spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / security / keys / key.c
blob7ada8019be1f2c08314fe0c8c14d3058a1ee26ea
1 /* Basic authentication token and access key management
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include <linux/user_namespace.h>
22 #include "internal.h"
24 struct kmem_cache *key_jar;
25 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
26 DEFINE_SPINLOCK(key_serial_lock);
28 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
29 DEFINE_SPINLOCK(key_user_lock);
31 unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */
32 unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */
33 unsigned int key_quota_maxkeys = 200; /* general key count quota */
34 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
36 static LIST_HEAD(key_types_list);
37 static DECLARE_RWSEM(key_types_sem);
39 /* We serialise key instantiation and link */
40 DEFINE_MUTEX(key_construction_mutex);
42 #ifdef KEY_DEBUGGING
43 void __key_check(const struct key *key)
45 printk("__key_check: key %p {%08x} should be {%08x}\n",
46 key, key->magic, KEY_DEBUG_MAGIC);
47 BUG();
49 #endif
52 * Get the key quota record for a user, allocating a new record if one doesn't
53 * already exist.
55 struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
57 struct key_user *candidate = NULL, *user;
58 struct rb_node *parent = NULL;
59 struct rb_node **p;
61 try_again:
62 p = &key_user_tree.rb_node;
63 spin_lock(&key_user_lock);
65 /* search the tree for a user record with a matching UID */
66 while (*p) {
67 parent = *p;
68 user = rb_entry(parent, struct key_user, node);
70 if (uid < user->uid)
71 p = &(*p)->rb_left;
72 else if (uid > user->uid)
73 p = &(*p)->rb_right;
74 else if (user_ns < user->user_ns)
75 p = &(*p)->rb_left;
76 else if (user_ns > user->user_ns)
77 p = &(*p)->rb_right;
78 else
79 goto found;
82 /* if we get here, we failed to find a match in the tree */
83 if (!candidate) {
84 /* allocate a candidate user record if we don't already have
85 * one */
86 spin_unlock(&key_user_lock);
88 user = NULL;
89 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
90 if (unlikely(!candidate))
91 goto out;
93 /* the allocation may have scheduled, so we need to repeat the
94 * search lest someone else added the record whilst we were
95 * asleep */
96 goto try_again;
99 /* if we get here, then the user record still hadn't appeared on the
100 * second pass - so we use the candidate record */
101 atomic_set(&candidate->usage, 1);
102 atomic_set(&candidate->nkeys, 0);
103 atomic_set(&candidate->nikeys, 0);
104 candidate->uid = uid;
105 candidate->user_ns = get_user_ns(user_ns);
106 candidate->qnkeys = 0;
107 candidate->qnbytes = 0;
108 spin_lock_init(&candidate->lock);
109 mutex_init(&candidate->cons_lock);
111 rb_link_node(&candidate->node, parent, p);
112 rb_insert_color(&candidate->node, &key_user_tree);
113 spin_unlock(&key_user_lock);
114 user = candidate;
115 goto out;
117 /* okay - we found a user record for this UID */
118 found:
119 atomic_inc(&user->usage);
120 spin_unlock(&key_user_lock);
121 kfree(candidate);
122 out:
123 return user;
127 * Dispose of a user structure
129 void key_user_put(struct key_user *user)
131 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
132 rb_erase(&user->node, &key_user_tree);
133 spin_unlock(&key_user_lock);
134 put_user_ns(user->user_ns);
136 kfree(user);
141 * Allocate a serial number for a key. These are assigned randomly to avoid
142 * security issues through covert channel problems.
