided device structures.
4344 static struct et131x_adapter
*et131x_adapter_init(struct net_device
*netdev
,
4345 struct pci_dev
*pdev
)
4347 static const u8 default_mac
[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
4349 struct et131x_adapter
*adapter
;
4351 /* Allocate private adapter struct and copy in relevant information */
4352 adapter
= netdev_priv(netdev
);
4353 adapter
->pdev
= pci_dev_get(pdev
);
4354 adapter
->netdev
= netdev
;
4356 /* Initialize spinlocks here */
4357 spin_lock_init(&adapter
->lock
);
4358 spin_lock_init(&adapter
->tcb_send_qlock
);
4359 spin_lock_init(&adapter
->tcb_ready_qlock
);
4360 spin_lock_init(&adapter
->send_hw_lock
);
4361 spin_lock_init(&adapter
->rcv_lock
);
4362 spin_lock_init(&adapter
->rcv_pend_lock
);
4363 spin_lock_init(&adapter
->fbr_lock
);
4364 spin_lock_init(&adapter
->phy_lock
);
4366 adapter
->registry_jumbo_packet
= 1514; /* 1514-9216 */
4368 /* Set the MAC address to a default */
4369 memcpy(adapter
->addr
, default_mac
, ETH_ALEN
);
4376 * @pdev: a pointer to the device's pci_dev structure
4378 * Registered in the pci_driver structure, this function is called when the
4379 * PCI subsystem detects that a PCI device which matches the information
4380 * contained in the pci_device_id table has been removed.
4382 static void __devexit
et131x_pci_remove(struct pci_dev
*pdev
)
4384 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4385 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4387 unregister_netdev(netdev
);
4388 phy_disconnect(adapter
->phydev
);
4389 mdiobus_unregister(adapter
->mii_bus
);
4390 kfree(adapter
->mii_bus
->irq
);
4391 mdiobus_free(adapter
->mii_bus
);
4393 et131x_adapter_memory_free(adapter
);
4394 iounmap(adapter
->regs
);
4397 free_netdev(netdev
);
4398 pci_release_regions(pdev
);
4399 pci_disable_device(pdev
);
4403 * et131x_up - Bring up a device for use.
4404 * @netdev: device to be opened
4406 static void et131x_up(struct net_device
*netdev
)
4408 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4410 et131x_enable_txrx(netdev
);
4411 phy_start(adapter
->phydev
);
4415 * et131x_down - Bring down the device
4416 * @netdev: device to be broght down
4418 static void et131x_down(struct net_device
*netdev
)
4420 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4422 /* Save the timestamp for the TX watchdog, prevent a timeout */
4423 netdev
->trans_start
= jiffies
;
4425 phy_stop(adapter
->phydev
);
4426 et131x_disable_txrx(netdev
);
4429 #ifdef CONFIG_PM_SLEEP
4430 static int et131x_suspend(struct device
*dev
)
4432 struct pci_dev
*pdev
= to_pci_dev(dev
);
4433 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4435 if (netif_running(netdev
)) {
4436 netif_device_detach(netdev
);
4437 et131x_down(netdev
);
4438 pci_save_state(pdev
);
4444 static int et131x_resume(struct device
*dev
)
4446 struct pci_dev
*pdev
= to_pci_dev(dev
);
4447 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4449 if (netif_running(netdev
)) {
4450 pci_restore_state(pdev
);
4452 netif_device_attach(netdev
);
4458 static SIMPLE_DEV_PM_OPS(et131x_pm_ops
, et131x_suspend
, et131x_resume
);
4459 #define ET131X_PM_OPS (&et131x_pm_ops)
4461 #define ET131X_PM_OPS NULL
4465 * et131x_isr - The Interrupt Service Routine for the driver.
4466 * @irq: the IRQ on which the interrupt was received.
4467 * @dev_id: device-specific info (here a pointer to a net_device struct)
4469 * Returns a value indicating if the interrupt was handled.
