spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / include / linux / percpu.h
blob21638ae14e07c71a005d6cfcea61958e8cd8f970
1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
4 #include <linux/preempt.h>
5 #include <linux/smp.h>
6 #include <linux/cpumask.h>
7 #include <linux/pfn.h>
8 #include <linux/init.h>
10 #include <asm/percpu.h>
12 /* enough to cover all DEFINE_PER_CPUs in modules */
13 #ifdef CONFIG_MODULES
14 #define PERCPU_MODULE_RESERVE (8 << 10)
15 #else
16 #define PERCPU_MODULE_RESERVE 0
17 #endif
19 #ifndef PERCPU_ENOUGH_ROOM
20 #define PERCPU_ENOUGH_ROOM \
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
23 #endif
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
29 #define get_cpu_var(var) (*({ \
30 preempt_disable(); \
31 &__get_cpu_var(var); }))
34 * The weird & is necessary because sparse considers (void)(var) to be
35 * a direct dereference of percpu variable (var).
37 #define put_cpu_var(var) do { \
38 (void)&(var); \
39 preempt_enable(); \
40 } while (0)
42 #define get_cpu_ptr(var) ({ \
43 preempt_disable(); \
44 this_cpu_ptr(var); })
46 #define put_cpu_ptr(var) do { \
47 (void)(var); \
48 preempt_enable(); \
49 } while (0)
51 /* minimum unit size, also is the maximum supported allocation size */
52 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10)
55 * Percpu allocator can serve percpu allocations before slab is
56 * initialized which allows slab to depend on the percpu allocator.
57 * The following two parameters decide how much resource to
58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
59 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
61 #define PERCPU_DYNAMIC_EARLY_SLOTS 128
62 #define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
66 * back on the first chunk for dynamic percpu allocation if arch is
67 * manually allocating and mapping it for faster access (as a part of
68 * large page mapping for example).
70 * The following values give between one and two pages of free space
71 * after typical minimal boot (2-way SMP, single disk and NIC) with
72 * both defconfig and a distro config on x86_64 and 32. More
73 * intelligent way to determine this would be nice.
75 #if BITS_PER_LONG > 32
76 #define PERCPU_DYNAMIC_RESERVE (20 << 10)
77 #else
78 #define PERCPU_DYNAMIC_RESERVE (12 << 10)
79 #endif
81 extern void *pcpu_base_addr;
82 extern const unsigned long *pcpu_unit_offsets;
84 struct pcpu_group_info {
85 int nr_units; /* aligned # of units */
86 unsigned long base_offset; /* base address offset */
87 unsigned int *cpu_map; /* unit->cpu map, empty
88 * entries contain NR_CPUS */
91 struct pcpu_alloc_info {
92 size_t static_size;
93 size_t reserved_size;
94 size_t dyn_size;
95 size_t unit_size;
96 size_t atom_size;
97 size_t alloc_size;
98 size_t __ai_size; /* internal, don't use */
99 int nr_groups; /* 0 if grouping unnecessary */
100 struct pcpu_group_info groups[];
103 enum pcpu_fc {
104 PCPU_FC_AUTO,
105 PCPU_FC_EMBED,
106 PCPU_FC_PAGE,
108 PCPU_FC_NR,
110 extern const char *pcpu_fc_names[PCPU_FC_NR];
112 extern enum pcpu_fc pcpu_chosen_fc;
114 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
115 size_t align);
116 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
117 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
118 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
120 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
121 int nr_units);
122 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
124 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
125 void *base_addr);
127 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
128 extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
129 size_t atom_size,
130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
131 pcpu_fc_alloc_fn_t alloc_fn,
132 pcpu_fc_free_fn_t free_fn);
133 #endif
135 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
136 extern int __init pcpu_page_first_chunk(size_t reserved_size,
137 pcpu_fc_alloc_fn_t alloc_fn,
138 pcpu_fc_free_fn_t free_fn,
139 pcpu_fc_populate_pte_fn_t populate_pte_fn);
140 #endif
143 * Use this to get to a cpu's version of the per-cpu object
144 * dynamically allocated. Non-atomic access to the current CPU's
145 * version should probably be combined with get_cpu()/put_cpu().