144 static inline void key_alloc_serial(struct key *key)
146 struct rb_node *parent, **p;
147 struct key *xkey;
149 /* propose a random serial number and look for a hole for it in the
150 * serial number tree */
151 do {
152 get_random_bytes(&key->serial, sizeof(key->serial));
154 key->serial >>= 1; /* negative numbers are not permitted */
155 } while (key->serial < 3);
157 spin_lock(&key_serial_lock);
159 attempt_insertion:
160 parent = NULL;
161 p = &key_serial_tree.rb_node;
163 while (*p) {
164 parent = *p;
165 xkey = rb_entry(parent, struct key, serial_node);
167 if (key->serial < xkey->serial)
168 p = &(*p)->rb_left;
169 else if (key->serial > xkey->serial)
170 p = &(*p)->rb_right;
171 else
172 goto serial_exists;
175 /* we've found a suitable hole - arrange for this key to occupy it */
176 rb_link_node(&key->serial_node, parent, p);
177 rb_insert_color(&key->serial_node, &key_serial_tree);
179 spin_unlock(&key_serial_lock);
180 return;
182 /* we found a key with the proposed serial number - walk the tree from
183 * that point looking for the next unused serial number */
184 serial_exists:
185 for (;;) {
186 key->serial++;
187 if (key->serial < 3) {
188 key->serial = 3;
189 goto attempt_insertion;
192 parent = rb_next(parent);
193 if (!parent)
194 goto attempt_insertion;
196 xkey = rb_entry(parent, struct key, serial_node);
197 if (key->serial < xkey->serial)
198 goto attempt_insertion;
203 * key_alloc - Allocate a key of the specified type.
204 * @type: The type of key to allocate.
205 * @desc: The key description to allow the key to be searched out.
206 * @uid: The owner of the new key.
207 * @gid: The group ID for the new key's group permissions.
208 * @cred: The credentials specifying UID namespace.
209 * @perm: The permissions mask of the new key.
210 * @flags: Flags specifying quota properties.
212 * Allocate a key of the specified type with the attributes given. The key is
213 * returned in an uninstantiated state and the caller needs to instantiate the
214 * key before returning.
216 * The user's key count quota is updated to reflect the creation of the key and
217 * the user's key data quota has the default for the key type reserved. The
218 * instantiation function should amend this as necessary. If insufficient
219 * quota is available, -EDQUOT will be returned.
221 * The LSM security modules can prevent a key being created, in which case
222 * -EACCES will be returned.
224 * Returns a pointer to the new key if successful and an error code otherwise.
226 * Note that the caller needs to ensure the key type isn't uninstantiated.
227 * Internally this can be done by locking key_types_sem. Externally, this can
228 * be done by either never unregistering the key type, or making sure
229 * key_alloc() calls don't race with module unloading.
231 struct key *key_alloc(struct key_type *type, const char *desc,
232 uid_t uid, gid_t gid, const struct cred *cred,
233 key_perm_t perm, unsigned long flags)
235 struct key_user *user = NULL;
236 struct key *key;
237 size_t desclen, quotalen;
238 int ret;
240 key = ERR_PTR(-EINVAL);
241 if (!desc || !*desc)
242 goto error;
244 if (type->vet_description) {
245 ret = type->vet_description(desc);
246 if (ret < 0) {
247 key = ERR_PTR(ret);
248 goto error;
252 desclen = strlen(desc) + 1;
253 quotalen = desclen + type->def_datalen;
255 /* get hold of the key tracking for this user */
256 user = key_user_lookup(uid, cred->user->user_ns);
257 if (!user)
258 goto no_memory_1;
260 /* check that the user's quota permits allocation of another key and
261 * its description */
262 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
263 unsigned maxkeys = (uid == 0) ?
264 key_quota_root_maxkeys : key_quota_maxkeys;
265 unsigned maxbytes = (uid == 0) ?