4471 irqreturn_t
et131x_isr(int irq
, void *dev_id
)
4473 bool handled
= true;
4474 struct net_device
*netdev
= (struct net_device
*)dev_id
;
4475 struct et131x_adapter
*adapter
= NULL
;
4478 if (!netif_device_present(netdev
)) {
4483 adapter
= netdev_priv(netdev
);
4485 /* If the adapter is in low power state, then it should not
4486 * recognize any interrupt
4489 /* Disable Device Interrupts */
4490 et131x_disable_interrupts(adapter
);
4492 /* Get a copy of the value in the interrupt status register
4493 * so we can process the interrupting section
4495 status
= readl(&adapter
->regs
->global
.int_status
);
4497 if (adapter
->flowcontrol
== FLOW_TXONLY
||
4498 adapter
->flowcontrol
== FLOW_BOTH
) {
4499 status
&= ~INT_MASK_ENABLE
;
4501 status
&= ~INT_MASK_ENABLE_NO_FLOW
;
4504 /* Make sure this is our interrupt */
4507 et131x_enable_interrupts(adapter
);
4511 /* This is our interrupt, so process accordingly */
4513 if (status
& ET_INTR_WATCHDOG
) {
4514 struct tcb
*tcb
= adapter
->tx_ring
.send_head
;
4517 if (++tcb
->stale
> 1)
4518 status
|= ET_INTR_TXDMA_ISR
;
4520 if (adapter
->rx_ring
.unfinished_receives
)
4521 status
|= ET_INTR_RXDMA_XFR_DONE
;
4522 else if (tcb
== NULL
)
4523 writel(0, &adapter
->regs
->global
.watchdog_timer
);
4525 status
&= ~ET_INTR_WATCHDOG
;
4529 /* This interrupt has in some way been "handled" by
4530 * the ISR. Either it was a spurious Rx interrupt, or
4531 * it was a Tx interrupt that has been filtered by
4534 et131x_enable_interrupts(adapter
);
4538 /* We need to save the interrupt status value for use in our
4539 * DPC. We will clear the software copy of that in that
4542 adapter
->stats
.interrupt_status
= status
;
4544 /* Schedule the ISR handler as a bottom-half task in the
4545 * kernel's tq_immediate queue, and mark the queue for
4548 schedule_work(&adapter
->task
);
4550 return IRQ_RETVAL(handled
);
4554 * et131x_isr_handler - The ISR handler
4555 * @p_adapter, a pointer to the device's private adapter structure
4557 * scheduled to run in a deferred context by the ISR. This is where the ISR's
4558 * work actually gets done.
4560 static void et131x_isr_handler(struct work_struct
*work
)
4562 struct et131x_adapter
*adapter
=
4563 container_of(work
, struct et131x_adapter
, task
);
4564 u32 status
= adapter
->stats
.interrupt_status
;
4565 struct address_map __iomem
*iomem
= adapter
->regs
;
4568 * These first two are by far the most common. Once handled, we clear
4569 * their two bits in the status word. If the word is now zero, we
4572 /* Handle all the completed Transmit interrupts */
4573 if (status
& ET_INTR_TXDMA_ISR
)
4574 et131x_handle_send_interrupt(adapter
);
4576 /* Handle all the completed Receives interrupts */
4577 if (status
& ET_INTR_RXDMA_XFR_DONE
)
4578 et131x_handle_recv_interrupt(adapter
);
4580 status
&= 0xffffffd7;
4583 /* Handle the TXDMA Error interrupt */
4584 if (status
& ET_INTR_TXDMA_ERR
) {
4587 /* Following read also clears the register (COR) */
4588 txdma_err
= readl(&iomem
->txdma
.tx_dma_error
);
4590 dev_warn(&adapter
->pdev
->dev
,
4591 "TXDMA_ERR interrupt, error = %d\n",
4595 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4597 (ET_INTR_RXDMA_FB_R0_LOW
| ET_INTR_RXDMA_FB_R1_LOW
)) {
4599 * This indicates the number of unused buffers in
4600 * RXDMA free buffer ring 0 is <= the limit you
4601 * programmed. Free buffer resources need to be
4602 * returned. Free buffers are consumed as packets
4603 * are passed from the network to the host. The host
4604 * becomes aware of the packets from the contents of
4605 * the packet status ring. This ring is queried when
4606 * the packet done interrupt occurs. Packets are then
4607 * passed to the OS. When the OS is done with the
4608 * packets the resources can be returned to the
4609 * ET1310 for re-use. This interrupt is one method of
4610 * returning resources.
4613 /* If the user has flow control on, then we will
4614 * send a pause packet, otherwise just exit
4616 if (adapter
->flowcontrol
== FLOW_TXONLY
||
4617 adapter
->flowcontrol
== FLOW_BOTH
) {
4620 /* Tell the device to send a pause packet via
4621 * the back pressure register (bp req and
4624 pm_csr
= readl(&iomem
->global
.pm_csr
);
4625 if (!et1310_in_phy_coma(adapter
))
4626 writel(3, &iomem
->txmac
.bp_ctrl
);
4630 /* Handle Packet Status Ring Low Interrupt */
4631 if (status
& ET_INTR_RXDMA_STAT_LOW
) {
4634 * Same idea as with the two Free Buffer Rings.