147 #ifdef CONFIG_SMP
148 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
149 #else
150 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
151 #endif
153 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
154 extern bool is_kernel_percpu_address(unsigned long addr);
156 #if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
157 extern void __init setup_per_cpu_areas(void);
158 #endif
159 extern void __init percpu_init_late(void);
161 extern void __percpu *__alloc_percpu(size_t size, size_t align);
162 extern void free_percpu(void __percpu *__pdata);
163 extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
165 #define alloc_percpu(type) \
166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
169 * Optional methods for optimized non-lvalue per-cpu variable access.
171 * @var can be a percpu variable or a field of it and its size should
172 * equal char, int or long. percpu_read() evaluates to a lvalue and
173 * all others to void.
175 * These operations are guaranteed to be atomic.
176 * The generic versions disable interrupts. Archs are
177 * encouraged to implement single-instruction alternatives which don't
178 * require protection.
180 #ifndef percpu_read
181 # define percpu_read(var) \
182 ({ \
183 typeof(var) *pr_ptr__ = &(var); \
184 typeof(var) pr_ret__; \
185 pr_ret__ = get_cpu_var(*pr_ptr__); \
186 put_cpu_var(*pr_ptr__); \
187 pr_ret__; \
189 #endif
191 #define __percpu_generic_to_op(var, val, op) \
192 do { \
193 typeof(var) *pgto_ptr__ = &(var); \
194 get_cpu_var(*pgto_ptr__) op val; \
195 put_cpu_var(*pgto_ptr__); \
196 } while (0)
198 #ifndef percpu_write
199 # define percpu_write(var, val) __percpu_generic_to_op(var, (val), =)
200 #endif
202 #ifndef percpu_add
203 # define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=)
204 #endif
206 #ifndef percpu_sub
207 # define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=)
208 #endif
210 #ifndef percpu_and
211 # define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=)
212 #endif
214 #ifndef percpu_or
215 # define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=)
216 #endif
218 #ifndef percpu_xor
219 # define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
220 #endif
223 * Branching function to split up a function into a set of functions that
224 * are called for different scalar sizes of the objects handled.
227 extern void __bad_size_call_parameter(void);
229 #define __pcpu_size_call_return(stem, variable) \
230 ({ typeof(variable) pscr_ret__; \
231 __verify_pcpu_ptr(&(variable)); \
232 switch(sizeof(variable)) { \
233 case 1: pscr_ret__ = stem##1(variable);break; \
234 case 2: pscr_ret__ = stem##2(variable);break; \
235 case 4: pscr_ret__ = stem##4(variable);break; \
236 case 8: pscr_ret__ = stem##8(variable);break; \
237 default: \
238 __bad_size_call_parameter();break; \
240 pscr_ret__; \
243 #define __pcpu_size_call_return2(stem, variable, ...) \
244 ({ \
245 typeof(variable) pscr2_ret__; \
246 __verify_pcpu_ptr(&(variable)); \
247 switch(sizeof(variable)) { \
248 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
249 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
250 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
251 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
252 default: \
253 __bad_size_call_parameter(); break; \
255 pscr2_ret__; \
259 * Special handling for cmpxchg_double. cmpxchg_double is passed two
260 * percpu variables. The first has to be aligned to a double word
261 * boundary and the second has to follow directly thereafter.
262 * We enforce this on all architectures even if they don't support
263 * a double cmpxchg instruction, since it's a cheap requirement, and it
264 * avoids breaking the requirement for architectures with the instruction.
266 #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
267 ({ \
268 bool pdcrb_ret__; \
269 __verify_pcpu_ptr(&pcp1); \
270 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
271 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \
272 VM_BUG_ON((unsigned long)(&pcp2) != \
273 (unsigned long)(&pcp1) + sizeof(pcp1)); \
274 switch(sizeof(pcp1)) { \
275 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
276 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
277 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
278 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
279 default: \
280 __bad_size_call_parameter(); break; \
282 pdcrb_ret__; \
285 #define __pcpu_size_call(stem, variable, ...) \
286 do { \
287 __verify_pcpu_ptr(&(variable)); \
288 switch(sizeof(variable)) { \
289 case 1: stem##1(variable, __VA_ARGS__);break; \
290 case 2: stem##2(variable, __VA_ARGS__);break; \
291 case 4: stem##4(variable, __VA_ARGS__);break; \
292 case 8: stem##8(variable, __VA_ARGS__);break; \
293 default: \
294 __bad_size_call_parameter();break; \
296 } while (0)
299 * Optimized manipulation for memory allocated through the per cpu
300 * allocator or for addresses of per cpu variables.
302 * These operation guarantee exclusivity of access for other operations
303 * on the *same* processor. The assumption is that per cpu data is only
304 * accessed by a single processor instance (the current one).