266 key_quota_root_maxbytes : key_quota_maxbytes;
268 spin_lock(&user->lock);
269 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
270 if (user->qnkeys + 1 >= maxkeys ||
271 user->qnbytes + quotalen >= maxbytes ||
272 user->qnbytes + quotalen < user->qnbytes)
273 goto no_quota;
276 user->qnkeys++;
277 user->qnbytes += quotalen;
278 spin_unlock(&user->lock);
281 /* allocate and initialise the key and its description */
282 key = kmem_cache_alloc(key_jar, GFP_KERNEL);
283 if (!key)
284 goto no_memory_2;
286 if (desc) {
287 key->description = kmemdup(desc, desclen, GFP_KERNEL);
288 if (!key->description)
289 goto no_memory_3;
292 atomic_set(&key->usage, 1);
293 init_rwsem(&key->sem);
294 lockdep_set_class(&key->sem, &type->lock_class);
295 key->type = type;
296 key->user = user;
297 key->quotalen = quotalen;
298 key->datalen = type->def_datalen;
299 key->uid = uid;
300 key->gid = gid;
301 key->perm = perm;
302 key->flags = 0;
303 key->expiry = 0;
304 key->payload.data = NULL;
305 key->security = NULL;
307 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
308 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
310 memset(&key->type_data, 0, sizeof(key->type_data));
312 #ifdef KEY_DEBUGGING
313 key->magic = KEY_DEBUG_MAGIC;
314 #endif
316 /* let the security module know about the key */
317 ret = security_key_alloc(key, cred, flags);
318 if (ret < 0)
319 goto security_error;
321 /* publish the key by giving it a serial number */
322 atomic_inc(&user->nkeys);
323 key_alloc_serial(key);
325 error:
326 return key;
328 security_error:
329 kfree(key->description);
330 kmem_cache_free(key_jar, key);
331 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
332 spin_lock(&user->lock);
333 user->qnkeys--;
334 user->qnbytes -= quotalen;
335 spin_unlock(&user->lock);
337 key_user_put(user);
338 key = ERR_PTR(ret);
339 goto error;
341 no_memory_3:
342 kmem_cache_free(key_jar, key);
343 no_memory_2:
344 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
345 spin_lock(&user->lock);
346 user->qnkeys--;
347 user->qnbytes -= quotalen;
348 spin_unlock(&user->lock);
350 key_user_put(user);
351 no_memory_1:
352 key = ERR_PTR(-ENOMEM);
353 goto error;
355 no_quota:
356 spin_unlock(&user->lock);
357 key_user_put(user);
358 key = ERR_PTR(-EDQUOT);
359 goto error;
361 EXPORT_SYMBOL(key_alloc);
364 * key_payload_reserve - Adjust data quota reservation for the key's payload
365 * @key: The key to make the reservation for.
366 * @datalen: The amount of data payload the caller now wants.
368 * Adjust the amount of the owning user's key data quota that a key reserves.
369 * If the amount is increased, then -EDQUOT may be returned if there isn't
370 * enough free quota available.
372 * If successful, 0 is returned.
374 int key_payload_reserve(struct key *key, size_t datalen)
376 int delta = (int)datalen - key->datalen;
377 int ret = 0;
379 key_check(key);
381 /* contemplate the quota adjustment */
382 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
383 unsigned maxbytes = (key->user->uid == 0) ?
384 key_quota_root_maxbytes : key_quota_maxbytes;
386 spin_lock(&key->user->lock);
388 if (delta > 0 &&
389 (key->user->qnbytes + delta >= maxbytes ||
390 key->user->qnbytes + delta < key->user->qnbytes)) {
391 ret = -EDQUOT;
393 else {
394 key->user->qnbytes += delta;
395 key->quotalen += delta;
397 spin_unlock(&key->user->lock);
400 /* change the recorded data length if that didn't generate an error */
401 if (ret == 0)
402 key->datalen = datalen;
404 return ret;
406 EXPORT_SYMBOL(key_payload_reserve);
409 * Instantiate a key and link it into the target keyring atomically. Must be
410 * called with the target keyring's semaphore writelocked. The target key's
411 * semaphore need not be locked as instantiation is serialised by
412 * key_construction_mutex.
414 static int __key_instantiate_and_link(struct key *key,
415 const void *data,
416 size_t datalen,
417 struct key *keyring,
418 struct key *authkey,
419 unsigned long *_prealloc)
421 int ret, awaken;
423 key_check(key);
424 key_check(keyring);
426 awaken = 0;
427 ret = -EBUSY;
429 mutex_lock(&key_construction_mutex);
431 /* can't instantiate twice */
432 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
433 /* instantiate the key */
434 ret = key->type->instantiate(key, data, datalen);
436 if (ret == 0) {
437 /* mark the key as being instantiated */
438 atomic_inc(&key->user->nikeys);
439 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
441 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
442 awaken = 1;
444 /* and link it into the destination keyring */
445 if (keyring)
446 __key_link(keyring, key, _prealloc);
448 /* disable the authorisation key */
449 if (authkey)
450 key_revoke(authkey);
454 mutex_unlock(&key_construction_mutex);
456 /* wake up anyone waiting for a key to be constructed */
457 if (awaken)
458 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
460 return ret;
464 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
465 * @key: The key to instantiate.
