spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / net / core / dev.c
blob0336374658632b86100fbcbddaaedd3d8751648f
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/net_tstamp.h>
137 #include <linux/jump_label.h>
138 #include <net/flow_keys.h>
140 #include "net-sysfs.h"
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
149 * The list of packet types we will receive (as opposed to discard)
150 * and the routines to invoke.
152 * Why 16. Because with 16 the only overlap we get on a hash of the
153 * low nibble of the protocol value is RARP/SNAP/X.25.
155 * NOTE: That is no longer true with the addition of VLAN tags. Not
156 * sure which should go first, but I bet it won't make much
157 * difference if we are running VLANs. The good news is that
158 * this protocol won't be in the list unless compiled in, so
159 * the average user (w/out VLANs) will not be adversely affected.
160 * --BLG
162 * 0800 IP
163 * 8100 802.1Q VLAN
164 * 0001 802.3
165 * 0002 AX.25
166 * 0004 802.2
167 * 8035 RARP
168 * 0005 SNAP
169 * 0805 X.25
170 * 0806 ARP
171 * 8137 IPX
172 * 0009 Localtalk
173 * 86DD IPv6
176 #define PTYPE_HASH_SIZE (16)
177 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
179 static DEFINE_SPINLOCK(ptype_lock);
180 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
181 static struct list_head ptype_all __read_mostly; /* Taps */
184 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
185 * semaphore.
187 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
189 * Writers must hold the rtnl semaphore while they loop through the
190 * dev_base_head list, and hold dev_base_lock for writing when they do the
191 * actual updates. This allows pure readers to access the list even
192 * while a writer is preparing to update it.
194 * To put it another way, dev_base_lock is held for writing only to
195 * protect against pure readers; the rtnl semaphore provides the
196 * protection against other writers.
198 * See, for example usages, register_netdevice() and
199 * unregister_netdevice(), which must be called with the rtnl
200 * semaphore held.
202 DEFINE_RWLOCK(dev_base_lock);
203 EXPORT_SYMBOL(dev_base_lock);
205 static inline void dev_base_seq_inc(struct net *net)
207 while (++net->dev_base_seq == 0);
210 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 static inline void rps_lock(struct softnet_data *sd)
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
228 static inline void rps_unlock(struct softnet_data *sd)
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
238 struct net *net = dev_net(dev);
240 ASSERT_RTNL();
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
249 dev_base_seq_inc(net);
251 return 0;
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
257 static void unlist_netdevice(struct net_device *dev)
259 ASSERT_RTNL();
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
268 dev_base_seq_inc(dev_net(dev));
272 * Our notifier list
275 static RAW_NOTIFIER_HEAD(netdev_chain);
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
285 #ifdef CONFIG_LOCKDEP
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
304 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
305 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
306 ARPHRD_VOID, ARPHRD_NONE};
308 static const char *const netdev_lock_name[] =
309 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
310 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
311 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
312 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
313 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
314 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
315 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
316 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
317 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
318 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
319 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
320 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
321 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
322 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
323 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
324 "_xmit_VOID", "_xmit_NONE"};
326 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
327 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
329 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
331 int i;
333 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
334 if (netdev_lock_type[i] == dev_type)
335 return i;
336 /* the last key is used by default */
337 return ARRAY_SIZE(netdev_lock_type) - 1;
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
343 int i;
345 i = netdev_lock_pos(dev_type);
346 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
347 netdev_lock_name[i]);
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 int i;
354 i = netdev_lock_pos(dev->type);
355 lockdep_set_class_and_name(&dev->addr_list_lock,
356 &netdev_addr_lock_key[i],
357 netdev_lock_name[i]);
359 #else
360 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
361 unsigned short dev_type)
364 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
367 #endif
369 /*******************************************************************************
371 Protocol management and registration routines
373 *******************************************************************************/
376 * Add a protocol ID to the list. Now that the input handler is
377 * smarter we can dispense with all the messy stuff that used to be
378 * here.
380 * BEWARE!!! Protocol handlers, mangling input packets,
381 * MUST BE last in hash buckets and checking protocol handlers
382 * MUST start from promiscuous ptype_all chain in net_bh.
383 * It is true now, do not change it.
384 * Explanation follows: if protocol handler, mangling packet, will
385 * be the first on list, it is not able to sense, that packet
386 * is cloned and should be copied-on-write, so that it will
387 * change it and subsequent readers will get broken packet.
388 * --ANK (980803)
391 static inline struct list_head *ptype_head(const struct packet_type *pt)
393 if (pt->type == htons(ETH_P_ALL))
394 return &ptype_all;
395 else
396 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
400 * dev_add_pack - add packet handler
401 * @pt: packet type declaration
403 * Add a protocol handler to the networking stack. The passed &packet_type
404 * is linked into kernel lists and may not be freed until it has been
405 * removed from the kernel lists.
407 * This call does not sleep therefore it can not
408 * guarantee all CPU's that are in middle of receiving packets
409 * will see the new packet type (until the next received packet).
412 void dev_add_pack(struct packet_type *pt)
414 struct list_head *head = ptype_head(pt);
416 spin_lock(&ptype_lock);
417 list_add_rcu(&pt->list, head);
418 spin_unlock(&ptype_lock);
420 EXPORT_SYMBOL(dev_add_pack);
423 * __dev_remove_pack - remove packet handler
424 * @pt: packet type declaration
426 * Remove a protocol handler that was previously added to the kernel
427 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
428 * from the kernel lists and can be freed or reused once this function
429 * returns.
431 * The packet type might still be in use by receivers
432 * and must not be freed until after all the CPU's have gone
433 * through a quiescent state.
435 void __dev_remove_pack(struct packet_type *pt)
437 struct list_head *head = ptype_head(pt);
438 struct packet_type *pt1;
440 spin_lock(&ptype_lock);
442 list_for_each_entry(pt1, head, list) {
443 if (pt == pt1) {
444 list_del_rcu(&pt->list);
445 goto out;
449 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
450 out:
451 spin_unlock(&ptype_lock);
453 EXPORT_SYMBOL(__dev_remove_pack);
456 * dev_remove_pack - remove packet handler
457 * @pt: packet type declaration
459 * Remove a protocol handler that was previously added to the kernel
460 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
461 * from the kernel lists and can be freed or reused once this function
462 * returns.
464 * This call sleeps to guarantee that no CPU is looking at the packet
465 * type after return.
467 void dev_remove_pack(struct packet_type *pt)
469 __dev_remove_pack(pt);
471 synchronize_net();
473 EXPORT_SYMBOL(dev_remove_pack);
475 /******************************************************************************
477 Device Boot-time Settings Routines
479 *******************************************************************************/
481 /* Boot time configuration table */
482 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
485 * netdev_boot_setup_add - add new setup entry
486 * @name: name of the device
487 * @map: configured settings for the device
489 * Adds new setup entry to the dev_boot_setup list. The function
490 * returns 0 on error and 1 on success. This is a generic routine to
491 * all netdevices.
493 static int netdev_boot_setup_add(char *name, struct ifmap *map)
495 struct netdev_boot_setup *s;
496 int i;
498 s = dev_boot_setup;
499 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
500 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
501 memset(s[i].name, 0, sizeof(s[i].name));
502 strlcpy(s[i].name, name, IFNAMSIZ);
503 memcpy(&s[i].map, map, sizeof(s[i].map));
504 break;
508 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
512 * netdev_boot_setup_check - check boot time settings
513 * @dev: the netdevice
515 * Check boot time settings for the device.
516 * The found settings are set for the device to be used
517 * later in the device probing.
518 * Returns 0 if no settings found, 1 if they are.
520 int netdev_boot_setup_check(struct net_device *dev)
522 struct netdev_boot_setup *s = dev_boot_setup;
523 int i;
525 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
526 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
527 !strcmp(dev->name, s[i].name)) {
528 dev->irq = s[i].map.irq;
529 dev->base_addr = s[i].map.base_addr;
530 dev->mem_start = s[i].map.mem_start;
531 dev->mem_end = s[i].map.mem_end;
532 return 1;
535 return 0;
537 EXPORT_SYMBOL(netdev_boot_setup_check);
541 * netdev_boot_base - get address from boot time settings
542 * @prefix: prefix for network device
543 * @unit: id for network device
545 * Check boot time settings for the base address of device.
546 * The found settings are set for the device to be used
547 * later in the device probing.
548 * Returns 0 if no settings found.
550 unsigned long netdev_boot_base(const char *prefix, int unit)
552 const struct netdev_boot_setup *s = dev_boot_setup;
553 char name[IFNAMSIZ];
554 int i;
556 sprintf(name, "%s%d", prefix, unit);
559 * If device already registered then return base of 1
560 * to indicate not to probe for this interface
562 if (__dev_get_by_name(&init_net, name))
563 return 1;
565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
566 if (!strcmp(name, s[i].name))
567 return s[i].map.base_addr;
568 return 0;
572 * Saves at boot time configured settings for any netdevice.
574 int __init netdev_boot_setup(char *str)
576 int ints[5];
577 struct ifmap map;
579 str = get_options(str, ARRAY_SIZE(ints), ints);
580 if (!str || !*str)
581 return 0;
583 /* Save settings */
584 memset(&map, 0, sizeof(map));
585 if (ints[0] > 0)
586 map.irq = ints[1];
587 if (ints[0] > 1)
588 map.base_addr = ints[2];
589 if (ints[0] > 2)
590 map.mem_start = ints[3];
591 if (ints[0] > 3)
592 map.mem_end = ints[4];
594 /* Add new entry to the list */
595 return netdev_boot_setup_add(str, &map);
598 __setup("netdev=", netdev_boot_setup);
600 /*******************************************************************************
602 Device Interface Subroutines
604 *******************************************************************************/
607 * __dev_get_by_name - find a device by its name
608 * @net: the applicable net namespace
609 * @name: name to find
611 * Find an interface by name. Must be called under RTNL semaphore
612 * or @dev_base_lock. If the name is found a pointer to the device
613 * is returned. If the name is not found then %NULL is returned. The
614 * reference counters are not incremented so the caller must be
615 * careful with locks.
618 struct net_device *__dev_get_by_name(struct net *net, const char *name)
620 struct hlist_node *p;
621 struct net_device *dev;
622 struct hlist_head *head = dev_name_hash(net, name);
624 hlist_for_each_entry(dev, p, head, name_hlist)
625 if (!strncmp(dev->name, name, IFNAMSIZ))
626 return dev;
628 return NULL;
630 EXPORT_SYMBOL(__dev_get_by_name);
633 * dev_get_by_name_rcu - find a device by its name
634 * @net: the applicable net namespace
635 * @name: name to find
637 * Find an interface by name.
638 * If the name is found a pointer to the device is returned.
639 * If the name is not found then %NULL is returned.
640 * The reference counters are not incremented so the caller must be
641 * careful with locks. The caller must hold RCU lock.
644 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
646 struct hlist_node *p;
647 struct net_device *dev;
648 struct hlist_head *head = dev_name_hash(net, name);
650 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
651 if (!strncmp(dev->name, name, IFNAMSIZ))
652 return dev;
654 return NULL;
656 EXPORT_SYMBOL(dev_get_by_name_rcu);
659 * dev_get_by_name - find a device by its name
660 * @net: the applicable net namespace
661 * @name: name to find
663 * Find an interface by name. This can be called from any
664 * context and does its own locking. The returned handle has
665 * the usage count incremented and the caller must use dev_put() to
666 * release it when it is no longer needed. %NULL is returned if no
667 * matching device is found.
670 struct net_device *dev_get_by_name(struct net *net, const char *name)
672 struct net_device *dev;
674 rcu_read_lock();
675 dev = dev_get_by_name_rcu(net, name);
676 if (dev)
677 dev_hold(dev);
678 rcu_read_unlock();
679 return dev;
681 EXPORT_SYMBOL(dev_get_by_name);
684 * __dev_get_by_index - find a device by its ifindex
685 * @net: the applicable net namespace
686 * @ifindex: index of device
688 * Search for an interface by index. Returns %NULL if the device
689 * is not found or a pointer to the device. The device has not
690 * had its reference counter increased so the caller must be careful
691 * about locking. The caller must hold either the RTNL semaphore
692 * or @dev_base_lock.
695 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
697 struct hlist_node *p;
698 struct net_device *dev;
699 struct hlist_head *head = dev_index_hash(net, ifindex);
701 hlist_for_each_entry(dev, p, head, index_hlist)
702 if (dev->ifindex == ifindex)
703 return dev;
705 return NULL;
707 EXPORT_SYMBOL(__dev_get_by_index);
710 * dev_get_by_index_rcu - find a device by its ifindex
711 * @net: the applicable net namespace
712 * @ifindex: index of device
714 * Search for an interface by index. Returns %NULL if the device
715 * is not found or a pointer to the device. The device has not
716 * had its reference counter increased so the caller must be careful
717 * about locking. The caller must hold RCU lock.
720 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
722 struct hlist_node *p;
723 struct net_device *dev;
724 struct hlist_head *head = dev_index_hash(net, ifindex);
726 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
727 if (dev->ifindex == ifindex)
728 return dev;
730 return NULL;
732 EXPORT_SYMBOL(dev_get_by_index_rcu);
736 * dev_get_by_index - find a device by its ifindex
737 * @net: the applicable net namespace
738 * @ifindex: index of device
740 * Search for an interface by index. Returns NULL if the device
741 * is not found or a pointer to the device. The device returned has
742 * had a reference added and the pointer is safe until the user calls
743 * dev_put to indicate they have finished with it.
746 struct net_device *dev_get_by_index(struct net *net, int ifindex)
748 struct net_device *dev;
750 rcu_read_lock();
751 dev = dev_get_by_index_rcu(net, ifindex);
752 if (dev)
753 dev_hold(dev);
754 rcu_read_unlock();
755 return dev;
757 EXPORT_SYMBOL(dev_get_by_index);
760 * dev_getbyhwaddr_rcu - find a device by its hardware address
761 * @net: the applicable net namespace
762 * @type: media type of device
763 * @ha: hardware address
765 * Search for an interface by MAC address. Returns NULL if the device
766 * is not found or a pointer to the device.
767 * The caller must hold RCU or RTNL.
768 * The returned device has not had its ref count increased
769 * and the caller must therefore be careful about locking
773 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
774 const char *ha)
776 struct net_device *dev;
778 for_each_netdev_rcu(net, dev)
779 if (dev->type == type &&
780 !memcmp(dev->dev_addr, ha, dev->addr_len))
781 return dev;
783 return NULL;
785 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
787 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
789 struct net_device *dev;
791 ASSERT_RTNL();
792 for_each_netdev(net, dev)
793 if (dev->type == type)
794 return dev;
796 return NULL;
798 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
800 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
802 struct net_device *dev, *ret = NULL;
804 rcu_read_lock();
805 for_each_netdev_rcu(net, dev)
806 if (dev->type == type) {
807 dev_hold(dev);
808 ret = dev;
809 break;
811 rcu_read_unlock();
812 return ret;
814 EXPORT_SYMBOL(dev_getfirstbyhwtype);
817 * dev_get_by_flags_rcu - find any device with given flags
818 * @net: the applicable net namespace
819 * @if_flags: IFF_* values
820 * @mask: bitmask of bits in if_flags to check
822 * Search for any interface with the given flags. Returns NULL if a device
823 * is not found or a pointer to the device. Must be called inside
824 * rcu_read_lock(), and result refcount is unchanged.
827 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
828 unsigned short mask)
830 struct net_device *dev, *ret;
832 ret = NULL;
833 for_each_netdev_rcu(net, dev) {
834 if (((dev->flags ^ if_flags) & mask) == 0) {
835 ret = dev;
836 break;
839 return ret;
841 EXPORT_SYMBOL(dev_get_by_flags_rcu);
844 * dev_valid_name - check if name is okay for network device
845 * @name: name string
847 * Network device names need to be valid file names to
848 * to allow sysfs to work. We also disallow any kind of
849 * whitespace.
851 int dev_valid_name(const char *name)
853 if (*name == '\0')
854 return 0;
855 if (strlen(name) >= IFNAMSIZ)
856 return 0;
857 if (!strcmp(name, ".") || !strcmp(name, ".."))
858 return 0;
860 while (*name) {
861 if (*name == '/' || isspace(*name))
862 return 0;
863 name++;
865 return 1;
867 EXPORT_SYMBOL(dev_valid_name);
870 * __dev_alloc_name - allocate a name for a device
871 * @net: network namespace to allocate the device name in
872 * @name: name format string
873 * @buf: scratch buffer and result name string
875 * Passed a format string - eg "lt%d" it will try and find a suitable
876 * id. It scans list of devices to build up a free map, then chooses
877 * the first empty slot. The caller must hold the dev_base or rtnl lock
878 * while allocating the name and adding the device in order to avoid
879 * duplicates.
880 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
881 * Returns the number of the unit assigned or a negative errno code.
884 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
886 int i = 0;
887 const char *p;
888 const int max_netdevices = 8*PAGE_SIZE;
889 unsigned long *inuse;
890 struct net_device *d;
892 p = strnchr(name, IFNAMSIZ-1, '%');
893 if (p) {
895 * Verify the string as this thing may have come from
896 * the user. There must be either one "%d" and no other "%"
897 * characters.
899 if (p[1] != 'd' || strchr(p + 2, '%'))
900 return -EINVAL;
902 /* Use one page as a bit array of possible slots */
903 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
904 if (!inuse)
905 return -ENOMEM;
907 for_each_netdev(net, d) {
908 if (!sscanf(d->name, name, &i))
909 continue;
910 if (i < 0 || i >= max_netdevices)
911 continue;
913 /* avoid cases where sscanf is not exact inverse of printf */
914 snprintf(buf, IFNAMSIZ, name, i);
915 if (!strncmp(buf, d->name, IFNAMSIZ))
916 set_bit(i, inuse);
919 i = find_first_zero_bit(inuse, max_netdevices);
920 free_page((unsigned long) inuse);
923 if (buf != name)
924 snprintf(buf, IFNAMSIZ, name, i);
925 if (!__dev_get_by_name(net, buf))
926 return i;
928 /* It is possible to run out of possible slots
929 * when the name is long and there isn't enough space left
930 * for the digits, or if all bits are used.
932 return -ENFILE;
936 * dev_alloc_name - allocate a name for a device
937 * @dev: device
938 * @name: name format string
940 * Passed a format string - eg "lt%d" it will try and find a suitable
941 * id. It scans list of devices to build up a free map, then chooses
942 * the first empty slot. The caller must hold the dev_base or rtnl lock
943 * while allocating the name and adding the device in order to avoid
944 * duplicates.
945 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
946 * Returns the number of the unit assigned or a negative errno code.
949 int dev_alloc_name(struct net_device *dev, const char *name)
951 char buf[IFNAMSIZ];
952 struct net *net;
953 int ret;
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957 ret = __dev_alloc_name(net, name, buf);
958 if (ret >= 0)
959 strlcpy(dev->name, buf, IFNAMSIZ);
960 return ret;
962 EXPORT_SYMBOL(dev_alloc_name);
964 static int dev_get_valid_name(struct net_device *dev, const char *name)
966 struct net *net;
968 BUG_ON(!dev_net(dev));
969 net = dev_net(dev);
971 if (!dev_valid_name(name))
972 return -EINVAL;
974 if (strchr(name, '%'))
975 return dev_alloc_name(dev, name);
976 else if (__dev_get_by_name(net, name))
977 return -EEXIST;
978 else if (dev->name != name)
979 strlcpy(dev->name, name, IFNAMSIZ);
981 return 0;
985 * dev_change_name - change name of a device
986 * @dev: device
987 * @newname: name (or format string) must be at least IFNAMSIZ
989 * Change name of a device, can pass format strings "eth%d".
990 * for wildcarding.
992 int dev_change_name(struct net_device *dev, const char *newname)
994 char oldname[IFNAMSIZ];
995 int err = 0;
996 int ret;
997 struct net *net;
999 ASSERT_RTNL();
1000 BUG_ON(!dev_net(dev));
1002 net = dev_net(dev);
1003 if (dev->flags & IFF_UP)
1004 return -EBUSY;
1006 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1007 return 0;
1009 memcpy(oldname, dev->name, IFNAMSIZ);
1011 err = dev_get_valid_name(dev, newname);
1012 if (err < 0)
1013 return err;
1015 rollback:
1016 ret = device_rename(&dev->dev, dev->name);
1017 if (ret) {
1018 memcpy(dev->name, oldname, IFNAMSIZ);
1019 return ret;
1022 write_lock_bh(&dev_base_lock);
1023 hlist_del_rcu(&dev->name_hlist);
1024 write_unlock_bh(&dev_base_lock);
1026 synchronize_rcu();
1028 write_lock_bh(&dev_base_lock);
1029 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1030 write_unlock_bh(&dev_base_lock);
1032 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1033 ret = notifier_to_errno(ret);
1035 if (ret) {
1036 /* err >= 0 after dev_alloc_name() or stores the first errno */
1037 if (err >= 0) {
1038 err = ret;
1039 memcpy(dev->name, oldname, IFNAMSIZ);
1040 goto rollback;
1041 } else {
1042 printk(KERN_ERR
1043 "%s: name change rollback failed: %d.\n",
1044 dev->name, ret);
1048 return err;
1052 * dev_set_alias - change ifalias of a device
1053 * @dev: device
1054 * @alias: name up to IFALIASZ
1055 * @len: limit of bytes to copy from info
1057 * Set ifalias for a device,
1059 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1061 ASSERT_RTNL();
1063 if (len >= IFALIASZ)
1064 return -EINVAL;
1066 if (!len) {
1067 if (dev->ifalias) {
1068 kfree(dev->ifalias);
1069 dev->ifalias = NULL;
1071 return 0;
1074 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1075 if (!dev->ifalias)
1076 return -ENOMEM;
1078 strlcpy(dev->ifalias, alias, len+1);
1079 return len;
1084 * netdev_features_change - device changes features
1085 * @dev: device to cause notification
1087 * Called to indicate a device has changed features.