306 * The first group is used for accesses that must be done in a
307 * preemption safe way since we know that the context is not preempt
308 * safe. Interrupts may occur. If the interrupt modifies the variable
309 * too then RMW actions will not be reliable.
311 * The arch code can provide optimized functions in two ways:
313 * 1. Override the function completely. F.e. define this_cpu_add().
314 * The arch must then ensure that the various scalar format passed
315 * are handled correctly.
317 * 2. Provide functions for certain scalar sizes. F.e. provide
318 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
319 * sized RMW actions. If arch code does not provide operations for
320 * a scalar size then the fallback in the generic code will be
321 * used.
324 #define _this_cpu_generic_read(pcp) \
325 ({ typeof(pcp) ret__; \
326 preempt_disable(); \
327 ret__ = *this_cpu_ptr(&(pcp)); \
328 preempt_enable(); \
329 ret__; \
332 #ifndef this_cpu_read
333 # ifndef this_cpu_read_1
334 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
335 # endif
336 # ifndef this_cpu_read_2
337 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
338 # endif
339 # ifndef this_cpu_read_4
340 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
341 # endif
342 # ifndef this_cpu_read_8
343 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
344 # endif
345 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
346 #endif
348 #define _this_cpu_generic_to_op(pcp, val, op) \
349 do { \
350 unsigned long flags; \
351 raw_local_irq_save(flags); \
352 *__this_cpu_ptr(&(pcp)) op val; \
353 raw_local_irq_restore(flags); \
354 } while (0)
356 #ifndef this_cpu_write
357 # ifndef this_cpu_write_1
358 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
359 # endif
360 # ifndef this_cpu_write_2
361 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
362 # endif
363 # ifndef this_cpu_write_4
364 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
365 # endif
366 # ifndef this_cpu_write_8
367 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
368 # endif
369 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
370 #endif
372 #ifndef this_cpu_add
373 # ifndef this_cpu_add_1
374 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
375 # endif
376 # ifndef this_cpu_add_2
377 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
378 # endif
379 # ifndef this_cpu_add_4
380 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
381 # endif
382 # ifndef this_cpu_add_8
383 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
384 # endif
385 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
386 #endif
388 #ifndef this_cpu_sub
389 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
390 #endif
392 #ifndef this_cpu_inc
393 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
394 #endif
396 #ifndef this_cpu_dec
397 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
398 #endif
400 #ifndef this_cpu_and
401 # ifndef this_cpu_and_1
402 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
403 # endif
404 # ifndef this_cpu_and_2
405 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
406 # endif
407 # ifndef this_cpu_and_4
408 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
409 # endif
410 # ifndef this_cpu_and_8
411 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
412 # endif
413 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
414 #endif
416 #ifndef this_cpu_or
417 # ifndef this_cpu_or_1
418 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
419 # endif
420 # ifndef this_cpu_or_2
421 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
422 # endif
423 # ifndef this_cpu_or_4
424 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
425 # endif
426 # ifndef this_cpu_or_8
427 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
428 # endif
429 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
430 #endif
432 #ifndef this_cpu_xor
433 # ifndef this_cpu_xor_1
434 # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
435 # endif
436 # ifndef this_cpu_xor_2
437 # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
438 # endif
439 # ifndef this_cpu_xor_4
440 # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
441 # endif
442 # ifndef this_cpu_xor_8
443 # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
444 # endif
445 # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
446 #endif
448 #define _this_cpu_generic_add_return(pcp, val) \
449 ({ \
450 typeof(pcp) ret__; \
451 unsigned long flags; \
452 raw_local_irq_save(flags); \
453 __this_cpu_add(pcp, val); \
454 ret__ = __this_cpu_read(pcp); \
455 raw_local_irq_restore(flags); \
456 ret__; \
459 #ifndef this_cpu_add_return
460 # ifndef this_cpu_add_return_1