466 * @data: The data to use to instantiate the keyring.
467 * @datalen: The length of @data.
468 * @keyring: Keyring to create a link in on success (or NULL).
469 * @authkey: The authorisation token permitting instantiation.
471 * Instantiate a key that's in the uninstantiated state using the provided data
472 * and, if successful, link it in to the destination keyring if one is
473 * supplied.
475 * If successful, 0 is returned, the authorisation token is revoked and anyone
476 * waiting for the key is woken up. If the key was already instantiated,
477 * -EBUSY will be returned.
479 int key_instantiate_and_link(struct key *key,
480 const void *data,
481 size_t datalen,
482 struct key *keyring,
483 struct key *authkey)
485 unsigned long prealloc;
486 int ret;
488 if (keyring) {
489 ret = __key_link_begin(keyring, key->type, key->description,
490 &prealloc);
491 if (ret < 0)
492 return ret;
495 ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
496 &prealloc);
498 if (keyring)
499 __key_link_end(keyring, key->type, prealloc);
501 return ret;
504 EXPORT_SYMBOL(key_instantiate_and_link);
507 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
508 * @key: The key to instantiate.
509 * @timeout: The timeout on the negative key.
510 * @error: The error to return when the key is hit.
511 * @keyring: Keyring to create a link in on success (or NULL).
512 * @authkey: The authorisation token permitting instantiation.
514 * Negatively instantiate a key that's in the uninstantiated state and, if
515 * successful, set its timeout and stored error and link it in to the
516 * destination keyring if one is supplied. The key and any links to the key
517 * will be automatically garbage collected after the timeout expires.
519 * Negative keys are used to rate limit repeated request_key() calls by causing
520 * them to return the stored error code (typically ENOKEY) until the negative
521 * key expires.
523 * If successful, 0 is returned, the authorisation token is revoked and anyone
524 * waiting for the key is woken up. If the key was already instantiated,
525 * -EBUSY will be returned.
527 int key_reject_and_link(struct key *key,
528 unsigned timeout,
529 unsigned error,
530 struct key *keyring,
531 struct key *authkey)
533 unsigned long prealloc;
534 struct timespec now;
535 int ret, awaken, link_ret = 0;
537 key_check(key);
538 key_check(keyring);
540 awaken = 0;
541 ret = -EBUSY;
543 if (keyring)
544 link_ret = __key_link_begin(keyring, key->type,
545 key->description, &prealloc);
547 mutex_lock(&key_construction_mutex);
549 /* can't instantiate twice */
550 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
551 /* mark the key as being negatively instantiated */
552 atomic_inc(&key->user->nikeys);
553 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
554 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
555 key->type_data.reject_error = -error;
556 now = current_kernel_time();
557 key->expiry = now.tv_sec + timeout;
558 key_schedule_gc(key->expiry + key_gc_delay);
560 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
561 awaken = 1;
563 ret = 0;
565 /* and link it into the destination keyring */
566 if (keyring && link_ret == 0)
567 __key_link(keyring, key, &prealloc);
569 /* disable the authorisation key */
570 if (authkey)
571 key_revoke(authkey);
574 mutex_unlock(&key_construction_mutex);
576 if (keyring)
577 __key_link_end(keyring, key->type, prealloc);
579 /* wake up anyone waiting for a key to be constructed */
580 if (awaken)
581 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
583 return ret == 0 ? link_ret : ret;
585 EXPORT_SYMBOL(key_reject_and_link);
588 * key_put - Discard a reference to a key.
589 * @key: The key to discard a reference from.
591 * Discard a reference to a key, and when all the references are gone, we
592 * schedule the cleanup task to come and pull it out of the tree in process
593 * context at some later time.