1089 void netdev_features_change(struct net_device *dev)
1091 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1093 EXPORT_SYMBOL(netdev_features_change);
1096 * netdev_state_change - device changes state
1097 * @dev: device to cause notification
1099 * Called to indicate a device has changed state. This function calls
1100 * the notifier chains for netdev_chain and sends a NEWLINK message
1101 * to the routing socket.
1103 void netdev_state_change(struct net_device *dev)
1105 if (dev->flags & IFF_UP) {
1106 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1107 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1110 EXPORT_SYMBOL(netdev_state_change);
1112 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1114 return call_netdevice_notifiers(event, dev);
1116 EXPORT_SYMBOL(netdev_bonding_change);
1119 * dev_load - load a network module
1120 * @net: the applicable net namespace
1121 * @name: name of interface
1123 * If a network interface is not present and the process has suitable
1124 * privileges this function loads the module. If module loading is not
1125 * available in this kernel then it becomes a nop.
1128 void dev_load(struct net *net, const char *name)
1130 struct net_device *dev;
1131 int no_module;
1133 rcu_read_lock();
1134 dev = dev_get_by_name_rcu(net, name);
1135 rcu_read_unlock();
1137 no_module = !dev;
1138 if (no_module && capable(CAP_NET_ADMIN))
1139 no_module = request_module("netdev-%s", name);
1140 if (no_module && capable(CAP_SYS_MODULE)) {
1141 if (!request_module("%s", name))
1142 pr_err("Loading kernel module for a network device "
1143 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1144 "instead\n", name);
1147 EXPORT_SYMBOL(dev_load);
1149 static int __dev_open(struct net_device *dev)
1151 const struct net_device_ops *ops = dev->netdev_ops;
1152 int ret;
1154 ASSERT_RTNL();
1156 if (!netif_device_present(dev))
1157 return -ENODEV;
1159 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1160 ret = notifier_to_errno(ret);
1161 if (ret)
1162 return ret;
1164 set_bit(__LINK_STATE_START, &dev->state);
1166 if (ops->ndo_validate_addr)
1167 ret = ops->ndo_validate_addr(dev);
1169 if (!ret && ops->ndo_open)
1170 ret = ops->ndo_open(dev);
1172 if (ret)
1173 clear_bit(__LINK_STATE_START, &dev->state);
1174 else {
1175 dev->flags |= IFF_UP;
1176 net_dmaengine_get();
1177 dev_set_rx_mode(dev);
1178 dev_activate(dev);
1181 return ret;
1185 * dev_open - prepare an interface for use.
1186 * @dev: device to open
1188 * Takes a device from down to up state. The device's private open
1189 * function is invoked and then the multicast lists are loaded. Finally
1190 * the device is moved into the up state and a %NETDEV_UP message is
1191 * sent to the netdev notifier chain.
1193 * Calling this function on an active interface is a nop. On a failure
1194 * a negative errno code is returned.
1196 int dev_open(struct net_device *dev)
1198 int ret;
1200 if (dev->flags & IFF_UP)
1201 return 0;
1203 ret = __dev_open(dev);
1204 if (ret < 0)
1205 return ret;
1207 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1208 call_netdevice_notifiers(NETDEV_UP, dev);
1210 return ret;
1212 EXPORT_SYMBOL(dev_open);
1214 static int __dev_close_many(struct list_head *head)
1216 struct net_device *dev;
1218 ASSERT_RTNL();
1219 might_sleep();
1221 list_for_each_entry(dev, head, unreg_list) {
1222 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1224 clear_bit(__LINK_STATE_START, &dev->state);
1226 /* Synchronize to scheduled poll. We cannot touch poll list, it
1227 * can be even on different cpu. So just clear netif_running().
1229 * dev->stop() will invoke napi_disable() on all of it's
1230 * napi_struct instances on this device.
1232 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1235 dev_deactivate_many(head);
1237 list_for_each_entry(dev, head, unreg_list) {
1238 const struct net_device_ops *ops = dev->netdev_ops;
1241 * Call the device specific close. This cannot fail.
1242 * Only if device is UP
1244 * We allow it to be called even after a DETACH hot-plug
1245 * event.
1247 if (ops->ndo_stop)
1248 ops->ndo_stop(dev);
1250 dev->flags &= ~IFF_UP;
1251 net_dmaengine_put();
1254 return 0;
1257 static int __dev_close(struct net_device *dev)
1259 int retval;
1260 LIST_HEAD(single);
1262 list_add(&dev->unreg_list, &single);
1263 retval = __dev_close_many(&single);
1264 list_del(&single);
1265 return retval;
1268 static int dev_close_many(struct list_head *head)
1270 struct net_device *dev, *tmp;
1271 LIST_HEAD(tmp_list);
1273 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1274 if (!(dev->flags & IFF_UP))
1275 list_move(&dev->unreg_list, &tmp_list);
1277 __dev_close_many(head);
1279 list_for_each_entry(dev, head, unreg_list) {
1280 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1281 call_netdevice_notifiers(NETDEV_DOWN, dev);
1284 /* rollback_registered_many needs the complete original list */
1285 list_splice(&tmp_list, head);
1286 return 0;
1290 * dev_close - shutdown an interface.
1291 * @dev: device to shutdown
1293 * This function moves an active device into down state. A
1294 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1295 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1296 * chain.
1298 int dev_close(struct net_device *dev)
1300 if (dev->flags & IFF_UP) {
1301 LIST_HEAD(single);
1303 list_add(&dev->unreg_list, &single);
1304 dev_close_many(&single);
1305 list_del(&single);
1307 return 0;
1309 EXPORT_SYMBOL(dev_close);
1313 * dev_disable_lro - disable Large Receive Offload on a device
1314 * @dev: device
1316 * Disable Large Receive Offload (LRO) on a net device. Must be
1317 * called under RTNL. This is needed if received packets may be
1318 * forwarded to another interface.
1320 void dev_disable_lro(struct net_device *dev)
1323 * If we're trying to disable lro on a vlan device
1324 * use the underlying physical device instead
1326 if (is_vlan_dev(dev))
1327 dev = vlan_dev_real_dev(dev);
1329 dev->wanted_features &= ~NETIF_F_LRO;
1330 netdev_update_features(dev);
1332 if (unlikely(dev->features & NETIF_F_LRO))
1333 netdev_WARN(dev, "failed to disable LRO!\n");
1335 EXPORT_SYMBOL(dev_disable_lro);
1338 static int dev_boot_phase = 1;
1341 * register_netdevice_notifier - register a network notifier block
1342 * @nb: notifier
1344 * Register a notifier to be called when network device events occur.
1345 * The notifier passed is linked into the kernel structures and must
1346 * not be reused until it has been unregistered. A negative errno code
1347 * is returned on a failure.
1349 * When registered all registration and up events are replayed
1350 * to the new notifier to allow device to have a race free
1351 * view of the network device list.
1354 int register_netdevice_notifier(struct notifier_block *nb)
1356 struct net_device *dev;
1357 struct net_device *last;
1358 struct net *net;
1359 int err;
1361 rtnl_lock();
1362 err = raw_notifier_chain_register(&netdev_chain, nb);
1363 if (err)
1364 goto unlock;
1365 if (dev_boot_phase)
1366 goto unlock;
1367 for_each_net(net) {
1368 for_each_netdev(net, dev) {
1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 err = notifier_to_errno(err);
1371 if (err)
1372 goto rollback;
1374 if (!(dev->flags & IFF_UP))
1375 continue;
1377 nb->notifier_call(nb, NETDEV_UP, dev);
1381 unlock:
1382 rtnl_unlock();
1383 return err;
1385 rollback:
1386 last = dev;
1387 for_each_net(net) {
1388 for_each_netdev(net, dev) {
1389 if (dev == last)
1390 goto outroll;
1392 if (dev->flags & IFF_UP) {
1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 nb->notifier_call(nb, NETDEV_DOWN, dev);
1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1401 outroll:
1402 raw_notifier_chain_unregister(&netdev_chain, nb);
1403 goto unlock;
1405 EXPORT_SYMBOL(register_netdevice_notifier);
1408 * unregister_netdevice_notifier - unregister a network notifier block
1409 * @nb: notifier
1411 * Unregister a notifier previously registered by
1412 * register_netdevice_notifier(). The notifier is unlinked into the
1413 * kernel structures and may then be reused. A negative errno code
1414 * is returned on a failure.
1416 * After unregistering unregister and down device events are synthesized
1417 * for all devices on the device list to the removed notifier to remove
1418 * the need for special case cleanup code.
1421 int unregister_netdevice_notifier(struct notifier_block *nb)
1423 struct net_device *dev;
1424 struct net *net;
1425 int err;
1427 rtnl_lock();
1428 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1432 for_each_net(net) {
1433 for_each_netdev(net, dev) {
1434 if (dev->flags & IFF_UP) {
1435 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1436 nb->notifier_call(nb, NETDEV_DOWN, dev);
1438 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1439 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1442 unlock:
1443 rtnl_unlock();
1444 return err;
1446 EXPORT_SYMBOL(unregister_netdevice_notifier);
1449 * call_netdevice_notifiers - call all network notifier blocks
1450 * @val: value passed unmodified to notifier function
1451 * @dev: net_device pointer passed unmodified to notifier function
1453 * Call all network notifier blocks. Parameters and return value
1454 * are as for raw_notifier_call_chain().
1457 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1459 ASSERT_RTNL();
1460 return raw_notifier_call_chain(&netdev_chain, val, dev);
1462 EXPORT_SYMBOL(call_netdevice_notifiers);
1464 static struct jump_label_key netstamp_needed __read_mostly;
1465 #ifdef HAVE_JUMP_LABEL
1466 /* We are not allowed to call jump_label_dec() from irq context
1467 * If net_disable_timestamp() is called from irq context, defer the
1468 * jump_label_dec() calls.
1470 static atomic_t netstamp_needed_deferred;
1471 #endif
1473 void net_enable_timestamp(void)
1475 #ifdef HAVE_JUMP_LABEL
1476 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1478 if (deferred) {
1479 while (--deferred)
1480 jump_label_dec(&netstamp_needed);
1481 return;
1483 #endif
1484 WARN_ON(in_interrupt());
1485 jump_label_inc(&netstamp_needed);
1487 EXPORT_SYMBOL(net_enable_timestamp);
1489 void net_disable_timestamp(void)
1491 #ifdef HAVE_JUMP_LABEL
1492 if (in_interrupt()) {
1493 atomic_inc(&netstamp_needed_deferred);
1494 return;
1496 #endif
1497 jump_label_dec(&netstamp_needed);
1499 EXPORT_SYMBOL(net_disable_timestamp);
1501 static inline void net_timestamp_set(struct sk_buff *skb)
1503 skb->tstamp.tv64 = 0;
1504 if (static_branch(&netstamp_needed))
1505 __net_timestamp(skb);
1508 #define net_timestamp_check(COND, SKB) \
1509 if (static_branch(&netstamp_needed)) { \
1510 if ((COND) && !(SKB)->tstamp.tv64) \
1511 __net_timestamp(SKB); \
1514 static int net_hwtstamp_validate(struct ifreq *ifr)
1516 struct hwtstamp_config cfg;
1517 enum hwtstamp_tx_types tx_type;
1518 enum hwtstamp_rx_filters rx_filter;
1519 int tx_type_valid = 0;
1520 int rx_filter_valid = 0;
1522 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1523 return -EFAULT;
1525 if (cfg.flags) /* reserved for future extensions */
1526 return -EINVAL;
1528 tx_type = cfg.tx_type;
1529 rx_filter = cfg.rx_filter;
1531 switch (tx_type) {
1532 case HWTSTAMP_TX_OFF:
1533 case HWTSTAMP_TX_ON:
1534 case HWTSTAMP_TX_ONESTEP_SYNC:
1535 tx_type_valid = 1;
1536 break;
1539 switch (rx_filter) {
1540 case HWTSTAMP_FILTER_NONE:
1541 case HWTSTAMP_FILTER_ALL:
1542 case HWTSTAMP_FILTER_SOME:
1543 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1544 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1545 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1546 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1547 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1548 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1549 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1550 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1551 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1552 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1553 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1554 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1555 rx_filter_valid = 1;
1556 break;
1559 if (!tx_type_valid || !rx_filter_valid)
1560 return -ERANGE;
1562 return 0;
1565 static inline bool is_skb_forwardable(struct net_device *dev,
1566 struct sk_buff *skb)
1568 unsigned int len;
1570 if (!(dev->flags & IFF_UP))
1571 return false;
1573 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1574 if (skb->len <= len)
1575 return true;
1577 /* if TSO is enabled, we don't care about the length as the packet
1578 * could be forwarded without being segmented before
1580 if (skb_is_gso(skb))
1581 return true;
1583 return false;
1587 * dev_forward_skb - loopback an skb to another netif
1589 * @dev: destination network device
1590 * @skb: buffer to forward
1592 * return values:
1593 * NET_RX_SUCCESS (no congestion)
1594 * NET_RX_DROP (packet was dropped, but freed)
1596 * dev_forward_skb can be used for injecting an skb from the
1597 * start_xmit function of one device into the receive queue
1598 * of another device.
1600 * The receiving device may be in another namespace, so
1601 * we have to clear all information in the skb that could
1602 * impact namespace isolation.
1604 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1606 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1607 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1608 atomic_long_inc(&dev->rx_dropped);
1609 kfree_skb(skb);
1610 return NET_RX_DROP;
1614 skb_orphan(skb);
1615 nf_reset(skb);
1617 if (unlikely(!is_skb_forwardable(dev, skb))) {
1618 atomic_long_inc(&dev->rx_dropped);
1619 kfree_skb(skb);
1620 return NET_RX_DROP;
1622 skb_set_dev(skb, dev);
1623 skb->tstamp.tv64 = 0;
1624 skb->pkt_type = PACKET_HOST;
1625 skb->protocol = eth_type_trans(skb, dev);
1626 return netif_rx(skb);
1628 EXPORT_SYMBOL_GPL(dev_forward_skb);
1630 static inline int deliver_skb(struct sk_buff *skb,
1631 struct packet_type *pt_prev,
1632 struct net_device *orig_dev)
1634 atomic_inc(&skb->users);
1635 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1639 * Support routine. Sends outgoing frames to any network
1640 * taps currently in use.
1643 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1645 struct packet_type *ptype;
1646 struct sk_buff *skb2 = NULL;
1647 struct packet_type *pt_prev = NULL;
1649 rcu_read_lock();
1650 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1651 /* Never send packets back to the socket
1652 * they originated from - MvS (miquels@drinkel.ow.org)
1654 if ((ptype->dev == dev || !ptype->dev) &&
1655 (ptype->af_packet_priv == NULL ||
1656 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1657 if (pt_prev) {
1658 deliver_skb(skb2, pt_prev, skb->dev);
1659 pt_prev = ptype;
1660 continue;
1663 skb2 = skb_clone(skb, GFP_ATOMIC);
1664 if (!skb2)
1665 break;
1667 net_timestamp_set(skb2);
1669 /* skb->nh should be correctly
1670 set by sender, so that the second statement is
1671 just protection against buggy protocols.
1673 skb_reset_mac_header(skb2);
1675 if (skb_network_header(skb2) < skb2->data ||
1676 skb2->network_header > skb2->tail) {
1677 if (net_ratelimit())
1678 printk(KERN_CRIT "protocol %04x is "
1679 "buggy, dev %s\n",
1680 ntohs(skb2->protocol),
1681 dev->name);
1682 skb_reset_network_header(skb2);
1685 skb2->transport_header = skb2->network_header;
1686 skb2->pkt_type = PACKET_OUTGOING;
1687 pt_prev = ptype;
1690 if (pt_prev)
1691 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1692 rcu_read_unlock();
1695 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1696 * @dev: Network device
1697 * @txq: number of queues available
1699 * If real_num_tx_queues is changed the tc mappings may no longer be
1700 * valid. To resolve this verify the tc mapping remains valid and if
1701 * not NULL the mapping. With no priorities mapping to this
1702 * offset/count pair it will no longer be used. In the worst case TC0
1703 * is invalid nothing can be done so disable priority mappings. If is
1704 * expected that drivers will fix this mapping if they can before
1705 * calling netif_set_real_num_tx_queues.
1707 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1709 int i;
1710 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1712 /* If TC0 is invalidated disable TC mapping */
1713 if (tc->offset + tc->count > txq) {
1714 pr_warning("Number of in use tx queues changed "
1715 "invalidating tc mappings. Priority "
1716 "traffic classification disabled!\n");
1717 dev->num_tc = 0;
1718 return;
1721 /* Invalidated prio to tc mappings set to TC0 */
1722 for (i = 1; i < TC_BITMASK + 1; i++) {
1723 int q = netdev_get_prio_tc_map(dev, i);
1725 tc = &dev->tc_to_txq[q];
1726 if (tc->offset + tc->count > txq) {
1727 pr_warning("Number of in use tx queues "
1728 "changed. Priority %i to tc "
1729 "mapping %i is no longer valid "
1730 "setting map to 0\n",
1731 i, q);
1732 netdev_set_prio_tc_map(dev, i, 0);
1738 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1739 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1741 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1743 int rc;
1745 if (txq < 1 || txq > dev->num_tx_queues)
1746 return -EINVAL;
1748 if (dev->reg_state == NETREG_REGISTERED ||
1749 dev->reg_state == NETREG_UNREGISTERING) {
1750 ASSERT_RTNL();
1752 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1753 txq);
1754 if (rc)
1755 return rc;
1757 if (dev->num_tc)
1758 netif_setup_tc(dev, txq);
1760 if (txq < dev->real_num_tx_queues)
1761 qdisc_reset_all_tx_gt(dev, txq);
1764 dev->real_num_tx_queues = txq;
1765 return 0;
1767 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1769 #ifdef CONFIG_RPS
1771 * netif_set_real_num_rx_queues - set actual number of RX queues used
1772 * @dev: Network device
1773 * @rxq: Actual number of RX queues
1775 * This must be called either with the rtnl_lock held or before
1776 * registration of the net device. Returns 0 on success, or a
1777 * negative error code. If called before registration, it always
1778 * succeeds.
1780 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1782 int rc;
1784 if (rxq < 1 || rxq > dev->num_rx_queues)
1785 return -EINVAL;
1787 if (dev->reg_state == NETREG_REGISTERED) {
1788 ASSERT_RTNL();
1790 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1791 rxq);
1792 if (rc)
1793 return rc;
1796 dev->real_num_rx_queues = rxq;
1797 return 0;
1799 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1800 #endif
1802 static inline void __netif_reschedule(struct Qdisc *q)
1804 struct softnet_data *sd;
1805 unsigned long flags;
1807 local_irq_save(flags);
1808 sd = &__get_cpu_var(softnet_data);
1809 q->next_sched = NULL;
1810 *sd->output_queue_tailp = q;
1811 sd->output_queue_tailp = &q->next_sched;
1812 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1813 local_irq_restore(flags);
1816 void __netif_schedule(struct Qdisc *q)
1818 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1819 __netif_reschedule(q);
1821 EXPORT_SYMBOL(__netif_schedule);
1823 void dev_kfree_skb_irq(struct sk_buff *skb)
1825 if (atomic_dec_and_test(&skb->users)) {
1826 struct softnet_data *sd;
1827 unsigned long flags;
1829 local_irq_save(flags);
1830 sd = &__get_cpu_var(softnet_data);
1831 skb->next = sd->completion_queue;
1832 sd->completion_queue = skb;
1833 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1834 local_irq_restore(flags);
1837 EXPORT_SYMBOL(dev_kfree_skb_irq);
1839 void dev_kfree_skb_any(struct sk_buff *skb)
1841 if (in_irq() || irqs_disabled())
1842 dev_kfree_skb_irq(skb);
1843 else
1844 dev_kfree_skb(skb);
1846 EXPORT_SYMBOL(dev_kfree_skb_any);
1850 * netif_device_detach - mark device as removed
1851 * @dev: network device
1853 * Mark device as removed from system and therefore no longer available.
1855 void netif_device_detach(struct net_device *dev)
1857 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1858 netif_running(dev)) {
1859 netif_tx_stop_all_queues(dev);
1862 EXPORT_SYMBOL(netif_device_detach);
1865 * netif_device_attach - mark device as attached
1866 * @dev: network device
1868 * Mark device as attached from system and restart if needed.