4635 * Packets going from the network to the host each
4636 * consume a free buffer resource and a packet status
4637 * resource. These resoures are passed to the OS.
4638 * When the OS is done with the resources, they need
4639 * to be returned to the ET1310. This is one method
4640 * of returning the resources.
4644 /* Handle RXDMA Error Interrupt */
4645 if (status
& ET_INTR_RXDMA_ERR
) {
4647 * The rxdma_error interrupt is sent when a time-out
4648 * on a request issued by the JAGCore has occurred or
4649 * a completion is returned with an un-successful
4650 * status. In both cases the request is considered
4651 * complete. The JAGCore will automatically re-try the
4652 * request in question. Normally information on events
4653 * like these are sent to the host using the "Advanced
4654 * Error Reporting" capability. This interrupt is
4655 * another way of getting similar information. The
4656 * only thing required is to clear the interrupt by
4657 * reading the ISR in the global resources. The
4658 * JAGCore will do a re-try on the request. Normally
4659 * you should never see this interrupt. If you start
4660 * to see this interrupt occurring frequently then
4661 * something bad has occurred. A reset might be the
4666 dev_warn(&adapter
->pdev
->dev
,
4667 "RxDMA_ERR interrupt, error %x\n",
4668 readl(&iomem
->txmac
.tx_test
));
4671 /* Handle the Wake on LAN Event */
4672 if (status
& ET_INTR_WOL
) {
4674 * This is a secondary interrupt for wake on LAN.
4675 * The driver should never see this, if it does,
4676 * something serious is wrong. We will TRAP the
4677 * message when we are in DBG mode, otherwise we
4680 dev_err(&adapter
->pdev
->dev
, "WAKE_ON_LAN interrupt\n");
4683 /* Let's move on to the TxMac */
4684 if (status
& ET_INTR_TXMAC
) {
4685 u32 err
= readl(&iomem
->txmac
.err
);
4688 * When any of the errors occur and TXMAC generates
4689 * an interrupt to report these errors, it usually
4690 * means that TXMAC has detected an error in the data
4691 * stream retrieved from the on-chip Tx Q. All of
4692 * these errors are catastrophic and TXMAC won't be
4693 * able to recover data when these errors occur. In
4694 * a nutshell, the whole Tx path will have to be reset
4695 * and re-configured afterwards.
4697 dev_warn(&adapter
->pdev
->dev
,
4698 "TXMAC interrupt, error 0x%08x\n",
4701 /* If we are debugging, we want to see this error,
4702 * otherwise we just want the device to be reset and
4707 /* Handle RXMAC Interrupt */
4708 if (status
& ET_INTR_RXMAC
) {
4710 * These interrupts are catastrophic to the device,
4711 * what we need to do is disable the interrupts and
4712 * set the flag to cause us to reset so we can solve
4715 /* MP_SET_FLAG( adapter,
4716 fMP_ADAPTER_HARDWARE_ERROR); */
4718 dev_warn(&adapter
->pdev
->dev
,
4719 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4720 readl(&iomem
->rxmac
.err_reg
));
4722 dev_warn(&adapter
->pdev
->dev
,
4723 "Enable 0x%08x, Diag 0x%08x\n",
4724 readl(&iomem
->rxmac
.ctrl
),
4725 readl(&iomem
->rxmac
.rxq_diag
));
4728 * If we are debugging, we want to see this error,
4729 * otherwise we just want the device to be reset and
4734 /* Handle MAC_STAT Interrupt */
4735 if (status
& ET_INTR_MAC_STAT
) {
4737 * This means at least one of the un-masked counters
4738 * in the MAC_STAT block has rolled over. Use this
4739 * to maintain the top, software managed bits of the
4742 et1310_handle_macstat_interrupt(adapter
);
4745 /* Handle SLV Timeout Interrupt */
4746 if (status
& ET_INTR_SLV_TIMEOUT
) {
4748 * This means a timeout has occurred on a read or
4749 * write request to one of the JAGCore registers. The
4750 * Global Resources block has terminated the request
4751 * and on a read request, returned a "fake" value.
4752 * The most likely reasons are: Bad Address or the
4753 * addressed module is in a power-down state and
4758 et131x_enable_interrupts(adapter
);
4762 * et131x_stats - Return the current device statistics.