595 void key_put(struct key *key)
597 if (key) {
598 key_check(key);
600 if (atomic_dec_and_test(&key->usage))
601 queue_work(system_nrt_wq, &key_gc_work);
604 EXPORT_SYMBOL(key_put);
607 * Find a key by its serial number.
609 struct key *key_lookup(key_serial_t id)
611 struct rb_node *n;
612 struct key *key;
614 spin_lock(&key_serial_lock);
616 /* search the tree for the specified key */
617 n = key_serial_tree.rb_node;
618 while (n) {
619 key = rb_entry(n, struct key, serial_node);
621 if (id < key->serial)
622 n = n->rb_left;
623 else if (id > key->serial)
624 n = n->rb_right;
625 else
626 goto found;
629 not_found:
630 key = ERR_PTR(-ENOKEY);
631 goto error;
633 found:
634 /* pretend it doesn't exist if it is awaiting deletion */
635 if (atomic_read(&key->usage) == 0)
636 goto not_found;
638 /* this races with key_put(), but that doesn't matter since key_put()
639 * doesn't actually change the key
641 atomic_inc(&key->usage);
643 error:
644 spin_unlock(&key_serial_lock);
645 return key;
649 * Find and lock the specified key type against removal.
651 * We return with the sem read-locked if successful. If the type wasn't
652 * available -ENOKEY is returned instead.
654 struct key_type *key_type_lookup(const char *type)
656 struct key_type *ktype;
658 down_read(&key_types_sem);
660 /* look up the key type to see if it's one of the registered kernel
661 * types */
662 list_for_each_entry(ktype, &key_types_list, link) {
663 if (strcmp(ktype->name, type) == 0)
664 goto found_kernel_type;
667 up_read(&key_types_sem);
668 ktype = ERR_PTR(-ENOKEY);
670 found_kernel_type:
671 return ktype;
675 * Unlock a key type locked by key_type_lookup().
677 void key_type_put(struct key_type *ktype)
679 up_read(&key_types_sem);
683 * Attempt to update an existing key.
685 * The key is given to us with an incremented refcount that we need to discard
686 * if we get an error.
688 static inline key_ref_t __key_update(key_ref_t key_ref,
689 const void *payload, size_t plen)
691 struct key *key = key_ref_to_ptr(key_ref);
692 int ret;
694 /* need write permission on the key to update it */
695 ret = key_permission(key_ref, KEY_WRITE);
696 if (ret < 0)
697 goto error;
699 ret = -EEXIST;
700 if (!key->type->update)
701 goto error;
703 down_write(&key->sem);
705 ret = key->type->update(key, payload, plen);
706 if (ret == 0)
707 /* updating a negative key instantiates it */
708 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
710 up_write(&key->sem);
712 if (ret < 0)
713 goto error;
714 out:
715 return key_ref;
717 error:
718 key_put(key);
719 key_ref = ERR_PTR(ret);
720 goto out;
724 * key_create_or_update - Update or create and instantiate a key.
725 * @keyring_ref: A pointer to the destination keyring with possession flag.
726 * @type: The type of key.
727 * @description: The searchable description for the key.
728 * @payload: The data to use to instantiate or update the key.
729 * @plen: The length of @payload.
730 * @perm: The permissions mask for a new key.
731 * @flags: The quota flags for a new key.
733 * Search the destination keyring for a key of the same description and if one
734 * is found, update it, otherwise create and instantiate a new one and create a
735 * link to it from that keyring.
737 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
738 * concocted.
740 * Returns a pointer to the new key if successful, -ENODEV if the key type
741 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
742 * caller isn't permitted to modify the keyring or the LSM did not permit
743 * creation of the key.
745 * On success, the possession flag from the keyring ref will be tacked on to
746 * the key ref before it is returned.