1870 void netif_device_attach(struct net_device *dev)
1872 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1873 netif_running(dev)) {
1874 netif_tx_wake_all_queues(dev);
1875 __netdev_watchdog_up(dev);
1878 EXPORT_SYMBOL(netif_device_attach);
1881 * skb_dev_set -- assign a new device to a buffer
1882 * @skb: buffer for the new device
1883 * @dev: network device
1885 * If an skb is owned by a device already, we have to reset
1886 * all data private to the namespace a device belongs to
1887 * before assigning it a new device.
1889 #ifdef CONFIG_NET_NS
1890 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1892 skb_dst_drop(skb);
1893 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1894 secpath_reset(skb);
1895 nf_reset(skb);
1896 skb_init_secmark(skb);
1897 skb->mark = 0;
1898 skb->priority = 0;
1899 skb->nf_trace = 0;
1900 skb->ipvs_property = 0;
1901 #ifdef CONFIG_NET_SCHED
1902 skb->tc_index = 0;
1903 #endif
1905 skb->dev = dev;
1907 EXPORT_SYMBOL(skb_set_dev);
1908 #endif /* CONFIG_NET_NS */
1910 static void skb_warn_bad_offload(const struct sk_buff *skb)
1912 static const netdev_features_t null_features = 0;
1913 struct net_device *dev = skb->dev;
1914 const char *driver = "";
1916 if (dev && dev->dev.parent)
1917 driver = dev_driver_string(dev->dev.parent);
1919 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1920 "gso_type=%d ip_summed=%d\n",
1921 driver, dev ? &dev->features : &null_features,
1922 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1923 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1924 skb_shinfo(skb)->gso_type, skb->ip_summed);
1928 * Invalidate hardware checksum when packet is to be mangled, and
1929 * complete checksum manually on outgoing path.
1931 int skb_checksum_help(struct sk_buff *skb)
1933 __wsum csum;
1934 int ret = 0, offset;
1936 if (skb->ip_summed == CHECKSUM_COMPLETE)
1937 goto out_set_summed;
1939 if (unlikely(skb_shinfo(skb)->gso_size)) {
1940 skb_warn_bad_offload(skb);
1941 return -EINVAL;
1944 offset = skb_checksum_start_offset(skb);
1945 BUG_ON(offset >= skb_headlen(skb));
1946 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1948 offset += skb->csum_offset;
1949 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1951 if (skb_cloned(skb) &&
1952 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1953 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1954 if (ret)
1955 goto out;
1958 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1959 out_set_summed:
1960 skb->ip_summed = CHECKSUM_NONE;
1961 out:
1962 return ret;
1964 EXPORT_SYMBOL(skb_checksum_help);
1967 * skb_gso_segment - Perform segmentation on skb.
1968 * @skb: buffer to segment
1969 * @features: features for the output path (see dev->features)
1971 * This function segments the given skb and returns a list of segments.
1973 * It may return NULL if the skb requires no segmentation. This is
1974 * only possible when GSO is used for verifying header integrity.
1976 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1977 netdev_features_t features)
1979 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1980 struct packet_type *ptype;
1981 __be16 type = skb->protocol;
1982 int vlan_depth = ETH_HLEN;
1983 int err;
1985 while (type == htons(ETH_P_8021Q)) {
1986 struct vlan_hdr *vh;
1988 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1989 return ERR_PTR(-EINVAL);
1991 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1992 type = vh->h_vlan_encapsulated_proto;
1993 vlan_depth += VLAN_HLEN;
1996 skb_reset_mac_header(skb);
1997 skb->mac_len = skb->network_header - skb->mac_header;
1998 __skb_pull(skb, skb->mac_len);
2000 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2001 skb_warn_bad_offload(skb);
2003 if (skb_header_cloned(skb) &&
2004 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2005 return ERR_PTR(err);
2008 rcu_read_lock();
2009 list_for_each_entry_rcu(ptype,
2010 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2011 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2012 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2013 err = ptype->gso_send_check(skb);
2014 segs = ERR_PTR(err);
2015 if (err || skb_gso_ok(skb, features))
2016 break;
2017 __skb_push(skb, (skb->data -
2018 skb_network_header(skb)));
2020 segs = ptype->gso_segment(skb, features);
2021 break;
2024 rcu_read_unlock();
2026 __skb_push(skb, skb->data - skb_mac_header(skb));
2028 return segs;
2030 EXPORT_SYMBOL(skb_gso_segment);
2032 /* Take action when hardware reception checksum errors are detected. */
2033 #ifdef CONFIG_BUG
2034 void netdev_rx_csum_fault(struct net_device *dev)
2036 if (net_ratelimit()) {
2037 printk(KERN_ERR "%s: hw csum failure.\n",
2038 dev ? dev->name : "<unknown>");
2039 dump_stack();
2042 EXPORT_SYMBOL(netdev_rx_csum_fault);
2043 #endif
2045 /* Actually, we should eliminate this check as soon as we know, that:
2046 * 1. IOMMU is present and allows to map all the memory.
2047 * 2. No high memory really exists on this machine.
2050 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2052 #ifdef CONFIG_HIGHMEM
2053 int i;
2054 if (!(dev->features & NETIF_F_HIGHDMA)) {
2055 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2056 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2057 if (PageHighMem(skb_frag_page(frag)))
2058 return 1;
2062 if (PCI_DMA_BUS_IS_PHYS) {
2063 struct device *pdev = dev->dev.parent;
2065 if (!pdev)
2066 return 0;
2067 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2068 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2069 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2070 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2071 return 1;
2074 #endif
2075 return 0;
2078 struct dev_gso_cb {
2079 void (*destructor)(struct sk_buff *skb);
2082 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2084 static void dev_gso_skb_destructor(struct sk_buff *skb)
2086 struct dev_gso_cb *cb;
2088 do {
2089 struct sk_buff *nskb = skb->next;
2091 skb->next = nskb->next;
2092 nskb->next = NULL;
2093 kfree_skb(nskb);
2094 } while (skb->next);
2096 cb = DEV_GSO_CB(skb);
2097 if (cb->destructor)
2098 cb->destructor(skb);
2102 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2103 * @skb: buffer to segment
2104 * @features: device features as applicable to this skb
2106 * This function segments the given skb and stores the list of segments
2107 * in skb->next.
2109 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2111 struct sk_buff *segs;
2113 segs = skb_gso_segment(skb, features);
2115 /* Verifying header integrity only. */
2116 if (!segs)
2117 return 0;
2119 if (IS_ERR(segs))
2120 return PTR_ERR(segs);
2122 skb->next = segs;
2123 DEV_GSO_CB(skb)->destructor = skb->destructor;
2124 skb->destructor = dev_gso_skb_destructor;
2126 return 0;
2130 * Try to orphan skb early, right before transmission by the device.
2131 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2132 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2134 static inline void skb_orphan_try(struct sk_buff *skb)
2136 struct sock *sk = skb->sk;
2138 if (sk && !skb_shinfo(skb)->tx_flags) {
2139 /* skb_tx_hash() wont be able to get sk.
2140 * We copy sk_hash into skb->rxhash
2142 if (!skb->rxhash)
2143 skb->rxhash = sk->sk_hash;
2144 skb_orphan(skb);
2148 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2150 return ((features & NETIF_F_GEN_CSUM) ||
2151 ((features & NETIF_F_V4_CSUM) &&
2152 protocol == htons(ETH_P_IP)) ||
2153 ((features & NETIF_F_V6_CSUM) &&
2154 protocol == htons(ETH_P_IPV6)) ||
2155 ((features & NETIF_F_FCOE_CRC) &&
2156 protocol == htons(ETH_P_FCOE)));
2159 static netdev_features_t harmonize_features(struct sk_buff *skb,
2160 __be16 protocol, netdev_features_t features)
2162 if (!can_checksum_protocol(features, protocol)) {
2163 features &= ~NETIF_F_ALL_CSUM;
2164 features &= ~NETIF_F_SG;
2165 } else if (illegal_highdma(skb->dev, skb)) {
2166 features &= ~NETIF_F_SG;
2169 return features;
2172 netdev_features_t netif_skb_features(struct sk_buff *skb)
2174 __be16 protocol = skb->protocol;
2175 netdev_features_t features = skb->dev->features;
2177 if (protocol == htons(ETH_P_8021Q)) {
2178 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2179 protocol = veh->h_vlan_encapsulated_proto;
2180 } else if (!vlan_tx_tag_present(skb)) {
2181 return harmonize_features(skb, protocol, features);
2184 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2186 if (protocol != htons(ETH_P_8021Q)) {
2187 return harmonize_features(skb, protocol, features);
2188 } else {
2189 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2190 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2191 return harmonize_features(skb, protocol, features);
2194 EXPORT_SYMBOL(netif_skb_features);
2197 * Returns true if either:
2198 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2199 * 2. skb is fragmented and the device does not support SG, or if
2200 * at least one of fragments is in highmem and device does not
2201 * support DMA from it.
2203 static inline int skb_needs_linearize(struct sk_buff *skb,
2204 int features)
2206 return skb_is_nonlinear(skb) &&
2207 ((skb_has_frag_list(skb) &&
2208 !(features & NETIF_F_FRAGLIST)) ||
2209 (skb_shinfo(skb)->nr_frags &&
2210 !(features & NETIF_F_SG)));
2213 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2214 struct netdev_queue *txq)
2216 const struct net_device_ops *ops = dev->netdev_ops;
2217 int rc = NETDEV_TX_OK;
2218 unsigned int skb_len;
2220 if (likely(!skb->next)) {
2221 netdev_features_t features;
2224 * If device doesn't need skb->dst, release it right now while
2225 * its hot in this cpu cache
2227 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2228 skb_dst_drop(skb);
2230 if (!list_empty(&ptype_all))
2231 dev_queue_xmit_nit(skb, dev);
2233 skb_orphan_try(skb);
2235 features = netif_skb_features(skb);
2237 if (vlan_tx_tag_present(skb) &&
2238 !(features & NETIF_F_HW_VLAN_TX)) {
2239 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2240 if (unlikely(!skb))
2241 goto out;
2243 skb->vlan_tci = 0;
2246 if (netif_needs_gso(skb, features)) {
2247 if (unlikely(dev_gso_segment(skb, features)))
2248 goto out_kfree_skb;
2249 if (skb->next)
2250 goto gso;
2251 } else {
2252 if (skb_needs_linearize(skb, features) &&
2253 __skb_linearize(skb))
2254 goto out_kfree_skb;
2256 /* If packet is not checksummed and device does not
2257 * support checksumming for this protocol, complete
2258 * checksumming here.
2260 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2261 skb_set_transport_header(skb,
2262 skb_checksum_start_offset(skb));
2263 if (!(features & NETIF_F_ALL_CSUM) &&
2264 skb_checksum_help(skb))
2265 goto out_kfree_skb;
2269 skb_len = skb->len;
2270 rc = ops->ndo_start_xmit(skb, dev);
2271 trace_net_dev_xmit(skb, rc, dev, skb_len);
2272 if (rc == NETDEV_TX_OK)
2273 txq_trans_update(txq);
2274 return rc;
2277 gso:
2278 do {
2279 struct sk_buff *nskb = skb->next;
2281 skb->next = nskb->next;
2282 nskb->next = NULL;
2285 * If device doesn't need nskb->dst, release it right now while
2286 * its hot in this cpu cache
2288 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2289 skb_dst_drop(nskb);
2291 skb_len = nskb->len;
2292 rc = ops->ndo_start_xmit(nskb, dev);
2293 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2294 if (unlikely(rc != NETDEV_TX_OK)) {
2295 if (rc & ~NETDEV_TX_MASK)
2296 goto out_kfree_gso_skb;
2297 nskb->next = skb->next;
2298 skb->next = nskb;
2299 return rc;
2301 txq_trans_update(txq);
2302 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2303 return NETDEV_TX_BUSY;
2304 } while (skb->next);
2306 out_kfree_gso_skb:
2307 if (likely(skb->next == NULL))
2308 skb->destructor = DEV_GSO_CB(skb)->destructor;
2309 out_kfree_skb:
2310 kfree_skb(skb);
2311 out:
2312 return rc;
2315 static u32 hashrnd __read_mostly;
2318 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2319 * to be used as a distribution range.
2321 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2322 unsigned int num_tx_queues)
2324 u32 hash;
2325 u16 qoffset = 0;
2326 u16 qcount = num_tx_queues;
2328 if (skb_rx_queue_recorded(skb)) {
2329 hash = skb_get_rx_queue(skb);
2330 while (unlikely(hash >= num_tx_queues))
2331 hash -= num_tx_queues;
2332 return hash;
2335 if (dev->num_tc) {
2336 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2337 qoffset = dev->tc_to_txq[tc].offset;
2338 qcount = dev->tc_to_txq[tc].count;
2341 if (skb->sk && skb->sk->sk_hash)
2342 hash = skb->sk->sk_hash;
2343 else
2344 hash = (__force u16) skb->protocol ^ skb->rxhash;
2345 hash = jhash_1word(hash, hashrnd);
2347 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2349 EXPORT_SYMBOL(__skb_tx_hash);
2351 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2353 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2354 if (net_ratelimit()) {
2355 pr_warning("%s selects TX queue %d, but "
2356 "real number of TX queues is %d\n",
2357 dev->name, queue_index, dev->real_num_tx_queues);
2359 return 0;
2361 return queue_index;
2364 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2366 #ifdef CONFIG_XPS
2367 struct xps_dev_maps *dev_maps;
2368 struct xps_map *map;
2369 int queue_index = -1;
2371 rcu_read_lock();
2372 dev_maps = rcu_dereference(dev->xps_maps);
2373 if (dev_maps) {
2374 map = rcu_dereference(
2375 dev_maps->cpu_map[raw_smp_processor_id()]);
2376 if (map) {
2377 if (map->len == 1)
2378 queue_index = map->queues[0];
2379 else {
2380 u32 hash;
2381 if (skb->sk && skb->sk->sk_hash)
2382 hash = skb->sk->sk_hash;
2383 else
2384 hash = (__force u16) skb->protocol ^
2385 skb->rxhash;
2386 hash = jhash_1word(hash, hashrnd);
2387 queue_index = map->queues[
2388 ((u64)hash * map->len) >> 32];
2390 if (unlikely(queue_index >= dev->real_num_tx_queues))
2391 queue_index = -1;
2394 rcu_read_unlock();
2396 return queue_index;
2397 #else
2398 return -1;
2399 #endif
2402 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2403 struct sk_buff *skb)
2405 int queue_index;
2406 const struct net_device_ops *ops = dev->netdev_ops;
2408 if (dev->real_num_tx_queues == 1)
2409 queue_index = 0;
2410 else if (ops->ndo_select_queue) {
2411 queue_index = ops->ndo_select_queue(dev, skb);
2412 queue_index = dev_cap_txqueue(dev, queue_index);
2413 } else {
2414 struct sock *sk = skb->sk;
2415 queue_index = sk_tx_queue_get(sk);
2417 if (queue_index < 0 || skb->ooo_okay ||
2418 queue_index >= dev->real_num_tx_queues) {
2419 int old_index = queue_index;
2421 queue_index = get_xps_queue(dev, skb);
2422 if (queue_index < 0)
2423 queue_index = skb_tx_hash(dev, skb);
2425 if (queue_index != old_index && sk) {
2426 struct dst_entry *dst =
2427 rcu_dereference_check(sk->sk_dst_cache, 1);
2429 if (dst && skb_dst(skb) == dst)
2430 sk_tx_queue_set(sk, queue_index);
2435 skb_set_queue_mapping(skb, queue_index);
2436 return netdev_get_tx_queue(dev, queue_index);
2439 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2440 struct net_device *dev,
2441 struct netdev_queue *txq)
2443 spinlock_t *root_lock = qdisc_lock(q);
2444 bool contended;
2445 int rc;
2447 qdisc_skb_cb(skb)->pkt_len = skb->len;
2448 qdisc_calculate_pkt_len(skb, q);
2450 * Heuristic to force contended enqueues to serialize on a
2451 * separate lock before trying to get qdisc main lock.
2452 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2453 * and dequeue packets faster.
2455 contended = qdisc_is_running(q);
2456 if (unlikely(contended))
2457 spin_lock(&q->busylock);
2459 spin_lock(root_lock);
2460 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2461 kfree_skb(skb);
2462 rc = NET_XMIT_DROP;
2463 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2464 qdisc_run_begin(q)) {
2466 * This is a work-conserving queue; there are no old skbs
2467 * waiting to be sent out; and the qdisc is not running -
2468 * xmit the skb directly.
2470 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2471 skb_dst_force(skb);
2473 qdisc_bstats_update(q, skb);
2475 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2476 if (unlikely(contended)) {
2477 spin_unlock(&q->busylock);
2478 contended = false;
2480 __qdisc_run(q);
2481 } else
2482 qdisc_run_end(q);
2484 rc = NET_XMIT_SUCCESS;
2485 } else {
2486 skb_dst_force(skb);
2487 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2488 if (qdisc_run_begin(q)) {
2489 if (unlikely(contended)) {
2490 spin_unlock(&q->busylock);
2491 contended = false;
2493 __qdisc_run(q);
2496 spin_unlock(root_lock);
2497 if (unlikely(contended))
2498 spin_unlock(&q->busylock);
2499 return rc;
2502 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2503 static void skb_update_prio(struct sk_buff *skb)
2505 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2507 if ((!skb->priority) && (skb->sk) && map)
2508 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2510 #else
2511 #define skb_update_prio(skb)
2512 #endif
2514 static DEFINE_PER_CPU(int, xmit_recursion);
2515 #define RECURSION_LIMIT 10
2518 * dev_queue_xmit - transmit a buffer
2519 * @skb: buffer to transmit
2521 * Queue a buffer for transmission to a network device. The caller must
2522 * have set the device and priority and built the buffer before calling
2523 * this function. The function can be called from an interrupt.
2525 * A negative errno code is returned on a failure. A success does not
2526 * guarantee the frame will be transmitted as it may be dropped due
2527 * to congestion or traffic shaping.
2529 * -----------------------------------------------------------------------------------
2530 * I notice this method can also return errors from the queue disciplines,
2531 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2532 * be positive.
2534 * Regardless of the return value, the skb is consumed, so it is currently
2535 * difficult to retry a send to this method. (You can bump the ref count
2536 * before sending to hold a reference for retry if you are careful.)
2538 * When calling this method, interrupts MUST be enabled. This is because
2539 * the BH enable code must have IRQs enabled so that it will not deadlock.
2540 * --BLG
2542 int dev_queue_xmit(struct sk_buff *skb)
2544 struct net_device *dev = skb->dev;
2545 struct netdev_queue *txq;
2546 struct Qdisc *q;
2547 int rc = -ENOMEM;
2549 /* Disable soft irqs for various locks below. Also
2550 * stops preemption for RCU.
2552 rcu_read_lock_bh();
2554 skb_update_prio(skb);
2556 txq = dev_pick_tx(dev, skb);
2557 q = rcu_dereference_bh(txq->qdisc);
2559 #ifdef CONFIG_NET_CLS_ACT
2560 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2561 #endif
2562 trace_net_dev_queue(skb);
2563 if (q->enqueue) {
2564 rc = __dev_xmit_skb(skb, q, dev, txq);
2565 goto out;
2568 /* The device has no queue. Common case for software devices:
2569 loopback, all the sorts of tunnels...
2571 Really, it is unlikely that netif_tx_lock protection is necessary
2572 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2573 counters.)
2574 However, it is possible, that they rely on protection
2575 made by us here.
2577 Check this and shot the lock. It is not prone from deadlocks.
2578 Either shot noqueue qdisc, it is even simpler 8)
2580 if (dev->flags & IFF_UP) {
2581 int cpu = smp_processor_id(); /* ok because BHs are off */
2583 if (txq->xmit_lock_owner != cpu) {
2585 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2586 goto recursion_alert;
2588 HARD_TX_LOCK(dev, txq, cpu);
2590 if (!netif_xmit_stopped(txq)) {
2591 __this_cpu_inc(xmit_recursion);
2592 rc = dev_hard_start_xmit(skb, dev, txq);
2593 __this_cpu_dec(xmit_recursion);
2594 if (dev_xmit_complete(rc)) {
2595 HARD_TX_UNLOCK(dev, txq);
2596 goto out;
2599 HARD_TX_UNLOCK(dev, txq);
2600 if (net_ratelimit())
2601 printk(KERN_CRIT "Virtual device %s asks to "
2602 "queue packet!\n", dev->name);
2603 } else {
2604 /* Recursion is detected! It is possible,
2605 * unfortunately
2607 recursion_alert:
2608 if (net_ratelimit())
2609 printk(KERN_CRIT "Dead loop on virtual device "
2610 "%s, fix it urgently!\n", dev->name);
2614 rc = -ENETDOWN;
2615 rcu_read_unlock_bh();
2617 kfree_skb(skb);
2618 return rc;
2619 out:
2620 rcu_read_unlock_bh();
2621 return rc;
2623 EXPORT_SYMBOL(dev_queue_xmit);
2626 /*=======================================================================
2627 Receiver routines
2628 =======================================================================*/
2630 int netdev_max_backlog __read_mostly = 1000;
2631 int netdev_tstamp_prequeue __read_mostly = 1;
2632 int netdev_budget __read_mostly = 300;
2633 int weight_p __read_mostly = 64; /* old backlog weight */
2635 /* Called with irq disabled */
2636 static inline void ____napi_schedule(struct softnet_data *sd,
2637 struct napi_struct *napi)
2639 list_add_tail(&napi->poll_list, &sd->poll_list);
2640 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2644 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2645 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2646 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2647 * if hash is a canonical 4-tuple hash over transport ports.