4763 * @netdev: device whose stats are being queried
4765 * Returns 0 on success, errno on failure (as defined in errno.h)
4767 static struct net_device_stats
*et131x_stats(struct net_device
*netdev
)
4769 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4770 struct net_device_stats
*stats
= &adapter
->net_stats
;
4771 struct ce_stats
*devstat
= &adapter
->stats
;
4773 stats
->rx_errors
= devstat
->rx_length_errs
+
4774 devstat
->rx_align_errs
+
4775 devstat
->rx_crc_errs
+
4776 devstat
->rx_code_violations
+
4777 devstat
->rx_other_errs
;
4778 stats
->tx_errors
= devstat
->tx_max_pkt_errs
;
4779 stats
->multicast
= devstat
->multicast_pkts_rcvd
;
4780 stats
->collisions
= devstat
->tx_collisions
;
4782 stats
->rx_length_errors
= devstat
->rx_length_errs
;
4783 stats
->rx_over_errors
= devstat
->rx_overflows
;
4784 stats
->rx_crc_errors
= devstat
->rx_crc_errs
;
4786 /* NOTE: These stats don't have corresponding values in CE_STATS,
4787 * so we're going to have to update these directly from within the
4790 /* stats->rx_bytes = 20; devstat->; */
4791 /* stats->tx_bytes = 20; devstat->; */
4792 /* stats->rx_dropped = devstat->; */
4793 /* stats->tx_dropped = devstat->; */
4795 /* NOTE: Not used, can't find analogous statistics */
4796 /* stats->rx_frame_errors = devstat->; */
4797 /* stats->rx_fifo_errors = devstat->; */
4798 /* stats->rx_missed_errors = devstat->; */
4800 /* stats->tx_aborted_errors = devstat->; */
4801 /* stats->tx_carrier_errors = devstat->; */
4802 /* stats->tx_fifo_errors = devstat->; */
4803 /* stats->tx_heartbeat_errors = devstat->; */
4804 /* stats->tx_window_errors = devstat->; */
4809 * et131x_open - Open the device for use.
4810 * @netdev: device to be opened
4812 * Returns 0 on success, errno on failure (as defined in errno.h)
4814 static int et131x_open(struct net_device
*netdev
)
4816 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4817 struct pci_dev
*pdev
= adapter
->pdev
;
4818 unsigned int irq
= pdev
->irq
;
4821 /* Start the timer to track NIC errors */
4822 init_timer(&adapter
->error_timer
);
4823 adapter
->error_timer
.expires
= jiffies
+ TX_ERROR_PERIOD
* HZ
/ 1000;
4824 adapter
->error_timer
.function
= et131x_error_timer_handler
;
4825 adapter
->error_timer
.data
= (unsigned long)adapter
;
4826 add_timer(&adapter
->error_timer
);
4828 result
= request_irq(irq
, et131x_isr
, IRQF_SHARED
, netdev
->name
, netdev
);
4830 dev_err(&pdev
->dev
, "could not register IRQ %d\n", irq
);
4834 adapter
->flags
|= fMP_ADAPTER_INTERRUPT_IN_USE
;
4842 * et131x_close - Close the device
4843 * @netdev: device to be closed
4845 * Returns 0 on success, errno on failure (as defined in errno.h)
4847 static int et131x_close(struct net_device
*netdev
)
4849 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4851 et131x_down(netdev
);
4853 adapter
->flags
&= ~fMP_ADAPTER_INTERRUPT_IN_USE
;
4854 free_irq(adapter
->pdev
->irq
, netdev
);
4856 /* Stop the error timer */
4857 return del_timer_sync(&adapter
->error_timer
);
4861 * et131x_ioctl - The I/O Control handler for the driver
4862 * @netdev: device on which the control request is being made
4863 * @reqbuf: a pointer to the IOCTL request buffer
4864 * @cmd: the IOCTL command code
4866 * Returns 0 on success, errno on failure (as defined in errno.h)
4868 static int et131x_ioctl(struct net_device
*netdev
, struct ifreq
*reqbuf
,
4871 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4873 if (!adapter
->phydev
)
4876 return phy_mii_ioctl(adapter
->phydev
, reqbuf
, cmd
);
4880 * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4881 * @adapter: pointer to our private adapter structure
4883 * FIXME: lot of dups with MAC code
4885 * Returns 0 on success, errno on failure
4887 static int et131x_set_packet_filter(struct et131x_adapter
*adapter
)
4889 int filter
= adapter
->packet_filter
;
4894 ctrl
= readl(&adapter
->regs
->rxmac
.ctrl
);
4895 pf_ctrl
= readl(&adapter
->regs
->rxmac
.pf_ctrl
);
4897 /* Default to disabled packet filtering. Enable it in the individual
4898 * case statements that require the device to filter something
4902 /* Set us to be in promiscuous mode so we receive everything, this
4903 * is also true when we get a packet filter of 0
4905 if ((filter
& ET131X_PACKET_TYPE_PROMISCUOUS
) || filter
== 0)
4906 pf_ctrl
&= ~7; /* Clear filter bits */
4909 * Set us up with Multicast packet filtering. Three cases are
4910 * possible - (1) we have a multi-cast list, (2) we receive ALL
4911 * multicast entries or (3) we receive none.