461 # define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val)
462 # endif
463 # ifndef this_cpu_add_return_2
464 # define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val)
465 # endif
466 # ifndef this_cpu_add_return_4
467 # define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val)
468 # endif
469 # ifndef this_cpu_add_return_8
470 # define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val)
471 # endif
472 # define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
473 #endif
475 #define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val))
476 #define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
477 #define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
479 #define _this_cpu_generic_xchg(pcp, nval) \
480 ({ typeof(pcp) ret__; \
481 unsigned long flags; \
482 raw_local_irq_save(flags); \
483 ret__ = __this_cpu_read(pcp); \
484 __this_cpu_write(pcp, nval); \
485 raw_local_irq_restore(flags); \
486 ret__; \
489 #ifndef this_cpu_xchg
490 # ifndef this_cpu_xchg_1
491 # define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
492 # endif
493 # ifndef this_cpu_xchg_2
494 # define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
495 # endif
496 # ifndef this_cpu_xchg_4
497 # define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
498 # endif
499 # ifndef this_cpu_xchg_8
500 # define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
501 # endif
502 # define this_cpu_xchg(pcp, nval) \
503 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
504 #endif
506 #define _this_cpu_generic_cmpxchg(pcp, oval, nval) \
507 ({ \
508 typeof(pcp) ret__; \
509 unsigned long flags; \
510 raw_local_irq_save(flags); \
511 ret__ = __this_cpu_read(pcp); \
512 if (ret__ == (oval)) \
513 __this_cpu_write(pcp, nval); \
514 raw_local_irq_restore(flags); \
515 ret__; \
518 #ifndef this_cpu_cmpxchg
519 # ifndef this_cpu_cmpxchg_1
520 # define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
521 # endif
522 # ifndef this_cpu_cmpxchg_2
523 # define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
524 # endif
525 # ifndef this_cpu_cmpxchg_4
526 # define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
527 # endif
528 # ifndef this_cpu_cmpxchg_8
529 # define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
530 # endif
531 # define this_cpu_cmpxchg(pcp, oval, nval) \
532 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
533 #endif
536 * cmpxchg_double replaces two adjacent scalars at once. The first
537 * two parameters are per cpu variables which have to be of the same
538 * size. A truth value is returned to indicate success or failure
539 * (since a double register result is difficult to handle). There is
540 * very limited hardware support for these operations, so only certain
541 * sizes may work.
543 #define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
544 ({ \
545 int ret__; \
546 unsigned long flags; \
547 raw_local_irq_save(flags); \
548 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \
549 oval1, oval2, nval1, nval2); \
550 raw_local_irq_restore(flags); \
551 ret__; \
554 #ifndef this_cpu_cmpxchg_double
555 # ifndef this_cpu_cmpxchg_double_1
556 # define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
557 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
558 # endif
559 # ifndef this_cpu_cmpxchg_double_2
560 # define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
561 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
562 # endif
563 # ifndef this_cpu_cmpxchg_double_4
564 # define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
565 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
566 # endif
567 # ifndef this_cpu_cmpxchg_double_8
568 # define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
569 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
570 # endif
571 # define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
572 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
573 #endif
576 * Generic percpu operations for context that are safe from preemption/interrupts.
577 * Either we do not care about races or the caller has the
578 * responsibility of handling preemption/interrupt issues. Arch code can still
579 * override these instructions since the arch per cpu code may be more
580 * efficient and may actually get race freeness for free (that is the
581 * case for x86 for example).
583 * If there is no other protection through preempt disable and/or
584 * disabling interupts then one of these RMW operations can show unexpected
585 * behavior because the execution thread was rescheduled on another processor
586 * or an interrupt occurred and the same percpu variable was modified from
587 * the interrupt context.