2649 void __skb_get_rxhash(struct sk_buff *skb)
2651 struct flow_keys keys;
2652 u32 hash;
2654 if (!skb_flow_dissect(skb, &keys))
2655 return;
2657 if (keys.ports) {
2658 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2659 swap(keys.port16[0], keys.port16[1]);
2660 skb->l4_rxhash = 1;
2663 /* get a consistent hash (same value on both flow directions) */
2664 if ((__force u32)keys.dst < (__force u32)keys.src)
2665 swap(keys.dst, keys.src);
2667 hash = jhash_3words((__force u32)keys.dst,
2668 (__force u32)keys.src,
2669 (__force u32)keys.ports, hashrnd);
2670 if (!hash)
2671 hash = 1;
2673 skb->rxhash = hash;
2675 EXPORT_SYMBOL(__skb_get_rxhash);
2677 #ifdef CONFIG_RPS
2679 /* One global table that all flow-based protocols share. */
2680 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2681 EXPORT_SYMBOL(rps_sock_flow_table);
2683 struct jump_label_key rps_needed __read_mostly;
2685 static struct rps_dev_flow *
2686 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2687 struct rps_dev_flow *rflow, u16 next_cpu)
2689 if (next_cpu != RPS_NO_CPU) {
2690 #ifdef CONFIG_RFS_ACCEL
2691 struct netdev_rx_queue *rxqueue;
2692 struct rps_dev_flow_table *flow_table;
2693 struct rps_dev_flow *old_rflow;
2694 u32 flow_id;
2695 u16 rxq_index;
2696 int rc;
2698 /* Should we steer this flow to a different hardware queue? */
2699 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2700 !(dev->features & NETIF_F_NTUPLE))
2701 goto out;
2702 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2703 if (rxq_index == skb_get_rx_queue(skb))
2704 goto out;
2706 rxqueue = dev->_rx + rxq_index;
2707 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2708 if (!flow_table)
2709 goto out;
2710 flow_id = skb->rxhash & flow_table->mask;
2711 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2712 rxq_index, flow_id);
2713 if (rc < 0)
2714 goto out;
2715 old_rflow = rflow;
2716 rflow = &flow_table->flows[flow_id];
2717 rflow->filter = rc;
2718 if (old_rflow->filter == rflow->filter)
2719 old_rflow->filter = RPS_NO_FILTER;
2720 out:
2721 #endif
2722 rflow->last_qtail =
2723 per_cpu(softnet_data, next_cpu).input_queue_head;
2726 rflow->cpu = next_cpu;
2727 return rflow;
2731 * get_rps_cpu is called from netif_receive_skb and returns the target
2732 * CPU from the RPS map of the receiving queue for a given skb.
2733 * rcu_read_lock must be held on entry.
2735 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2736 struct rps_dev_flow **rflowp)
2738 struct netdev_rx_queue *rxqueue;
2739 struct rps_map *map;
2740 struct rps_dev_flow_table *flow_table;
2741 struct rps_sock_flow_table *sock_flow_table;
2742 int cpu = -1;
2743 u16 tcpu;
2745 if (skb_rx_queue_recorded(skb)) {
2746 u16 index = skb_get_rx_queue(skb);
2747 if (unlikely(index >= dev->real_num_rx_queues)) {
2748 WARN_ONCE(dev->real_num_rx_queues > 1,
2749 "%s received packet on queue %u, but number "
2750 "of RX queues is %u\n",
2751 dev->name, index, dev->real_num_rx_queues);
2752 goto done;
2754 rxqueue = dev->_rx + index;
2755 } else
2756 rxqueue = dev->_rx;
2758 map = rcu_dereference(rxqueue->rps_map);
2759 if (map) {
2760 if (map->len == 1 &&
2761 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2762 tcpu = map->cpus[0];
2763 if (cpu_online(tcpu))
2764 cpu = tcpu;
2765 goto done;
2767 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2768 goto done;
2771 skb_reset_network_header(skb);
2772 if (!skb_get_rxhash(skb))
2773 goto done;
2775 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2776 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2777 if (flow_table && sock_flow_table) {
2778 u16 next_cpu;
2779 struct rps_dev_flow *rflow;
2781 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2782 tcpu = rflow->cpu;
2784 next_cpu = sock_flow_table->ents[skb->rxhash &
2785 sock_flow_table->mask];
2788 * If the desired CPU (where last recvmsg was done) is
2789 * different from current CPU (one in the rx-queue flow
2790 * table entry), switch if one of the following holds:
2791 * - Current CPU is unset (equal to RPS_NO_CPU).
2792 * - Current CPU is offline.
2793 * - The current CPU's queue tail has advanced beyond the
2794 * last packet that was enqueued using this table entry.
2795 * This guarantees that all previous packets for the flow
2796 * have been dequeued, thus preserving in order delivery.
2798 if (unlikely(tcpu != next_cpu) &&
2799 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2800 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2801 rflow->last_qtail)) >= 0))
2802 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2804 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2805 *rflowp = rflow;
2806 cpu = tcpu;
2807 goto done;
2811 if (map) {
2812 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2814 if (cpu_online(tcpu)) {
2815 cpu = tcpu;
2816 goto done;
2820 done:
2821 return cpu;
2824 #ifdef CONFIG_RFS_ACCEL
2827 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2828 * @dev: Device on which the filter was set
2829 * @rxq_index: RX queue index
2830 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2831 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2833 * Drivers that implement ndo_rx_flow_steer() should periodically call
2834 * this function for each installed filter and remove the filters for
2835 * which it returns %true.
2837 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2838 u32 flow_id, u16 filter_id)
2840 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2841 struct rps_dev_flow_table *flow_table;
2842 struct rps_dev_flow *rflow;
2843 bool expire = true;
2844 int cpu;
2846 rcu_read_lock();
2847 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2848 if (flow_table && flow_id <= flow_table->mask) {
2849 rflow = &flow_table->flows[flow_id];
2850 cpu = ACCESS_ONCE(rflow->cpu);
2851 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2852 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2853 rflow->last_qtail) <
2854 (int)(10 * flow_table->mask)))
2855 expire = false;
2857 rcu_read_unlock();
2858 return expire;
2860 EXPORT_SYMBOL(rps_may_expire_flow);
2862 #endif /* CONFIG_RFS_ACCEL */
2864 /* Called from hardirq (IPI) context */
2865 static void rps_trigger_softirq(void *data)
2867 struct softnet_data *sd = data;
2869 ____napi_schedule(sd, &sd->backlog);
2870 sd->received_rps++;
2873 #endif /* CONFIG_RPS */
2876 * Check if this softnet_data structure is another cpu one
2877 * If yes, queue it to our IPI list and return 1
2878 * If no, return 0
2880 static int rps_ipi_queued(struct softnet_data *sd)
2882 #ifdef CONFIG_RPS
2883 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2885 if (sd != mysd) {
2886 sd->rps_ipi_next = mysd->rps_ipi_list;
2887 mysd->rps_ipi_list = sd;
2889 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2890 return 1;
2892 #endif /* CONFIG_RPS */
2893 return 0;
2897 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2898 * queue (may be a remote CPU queue).
2900 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2901 unsigned int *qtail)
2903 struct softnet_data *sd;
2904 unsigned long flags;
2906 sd = &per_cpu(softnet_data, cpu);
2908 local_irq_save(flags);
2910 rps_lock(sd);
2911 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2912 if (skb_queue_len(&sd->input_pkt_queue)) {
2913 enqueue:
2914 __skb_queue_tail(&sd->input_pkt_queue, skb);
2915 input_queue_tail_incr_save(sd, qtail);
2916 rps_unlock(sd);
2917 local_irq_restore(flags);
2918 return NET_RX_SUCCESS;
2921 /* Schedule NAPI for backlog device
2922 * We can use non atomic operation since we own the queue lock
2924 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2925 if (!rps_ipi_queued(sd))
2926 ____napi_schedule(sd, &sd->backlog);
2928 goto enqueue;
2931 sd->dropped++;
2932 rps_unlock(sd);
2934 local_irq_restore(flags);
2936 atomic_long_inc(&skb->dev->rx_dropped);
2937 kfree_skb(skb);
2938 return NET_RX_DROP;
2942 * netif_rx - post buffer to the network code
2943 * @skb: buffer to post
2945 * This function receives a packet from a device driver and queues it for
2946 * the upper (protocol) levels to process. It always succeeds. The buffer
2947 * may be dropped during processing for congestion control or by the
2948 * protocol layers.
2950 * return values:
2951 * NET_RX_SUCCESS (no congestion)
2952 * NET_RX_DROP (packet was dropped)
2956 int netif_rx(struct sk_buff *skb)
2958 int ret;
2960 /* if netpoll wants it, pretend we never saw it */
2961 if (netpoll_rx(skb))
2962 return NET_RX_DROP;
2964 net_timestamp_check(netdev_tstamp_prequeue, skb);
2966 trace_netif_rx(skb);
2967 #ifdef CONFIG_RPS
2968 if (static_branch(&rps_needed)) {
2969 struct rps_dev_flow voidflow, *rflow = &voidflow;
2970 int cpu;
2972 preempt_disable();
2973 rcu_read_lock();
2975 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2976 if (cpu < 0)
2977 cpu = smp_processor_id();
2979 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2981 rcu_read_unlock();
2982 preempt_enable();
2983 } else
2984 #endif
2986 unsigned int qtail;
2987 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2988 put_cpu();
2990 return ret;
2992 EXPORT_SYMBOL(netif_rx);
2994 int netif_rx_ni(struct sk_buff *skb)
2996 int err;
2998 preempt_disable();
2999 err = netif_rx(skb);
3000 if (local_softirq_pending())
3001 do_softirq();
3002 preempt_enable();
3004 return err;
3006 EXPORT_SYMBOL(netif_rx_ni);
3008 static void net_tx_action(struct softirq_action *h)
3010 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3012 if (sd->completion_queue) {
3013 struct sk_buff *clist;
3015 local_irq_disable();
3016 clist = sd->completion_queue;
3017 sd->completion_queue = NULL;
3018 local_irq_enable();
3020 while (clist) {
3021 struct sk_buff *skb = clist;
3022 clist = clist->next;
3024 WARN_ON(atomic_read(&skb->users));
3025 trace_kfree_skb(skb, net_tx_action);
3026 __kfree_skb(skb);
3030 if (sd->output_queue) {
3031 struct Qdisc *head;
3033 local_irq_disable();
3034 head = sd->output_queue;
3035 sd->output_queue = NULL;
3036 sd->output_queue_tailp = &sd->output_queue;
3037 local_irq_enable();
3039 while (head) {
3040 struct Qdisc *q = head;
3041 spinlock_t *root_lock;
3043 head = head->next_sched;
3045 root_lock = qdisc_lock(q);
3046 if (spin_trylock(root_lock)) {
3047 smp_mb__before_clear_bit();
3048 clear_bit(__QDISC_STATE_SCHED,
3049 &q->state);
3050 qdisc_run(q);
3051 spin_unlock(root_lock);
3052 } else {
3053 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3054 &q->state)) {
3055 __netif_reschedule(q);
3056 } else {
3057 smp_mb__before_clear_bit();
3058 clear_bit(__QDISC_STATE_SCHED,
3059 &q->state);
3066 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3067 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3068 /* This hook is defined here for ATM LANE */
3069 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3070 unsigned char *addr) __read_mostly;
3071 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3072 #endif
3074 #ifdef CONFIG_NET_CLS_ACT
3075 /* TODO: Maybe we should just force sch_ingress to be compiled in
3076 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3077 * a compare and 2 stores extra right now if we dont have it on
3078 * but have CONFIG_NET_CLS_ACT
3079 * NOTE: This doesn't stop any functionality; if you dont have
3080 * the ingress scheduler, you just can't add policies on ingress.
3083 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3085 struct net_device *dev = skb->dev;
3086 u32 ttl = G_TC_RTTL(skb->tc_verd);
3087 int result = TC_ACT_OK;
3088 struct Qdisc *q;
3090 if (unlikely(MAX_RED_LOOP < ttl++)) {
3091 if (net_ratelimit())
3092 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3093 skb->skb_iif, dev->ifindex);
3094 return TC_ACT_SHOT;
3097 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3098 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3100 q = rxq->qdisc;
3101 if (q != &noop_qdisc) {
3102 spin_lock(qdisc_lock(q));
3103 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3104 result = qdisc_enqueue_root(skb, q);
3105 spin_unlock(qdisc_lock(q));
3108 return result;
3111 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3112 struct packet_type **pt_prev,
3113 int *ret, struct net_device *orig_dev)
3115 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3117 if (!rxq || rxq->qdisc == &noop_qdisc)
3118 goto out;
3120 if (*pt_prev) {
3121 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3122 *pt_prev = NULL;
3125 switch (ing_filter(skb, rxq)) {
3126 case TC_ACT_SHOT:
3127 case TC_ACT_STOLEN:
3128 kfree_skb(skb);
3129 return NULL;
3132 out:
3133 skb->tc_verd = 0;
3134 return skb;
3136 #endif
3139 * netdev_rx_handler_register - register receive handler
3140 * @dev: device to register a handler for
3141 * @rx_handler: receive handler to register
3142 * @rx_handler_data: data pointer that is used by rx handler
3144 * Register a receive hander for a device. This handler will then be
3145 * called from __netif_receive_skb. A negative errno code is returned
3146 * on a failure.
3148 * The caller must hold the rtnl_mutex.
3150 * For a general description of rx_handler, see enum rx_handler_result.
3152 int netdev_rx_handler_register(struct net_device *dev,
3153 rx_handler_func_t *rx_handler,
3154 void *rx_handler_data)
3156 ASSERT_RTNL();
3158 if (dev->rx_handler)
3159 return -EBUSY;
3161 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3162 rcu_assign_pointer(dev->rx_handler, rx_handler);
3164 return 0;
3166 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3169 * netdev_rx_handler_unregister - unregister receive handler
3170 * @dev: device to unregister a handler from
3172 * Unregister a receive hander from a device.
3174 * The caller must hold the rtnl_mutex.
3176 void netdev_rx_handler_unregister(struct net_device *dev)
3179 ASSERT_RTNL();
3180 RCU_INIT_POINTER(dev->rx_handler, NULL);
3181 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3183 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3185 static int __netif_receive_skb(struct sk_buff *skb)
3187 struct packet_type *ptype, *pt_prev;
3188 rx_handler_func_t *rx_handler;
3189 struct net_device *orig_dev;
3190 struct net_device *null_or_dev;
3191 bool deliver_exact = false;
3192 int ret = NET_RX_DROP;
3193 __be16 type;
3195 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3197 trace_netif_receive_skb(skb);
3199 /* if we've gotten here through NAPI, check netpoll */
3200 if (netpoll_receive_skb(skb))
3201 return NET_RX_DROP;
3203 if (!skb->skb_iif)
3204 skb->skb_iif = skb->dev->ifindex;
3205 orig_dev = skb->dev;
3207 skb_reset_network_header(skb);
3208 skb_reset_transport_header(skb);
3209 skb_reset_mac_len(skb);
3211 pt_prev = NULL;
3213 rcu_read_lock();
3215 another_round:
3217 __this_cpu_inc(softnet_data.processed);
3219 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3220 skb = vlan_untag(skb);
3221 if (unlikely(!skb))
3222 goto out;
3225 #ifdef CONFIG_NET_CLS_ACT
3226 if (skb->tc_verd & TC_NCLS) {
3227 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3228 goto ncls;
3230 #endif
3232 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3233 if (!ptype->dev || ptype->dev == skb->dev) {
3234 if (pt_prev)
3235 ret = deliver_skb(skb, pt_prev, orig_dev);
3236 pt_prev = ptype;
3240 #ifdef CONFIG_NET_CLS_ACT
3241 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3242 if (!skb)
3243 goto out;
3244 ncls:
3245 #endif
3247 rx_handler = rcu_dereference(skb->dev->rx_handler);
3248 if (vlan_tx_tag_present(skb)) {
3249 if (pt_prev) {
3250 ret = deliver_skb(skb, pt_prev, orig_dev);
3251 pt_prev = NULL;
3253 if (vlan_do_receive(&skb, !rx_handler))
3254 goto another_round;
3255 else if (unlikely(!skb))
3256 goto out;
3259 if (rx_handler) {
3260 if (pt_prev) {
3261 ret = deliver_skb(skb, pt_prev, orig_dev);
3262 pt_prev = NULL;
3264 switch (rx_handler(&skb)) {
3265 case RX_HANDLER_CONSUMED:
3266 goto out;
3267 case RX_HANDLER_ANOTHER:
3268 goto another_round;
3269 case RX_HANDLER_EXACT:
3270 deliver_exact = true;
3271 case RX_HANDLER_PASS:
3272 break;
3273 default:
3274 BUG();
3278 /* deliver only exact match when indicated */
3279 null_or_dev = deliver_exact ? skb->dev : NULL;
3281 type = skb->protocol;
3282 list_for_each_entry_rcu(ptype,
3283 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3284 if (ptype->type == type &&
3285 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3286 ptype->dev == orig_dev)) {
3287 if (pt_prev)
3288 ret = deliver_skb(skb, pt_prev, orig_dev);
3289 pt_prev = ptype;
3293 if (pt_prev) {
3294 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3295 } else {
3296 atomic_long_inc(&skb->dev->rx_dropped);
3297 kfree_skb(skb);
3298 /* Jamal, now you will not able to escape explaining
3299 * me how you were going to use this. :-)
3301 ret = NET_RX_DROP;
3304 out:
3305 rcu_read_unlock();
3306 return ret;
3310 * netif_receive_skb - process receive buffer from network
3311 * @skb: buffer to process
3313 * netif_receive_skb() is the main receive data processing function.
3314 * It always succeeds. The buffer may be dropped during processing
3315 * for congestion control or by the protocol layers.
3317 * This function may only be called from softirq context and interrupts
3318 * should be enabled.
3320 * Return values (usually ignored):
3321 * NET_RX_SUCCESS: no congestion
3322 * NET_RX_DROP: packet was dropped
3324 int netif_receive_skb(struct sk_buff *skb)
3326 net_timestamp_check(netdev_tstamp_prequeue, skb);
3328 if (skb_defer_rx_timestamp(skb))
3329 return NET_RX_SUCCESS;
3331 #ifdef CONFIG_RPS
3332 if (static_branch(&rps_needed)) {
3333 struct rps_dev_flow voidflow, *rflow = &voidflow;
3334 int cpu, ret;
3336 rcu_read_lock();
3338 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3340 if (cpu >= 0) {
3341 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3342 rcu_read_unlock();
3343 return ret;
3345 rcu_read_unlock();
3347 #endif
3348 return __netif_receive_skb(skb);
3350 EXPORT_SYMBOL(netif_receive_skb);
3352 /* Network device is going away, flush any packets still pending
3353 * Called with irqs disabled.