4913 if (filter
& ET131X_PACKET_TYPE_ALL_MULTICAST
)
4914 pf_ctrl
&= ~2; /* Multicast filter bit */
4916 et1310_setup_device_for_multicast(adapter
);
4921 /* Set us up with Unicast packet filtering */
4922 if (filter
& ET131X_PACKET_TYPE_DIRECTED
) {
4923 et1310_setup_device_for_unicast(adapter
);
4928 /* Set us up with Broadcast packet filtering */
4929 if (filter
& ET131X_PACKET_TYPE_BROADCAST
) {
4930 pf_ctrl
|= 1; /* Broadcast filter bit */
4935 /* Setup the receive mac configuration registers - Packet
4936 * Filter control + the enable / disable for packet filter
4937 * in the control reg.
4939 writel(pf_ctrl
, &adapter
->regs
->rxmac
.pf_ctrl
);
4940 writel(ctrl
, &adapter
->regs
->rxmac
.ctrl
);
4946 * et131x_multicast - The handler to configure multicasting on the interface
4947 * @netdev: a pointer to a net_device struct representing the device
4949 static void et131x_multicast(struct net_device
*netdev
)
4951 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4953 unsigned long flags
;
4954 struct netdev_hw_addr
*ha
;
4957 spin_lock_irqsave(&adapter
->lock
, flags
);
4959 /* Before we modify the platform-independent filter flags, store them
4960 * locally. This allows us to determine if anything's changed and if
4961 * we even need to bother the hardware
4963 packet_filter
= adapter
->packet_filter
;
4965 /* Clear the 'multicast' flag locally; because we only have a single
4966 * flag to check multicast, and multiple multicast addresses can be
4967 * set, this is the easiest way to determine if more than one
4968 * multicast address is being set.
4970 packet_filter
&= ~ET131X_PACKET_TYPE_MULTICAST
;
4972 /* Check the net_device flags and set the device independent flags
4976 if (netdev
->flags
& IFF_PROMISC
)
4977 adapter
->packet_filter
|= ET131X_PACKET_TYPE_PROMISCUOUS
;
4979 adapter
->packet_filter
&= ~ET131X_PACKET_TYPE_PROMISCUOUS
;
4981 if (netdev
->flags
& IFF_ALLMULTI
)
4982 adapter
->packet_filter
|= ET131X_PACKET_TYPE_ALL_MULTICAST
;
4984 if (netdev_mc_count(netdev
) > NIC_MAX_MCAST_LIST
)
4985 adapter
->packet_filter
|= ET131X_PACKET_TYPE_ALL_MULTICAST
;
4987 if (netdev_mc_count(netdev
) < 1) {
4988 adapter
->packet_filter
&= ~ET131X_PACKET_TYPE_ALL_MULTICAST
;
4989 adapter
->packet_filter
&= ~ET131X_PACKET_TYPE_MULTICAST
;
4991 adapter
->packet_filter
|= ET131X_PACKET_TYPE_MULTICAST
;
4993 /* Set values in the private adapter struct */
4995 netdev_for_each_mc_addr(ha
, netdev
) {
4996 if (i
== NIC_MAX_MCAST_LIST
)
4998 memcpy(adapter
->multicast_list
[i
++], ha
->addr
, ETH_ALEN
);
5000 adapter
->multicast_addr_count
= i
;
5002 /* Are the new flags different from the previous ones? If not, then no
5003 * action is required
5005 * NOTE - This block will always update the multicast_list with the
5006 * hardware, even if the addresses aren't the same.