589 #ifndef __this_cpu_read
590 # ifndef __this_cpu_read_1
591 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
592 # endif
593 # ifndef __this_cpu_read_2
594 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
595 # endif
596 # ifndef __this_cpu_read_4
597 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
598 # endif
599 # ifndef __this_cpu_read_8
600 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
601 # endif
602 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
603 #endif
605 #define __this_cpu_generic_to_op(pcp, val, op) \
606 do { \
607 *__this_cpu_ptr(&(pcp)) op val; \
608 } while (0)
610 #ifndef __this_cpu_write
611 # ifndef __this_cpu_write_1
612 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
613 # endif
614 # ifndef __this_cpu_write_2
615 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
616 # endif
617 # ifndef __this_cpu_write_4
618 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
619 # endif
620 # ifndef __this_cpu_write_8
621 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
622 # endif
623 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
624 #endif
626 #ifndef __this_cpu_add
627 # ifndef __this_cpu_add_1
628 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
629 # endif
630 # ifndef __this_cpu_add_2
631 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
632 # endif
633 # ifndef __this_cpu_add_4
634 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
635 # endif
636 # ifndef __this_cpu_add_8
637 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
638 # endif
639 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
640 #endif
642 #ifndef __this_cpu_sub
643 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
644 #endif
646 #ifndef __this_cpu_inc
647 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
648 #endif
650 #ifndef __this_cpu_dec
651 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
652 #endif
654 #ifndef __this_cpu_and
655 # ifndef __this_cpu_and_1
656 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
657 # endif
658 # ifndef __this_cpu_and_2
659 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
660 # endif
661 # ifndef __this_cpu_and_4
662 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
663 # endif
664 # ifndef __this_cpu_and_8
665 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
666 # endif
667 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
668 #endif
670 #ifndef __this_cpu_or
671 # ifndef __this_cpu_or_1
672 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
673 # endif
674 # ifndef __this_cpu_or_2
675 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
676 # endif
677 # ifndef __this_cpu_or_4
678 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
679 # endif
680 # ifndef __this_cpu_or_8
681 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
682 # endif
683 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
684 #endif
686 #ifndef __this_cpu_xor
687 # ifndef __this_cpu_xor_1
688 # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
689 # endif
690 # ifndef __this_cpu_xor_2
691 # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
692 # endif
693 # ifndef __this_cpu_xor_4
694 # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
695 # endif
696 # ifndef __this_cpu_xor_8
697 # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
698 # endif
699 # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
700 #endif
702 #define __this_cpu_generic_add_return(pcp, val) \
703 ({ \
704 __this_cpu_add(pcp, val); \
705 __this_cpu_read(pcp); \
708 #ifndef __this_cpu_add_return
709 # ifndef __this_cpu_add_return_1
710 # define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val)
711 # endif
712 # ifndef __this_cpu_add_return_2
713 # define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val)
714 # endif
715 # ifndef __this_cpu_add_return_4
716 # define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val)
717 # endif
718 # ifndef __this_cpu_add_return_8
719 # define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val)
720 # endif
721 # define __this_cpu_add_return(pcp, val) \
722 __pcpu_size_call_return2(__this_cpu_add_return_, pcp, val)
723 #endif
725 #define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(val))
726 #define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1)
727 #define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1)
729 #define __this_cpu_generic_xchg(pcp, nval) \
730 ({ typeof(pcp) ret__; \
731 ret__ = __this_cpu_read(pcp); \
732 __this_cpu_write(pcp, nval); \
733 ret__; \
736 #ifndef __this_cpu_xchg
737 # ifndef __this_cpu_xchg_1
738 # define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
739 # endif
740 # ifndef __this_cpu_xchg_2
741 # define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
742 # endif
743 # ifndef __this_cpu_xchg_4
744 # define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
745 # endif
746 # ifndef __this_cpu_xchg_8
747 # define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
748 # endif
749 # define __this_cpu_xchg(pcp, nval) \
750 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval)
751 #endif
753 #define __this_cpu_generic_cmpxchg(pcp, oval, nval) \
754 ({ \
755 typeof(pcp) ret__; \
756 ret__ = __this_cpu_read(pcp); \
757 if (ret__ == (oval)) \
758 __this_cpu_write(pcp, nval); \
759 ret__; \
762 #ifndef __this_cpu_cmpxchg
763 # ifndef __this_cpu_cmpxchg_1
764 # define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
765 # endif
766 # ifndef __this_cpu_cmpxchg_2
767 # define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
768 # endif
769 # ifndef __this_cpu_cmpxchg_4
770 # define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
771 # endif
772 # ifndef __this_cpu_cmpxchg_8
773 # define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
774 # endif
775 # define __this_cpu_cmpxchg(pcp, oval, nval) \
776 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
777 #endif
779 #define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
780 ({ \
781 int __ret = 0; \
782 if (__this_cpu_read(pcp1) == (oval1) && \
783 __this_cpu_read(pcp2) == (oval2)) { \
784 __this_cpu_write(pcp1, (nval1)); \
785 __this_cpu_write(pcp2, (nval2)); \
786 __ret = 1; \
788 (__ret); \
791 #ifndef __this_cpu_cmpxchg_double
792 # ifndef __this_cpu_cmpxchg_double_1
793 # define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
794 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
795 # endif
796 # ifndef __this_cpu_cmpxchg_double_2
797 # define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
798 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
799 # endif
800 # ifndef __this_cpu_cmpxchg_double_4
801 # define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
802 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
803 # endif
804 # ifndef __this_cpu_cmpxchg_double_8
805 # define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
806 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
807 # endif
808 # define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
809 __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
810 #endif
812 #endif /* __LINUX_PERCPU_H */