3355 static void flush_backlog(void *arg)
3357 struct net_device *dev = arg;
3358 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3359 struct sk_buff *skb, *tmp;
3361 rps_lock(sd);
3362 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3363 if (skb->dev == dev) {
3364 __skb_unlink(skb, &sd->input_pkt_queue);
3365 kfree_skb(skb);
3366 input_queue_head_incr(sd);
3369 rps_unlock(sd);
3371 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3372 if (skb->dev == dev) {
3373 __skb_unlink(skb, &sd->process_queue);
3374 kfree_skb(skb);
3375 input_queue_head_incr(sd);
3380 static int napi_gro_complete(struct sk_buff *skb)
3382 struct packet_type *ptype;
3383 __be16 type = skb->protocol;
3384 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3385 int err = -ENOENT;
3387 if (NAPI_GRO_CB(skb)->count == 1) {
3388 skb_shinfo(skb)->gso_size = 0;
3389 goto out;
3392 rcu_read_lock();
3393 list_for_each_entry_rcu(ptype, head, list) {
3394 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3395 continue;
3397 err = ptype->gro_complete(skb);
3398 break;
3400 rcu_read_unlock();
3402 if (err) {
3403 WARN_ON(&ptype->list == head);
3404 kfree_skb(skb);
3405 return NET_RX_SUCCESS;
3408 out:
3409 return netif_receive_skb(skb);
3412 inline void napi_gro_flush(struct napi_struct *napi)
3414 struct sk_buff *skb, *next;
3416 for (skb = napi->gro_list; skb; skb = next) {
3417 next = skb->next;
3418 skb->next = NULL;
3419 napi_gro_complete(skb);
3422 napi->gro_count = 0;
3423 napi->gro_list = NULL;
3425 EXPORT_SYMBOL(napi_gro_flush);
3427 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3429 struct sk_buff **pp = NULL;
3430 struct packet_type *ptype;
3431 __be16 type = skb->protocol;
3432 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3433 int same_flow;
3434 int mac_len;
3435 enum gro_result ret;
3437 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3438 goto normal;
3440 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3441 goto normal;
3443 rcu_read_lock();
3444 list_for_each_entry_rcu(ptype, head, list) {
3445 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3446 continue;
3448 skb_set_network_header(skb, skb_gro_offset(skb));
3449 mac_len = skb->network_header - skb->mac_header;
3450 skb->mac_len = mac_len;
3451 NAPI_GRO_CB(skb)->same_flow = 0;
3452 NAPI_GRO_CB(skb)->flush = 0;
3453 NAPI_GRO_CB(skb)->free = 0;
3455 pp = ptype->gro_receive(&napi->gro_list, skb);
3456 break;
3458 rcu_read_unlock();
3460 if (&ptype->list == head)
3461 goto normal;
3463 same_flow = NAPI_GRO_CB(skb)->same_flow;
3464 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3466 if (pp) {
3467 struct sk_buff *nskb = *pp;
3469 *pp = nskb->next;
3470 nskb->next = NULL;
3471 napi_gro_complete(nskb);
3472 napi->gro_count--;
3475 if (same_flow)
3476 goto ok;
3478 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3479 goto normal;
3481 napi->gro_count++;
3482 NAPI_GRO_CB(skb)->count = 1;
3483 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3484 skb->next = napi->gro_list;
3485 napi->gro_list = skb;
3486 ret = GRO_HELD;
3488 pull:
3489 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3490 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3492 BUG_ON(skb->end - skb->tail < grow);
3494 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3496 skb->tail += grow;
3497 skb->data_len -= grow;
3499 skb_shinfo(skb)->frags[0].page_offset += grow;
3500 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3502 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3503 skb_frag_unref(skb, 0);
3504 memmove(skb_shinfo(skb)->frags,
3505 skb_shinfo(skb)->frags + 1,
3506 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3511 return ret;
3513 normal:
3514 ret = GRO_NORMAL;
3515 goto pull;
3517 EXPORT_SYMBOL(dev_gro_receive);
3519 static inline gro_result_t
3520 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3522 struct sk_buff *p;
3523 unsigned int maclen = skb->dev->hard_header_len;
3525 for (p = napi->gro_list; p; p = p->next) {
3526 unsigned long diffs;
3528 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3529 diffs |= p->vlan_tci ^ skb->vlan_tci;
3530 if (maclen == ETH_HLEN)
3531 diffs |= compare_ether_header(skb_mac_header(p),
3532 skb_gro_mac_header(skb));
3533 else if (!diffs)
3534 diffs = memcmp(skb_mac_header(p),
3535 skb_gro_mac_header(skb),
3536 maclen);
3537 NAPI_GRO_CB(p)->same_flow = !diffs;
3538 NAPI_GRO_CB(p)->flush = 0;
3541 return dev_gro_receive(napi, skb);
3544 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3546 switch (ret) {
3547 case GRO_NORMAL:
3548 if (netif_receive_skb(skb))
3549 ret = GRO_DROP;
3550 break;
3552 case GRO_DROP:
3553 case GRO_MERGED_FREE:
3554 kfree_skb(skb);
3555 break;
3557 case GRO_HELD:
3558 case GRO_MERGED:
3559 break;
3562 return ret;
3564 EXPORT_SYMBOL(napi_skb_finish);
3566 void skb_gro_reset_offset(struct sk_buff *skb)
3568 NAPI_GRO_CB(skb)->data_offset = 0;
3569 NAPI_GRO_CB(skb)->frag0 = NULL;
3570 NAPI_GRO_CB(skb)->frag0_len = 0;
3572 if (skb->mac_header == skb->tail &&
3573 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3574 NAPI_GRO_CB(skb)->frag0 =
3575 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3576 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3579 EXPORT_SYMBOL(skb_gro_reset_offset);
3581 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3583 skb_gro_reset_offset(skb);
3585 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3587 EXPORT_SYMBOL(napi_gro_receive);
3589 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3591 __skb_pull(skb, skb_headlen(skb));
3592 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3593 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3594 skb->vlan_tci = 0;
3595 skb->dev = napi->dev;
3596 skb->skb_iif = 0;
3598 napi->skb = skb;
3601 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3603 struct sk_buff *skb = napi->skb;
3605 if (!skb) {
3606 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3607 if (skb)
3608 napi->skb = skb;
3610 return skb;
3612 EXPORT_SYMBOL(napi_get_frags);
3614 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3615 gro_result_t ret)
3617 switch (ret) {
3618 case GRO_NORMAL:
3619 case GRO_HELD:
3620 skb->protocol = eth_type_trans(skb, skb->dev);
3622 if (ret == GRO_HELD)
3623 skb_gro_pull(skb, -ETH_HLEN);
3624 else if (netif_receive_skb(skb))
3625 ret = GRO_DROP;
3626 break;
3628 case GRO_DROP:
3629 case GRO_MERGED_FREE:
3630 napi_reuse_skb(napi, skb);
3631 break;
3633 case GRO_MERGED:
3634 break;
3637 return ret;
3639 EXPORT_SYMBOL(napi_frags_finish);
3641 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3643 struct sk_buff *skb = napi->skb;
3644 struct ethhdr *eth;
3645 unsigned int hlen;
3646 unsigned int off;
3648 napi->skb = NULL;
3650 skb_reset_mac_header(skb);
3651 skb_gro_reset_offset(skb);
3653 off = skb_gro_offset(skb);
3654 hlen = off + sizeof(*eth);
3655 eth = skb_gro_header_fast(skb, off);
3656 if (skb_gro_header_hard(skb, hlen)) {
3657 eth = skb_gro_header_slow(skb, hlen, off);
3658 if (unlikely(!eth)) {
3659 napi_reuse_skb(napi, skb);
3660 skb = NULL;
3661 goto out;
3665 skb_gro_pull(skb, sizeof(*eth));
3668 * This works because the only protocols we care about don't require
3669 * special handling. We'll fix it up properly at the end.
3671 skb->protocol = eth->h_proto;
3673 out:
3674 return skb;
3676 EXPORT_SYMBOL(napi_frags_skb);
3678 gro_result_t napi_gro_frags(struct napi_struct *napi)
3680 struct sk_buff *skb = napi_frags_skb(napi);
3682 if (!skb)
3683 return GRO_DROP;
3685 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3687 EXPORT_SYMBOL(napi_gro_frags);
3690 * net_rps_action sends any pending IPI's for rps.
3691 * Note: called with local irq disabled, but exits with local irq enabled.
3693 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3695 #ifdef CONFIG_RPS
3696 struct softnet_data *remsd = sd->rps_ipi_list;
3698 if (remsd) {
3699 sd->rps_ipi_list = NULL;
3701 local_irq_enable();
3703 /* Send pending IPI's to kick RPS processing on remote cpus. */
3704 while (remsd) {
3705 struct softnet_data *next = remsd->rps_ipi_next;
3707 if (cpu_online(remsd->cpu))
3708 __smp_call_function_single(remsd->cpu,
3709 &remsd->csd, 0);
3710 remsd = next;
3712 } else
3713 #endif
3714 local_irq_enable();
3717 static int process_backlog(struct napi_struct *napi, int quota)
3719 int work = 0;
3720 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3722 #ifdef CONFIG_RPS
3723 /* Check if we have pending ipi, its better to send them now,
3724 * not waiting net_rx_action() end.
3726 if (sd->rps_ipi_list) {
3727 local_irq_disable();
3728 net_rps_action_and_irq_enable(sd);
3730 #endif
3731 napi->weight = weight_p;
3732 local_irq_disable();
3733 while (work < quota) {
3734 struct sk_buff *skb;
3735 unsigned int qlen;
3737 while ((skb = __skb_dequeue(&sd->process_queue))) {
3738 local_irq_enable();
3739 __netif_receive_skb(skb);
3740 local_irq_disable();
3741 input_queue_head_incr(sd);
3742 if (++work >= quota) {
3743 local_irq_enable();
3744 return work;
3748 rps_lock(sd);
3749 qlen = skb_queue_len(&sd->input_pkt_queue);
3750 if (qlen)
3751 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3752 &sd->process_queue);
3754 if (qlen < quota - work) {
3756 * Inline a custom version of __napi_complete().
3757 * only current cpu owns and manipulates this napi,
3758 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3759 * we can use a plain write instead of clear_bit(),
3760 * and we dont need an smp_mb() memory barrier.
3762 list_del(&napi->poll_list);
3763 napi->state = 0;
3765 quota = work + qlen;
3767 rps_unlock(sd);
3769 local_irq_enable();
3771 return work;
3775 * __napi_schedule - schedule for receive
3776 * @n: entry to schedule
3778 * The entry's receive function will be scheduled to run
3780 void __napi_schedule(struct napi_struct *n)
3782 unsigned long flags;
3784 local_irq_save(flags);
3785 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3786 local_irq_restore(flags);
3788 EXPORT_SYMBOL(__napi_schedule);
3790 void __napi_complete(struct napi_struct *n)
3792 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3793 BUG_ON(n->gro_list);
3795 list_del(&n->poll_list);
3796 smp_mb__before_clear_bit();
3797 clear_bit(NAPI_STATE_SCHED, &n->state);
3799 EXPORT_SYMBOL(__napi_complete);
3801 void napi_complete(struct napi_struct *n)
3803 unsigned long flags;
3806 * don't let napi dequeue from the cpu poll list
3807 * just in case its running on a different cpu
3809 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3810 return;
3812 napi_gro_flush(n);
3813 local_irq_save(flags);
3814 __napi_complete(n);
3815 local_irq_restore(flags);
3817 EXPORT_SYMBOL(napi_complete);
3819 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3820 int (*poll)(struct napi_struct *, int), int weight)
3822 INIT_LIST_HEAD(&napi->poll_list);
3823 napi->gro_count = 0;
3824 napi->gro_list = NULL;
3825 napi->skb = NULL;
3826 napi->poll = poll;
3827 napi->weight = weight;
3828 list_add(&napi->dev_list, &dev->napi_list);
3829 napi->dev = dev;
3830 #ifdef CONFIG_NETPOLL
3831 spin_lock_init(&napi->poll_lock);
3832 napi->poll_owner = -1;
3833 #endif
3834 set_bit(NAPI_STATE_SCHED, &napi->state);
3836 EXPORT_SYMBOL(netif_napi_add);
3838 void netif_napi_del(struct napi_struct *napi)
3840 struct sk_buff *skb, *next;
3842 list_del_init(&napi->dev_list);
3843 napi_free_frags(napi);
3845 for (skb = napi->gro_list; skb; skb = next) {
3846 next = skb->next;
3847 skb->next = NULL;
3848 kfree_skb(skb);
3851 napi->gro_list = NULL;
3852 napi->gro_count = 0;
3854 EXPORT_SYMBOL(netif_napi_del);
3856 static void net_rx_action(struct softirq_action *h)
3858 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3859 unsigned long time_limit = jiffies + 2;
3860 int budget = netdev_budget;
3861 void *have;
3863 local_irq_disable();
3865 while (!list_empty(&sd->poll_list)) {
3866 struct napi_struct *n;
3867 int work, weight;
3869 /* If softirq window is exhuasted then punt.
3870 * Allow this to run for 2 jiffies since which will allow
3871 * an average latency of 1.5/HZ.
3873 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3874 goto softnet_break;
3876 local_irq_enable();
3878 /* Even though interrupts have been re-enabled, this
3879 * access is safe because interrupts can only add new
3880 * entries to the tail of this list, and only ->poll()
3881 * calls can remove this head entry from the list.
3883 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3885 have = netpoll_poll_lock(n);
3887 weight = n->weight;
3889 /* This NAPI_STATE_SCHED test is for avoiding a race
3890 * with netpoll's poll_napi(). Only the entity which
3891 * obtains the lock and sees NAPI_STATE_SCHED set will
3892 * actually make the ->poll() call. Therefore we avoid
3893 * accidentally calling ->poll() when NAPI is not scheduled.
3895 work = 0;
3896 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3897 work = n->poll(n, weight);
3898 trace_napi_poll(n);
3901 WARN_ON_ONCE(work > weight);
3903 budget -= work;
3905 local_irq_disable();
3907 /* Drivers must not modify the NAPI state if they
3908 * consume the entire weight. In such cases this code
3909 * still "owns" the NAPI instance and therefore can
3910 * move the instance around on the list at-will.
3912 if (unlikely(work == weight)) {
3913 if (unlikely(napi_disable_pending(n))) {
3914 local_irq_enable();
3915 napi_complete(n);
3916 local_irq_disable();
3917 } else
3918 list_move_tail(&n->poll_list, &sd->poll_list);
3921 netpoll_poll_unlock(have);
3923 out:
3924 net_rps_action_and_irq_enable(sd);
3926 #ifdef CONFIG_NET_DMA
3928 * There may not be any more sk_buffs coming right now, so push
3929 * any pending DMA copies to hardware
3931 dma_issue_pending_all();
3932 #endif
3934 return;
3936 softnet_break:
3937 sd->time_squeeze++;
3938 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3939 goto out;
3942 static gifconf_func_t *gifconf_list[NPROTO];
3945 * register_gifconf - register a SIOCGIF handler
3946 * @family: Address family
3947 * @gifconf: Function handler
3949 * Register protocol dependent address dumping routines. The handler
3950 * that is passed must not be freed or reused until it has been replaced
3951 * by another handler.
3953 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3955 if (family >= NPROTO)
3956 return -EINVAL;
3957 gifconf_list[family] = gifconf;
3958 return 0;
3960 EXPORT_SYMBOL(register_gifconf);
3964 * Map an interface index to its name (SIOCGIFNAME)
3968 * We need this ioctl for efficient implementation of the
3969 * if_indextoname() function required by the IPv6 API. Without
3970 * it, we would have to search all the interfaces to find a
3971 * match. --pb
3974 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3976 struct net_device *dev;
3977 struct ifreq ifr;
3980 * Fetch the caller's info block.
3983 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3984 return -EFAULT;
3986 rcu_read_lock();
3987 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3988 if (!dev) {
3989 rcu_read_unlock();
3990 return -ENODEV;
3993 strcpy(ifr.ifr_name, dev->name);
3994 rcu_read_unlock();
3996 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3997 return -EFAULT;
3998 return 0;
4002 * Perform a SIOCGIFCONF call. This structure will change
4003 * size eventually, and there is nothing I can do about it.
4004 * Thus we will need a 'compatibility mode'.
4007 static int dev_ifconf(struct net *net, char __user *arg)
4009 struct ifconf ifc;
4010 struct net_device *dev;
4011 char __user *pos;
4012 int len;
4013 int total;
4014 int i;
4017 * Fetch the caller's info block.
4020 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4021 return -EFAULT;
4023 pos = ifc.ifc_buf;
4024 len = ifc.ifc_len;
4027 * Loop over the interfaces, and write an info block for each.
4030 total = 0;
4031 for_each_netdev(net, dev) {
4032 for (i = 0; i < NPROTO; i++) {
4033 if (gifconf_list[i]) {
4034 int done;
4035 if (!pos)
4036 done = gifconf_list[i](dev, NULL, 0);
4037 else
4038 done = gifconf_list[i](dev, pos + total,
4039 len - total);
4040 if (done < 0)
4041 return -EFAULT;
4042 total += done;
4048 * All done. Write the updated control block back to the caller.
4050 ifc.ifc_len = total;
4053 * Both BSD and Solaris return 0 here, so we do too.
4055 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4058 #ifdef CONFIG_PROC_FS
4060 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4062 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4063 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4064 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4066 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4068 struct net *net = seq_file_net(seq);
4069 struct net_device *dev;
4070 struct hlist_node *p;
4071 struct hlist_head *h;
4072 unsigned int count = 0, offset = get_offset(*pos);
4074 h = &net->dev_name_head[get_bucket(*pos)];
4075 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4076 if (++count == offset)
4077 return dev;
4080 return NULL;
4083 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4085 struct net_device *dev;
4086 unsigned int bucket;
4088 do {
4089 dev = dev_from_same_bucket(seq, pos);
4090 if (dev)
4091 return dev;
4093 bucket = get_bucket(*pos) + 1;
4094 *pos = set_bucket_offset(bucket, 1);
4095 } while (bucket < NETDEV_HASHENTRIES);
4097 return NULL;
4101 * This is invoked by the /proc filesystem handler to display a device
4102 * in detail.
4104 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4105 __acquires(RCU)
4107 rcu_read_lock();
4108 if (!*pos)
4109 return SEQ_START_TOKEN;
4111 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4112 return NULL;
4114 return dev_from_bucket(seq, pos);
4117 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4119 ++*pos;
4120 return dev_from_bucket(seq, pos);
4123 void dev_seq_stop(struct seq_file *seq, void *v)
4124 __releases(RCU)
4126 rcu_read_unlock();
4129 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4131 struct rtnl_link_stats64 temp;
4132 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4134 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4135 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4136 dev->name, stats->rx_bytes, stats->rx_packets,
4137 stats->rx_errors,
4138 stats->rx_dropped + stats->rx_missed_errors,
4139 stats->rx_fifo_errors,
4140 stats->rx_length_errors + stats->rx_over_errors +
4141 stats->rx_crc_errors + stats->rx_frame_errors,
4142 stats->rx_compressed, stats->multicast,
4143 stats->tx_bytes, stats->tx_packets,
4144 stats->tx_errors, stats->tx_dropped,
4145 stats->tx_fifo_errors, stats->collisions,
4146 stats->tx_carrier_errors +
4147 stats->tx_aborted_errors +
4148 stats->tx_window_errors +
4149 stats->tx_heartbeat_errors,
4150 stats->tx_compressed);
4154 * Called from the PROCfs module. This now uses the new arbitrary sized
4155 * /proc/net interface to create /proc/net/dev
4157 static int dev_seq_show(struct seq_file *seq, void *v)
4159 if (v == SEQ_START_TOKEN)
4160 seq_puts(seq, "Inter-| Receive "
4161 " | Transmit\n"
4162 " face |bytes packets errs drop fifo frame "
4163 "compressed multicast|bytes packets errs "
4164 "drop fifo colls carrier compressed\n");
4165 else
4166 dev_seq_printf_stats(seq, v);
4167 return 0;
4170 static struct softnet_data *softnet_get_online(loff_t *pos)
4172 struct softnet_data *sd = NULL;
4174 while (*pos < nr_cpu_ids)
4175 if (cpu_online(*pos)) {
4176 sd = &per_cpu(softnet_data, *pos);
4177 break;
4178 } else
4179 ++*pos;
4180 return sd;
4183 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4185 return softnet_get_online(pos);
4188 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4190 ++*pos;
4191 return softnet_get_online(pos);
4194 static void softnet_seq_stop(struct seq_file *seq, void *v)
4198 static int softnet_seq_show(struct seq_file *seq, void *v)
4200 struct softnet_data *sd = v;
4202 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4203 sd->processed, sd->dropped, sd->time_squeeze, 0,
4204 0, 0, 0, 0, /* was fastroute */
4205 sd->cpu_collision, sd->received_rps);
4206 return 0;
4209 static const struct seq_operations dev_seq_ops = {
4210 .start = dev_seq_start,
4211 .next = dev_seq_next,
4212 .stop = dev_seq_stop,
4213 .show = dev_seq_show,
4216 static int dev_seq_open(struct inode *inode, struct file *file)
4218 return seq_open_net(inode, file, &dev_seq_ops,
4219 sizeof(struct seq_net_private));
4222 static const struct file_operations dev_seq_fops = {
4223 .owner = THIS_MODULE,
4224 .open = dev_seq_open,
4225 .read = seq_read,
4226 .llseek = seq_lseek,
4227 .release = seq_release_net,
4230 static const struct seq_operations softnet_seq_ops = {
4231 .start = softnet_seq_start,
4232 .next = softnet_seq_next,
4233 .stop = softnet_seq_stop,
4234 .show = softnet_seq_show,
4237 static int softnet_seq_open(struct inode *inode, struct file *file)
4239 return seq_open(file, &softnet_seq_ops);
4242 static const struct file_operations softnet_seq_fops = {
4243 .owner = THIS_MODULE,
4244 .open = softnet_seq_open,
4245 .read = seq_read,
4246 .llseek = seq_lseek,
4247 .release = seq_release,
4250 static void *ptype_get_idx(loff_t pos)
4252 struct packet_type *pt = NULL;
4253 loff_t i = 0;
4254 int t;
4256 list_for_each_entry_rcu(pt, &ptype_all, list) {
4257 if (i == pos)
4258 return pt;
4259 ++i;
4262 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4263 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4264 if (i == pos)
4265 return pt;
4266 ++i;
4269 return NULL;
4272 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4273 __acquires(RCU)
4275 rcu_read_lock();
4276 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4279 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4281 struct packet_type *pt;
4282 struct list_head *nxt;
4283 int hash;
4285 ++*pos;
4286 if (v == SEQ_START_TOKEN)
4287 return ptype_get_idx(0);
4289 pt = v;
4290 nxt = pt->list.next;
4291 if (pt->type == htons(ETH_P_ALL)) {
4292 if (nxt != &ptype_all)
4293 goto found;
4294 hash = 0;
4295 nxt = ptype_base[0].next;
4296 } else
4297 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4299 while (nxt == &ptype_base[hash]) {
4300 if (++hash >= PTYPE_HASH_SIZE)
4301 return NULL;
4302 nxt = ptype_base[hash].next;
4304 found:
4305 return list_entry(nxt, struct packet_type, list);
4308 static void ptype_seq_stop(struct seq_file *seq, void *v)
4309 __releases(RCU)
4311 rcu_read_unlock();
4314 static int ptype_seq_show(struct seq_file *seq, void *v)
4316 struct packet_type *pt = v;
4318 if (v == SEQ_START_TOKEN)
4319 seq_puts(seq, "Type Device Function\n");
4320 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4321 if (pt->type == htons(ETH_P_ALL))
4322 seq_puts(seq, "ALL ");
4323 else
4324 seq_printf(seq, "%04x", ntohs(pt->type));
4326 seq_printf(seq, " %-8s %pF\n",
4327 pt->dev ? pt->dev->name : "", pt->func);
4330 return 0;
4333 static const struct seq_operations ptype_seq_ops = {
4334 .start = ptype_seq_start,
4335 .next = ptype_seq_next,
4336 .stop = ptype_seq_stop,
4337 .show = ptype_seq_show,
4340 static int ptype_seq_open(struct inode *inode, struct file *file)
4342 return seq_open_net(inode, file, &ptype_seq_ops,
4343 sizeof(struct seq_net_private));
4346 static const struct file_operations ptype_seq_fops = {
4347 .owner = THIS_MODULE,
4348 .open = ptype_seq_open,
4349 .read = seq_read,
4350 .llseek = seq_lseek,
4351 .release = seq_release_net,
4355 static int __net_init dev_proc_net_init(struct net *net)
4357 int rc = -ENOMEM;
4359 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4360 goto out;
4361 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4362 goto out_dev;
4363 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4364 goto out_softnet;
4366 if (wext_proc_init(net))
4367 goto out_ptype;
4368 rc = 0;
4369 out:
4370 return rc;
4371 out_ptype:
4372 proc_net_remove(net, "ptype");
4373 out_softnet:
4374 proc_net_remove(net, "softnet_stat");
4375 out_dev:
4376 proc_net_remove(net, "dev");
4377 goto out;
4380 static void __net_exit dev_proc_net_exit(struct net *net)
4382 wext_proc_exit(net);
4384 proc_net_remove(net, "ptype");
4385 proc_net_remove(net, "softnet_stat");
4386 proc_net_remove(net, "dev");
4389 static struct pernet_operations __net_initdata dev_proc_ops = {
4390 .init = dev_proc_net_init,
4391 .exit = dev_proc_net_exit,
4394 static int __init dev_proc_init(void)
4396 return register_pernet_subsys(&dev_proc_ops);
4398 #else
4399 #define dev_proc_init() 0
4400 #endif /* CONFIG_PROC_FS */
4404 * netdev_set_master - set up master pointer
4405 * @slave: slave device
4406 * @master: new master device
4408 * Changes the master device of the slave. Pass %NULL to break the
4409 * bonding. The caller must hold the RTNL semaphore. On a failure
4410 * a negative errno code is returned. On success the reference counts
4411 * are adjusted and the function returns zero.