5008 if (packet_filter
!= adapter
->packet_filter
) {
5009 /* Call the device's filter function */
5010 et131x_set_packet_filter(adapter
);
5012 spin_unlock_irqrestore(&adapter
->lock
, flags
);
5016 * et131x_tx - The handler to tx a packet on the device
5017 * @skb: data to be Tx'd
5018 * @netdev: device on which data is to be Tx'd
5020 * Returns 0 on success, errno on failure (as defined in errno.h)
5022 static int et131x_tx(struct sk_buff
*skb
, struct net_device
*netdev
)
5025 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
5027 /* stop the queue if it's getting full */
5028 if (adapter
->tx_ring
.used
>= NUM_TCB
- 1 &&
5029 !netif_queue_stopped(netdev
))
5030 netif_stop_queue(netdev
);
5032 /* Save the timestamp for the TX timeout watchdog */
5033 netdev
->trans_start
= jiffies
;
5035 /* Call the device-specific data Tx routine */
5036 status
= et131x_send_packets(skb
, netdev
);
5038 /* Check status and manage the netif queue if necessary */
5040 if (status
== -ENOMEM
)
5041 status
= NETDEV_TX_BUSY
;
5043 status
= NETDEV_TX_OK
;
5049 * et131x_tx_timeout - Timeout handler
5050 * @netdev: a pointer to a net_device struct representing the device
5052 * The handler called when a Tx request times out. The timeout period is
5053 * specified by the 'tx_timeo" element in the net_device structure (see
5054 * et131x_alloc_device() to see how this value is set).
5056 static void et131x_tx_timeout(struct net_device
*netdev
)
5058 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
5060 unsigned long flags
;
5062 /* If the device is closed, ignore the timeout */
5063 if (~(adapter
->flags
& fMP_ADAPTER_INTERRUPT_IN_USE
))
5066 /* Any nonrecoverable hardware error?
5067 * Checks adapter->flags for any failure in phy reading
5069 if (adapter
->flags
& fMP_ADAPTER_NON_RECOVER_ERROR
)
5072 /* Hardware failure? */
5073 if (adapter
->flags
& fMP_ADAPTER_HARDWARE_ERROR
) {
5074 dev_err(&adapter
->pdev
->dev
, "hardware error - reset\n");
5078 /* Is send stuck? */
5079 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
5081 tcb
= adapter
->tx_ring
.send_head
;
5086 if (tcb
->count
> NIC_SEND_HANG_THRESHOLD
) {
5087 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
,
5090 dev_warn(&adapter
->pdev
->dev
,
5091 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
5095 adapter
->net_stats
.tx_errors
++;
5097 /* perform reset of tx/rx */
5098 et131x_disable_txrx(netdev
);
5099 et131x_enable_txrx(netdev
);
5104 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
5108 * et131x_change_mtu - The handler called to change the MTU for the device
5109 * @netdev: device whose MTU is to be changed
5110 * @new_mtu: the desired MTU
5112 * Returns 0 on success, errno on failure (as defined in errno.h)
5114 static int et131x_change_mtu(struct net_device
*netdev
, int new_mtu
)
5117 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
5119 /* Make sure the requested MTU is valid */
5120 if (new_mtu
< 64 || new_mtu
> 9216)
5123 et131x_disable_txrx(netdev
);
5124 et131x_handle_send_interrupt(adapter
);
5125 et131x_handle_recv_interrupt(adapter
);
5127 /* Set the new MTU */
5128 netdev
->mtu
= new_mtu
;
5130 /* Free Rx DMA memory */
5131 et131x_adapter_memory_free(adapter
);
5133 /* Set the config parameter for Jumbo Packet support */
5134 adapter
->registry_jumbo_packet
= new_mtu
+ 14;
5135 et131x_soft_reset(adapter
);
5137 /* Alloc and init Rx DMA memory */
5138 result
= et131x_adapter_memory_alloc(adapter
);
5140 dev_warn(&adapter
->pdev
->dev
,
5141 "Change MTU failed; couldn't re-alloc DMA memory\n");
5145 et131x_init_send(adapter
);
5147 et131x_hwaddr_init(adapter
);
5148 memcpy(netdev
->dev_addr
, adapter
->addr
, ETH_ALEN
);
5150 /* Init the device with the new settings */
5151 et131x_adapter_setup(adapter
);
5153 et131x_enable_txrx(netdev
);
5159 * et131x_set_mac_addr - handler to change the MAC address for the device
5160 * @netdev: device whose MAC is to be changed
5161 * @new_mac: the desired MAC address
5163 * Returns 0 on success, errno on failure (as defined in errno.h)