4413 int netdev_set_master(struct net_device *slave, struct net_device *master)
4415 struct net_device *old = slave->master;
4417 ASSERT_RTNL();
4419 if (master) {
4420 if (old)
4421 return -EBUSY;
4422 dev_hold(master);
4425 slave->master = master;
4427 if (old)
4428 dev_put(old);
4429 return 0;
4431 EXPORT_SYMBOL(netdev_set_master);
4434 * netdev_set_bond_master - set up bonding master/slave pair
4435 * @slave: slave device
4436 * @master: new master device
4438 * Changes the master device of the slave. Pass %NULL to break the
4439 * bonding. The caller must hold the RTNL semaphore. On a failure
4440 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4441 * to the routing socket and the function returns zero.
4443 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4445 int err;
4447 ASSERT_RTNL();
4449 err = netdev_set_master(slave, master);
4450 if (err)
4451 return err;
4452 if (master)
4453 slave->flags |= IFF_SLAVE;
4454 else
4455 slave->flags &= ~IFF_SLAVE;
4457 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4458 return 0;
4460 EXPORT_SYMBOL(netdev_set_bond_master);
4462 static void dev_change_rx_flags(struct net_device *dev, int flags)
4464 const struct net_device_ops *ops = dev->netdev_ops;
4466 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4467 ops->ndo_change_rx_flags(dev, flags);
4470 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4472 unsigned int old_flags = dev->flags;
4473 uid_t uid;
4474 gid_t gid;
4476 ASSERT_RTNL();
4478 dev->flags |= IFF_PROMISC;
4479 dev->promiscuity += inc;
4480 if (dev->promiscuity == 0) {
4482 * Avoid overflow.
4483 * If inc causes overflow, untouch promisc and return error.
4485 if (inc < 0)
4486 dev->flags &= ~IFF_PROMISC;
4487 else {
4488 dev->promiscuity -= inc;
4489 printk(KERN_WARNING "%s: promiscuity touches roof, "
4490 "set promiscuity failed, promiscuity feature "
4491 "of device might be broken.\n", dev->name);
4492 return -EOVERFLOW;
4495 if (dev->flags != old_flags) {
4496 printk(KERN_INFO "device %s %s promiscuous mode\n",
4497 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4498 "left");
4499 if (audit_enabled) {
4500 current_uid_gid(&uid, &gid);
4501 audit_log(current->audit_context, GFP_ATOMIC,
4502 AUDIT_ANOM_PROMISCUOUS,
4503 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4504 dev->name, (dev->flags & IFF_PROMISC),
4505 (old_flags & IFF_PROMISC),
4506 audit_get_loginuid(current),
4507 uid, gid,
4508 audit_get_sessionid(current));
4511 dev_change_rx_flags(dev, IFF_PROMISC);
4513 return 0;
4517 * dev_set_promiscuity - update promiscuity count on a device
4518 * @dev: device
4519 * @inc: modifier
4521 * Add or remove promiscuity from a device. While the count in the device
4522 * remains above zero the interface remains promiscuous. Once it hits zero
4523 * the device reverts back to normal filtering operation. A negative inc
4524 * value is used to drop promiscuity on the device.
4525 * Return 0 if successful or a negative errno code on error.
4527 int dev_set_promiscuity(struct net_device *dev, int inc)
4529 unsigned int old_flags = dev->flags;
4530 int err;
4532 err = __dev_set_promiscuity(dev, inc);
4533 if (err < 0)
4534 return err;
4535 if (dev->flags != old_flags)
4536 dev_set_rx_mode(dev);
4537 return err;
4539 EXPORT_SYMBOL(dev_set_promiscuity);
4542 * dev_set_allmulti - update allmulti count on a device
4543 * @dev: device
4544 * @inc: modifier
4546 * Add or remove reception of all multicast frames to a device. While the
4547 * count in the device remains above zero the interface remains listening
4548 * to all interfaces. Once it hits zero the device reverts back to normal
4549 * filtering operation. A negative @inc value is used to drop the counter
4550 * when releasing a resource needing all multicasts.
4551 * Return 0 if successful or a negative errno code on error.
4554 int dev_set_allmulti(struct net_device *dev, int inc)
4556 unsigned int old_flags = dev->flags;
4558 ASSERT_RTNL();
4560 dev->flags |= IFF_ALLMULTI;
4561 dev->allmulti += inc;
4562 if (dev->allmulti == 0) {
4564 * Avoid overflow.
4565 * If inc causes overflow, untouch allmulti and return error.
4567 if (inc < 0)
4568 dev->flags &= ~IFF_ALLMULTI;
4569 else {
4570 dev->allmulti -= inc;
4571 printk(KERN_WARNING "%s: allmulti touches roof, "
4572 "set allmulti failed, allmulti feature of "
4573 "device might be broken.\n", dev->name);
4574 return -EOVERFLOW;
4577 if (dev->flags ^ old_flags) {
4578 dev_change_rx_flags(dev, IFF_ALLMULTI);
4579 dev_set_rx_mode(dev);
4581 return 0;
4583 EXPORT_SYMBOL(dev_set_allmulti);
4586 * Upload unicast and multicast address lists to device and
4587 * configure RX filtering. When the device doesn't support unicast
4588 * filtering it is put in promiscuous mode while unicast addresses
4589 * are present.
4591 void __dev_set_rx_mode(struct net_device *dev)
4593 const struct net_device_ops *ops = dev->netdev_ops;
4595 /* dev_open will call this function so the list will stay sane. */
4596 if (!(dev->flags&IFF_UP))
4597 return;
4599 if (!netif_device_present(dev))
4600 return;
4602 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4603 /* Unicast addresses changes may only happen under the rtnl,
4604 * therefore calling __dev_set_promiscuity here is safe.
4606 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4607 __dev_set_promiscuity(dev, 1);
4608 dev->uc_promisc = true;
4609 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4610 __dev_set_promiscuity(dev, -1);
4611 dev->uc_promisc = false;
4615 if (ops->ndo_set_rx_mode)
4616 ops->ndo_set_rx_mode(dev);
4619 void dev_set_rx_mode(struct net_device *dev)
4621 netif_addr_lock_bh(dev);
4622 __dev_set_rx_mode(dev);
4623 netif_addr_unlock_bh(dev);
4627 * dev_get_flags - get flags reported to userspace
4628 * @dev: device
4630 * Get the combination of flag bits exported through APIs to userspace.
4632 unsigned dev_get_flags(const struct net_device *dev)
4634 unsigned flags;
4636 flags = (dev->flags & ~(IFF_PROMISC |
4637 IFF_ALLMULTI |
4638 IFF_RUNNING |
4639 IFF_LOWER_UP |
4640 IFF_DORMANT)) |
4641 (dev->gflags & (IFF_PROMISC |
4642 IFF_ALLMULTI));
4644 if (netif_running(dev)) {
4645 if (netif_oper_up(dev))
4646 flags |= IFF_RUNNING;
4647 if (netif_carrier_ok(dev))
4648 flags |= IFF_LOWER_UP;
4649 if (netif_dormant(dev))
4650 flags |= IFF_DORMANT;
4653 return flags;
4655 EXPORT_SYMBOL(dev_get_flags);
4657 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4659 unsigned int old_flags = dev->flags;
4660 int ret;
4662 ASSERT_RTNL();
4665 * Set the flags on our device.
4668 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4669 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4670 IFF_AUTOMEDIA)) |
4671 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4672 IFF_ALLMULTI));
4675 * Load in the correct multicast list now the flags have changed.
4678 if ((old_flags ^ flags) & IFF_MULTICAST)
4679 dev_change_rx_flags(dev, IFF_MULTICAST);
4681 dev_set_rx_mode(dev);
4684 * Have we downed the interface. We handle IFF_UP ourselves
4685 * according to user attempts to set it, rather than blindly
4686 * setting it.
4689 ret = 0;
4690 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4691 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4693 if (!ret)
4694 dev_set_rx_mode(dev);
4697 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4698 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4700 dev->gflags ^= IFF_PROMISC;
4701 dev_set_promiscuity(dev, inc);
4704 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4705 is important. Some (broken) drivers set IFF_PROMISC, when
4706 IFF_ALLMULTI is requested not asking us and not reporting.
4708 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4709 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4711 dev->gflags ^= IFF_ALLMULTI;
4712 dev_set_allmulti(dev, inc);
4715 return ret;
4718 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4720 unsigned int changes = dev->flags ^ old_flags;
4722 if (changes & IFF_UP) {
4723 if (dev->flags & IFF_UP)
4724 call_netdevice_notifiers(NETDEV_UP, dev);
4725 else
4726 call_netdevice_notifiers(NETDEV_DOWN, dev);
4729 if (dev->flags & IFF_UP &&
4730 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4731 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4735 * dev_change_flags - change device settings
4736 * @dev: device
4737 * @flags: device state flags
4739 * Change settings on device based state flags. The flags are
4740 * in the userspace exported format.
4742 int dev_change_flags(struct net_device *dev, unsigned int flags)
4744 int ret;
4745 unsigned int changes, old_flags = dev->flags;
4747 ret = __dev_change_flags(dev, flags);
4748 if (ret < 0)
4749 return ret;
4751 changes = old_flags ^ dev->flags;
4752 if (changes)
4753 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4755 __dev_notify_flags(dev, old_flags);
4756 return ret;
4758 EXPORT_SYMBOL(dev_change_flags);
4761 * dev_set_mtu - Change maximum transfer unit
4762 * @dev: device
4763 * @new_mtu: new transfer unit
4765 * Change the maximum transfer size of the network device.
4767 int dev_set_mtu(struct net_device *dev, int new_mtu)
4769 const struct net_device_ops *ops = dev->netdev_ops;
4770 int err;
4772 if (new_mtu == dev->mtu)
4773 return 0;
4775 /* MTU must be positive. */
4776 if (new_mtu < 0)
4777 return -EINVAL;
4779 if (!netif_device_present(dev))
4780 return -ENODEV;
4782 err = 0;
4783 if (ops->ndo_change_mtu)
4784 err = ops->ndo_change_mtu(dev, new_mtu);
4785 else
4786 dev->mtu = new_mtu;
4788 if (!err && dev->flags & IFF_UP)
4789 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4790 return err;
4792 EXPORT_SYMBOL(dev_set_mtu);
4795 * dev_set_group - Change group this device belongs to
4796 * @dev: device
4797 * @new_group: group this device should belong to
4799 void dev_set_group(struct net_device *dev, int new_group)
4801 dev->group = new_group;
4803 EXPORT_SYMBOL(dev_set_group);
4806 * dev_set_mac_address - Change Media Access Control Address
4807 * @dev: device
4808 * @sa: new address
4810 * Change the hardware (MAC) address of the device
4812 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4814 const struct net_device_ops *ops = dev->netdev_ops;
4815 int err;
4817 if (!ops->ndo_set_mac_address)
4818 return -EOPNOTSUPP;
4819 if (sa->sa_family != dev->type)
4820 return -EINVAL;
4821 if (!netif_device_present(dev))
4822 return -ENODEV;
4823 err = ops->ndo_set_mac_address(dev, sa);
4824 if (!err)
4825 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4826 return err;
4828 EXPORT_SYMBOL(dev_set_mac_address);
4831 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4833 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4835 int err;
4836 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4838 if (!dev)
4839 return -ENODEV;
4841 switch (cmd) {
4842 case SIOCGIFFLAGS: /* Get interface flags */
4843 ifr->ifr_flags = (short) dev_get_flags(dev);
4844 return 0;
4846 case SIOCGIFMETRIC: /* Get the metric on the interface
4847 (currently unused) */
4848 ifr->ifr_metric = 0;
4849 return 0;
4851 case SIOCGIFMTU: /* Get the MTU of a device */
4852 ifr->ifr_mtu = dev->mtu;
4853 return 0;
4855 case SIOCGIFHWADDR:
4856 if (!dev->addr_len)
4857 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4858 else
4859 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4860 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4861 ifr->ifr_hwaddr.sa_family = dev->type;
4862 return 0;
4864 case SIOCGIFSLAVE:
4865 err = -EINVAL;
4866 break;
4868 case SIOCGIFMAP:
4869 ifr->ifr_map.mem_start = dev->mem_start;
4870 ifr->ifr_map.mem_end = dev->mem_end;
4871 ifr->ifr_map.base_addr = dev->base_addr;
4872 ifr->ifr_map.irq = dev->irq;
4873 ifr->ifr_map.dma = dev->dma;
4874 ifr->ifr_map.port = dev->if_port;
4875 return 0;
4877 case SIOCGIFINDEX:
4878 ifr->ifr_ifindex = dev->ifindex;
4879 return 0;
4881 case SIOCGIFTXQLEN:
4882 ifr->ifr_qlen = dev->tx_queue_len;
4883 return 0;
4885 default:
4886 /* dev_ioctl() should ensure this case
4887 * is never reached
4889 WARN_ON(1);
4890 err = -ENOTTY;
4891 break;
4894 return err;
4898 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4900 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4902 int err;
4903 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4904 const struct net_device_ops *ops;
4906 if (!dev)
4907 return -ENODEV;
4909 ops = dev->netdev_ops;
4911 switch (cmd) {
4912 case SIOCSIFFLAGS: /* Set interface flags */
4913 return dev_change_flags(dev, ifr->ifr_flags);
4915 case SIOCSIFMETRIC: /* Set the metric on the interface
4916 (currently unused) */
4917 return -EOPNOTSUPP;
4919 case SIOCSIFMTU: /* Set the MTU of a device */
4920 return dev_set_mtu(dev, ifr->ifr_mtu);
4922 case SIOCSIFHWADDR:
4923 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4925 case SIOCSIFHWBROADCAST:
4926 if (ifr->ifr_hwaddr.sa_family != dev->type)
4927 return -EINVAL;
4928 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4929 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4930 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4931 return 0;
4933 case SIOCSIFMAP:
4934 if (ops->ndo_set_config) {
4935 if (!netif_device_present(dev))
4936 return -ENODEV;
4937 return ops->ndo_set_config(dev, &ifr->ifr_map);
4939 return -EOPNOTSUPP;
4941 case SIOCADDMULTI:
4942 if (!ops->ndo_set_rx_mode ||
4943 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4944 return -EINVAL;
4945 if (!netif_device_present(dev))
4946 return -ENODEV;
4947 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4949 case SIOCDELMULTI:
4950 if (!ops->ndo_set_rx_mode ||
4951 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4952 return -EINVAL;
4953 if (!netif_device_present(dev))
4954 return -ENODEV;
4955 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4957 case SIOCSIFTXQLEN:
4958 if (ifr->ifr_qlen < 0)
4959 return -EINVAL;
4960 dev->tx_queue_len = ifr->ifr_qlen;
4961 return 0;
4963 case SIOCSIFNAME:
4964 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4965 return dev_change_name(dev, ifr->ifr_newname);
4967 case SIOCSHWTSTAMP:
4968 err = net_hwtstamp_validate(ifr);
4969 if (err)
4970 return err;
4971 /* fall through */
4974 * Unknown or private ioctl
4976 default:
4977 if ((cmd >= SIOCDEVPRIVATE &&
4978 cmd <= SIOCDEVPRIVATE + 15) ||
4979 cmd == SIOCBONDENSLAVE ||
4980 cmd == SIOCBONDRELEASE ||
4981 cmd == SIOCBONDSETHWADDR ||
4982 cmd == SIOCBONDSLAVEINFOQUERY ||
4983 cmd == SIOCBONDINFOQUERY ||
4984 cmd == SIOCBONDCHANGEACTIVE ||
4985 cmd == SIOCGMIIPHY ||
4986 cmd == SIOCGMIIREG ||
4987 cmd == SIOCSMIIREG ||
4988 cmd == SIOCBRADDIF ||
4989 cmd == SIOCBRDELIF ||
4990 cmd == SIOCSHWTSTAMP ||
4991 cmd == SIOCWANDEV) {
4992 err = -EOPNOTSUPP;
4993 if (ops->ndo_do_ioctl) {
4994 if (netif_device_present(dev))
4995 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4996 else
4997 err = -ENODEV;
4999 } else
5000 err = -EINVAL;
5003 return err;
5007 * This function handles all "interface"-type I/O control requests. The actual
5008 * 'doing' part of this is dev_ifsioc above.
5012 * dev_ioctl - network device ioctl
5013 * @net: the applicable net namespace
5014 * @cmd: command to issue
5015 * @arg: pointer to a struct ifreq in user space
5017 * Issue ioctl functions to devices. This is normally called by the
5018 * user space syscall interfaces but can sometimes be useful for
5019 * other purposes. The return value is the return from the syscall if
5020 * positive or a negative errno code on error.
5023 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5025 struct ifreq ifr;
5026 int ret;
5027 char *colon;
5029 /* One special case: SIOCGIFCONF takes ifconf argument
5030 and requires shared lock, because it sleeps writing
5031 to user space.
5034 if (cmd == SIOCGIFCONF) {
5035 rtnl_lock();
5036 ret = dev_ifconf(net, (char __user *) arg);
5037 rtnl_unlock();
5038 return ret;
5040 if (cmd == SIOCGIFNAME)
5041 return dev_ifname(net, (struct ifreq __user *)arg);
5043 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5044 return -EFAULT;
5046 ifr.ifr_name[IFNAMSIZ-1] = 0;
5048 colon = strchr(ifr.ifr_name, ':');
5049 if (colon)
5050 *colon = 0;
5053 * See which interface the caller is talking about.
5056 switch (cmd) {
5058 * These ioctl calls:
5059 * - can be done by all.
5060 * - atomic and do not require locking.
5061 * - return a value
5063 case SIOCGIFFLAGS:
5064 case SIOCGIFMETRIC:
5065 case SIOCGIFMTU:
5066 case SIOCGIFHWADDR:
5067 case SIOCGIFSLAVE:
5068 case SIOCGIFMAP:
5069 case SIOCGIFINDEX:
5070 case SIOCGIFTXQLEN:
5071 dev_load(net, ifr.ifr_name);
5072 rcu_read_lock();
5073 ret = dev_ifsioc_locked(net, &ifr, cmd);
5074 rcu_read_unlock();
5075 if (!ret) {
5076 if (colon)
5077 *colon = ':';
5078 if (copy_to_user(arg, &ifr,
5079 sizeof(struct ifreq)))
5080 ret = -EFAULT;
5082 return ret;
5084 case SIOCETHTOOL:
5085 dev_load(net, ifr.ifr_name);
5086 rtnl_lock();
5087 ret = dev_ethtool(net, &ifr);
5088 rtnl_unlock();
5089 if (!ret) {
5090 if (colon)
5091 *colon = ':';
5092 if (copy_to_user(arg, &ifr,
5093 sizeof(struct ifreq)))
5094 ret = -EFAULT;
5096 return ret;
5099 * These ioctl calls:
5100 * - require superuser power.
5101 * - require strict serialization.
5102 * - return a value
5104 case SIOCGMIIPHY:
5105 case SIOCGMIIREG:
5106 case SIOCSIFNAME:
5107 if (!capable(CAP_NET_ADMIN))
5108 return -EPERM;
5109 dev_load(net, ifr.ifr_name);
5110 rtnl_lock();
5111 ret = dev_ifsioc(net, &ifr, cmd);
5112 rtnl_unlock();
5113 if (!ret) {
5114 if (colon)
5115 *colon = ':';
5116 if (copy_to_user(arg, &ifr,
5117 sizeof(struct ifreq)))
5118 ret = -EFAULT;
5120 return ret;
5123 * These ioctl calls:
5124 * - require superuser power.
5125 * - require strict serialization.
5126 * - do not return a value
5128 case SIOCSIFFLAGS:
5129 case SIOCSIFMETRIC:
5130 case SIOCSIFMTU:
5131 case SIOCSIFMAP:
5132 case SIOCSIFHWADDR:
5133 case SIOCSIFSLAVE:
5134 case SIOCADDMULTI:
5135 case SIOCDELMULTI:
5136 case SIOCSIFHWBROADCAST:
5137 case SIOCSIFTXQLEN:
5138 case SIOCSMIIREG:
5139 case SIOCBONDENSLAVE:
5140 case SIOCBONDRELEASE:
5141 case SIOCBONDSETHWADDR:
5142 case SIOCBONDCHANGEACTIVE:
5143 case SIOCBRADDIF:
5144 case SIOCBRDELIF:
5145 case SIOCSHWTSTAMP:
5146 if (!capable(CAP_NET_ADMIN))
5147 return -EPERM;
5148 /* fall through */
5149 case SIOCBONDSLAVEINFOQUERY:
5150 case SIOCBONDINFOQUERY:
5151 dev_load(net, ifr.ifr_name);
5152 rtnl_lock();
5153 ret = dev_ifsioc(net, &ifr, cmd);
5154 rtnl_unlock();
5155 return ret;
5157 case SIOCGIFMEM:
5158 /* Get the per device memory space. We can add this but
5159 * currently do not support it */
5160 case SIOCSIFMEM:
5161 /* Set the per device memory buffer space.
5162 * Not applicable in our case */
5163 case SIOCSIFLINK:
5164 return -ENOTTY;
5167 * Unknown or private ioctl.
5169 default:
5170 if (cmd == SIOCWANDEV ||
5171 (cmd >= SIOCDEVPRIVATE &&
5172 cmd <= SIOCDEVPRIVATE + 15)) {
5173 dev_load(net, ifr.ifr_name);
5174 rtnl_lock();
5175 ret = dev_ifsioc(net, &ifr, cmd);
5176 rtnl_unlock();
5177 if (!ret && copy_to_user(arg, &ifr,
5178 sizeof(struct ifreq)))
5179 ret = -EFAULT;
5180 return ret;
5182 /* Take care of Wireless Extensions */
5183 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5184 return wext_handle_ioctl(net, &ifr, cmd, arg);
5185 return -ENOTTY;
5191 * dev_new_index - allocate an ifindex
5192 * @net: the applicable net namespace
5194 * Returns a suitable unique value for a new device interface
5195 * number. The caller must hold the rtnl semaphore or the
5196 * dev_base_lock to be sure it remains unique.
5198 static int dev_new_index(struct net *net)
5200 static int ifindex;
5201 for (;;) {
5202 if (++ifindex <= 0)
5203 ifindex = 1;
5204 if (!__dev_get_by_index(net, ifindex))
5205 return ifindex;
5209 /* Delayed registration/unregisteration */
5210 static LIST_HEAD(net_todo_list);
5212 static void net_set_todo(struct net_device *dev)
5214 list_add_tail(&dev->todo_list, &net_todo_list);
5217 static void rollback_registered_many(struct list_head *head)
5219 struct net_device *dev, *tmp;
5221 BUG_ON(dev_boot_phase);
5222 ASSERT_RTNL();
5224 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5225 /* Some devices call without registering
5226 * for initialization unwind. Remove those
5227 * devices and proceed with the remaining.
5229 if (dev->reg_state == NETREG_UNINITIALIZED) {
5230 pr_debug("unregister_netdevice: device %s/%p never "
5231 "was registered\n", dev->name, dev);
5233 WARN_ON(1);
5234 list_del(&dev->unreg_list);
5235 continue;
5237 dev->dismantle = true;
5238 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5241 /* If device is running, close it first. */
5242 dev_close_many(head);
5244 list_for_each_entry(dev, head, unreg_list) {
5245 /* And unlink it from device chain. */
5246 unlist_netdevice(dev);
5248 dev->reg_state = NETREG_UNREGISTERING;
5251 synchronize_net();
5253 list_for_each_entry(dev, head, unreg_list) {
5254 /* Shutdown queueing discipline. */
5255 dev_shutdown(dev);
5258 /* Notify protocols, that we are about to destroy
5259 this device. They should clean all the things.
5261 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5263 if (!dev->rtnl_link_ops ||
5264 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5265 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5268 * Flush the unicast and multicast chains
5270 dev_uc_flush(dev);
5271 dev_mc_flush(dev);
5273 if (dev->netdev_ops->ndo_uninit)
5274 dev->netdev_ops->ndo_uninit(dev);
5276 /* Notifier chain MUST detach us from master device. */
5277 WARN_ON(dev->master);
5279 /* Remove entries from kobject tree */
5280 netdev_unregister_kobject(dev);
5283 /* Process any work delayed until the end of the batch */
5284 dev = list_first_entry(head, struct net_device, unreg_list);
5285 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5287 synchronize_net();
5289 list_for_each_entry(dev, head, unreg_list)
5290 dev_put(dev);
5293 static void rollback_registered(struct net_device *dev)
5295 LIST_HEAD(single);
5297 list_add(&dev->unreg_list, &single);
5298 rollback_registered_many(&single);
5299 list_del(&single);
5302 static netdev_features_t netdev_fix_features(struct net_device *dev,
5303 netdev_features_t features)
5305 /* Fix illegal checksum combinations */
5306 if ((features & NETIF_F_HW_CSUM) &&
5307 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5308 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5309 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5312 /* Fix illegal SG+CSUM combinations. */
5313 if ((features & NETIF_F_SG) &&
5314 !(features & NETIF_F_ALL_CSUM)) {
5315 netdev_dbg(dev,
5316 "Dropping NETIF_F_SG since no checksum feature.\n");
5317 features &= ~NETIF_F_SG;
5320 /* TSO requires that SG is present as well. */
5321 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5322 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5323 features &= ~NETIF_F_ALL_TSO;
5326 /* TSO ECN requires that TSO is present as well. */
5327 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5328 features &= ~NETIF_F_TSO_ECN;
5330 /* Software GSO depends on SG. */
5331 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5332 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5333 features &= ~NETIF_F_GSO;
5336 /* UFO needs SG and checksumming */
5337 if (features & NETIF_F_UFO) {
5338 /* maybe split UFO into V4 and V6? */
5339 if (!((features & NETIF_F_GEN_CSUM) ||
5340 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5341 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5342 netdev_dbg(dev,
5343 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5344 features &= ~NETIF_F_UFO;
5347 if (!(features & NETIF_F_SG)) {
5348 netdev_dbg(dev,
5349 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5350 features &= ~NETIF_F_UFO;
5354 return features;
5357 int __netdev_update_features(struct net_device *dev)
5359 netdev_features_t features;
5360 int err = 0;
5362 ASSERT_RTNL();
5364 features = netdev_get_wanted_features(dev);
5366 if (dev->netdev_ops->ndo_fix_features)
5367 features = dev->netdev_ops->ndo_fix_features(dev, features);
5369 /* driver might be less strict about feature dependencies */
5370 features = netdev_fix_features(dev, features);
5372 if (dev->features == features)
5373 return 0;
5375 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5376 &dev->features, &features);
5378 if (dev->netdev_ops->ndo_set_features)
5379 err = dev->netdev_ops->ndo_set_features(dev, features);
5381 if (unlikely(err < 0)) {
5382 netdev_err(dev,
5383 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5384 err, &features, &dev->features);
5385 return -1;
5388 if (!err)
5389 dev->features = features;
5391 return 1;
5395 * netdev_update_features - recalculate device features
5396 * @dev: the device to check
5398 * Recalculate dev->features set and send notifications if it
5399 * has changed. Should be called after driver or hardware dependent
5400 * conditions might have changed that influence the features.
5402 void netdev_update_features(struct net_device *dev)
5404 if (__netdev_update_features(dev))
5405 netdev_features_change(dev);
5407 EXPORT_SYMBOL(netdev_update_features);
5410 * netdev_change_features - recalculate device features
5411 * @dev: the device to check
5413 * Recalculate dev->features set and send notifications even
5414 * if they have not changed. Should be called instead of
5415 * netdev_update_features() if also dev->vlan_features might
5416 * have changed to allow the changes to be propagated to stacked
5417 * VLAN devices.
5419 void netdev_change_features(struct net_device *dev)
5421 __netdev_update_features(dev);
5422 netdev_features_change(dev);
5424 EXPORT_SYMBOL(netdev_change_features);
5427 * netif_stacked_transfer_operstate - transfer operstate
5428 * @rootdev: the root or lower level device to transfer state from
5429 * @dev: the device to transfer operstate to
5431 * Transfer operational state from root to device. This is normally
5432 * called when a stacking relationship exists between the root
5433 * device and the device(a leaf device).
5435 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5436 struct net_device *dev)
5438 if (rootdev->operstate == IF_OPER_DORMANT)
5439 netif_dormant_on(dev);
5440 else
5441 netif_dormant_off(dev);
5443 if (netif_carrier_ok(rootdev)) {
5444 if (!netif_carrier_ok(dev))
5445 netif_carrier_on(dev);
5446 } else {
5447 if (netif_carrier_ok(dev))
5448 netif_carrier_off(dev);
5451 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5453 #ifdef CONFIG_RPS
5454 static int netif_alloc_rx_queues(struct net_device *dev)
5456 unsigned int i, count = dev->num_rx_queues;
5457 struct netdev_rx_queue *rx;
5459 BUG_ON(count < 1);
5461 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5462 if (!rx) {
5463 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5464 return -ENOMEM;
5466 dev->_rx = rx;
5468 for (i = 0; i < count; i++)
5469 rx[i].dev = dev;
5470 return 0;
5472 #endif
5474 static void netdev_init_one_queue(struct net_device *dev,
5475 struct netdev_queue *queue, void *_unused)
5477 /* Initialize queue lock */
5478 spin_lock_init(&queue->_xmit_lock);
5479 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5480 queue->xmit_lock_owner = -1;
5481 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5482 queue->dev = dev;
5483 #ifdef CONFIG_BQL
5484 dql_init(&queue->dql, HZ);
5485 #endif
5488 static int netif_alloc_netdev_queues(struct net_device *dev)
5490 unsigned int count = dev->num_tx_queues;
5491 struct netdev_queue *tx;
5493 BUG_ON(count < 1);
5495 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5496 if (!tx) {
5497 pr_err("netdev: Unable to allocate %u tx queues.\n",
5498 count);
5499 return -ENOMEM;
5501 dev->_tx = tx;
5503 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5504 spin_lock_init(&dev->tx_global_lock);
5506 return 0;
5510 * register_netdevice - register a network device
5511 * @dev: device to register
5513 * Take a completed network device structure and add it to the kernel
5514 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5515 * chain. 0 is returned on success. A negative errno code is returned
5516 * on a failure to set up the device, or if the name is a duplicate.
5518 * Callers must hold the rtnl semaphore. You may want
5519 * register_netdev() instead of this.
5521 * BUGS:
5522 * The locking appears insufficient to guarantee two parallel registers
5523 * will not get the same name.
5526 int register_netdevice(struct net_device *dev)
5528 int ret;
5529 struct net *net = dev_net(dev);
5531 BUG_ON(dev_boot_phase);
5532 ASSERT_RTNL();
5534 might_sleep();
5536 /* When net_device's are persistent, this will be fatal. */
5537 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5538 BUG_ON(!net);
5540 spin_lock_init(&dev->addr_list_lock);
5541 netdev_set_addr_lockdep_class(dev);
5543 dev->iflink = -1;
5545 ret = dev_get_valid_name(dev, dev->name);
5546 if (ret < 0)
5547 goto out;
5549 /* Init, if this function is available */
5550 if (dev->netdev_ops->ndo_init) {
5551 ret = dev->netdev_ops->ndo_init(dev);
5552 if (ret) {
5553 if (ret > 0)
5554 ret = -EIO;
5555 goto out;
5559 dev->ifindex = dev_new_index(net);
5560 if (dev->iflink == -1)
5561 dev->iflink = dev->ifindex;
5563 /* Transfer changeable features to wanted_features and enable
5564 * software offloads (GSO and GRO).
5566 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5567 dev->features |= NETIF_F_SOFT_FEATURES;
5568 dev->wanted_features = dev->features & dev->hw_features;
5570 /* Turn on no cache copy if HW is doing checksum */
5571 if (!(dev->flags & IFF_LOOPBACK)) {
5572 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5573 if (dev->features & NETIF_F_ALL_CSUM) {
5574 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5575 dev->features |= NETIF_F_NOCACHE_COPY;
5579 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5581 dev->vlan_features |= NETIF_F_HIGHDMA;
5583 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5584 ret = notifier_to_errno(ret);
5585 if (ret)
5586 goto err_uninit;
5588 ret = netdev_register_kobject(dev);
5589 if (ret)
5590 goto err_uninit;
5591 dev->reg_state = NETREG_REGISTERED;
5593 __netdev_update_features(dev);
5596 * Default initial state at registry is that the
5597 * device is present.
5600 set_bit(__LINK_STATE_PRESENT, &dev->state);
5602 dev_init_scheduler(dev);
5603 dev_hold(dev);
5604 list_netdevice(dev);
5606 /* Notify protocols, that a new device appeared. */
5607 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5608 ret = notifier_to_errno(ret);
5609 if (ret) {
5610 rollback_registered(dev);
5611 dev->reg_state = NETREG_UNREGISTERED;
5614 * Prevent userspace races by waiting until the network
5615 * device is fully setup before sending notifications.
5617 if (!dev->rtnl_link_ops ||
5618 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5619 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5621 out:
5622 return ret;
5624 err_uninit:
5625 if (dev->netdev_ops->ndo_uninit)
5626 dev->netdev_ops->ndo_uninit(dev);
5627 goto out;
5629 EXPORT_SYMBOL(register_netdevice);
5632 * init_dummy_netdev - init a dummy network device for NAPI
5633 * @dev: device to init
5635 * This takes a network device structure and initialize the minimum
5636 * amount of fields so it can be used to schedule NAPI polls without
5637 * registering a full blown interface. This is to be used by drivers
5638 * that need to tie several hardware interfaces to a single NAPI
5639 * poll scheduler due to HW limitations.
5641 int init_dummy_netdev(struct net_device *dev)
5643 /* Clear everything. Note we don't initialize spinlocks
5644 * are they aren't supposed to be taken by any of the
5645 * NAPI code and this dummy netdev is supposed to be
5646 * only ever used for NAPI polls
5648 memset(dev, 0, sizeof(struct net_device));
5650 /* make sure we BUG if trying to hit standard
5651 * register/unregister code path
5653 dev->reg_state = NETREG_DUMMY;
5655 /* NAPI wants this */
5656 INIT_LIST_HEAD(&dev->napi_list);
5658 /* a dummy interface is started by default */
5659 set_bit(__LINK_STATE_PRESENT, &dev->state);
5660 set_bit(__LINK_STATE_START, &dev->state);
5662 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5663 * because users of this 'device' dont need to change
5664 * its refcount.
5667 return 0;
5669 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5673 * register_netdev - register a network device
5674 * @dev: device to register
5676 * Take a completed network device structure and add it to the kernel
5677 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5678 * chain. 0 is returned on success. A negative errno code is returned
5679 * on a failure to set up the device, or if the name is a duplicate.
5681 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5682 * and expands the device name if you passed a format string to
5683 * alloc_netdev.
5685 int register_netdev(struct net_device *dev)
5687 int err;
5689 rtnl_lock();
5690 err = register_netdevice(dev);
5691 rtnl_unlock();
5692 return err;
5694 EXPORT_SYMBOL(register_netdev);
5696 int netdev_refcnt_read(const struct net_device *dev)
5698 int i, refcnt = 0;
5700 for_each_possible_cpu(i)
5701 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5702 return refcnt;
5704 EXPORT_SYMBOL(netdev_refcnt_read);
5707 * netdev_wait_allrefs - wait until all references are gone.
5709 * This is called when unregistering network devices.
5711 * Any protocol or device that holds a reference should register
5712 * for netdevice notification, and cleanup and put back the
5713 * reference if they receive an UNREGISTER event.
5714 * We can get stuck here if buggy protocols don't correctly
5715 * call dev_put.
5717 static void netdev_wait_allrefs(struct net_device *dev)
5719 unsigned long rebroadcast_time, warning_time;
5720 int refcnt;
5722 linkwatch_forget_dev(dev);
5724 rebroadcast_time = warning_time = jiffies;
5725 refcnt = netdev_refcnt_read(dev);
5727 while (refcnt != 0) {
5728 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5729 rtnl_lock();
5731 /* Rebroadcast unregister notification */
5732 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5733 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5734 * should have already handle it the first time */
5736 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5737 &dev->state)) {
5738 /* We must not have linkwatch events
5739 * pending on unregister. If this
5740 * happens, we simply run the queue
5741 * unscheduled, resulting in a noop
5742 * for this device.
5744 linkwatch_run_queue();
5747 __rtnl_unlock();
5749 rebroadcast_time = jiffies;
5752 msleep(250);
5754 refcnt = netdev_refcnt_read(dev);
5756 if (time_after(jiffies, warning_time + 10 * HZ)) {
5757 printk(KERN_EMERG "unregister_netdevice: "
5758 "waiting for %s to become free. Usage "
5759 "count = %d\n",
5760 dev->name, refcnt);
5761 warning_time = jiffies;
5766 /* The sequence is:
5768 * rtnl_lock();
5769 * ...
5770 * register_netdevice(x1);
5771 * register_netdevice(x2);
5772 * ...
5773 * unregister_netdevice(y1);
5774 * unregister_netdevice(y2);
5775 * ...
5776 * rtnl_unlock();
5777 * free_netdev(y1);
5778 * free_netdev(y2);
5780 * We are invoked by rtnl_unlock().
5781 * This allows us to deal with problems:
5782 * 1) We can delete sysfs objects which invoke hotplug
5783 * without deadlocking with linkwatch via keventd.
5784 * 2) Since we run with the RTNL semaphore not held, we can sleep
5785 * safely in order to wait for the netdev refcnt to drop to zero.
5787 * We must not return until all unregister events added during
5788 * the interval the lock was held have been completed.
5790 void netdev_run_todo(void)
5792 struct list_head list;
5794 /* Snapshot list, allow later requests */
5795 list_replace_init(&net_todo_list, &list);
5797 __rtnl_unlock();
5799 /* Wait for rcu callbacks to finish before attempting to drain
5800 * the device list. This usually avoids a 250ms wait.
5802 if (!list_empty(&list))
5803 rcu_barrier();
5805 while (!list_empty(&list)) {
5806 struct net_device *dev
5807 = list_first_entry(&list, struct net_device, todo_list);
5808 list_del(&dev->todo_list);
5810 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5811 printk(KERN_ERR "network todo '%s' but state %d\n",
5812 dev->name, dev->reg_state);
5813 dump_stack();
5814 continue;
5817 dev->reg_state = NETREG_UNREGISTERED;
5819 on_each_cpu(flush_backlog, dev, 1);
5821 netdev_wait_allrefs(dev);
5823 /* paranoia */
5824 BUG_ON(netdev_refcnt_read(dev));
5825 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5826 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5827 WARN_ON(dev->dn_ptr);
5829 if (dev->destructor)
5830 dev->destructor(dev);
5832 /* Free network device */
5833 kobject_put(&dev->dev.kobj);
5837 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5838 * fields in the same order, with only the type differing.