5165 * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
5167 static int et131x_set_mac_addr(struct net_device
*netdev
, void *new_mac
)
5170 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
5171 struct sockaddr
*address
= new_mac
;
5175 if (adapter
== NULL
)
5178 /* Make sure the requested MAC is valid */
5179 if (!is_valid_ether_addr(address
->sa_data
))
5182 et131x_disable_txrx(netdev
);
5183 et131x_handle_send_interrupt(adapter
);
5184 et131x_handle_recv_interrupt(adapter
);
5186 /* Set the new MAC */
5187 /* netdev->set_mac_address = &new_mac; */
5189 memcpy(netdev
->dev_addr
, address
->sa_data
, netdev
->addr_len
);
5191 printk(KERN_INFO
"%s: Setting MAC address to %pM\n",
5192 netdev
->name
, netdev
->dev_addr
);
5194 /* Free Rx DMA memory */
5195 et131x_adapter_memory_free(adapter
);
5197 et131x_soft_reset(adapter
);
5199 /* Alloc and init Rx DMA memory */
5200 result
= et131x_adapter_memory_alloc(adapter
);
5202 dev_err(&adapter
->pdev
->dev
,
5203 "Change MAC failed; couldn't re-alloc DMA memory\n");
5207 et131x_init_send(adapter
);
5209 et131x_hwaddr_init(adapter
);
5211 /* Init the device with the new settings */
5212 et131x_adapter_setup(adapter
);
5214 et131x_enable_txrx(netdev
);
5219 static const struct net_device_ops et131x_netdev_ops
= {
5220 .ndo_open
= et131x_open
,
5221 .ndo_stop
= et131x_close
,
5222 .ndo_start_xmit
= et131x_tx
,
5223 .ndo_set_rx_mode
= et131x_multicast
,
5224 .ndo_tx_timeout
= et131x_tx_timeout
,
5225 .ndo_change_mtu
= et131x_change_mtu
,
5226 .ndo_set_mac_address
= et131x_set_mac_addr
,
5227 .ndo_validate_addr
= eth_validate_addr
,
5228 .ndo_get_stats
= et131x_stats
,
5229 .ndo_do_ioctl
= et131x_ioctl
,
5233 * et131x_pci_setup - Perform device initialization
5234 * @pdev: a pointer to the device's pci_dev structure
5235 * @ent: this device's entry in the pci_device_id table
5237 * Returns 0 on success, errno on failure (as defined in errno.h)
5239 * Registered in the pci_driver structure, this function is called when the
5240 * PCI subsystem finds a new PCI device which matches the information
5241 * contained in the pci_device_id table. This routine is the equivalent to
5242 * a device insertion routine.
5244 static int __devinit
et131x_pci_setup(struct pci_dev
*pdev
,
5245 const struct pci_device_id
*ent
)
5247 struct net_device
*netdev
;
5248 struct et131x_adapter
*adapter
;
5252 rc
= pci_enable_device(pdev
);
5254 dev_err(&pdev
->dev
, "pci_enable_device() failed\n");
5258 /* Perform some basic PCI checks */
5259 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
5260 dev_err(&pdev
->dev
, "Can't find PCI device's base address\n");
5265 rc
= pci_request_regions(pdev
, DRIVER_NAME
);
5267 dev_err(&pdev
->dev
, "Can't get PCI resources\n");
5271 pci_set_master(pdev
);
5273 /* Check the DMA addressing support of this device */
5274 if (!dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64))) {
5275 rc
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
5278 "Unable to obtain 64 bit DMA for consistent allocations\n");
5279 goto err_release_res
;
5281 } else if (!dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32))) {
5282 rc
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
5285 "Unable to obtain 32 bit DMA for consistent allocations\n");
5286 goto err_release_res
;
5289 dev_err(&pdev
->dev
, "No usable DMA addressing method\n");
5291 goto err_release_res
;
5294 /* Allocate netdev and private adapter structs */
5295 netdev
= alloc_etherdev(sizeof(struct et131x_adapter
));
5297 dev_err(&pdev
->dev
, "Couldn't alloc netdev struct\n");
5299 goto err_release_res
;
5302 netdev
->watchdog_timeo
= ET131X_TX_TIMEOUT
;
5303 netdev
->netdev_ops
= &et131x_netdev_ops
;
5305 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
5306 et131x_set_ethtool_ops(netdev
);
5308 adapter
= et131x_adapter_init(netdev
, pdev
);
5310 rc
= et131x_pci_init(adapter
, pdev
);
5314 /* Map the bus-relative registers to system virtual memory */
5315 adapter
->regs
= pci_ioremap_bar(pdev
, 0);
5316 if (!adapter
->regs
) {
5317 dev_err(&pdev
->dev
, "Cannot map device registers\n");