5840 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5841 const struct net_device_stats *netdev_stats)
5843 #if BITS_PER_LONG == 64
5844 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5845 memcpy(stats64, netdev_stats, sizeof(*stats64));
5846 #else
5847 size_t i, n = sizeof(*stats64) / sizeof(u64);
5848 const unsigned long *src = (const unsigned long *)netdev_stats;
5849 u64 *dst = (u64 *)stats64;
5851 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5852 sizeof(*stats64) / sizeof(u64));
5853 for (i = 0; i < n; i++)
5854 dst[i] = src[i];
5855 #endif
5859 * dev_get_stats - get network device statistics
5860 * @dev: device to get statistics from
5861 * @storage: place to store stats
5863 * Get network statistics from device. Return @storage.
5864 * The device driver may provide its own method by setting
5865 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5866 * otherwise the internal statistics structure is used.
5868 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5869 struct rtnl_link_stats64 *storage)
5871 const struct net_device_ops *ops = dev->netdev_ops;
5873 if (ops->ndo_get_stats64) {
5874 memset(storage, 0, sizeof(*storage));
5875 ops->ndo_get_stats64(dev, storage);
5876 } else if (ops->ndo_get_stats) {
5877 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5878 } else {
5879 netdev_stats_to_stats64(storage, &dev->stats);
5881 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5882 return storage;
5884 EXPORT_SYMBOL(dev_get_stats);
5886 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5888 struct netdev_queue *queue = dev_ingress_queue(dev);
5890 #ifdef CONFIG_NET_CLS_ACT
5891 if (queue)
5892 return queue;
5893 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5894 if (!queue)
5895 return NULL;
5896 netdev_init_one_queue(dev, queue, NULL);
5897 queue->qdisc = &noop_qdisc;
5898 queue->qdisc_sleeping = &noop_qdisc;
5899 rcu_assign_pointer(dev->ingress_queue, queue);
5900 #endif
5901 return queue;
5905 * alloc_netdev_mqs - allocate network device
5906 * @sizeof_priv: size of private data to allocate space for
5907 * @name: device name format string
5908 * @setup: callback to initialize device
5909 * @txqs: the number of TX subqueues to allocate
5910 * @rxqs: the number of RX subqueues to allocate
5912 * Allocates a struct net_device with private data area for driver use
5913 * and performs basic initialization. Also allocates subquue structs
5914 * for each queue on the device.
5916 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5917 void (*setup)(struct net_device *),
5918 unsigned int txqs, unsigned int rxqs)
5920 struct net_device *dev;
5921 size_t alloc_size;
5922 struct net_device *p;
5924 BUG_ON(strlen(name) >= sizeof(dev->name));
5926 if (txqs < 1) {
5927 pr_err("alloc_netdev: Unable to allocate device "
5928 "with zero queues.\n");
5929 return NULL;
5932 #ifdef CONFIG_RPS
5933 if (rxqs < 1) {
5934 pr_err("alloc_netdev: Unable to allocate device "
5935 "with zero RX queues.\n");
5936 return NULL;
5938 #endif
5940 alloc_size = sizeof(struct net_device);
5941 if (sizeof_priv) {
5942 /* ensure 32-byte alignment of private area */
5943 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5944 alloc_size += sizeof_priv;
5946 /* ensure 32-byte alignment of whole construct */
5947 alloc_size += NETDEV_ALIGN - 1;
5949 p = kzalloc(alloc_size, GFP_KERNEL);
5950 if (!p) {
5951 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5952 return NULL;
5955 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5956 dev->padded = (char *)dev - (char *)p;
5958 dev->pcpu_refcnt = alloc_percpu(int);
5959 if (!dev->pcpu_refcnt)
5960 goto free_p;
5962 if (dev_addr_init(dev))
5963 goto free_pcpu;
5965 dev_mc_init(dev);
5966 dev_uc_init(dev);
5968 dev_net_set(dev, &init_net);
5970 dev->gso_max_size = GSO_MAX_SIZE;
5972 INIT_LIST_HEAD(&dev->napi_list);
5973 INIT_LIST_HEAD(&dev->unreg_list);
5974 INIT_LIST_HEAD(&dev->link_watch_list);
5975 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5976 setup(dev);
5978 dev->num_tx_queues = txqs;
5979 dev->real_num_tx_queues = txqs;
5980 if (netif_alloc_netdev_queues(dev))
5981 goto free_all;
5983 #ifdef CONFIG_RPS
5984 dev->num_rx_queues = rxqs;
5985 dev->real_num_rx_queues = rxqs;
5986 if (netif_alloc_rx_queues(dev))
5987 goto free_all;
5988 #endif
5990 strcpy(dev->name, name);
5991 dev->group = INIT_NETDEV_GROUP;
5992 return dev;
5994 free_all:
5995 free_netdev(dev);
5996 return NULL;
5998 free_pcpu:
5999 free_percpu(dev->pcpu_refcnt);
6000 kfree(dev->_tx);
6001 #ifdef CONFIG_RPS
6002 kfree(dev->_rx);
6003 #endif
6005 free_p:
6006 kfree(p);
6007 return NULL;
6009 EXPORT_SYMBOL(alloc_netdev_mqs);
6012 * free_netdev - free network device
6013 * @dev: device
6015 * This function does the last stage of destroying an allocated device
6016 * interface. The reference to the device object is released.
6017 * If this is the last reference then it will be freed.
6019 void free_netdev(struct net_device *dev)
6021 struct napi_struct *p, *n;
6023 release_net(dev_net(dev));
6025 kfree(dev->_tx);
6026 #ifdef CONFIG_RPS
6027 kfree(dev->_rx);
6028 #endif
6030 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6032 /* Flush device addresses */
6033 dev_addr_flush(dev);
6035 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6036 netif_napi_del(p);
6038 free_percpu(dev->pcpu_refcnt);
6039 dev->pcpu_refcnt = NULL;
6041 /* Compatibility with error handling in drivers */
6042 if (dev->reg_state == NETREG_UNINITIALIZED) {
6043 kfree((char *)dev - dev->padded);
6044 return;
6047 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6048 dev->reg_state = NETREG_RELEASED;
6050 /* will free via device release */
6051 put_device(&dev->dev);
6053 EXPORT_SYMBOL(free_netdev);
6056 * synchronize_net - Synchronize with packet receive processing
6058 * Wait for packets currently being received to be done.
6059 * Does not block later packets from starting.
6061 void synchronize_net(void)
6063 might_sleep();
6064 if (rtnl_is_locked())
6065 synchronize_rcu_expedited();
6066 else
6067 synchronize_rcu();
6069 EXPORT_SYMBOL(synchronize_net);
6072 * unregister_netdevice_queue - remove device from the kernel
6073 * @dev: device
6074 * @head: list
6076 * This function shuts down a device interface and removes it
6077 * from the kernel tables.
6078 * If head not NULL, device is queued to be unregistered later.
6080 * Callers must hold the rtnl semaphore. You may want
6081 * unregister_netdev() instead of this.
6084 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6086 ASSERT_RTNL();
6088 if (head) {
6089 list_move_tail(&dev->unreg_list, head);
6090 } else {
6091 rollback_registered(dev);
6092 /* Finish processing unregister after unlock */
6093 net_set_todo(dev);
6096 EXPORT_SYMBOL(unregister_netdevice_queue);
6099 * unregister_netdevice_many - unregister many devices
6100 * @head: list of devices
6102 void unregister_netdevice_many(struct list_head *head)
6104 struct net_device *dev;
6106 if (!list_empty(head)) {
6107 rollback_registered_many(head);
6108 list_for_each_entry(dev, head, unreg_list)
6109 net_set_todo(dev);
6112 EXPORT_SYMBOL(unregister_netdevice_many);
6115 * unregister_netdev - remove device from the kernel
6116 * @dev: device
6118 * This function shuts down a device interface and removes it
6119 * from the kernel tables.
6121 * This is just a wrapper for unregister_netdevice that takes
6122 * the rtnl semaphore. In general you want to use this and not
6123 * unregister_netdevice.
6125 void unregister_netdev(struct net_device *dev)
6127 rtnl_lock();
6128 unregister_netdevice(dev);
6129 rtnl_unlock();
6131 EXPORT_SYMBOL(unregister_netdev);
6134 * dev_change_net_namespace - move device to different nethost namespace
6135 * @dev: device
6136 * @net: network namespace
6137 * @pat: If not NULL name pattern to try if the current device name
6138 * is already taken in the destination network namespace.
6140 * This function shuts down a device interface and moves it
6141 * to a new network namespace. On success 0 is returned, on
6142 * a failure a netagive errno code is returned.
6144 * Callers must hold the rtnl semaphore.
6147 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6149 int err;
6151 ASSERT_RTNL();
6153 /* Don't allow namespace local devices to be moved. */
6154 err = -EINVAL;
6155 if (dev->features & NETIF_F_NETNS_LOCAL)
6156 goto out;
6158 /* Ensure the device has been registrered */
6159 err = -EINVAL;
6160 if (dev->reg_state != NETREG_REGISTERED)
6161 goto out;
6163 /* Get out if there is nothing todo */
6164 err = 0;
6165 if (net_eq(dev_net(dev), net))
6166 goto out;
6168 /* Pick the destination device name, and ensure
6169 * we can use it in the destination network namespace.
6171 err = -EEXIST;
6172 if (__dev_get_by_name(net, dev->name)) {
6173 /* We get here if we can't use the current device name */
6174 if (!pat)
6175 goto out;
6176 if (dev_get_valid_name(dev, pat) < 0)
6177 goto out;
6181 * And now a mini version of register_netdevice unregister_netdevice.
6184 /* If device is running close it first. */
6185 dev_close(dev);
6187 /* And unlink it from device chain */
6188 err = -ENODEV;
6189 unlist_netdevice(dev);
6191 synchronize_net();
6193 /* Shutdown queueing discipline. */
6194 dev_shutdown(dev);
6196 /* Notify protocols, that we are about to destroy
6197 this device. They should clean all the things.
6199 Note that dev->reg_state stays at NETREG_REGISTERED.
6200 This is wanted because this way 8021q and macvlan know
6201 the device is just moving and can keep their slaves up.
6203 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6204 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6205 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6208 * Flush the unicast and multicast chains
6210 dev_uc_flush(dev);
6211 dev_mc_flush(dev);
6213 /* Actually switch the network namespace */
6214 dev_net_set(dev, net);
6216 /* If there is an ifindex conflict assign a new one */
6217 if (__dev_get_by_index(net, dev->ifindex)) {
6218 int iflink = (dev->iflink == dev->ifindex);
6219 dev->ifindex = dev_new_index(net);
6220 if (iflink)
6221 dev->iflink = dev->ifindex;
6224 /* Fixup kobjects */
6225 err = device_rename(&dev->dev, dev->name);
6226 WARN_ON(err);
6228 /* Add the device back in the hashes */
6229 list_netdevice(dev);
6231 /* Notify protocols, that a new device appeared. */
6232 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6235 * Prevent userspace races by waiting until the network
6236 * device is fully setup before sending notifications.
6238 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6240 synchronize_net();
6241 err = 0;
6242 out:
6243 return err;
6245 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6247 static int dev_cpu_callback(struct notifier_block *nfb,
6248 unsigned long action,
6249 void *ocpu)
6251 struct sk_buff **list_skb;
6252 struct sk_buff *skb;
6253 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6254 struct softnet_data *sd, *oldsd;
6256 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6257 return NOTIFY_OK;
6259 local_irq_disable();
6260 cpu = smp_processor_id();
6261 sd = &per_cpu(softnet_data, cpu);
6262 oldsd = &per_cpu(softnet_data, oldcpu);
6264 /* Find end of our completion_queue. */
6265 list_skb = &sd->completion_queue;
6266 while (*list_skb)
6267 list_skb = &(*list_skb)->next;
6268 /* Append completion queue from offline CPU. */
6269 *list_skb = oldsd->completion_queue;
6270 oldsd->completion_queue = NULL;
6272 /* Append output queue from offline CPU. */
6273 if (oldsd->output_queue) {
6274 *sd->output_queue_tailp = oldsd->output_queue;
6275 sd->output_queue_tailp = oldsd->output_queue_tailp;
6276 oldsd->output_queue = NULL;
6277 oldsd->output_queue_tailp = &oldsd->output_queue;
6279 /* Append NAPI poll list from offline CPU. */
6280 if (!list_empty(&oldsd->poll_list)) {
6281 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6282 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6285 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6286 local_irq_enable();
6288 /* Process offline CPU's input_pkt_queue */
6289 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6290 netif_rx(skb);
6291 input_queue_head_incr(oldsd);
6293 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6294 netif_rx(skb);
6295 input_queue_head_incr(oldsd);
6298 return NOTIFY_OK;
6303 * netdev_increment_features - increment feature set by one
6304 * @all: current feature set
6305 * @one: new feature set
6306 * @mask: mask feature set
6308 * Computes a new feature set after adding a device with feature set
6309 * @one to the master device with current feature set @all. Will not
6310 * enable anything that is off in @mask. Returns the new feature set.
6312 netdev_features_t netdev_increment_features(netdev_features_t all,
6313 netdev_features_t one, netdev_features_t mask)
6315 if (mask & NETIF_F_GEN_CSUM)
6316 mask |= NETIF_F_ALL_CSUM;
6317 mask |= NETIF_F_VLAN_CHALLENGED;
6319 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6320 all &= one | ~NETIF_F_ALL_FOR_ALL;
6322 /* If one device supports hw checksumming, set for all. */
6323 if (all & NETIF_F_GEN_CSUM)
6324 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6326 return all;
6328 EXPORT_SYMBOL(netdev_increment_features);
6330 static struct hlist_head *netdev_create_hash(void)
6332 int i;
6333 struct hlist_head *hash;
6335 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6336 if (hash != NULL)
6337 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6338 INIT_HLIST_HEAD(&hash[i]);
6340 return hash;
6343 /* Initialize per network namespace state */
6344 static int __net_init netdev_init(struct net *net)
6346 INIT_LIST_HEAD(&net->dev_base_head);
6348 net->dev_name_head = netdev_create_hash();
6349 if (net->dev_name_head == NULL)
6350 goto err_name;
6352 net->dev_index_head = netdev_create_hash();
6353 if (net->dev_index_head == NULL)
6354 goto err_idx;
6356 return 0;
6358 err_idx:
6359 kfree(net->dev_name_head);
6360 err_name:
6361 return -ENOMEM;
6365 * netdev_drivername - network driver for the device
6366 * @dev: network device
6368 * Determine network driver for device.
6370 const char *netdev_drivername(const struct net_device *dev)
6372 const struct device_driver *driver;
6373 const struct device *parent;
6374 const char *empty = "";
6376 parent = dev->dev.parent;
6377 if (!parent)
6378 return empty;
6380 driver = parent->driver;
6381 if (driver && driver->name)
6382 return driver->name;
6383 return empty;
6386 int __netdev_printk(const char *level, const struct net_device *dev,
6387 struct va_format *vaf)
6389 int r;
6391 if (dev && dev->dev.parent)
6392 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6393 netdev_name(dev), vaf);
6394 else if (dev)
6395 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6396 else
6397 r = printk("%s(NULL net_device): %pV", level, vaf);
6399 return r;
6401 EXPORT_SYMBOL(__netdev_printk);
6403 int netdev_printk(const char *level, const struct net_device *dev,
6404 const char *format, ...)
6406 struct va_format vaf;
6407 va_list args;
6408 int r;
6410 va_start(args, format);
6412 vaf.fmt = format;
6413 vaf.va = &args;
6415 r = __netdev_printk(level, dev, &vaf);
6416 va_end(args);
6418 return r;
6420 EXPORT_SYMBOL(netdev_printk);
6422 #define define_netdev_printk_level(func, level) \
6423 int func(const struct net_device *dev, const char *fmt, ...) \
6425 int r; \
6426 struct va_format vaf; \
6427 va_list args; \
6429 va_start(args, fmt); \
6431 vaf.fmt = fmt; \
6432 vaf.va = &args; \
6434 r = __netdev_printk(level, dev, &vaf); \
6435 va_end(args); \
6437 return r; \
6439 EXPORT_SYMBOL(func);
6441 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6442 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6443 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6444 define_netdev_printk_level(netdev_err, KERN_ERR);
6445 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6446 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6447 define_netdev_printk_level(netdev_info, KERN_INFO);
6449 static void __net_exit netdev_exit(struct net *net)
6451 kfree(net->dev_name_head);
6452 kfree(net->dev_index_head);
6455 static struct pernet_operations __net_initdata netdev_net_ops = {
6456 .init = netdev_init,
6457 .exit = netdev_exit,
6460 static void __net_exit default_device_exit(struct net *net)
6462 struct net_device *dev, *aux;
6464 * Push all migratable network devices back to the
6465 * initial network namespace
6467 rtnl_lock();
6468 for_each_netdev_safe(net, dev, aux) {
6469 int err;
6470 char fb_name[IFNAMSIZ];
6472 /* Ignore unmoveable devices (i.e. loopback) */
6473 if (dev->features & NETIF_F_NETNS_LOCAL)
6474 continue;
6476 /* Leave virtual devices for the generic cleanup */
6477 if (dev->rtnl_link_ops)
6478 continue;
6480 /* Push remaining network devices to init_net */
6481 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6482 err = dev_change_net_namespace(dev, &init_net, fb_name);
6483 if (err) {
6484 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6485 __func__, dev->name, err);
6486 BUG();
6489 rtnl_unlock();
6492 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6494 /* At exit all network devices most be removed from a network
6495 * namespace. Do this in the reverse order of registration.
6496 * Do this across as many network namespaces as possible to
6497 * improve batching efficiency.
6499 struct net_device *dev;
6500 struct net *net;
6501 LIST_HEAD(dev_kill_list);
6503 rtnl_lock();
6504 list_for_each_entry(net, net_list, exit_list) {
6505 for_each_netdev_reverse(net, dev) {
6506 if (dev->rtnl_link_ops)
6507 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6508 else
6509 unregister_netdevice_queue(dev, &dev_kill_list);
6512 unregister_netdevice_many(&dev_kill_list);
6513 list_del(&dev_kill_list);
6514 rtnl_unlock();
6517 static struct pernet_operations __net_initdata default_device_ops = {
6518 .exit = default_device_exit,
6519 .exit_batch = default_device_exit_batch,
6523 * Initialize the DEV module. At boot time this walks the device list and
6524 * unhooks any devices that fail to initialise (normally hardware not
6525 * present) and leaves us with a valid list of present and active devices.
6530 * This is called single threaded during boot, so no need
6531 * to take the rtnl semaphore.
6533 static int __init net_dev_init(void)
6535 int i, rc = -ENOMEM;
6537 BUG_ON(!dev_boot_phase);
6539 if (dev_proc_init())
6540 goto out;
6542 if (netdev_kobject_init())
6543 goto out;
6545 INIT_LIST_HEAD(&ptype_all);
6546 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6547 INIT_LIST_HEAD(&ptype_base[i]);
6549 if (register_pernet_subsys(&netdev_net_ops))
6550 goto out;
6553 * Initialise the packet receive queues.
6556 for_each_possible_cpu(i) {
6557 struct softnet_data *sd = &per_cpu(softnet_data, i);
6559 memset(sd, 0, sizeof(*sd));
6560 skb_queue_head_init(&sd->input_pkt_queue);
6561 skb_queue_head_init(&sd->process_queue);
6562 sd->completion_queue = NULL;
6563 INIT_LIST_HEAD(&sd->poll_list);
6564 sd->output_queue = NULL;
6565 sd->output_queue_tailp = &sd->output_queue;
6566 #ifdef CONFIG_RPS
6567 sd->csd.func = rps_trigger_softirq;
6568 sd->csd.info = sd;
6569 sd->csd.flags = 0;
6570 sd->cpu = i;
6571 #endif
6573 sd->backlog.poll = process_backlog;
6574 sd->backlog.weight = weight_p;
6575 sd->backlog.gro_list = NULL;
6576 sd->backlog.gro_count = 0;
6579 dev_boot_phase = 0;
6581 /* The loopback device is special if any other network devices
6582 * is present in a network namespace the loopback device must
6583 * be present. Since we now dynamically allocate and free the
6584 * loopback device ensure this invariant is maintained by
6585 * keeping the loopback device as the first device on the
6586 * list of network devices. Ensuring the loopback devices
6587 * is the first device that appears and the last network device
6588 * that disappears.
6590 if (register_pernet_device(&loopback_net_ops))
6591 goto out;
6593 if (register_pernet_device(&default_device_ops))
6594 goto out;
6596 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6597 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6599 hotcpu_notifier(dev_cpu_callback, 0);
6600 dst_init();
6601 dev_mcast_init();
6602 rc = 0;
6603 out:
6604 return rc;
6607 subsys_initcall(net_dev_init);
6609 static int __init initialize_hashrnd(void)
6611 get_random_bytes(&hashrnd, sizeof(hashrnd));
6612 return 0;
6615 late_initcall_sync(initialize_hashrnd);