5322 /* If Phy COMA mode was enabled when we went down, disable it here. */
5323 writel(ET_PMCSR_INIT
, &adapter
->regs
->global
.pm_csr
);
5325 /* Issue a global reset to the et1310 */
5326 et131x_soft_reset(adapter
);
5328 /* Disable all interrupts (paranoid) */
5329 et131x_disable_interrupts(adapter
);
5331 /* Allocate DMA memory */
5332 rc
= et131x_adapter_memory_alloc(adapter
);
5334 dev_err(&pdev
->dev
, "Could not alloc adapater memory (DMA)\n");
5338 /* Init send data structures */
5339 et131x_init_send(adapter
);
5341 /* Set up the task structure for the ISR's deferred handler */
5342 INIT_WORK(&adapter
->task
, et131x_isr_handler
);
5344 /* Copy address into the net_device struct */
5345 memcpy(netdev
->dev_addr
, adapter
->addr
, ETH_ALEN
);
5347 /* Init variable for counting how long we do not have link status */
5348 adapter
->boot_coma
= 0;
5349 et1310_disable_phy_coma(adapter
);
5353 /* Setup the mii_bus struct */
5354 adapter
->mii_bus
= mdiobus_alloc();
5355 if (!adapter
->mii_bus
) {
5356 dev_err(&pdev
->dev
, "Alloc of mii_bus struct failed\n");
5360 adapter
->mii_bus
->name
= "et131x_eth_mii";
5361 snprintf(adapter
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%x",
5362 (adapter
->pdev
->bus
->number
<< 8) | adapter
->pdev
->devfn
);
5363 adapter
->mii_bus
->priv
= netdev
;
5364 adapter
->mii_bus
->read
= et131x_mdio_read
;
5365 adapter
->mii_bus
->write
= et131x_mdio_write
;
5366 adapter
->mii_bus
->reset
= et131x_mdio_reset
;
5367 adapter
->mii_bus
->irq
= kmalloc(sizeof(int)*PHY_MAX_ADDR
, GFP_KERNEL
);
5368 if (!adapter
->mii_bus
->irq
) {
5369 dev_err(&pdev
->dev
, "mii_bus irq allocation failed\n");
5373 for (ii
= 0; ii
< PHY_MAX_ADDR
; ii
++)
5374 adapter
->mii_bus
->irq
[ii
] = PHY_POLL
;
5376 rc
= mdiobus_register(adapter
->mii_bus
);
5378 dev_err(&pdev
->dev
, "failed to register MII bus\n");
5379 goto err_mdio_free_irq
;
5382 rc
= et131x_mii_probe(netdev
);
5384 dev_err(&pdev
->dev
, "failed to probe MII bus\n");
5385 goto err_mdio_unregister
;
5388 /* Setup et1310 as per the documentation */
5389 et131x_adapter_setup(adapter
);
5391 /* We can enable interrupts now
5393 * NOTE - Because registration of interrupt handler is done in the
5394 * device's open(), defer enabling device interrupts to that
5398 /* Register the net_device struct with the Linux network layer */
5399 rc
= register_netdev(netdev
);
5401 dev_err(&pdev
->dev
, "register_netdev() failed\n");
5402 goto err_phy_disconnect
;
5405 /* Register the net_device struct with the PCI subsystem. Save a copy
5406 * of the PCI config space for this device now that the device has
5407 * been initialized, just in case it needs to be quickly restored.
5409 pci_set_drvdata(pdev
, netdev
);
5414 phy_disconnect(adapter
->phydev
);
5415 err_mdio_unregister
:
5416 mdiobus_unregister(adapter
->mii_bus
);
5418 kfree(adapter
->mii_bus
->irq
);
5420 mdiobus_free(adapter
->mii_bus
);
5422 et131x_adapter_memory_free(adapter
);
5424 iounmap(adapter
->regs
);
5427 free_netdev(netdev
);
5429 pci_release_regions(pdev
);
5431 pci_disable_device(pdev
);
5435 static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table
) = {
5436 { PCI_VDEVICE(ATT
, ET131X_PCI_DEVICE_ID_GIG
), 0UL},
5437 { PCI_VDEVICE(ATT
, ET131X_PCI_DEVICE_ID_FAST
), 0UL},
5440 MODULE_DEVICE_TABLE(pci
, et131x_pci_table
);
5442 static struct pci_driver et131x_driver
= {
5443 .name
= DRIVER_NAME
,
5444 .id_table
= et131x_pci_table
,
5445 .probe
= et131x_pci_setup
,
5446 .remove
= __devexit_p(et131x_pci_remove
),
5447 .driver
.pm
= ET131X_PM_OPS
,
5451 * et131x_init_module - The "main" entry point called on driver initialization
5453 * Returns 0 on success, errno on failure (as defined in errno.h)
5455 static int __init
et131x_init_module(void)
5457 return pci_register_driver(&et131x_driver
);
5461 * et131x_cleanup_module - The entry point called on driver cleanup
5463 static void __exit
et131x_cleanup_module(void)
5465 pci_unregister_driver(&et131x_driver
);
5468 module_init(et131x_init_module
);
5469 module_exit(et131x_cleanup_module
);