748 key_ref_t key_create_or_update(key_ref_t keyring_ref,
749 const char *type,
750 const char *description,
751 const void *payload,
752 size_t plen,
753 key_perm_t perm,
754 unsigned long flags)
756 unsigned long prealloc;
757 const struct cred *cred = current_cred();
758 struct key_type *ktype;
759 struct key *keyring, *key = NULL;
760 key_ref_t key_ref;
761 int ret;
763 /* look up the key type to see if it's one of the registered kernel
764 * types */
765 ktype = key_type_lookup(type);
766 if (IS_ERR(ktype)) {
767 key_ref = ERR_PTR(-ENODEV);
768 goto error;
771 key_ref = ERR_PTR(-EINVAL);
772 if (!ktype->match || !ktype->instantiate)
773 goto error_2;
775 keyring = key_ref_to_ptr(keyring_ref);
777 key_check(keyring);
779 key_ref = ERR_PTR(-ENOTDIR);
780 if (keyring->type != &key_type_keyring)
781 goto error_2;
783 ret = __key_link_begin(keyring, ktype, description, &prealloc);
784 if (ret < 0)
785 goto error_2;
787 /* if we're going to allocate a new key, we're going to have
788 * to modify the keyring */
789 ret = key_permission(keyring_ref, KEY_WRITE);
790 if (ret < 0) {
791 key_ref = ERR_PTR(ret);
792 goto error_3;
795 /* if it's possible to update this type of key, search for an existing
796 * key of the same type and description in the destination keyring and
797 * update that instead if possible
799 if (ktype->update) {
800 key_ref = __keyring_search_one(keyring_ref, ktype, description,
802 if (!IS_ERR(key_ref))
803 goto found_matching_key;
806 /* if the client doesn't provide, decide on the permissions we want */
807 if (perm == KEY_PERM_UNDEF) {
808 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
809 perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
811 if (ktype->read)
812 perm |= KEY_POS_READ | KEY_USR_READ;
814 if (ktype == &key_type_keyring || ktype->update)
815 perm |= KEY_USR_WRITE;
818 /* allocate a new key */
819 key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
820 perm, flags);
821 if (IS_ERR(key)) {
822 key_ref = ERR_CAST(key);
823 goto error_3;
826 /* instantiate it and link it into the target keyring */
827 ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
828 &prealloc);
829 if (ret < 0) {
830 key_put(key);
831 key_ref = ERR_PTR(ret);
832 goto error_3;
835 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
837 error_3:
838 __key_link_end(keyring, ktype, prealloc);
839 error_2:
840 key_type_put(ktype);
841 error:
842 return key_ref;
844 found_matching_key:
845 /* we found a matching key, so we're going to try to update it
846 * - we can drop the locks first as we have the key pinned
848 __key_link_end(keyring, ktype, prealloc);
849 key_type_put(ktype);
851 key_ref = __key_update(key_ref, payload, plen);
852 goto error;
854 EXPORT_SYMBOL(key_create_or_update);
857 * key_update - Update a key's contents.
858 * @key_ref: The pointer (plus possession flag) to the key.
859 * @payload: The data to be used to update the key.
860 * @plen: The length of @payload.
862 * Attempt to update the contents of a key with the given payload data. The
863 * caller must be granted Write permission on the key. Negative keys can be
864 * instantiated by this method.
866 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
867 * type does not support updating. The key type may return other errors.
869 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
871 struct key *key = key_ref_to_ptr(key_ref);
872 int ret;
874 key_check(key);
876 /* the key must be writable */
877 ret = key_permission(key_ref, KEY_WRITE);
878 if (ret < 0)
879 goto error;
881 /* attempt to update it if supported */
882 ret = -EOPNOTSUPP;
883 if (key->type->update) {
884 down_write(&key->sem);
886 ret = key->type->update(key, payload, plen);
887 if (ret == 0)
888 /* updating a negative key instantiates it */
889 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
891 up_write(&key->sem);
894 error:
895 return ret;
897 EXPORT_SYMBOL(key_update);
900 * key_revoke - Revoke a key.
901 * @key: The key to be revoked.
903 * Mark a key as being revoked and ask the type to free up its resources. The
904 * revocation timeout is set and the key and all its links will be
905 * automatically garbage collected after key_gc_delay amount of time if they
906 * are not manually dealt with first.
908 void key_revoke(struct key *key)
910 struct timespec now;
911 time_t time;
913 key_check(key);
915 /* make sure no one's trying to change or use the key when we mark it
916 * - we tell lockdep that we might nest because we might be revoking an
917 * authorisation key whilst holding the sem on a key we've just
918 * instantiated
920 down_write_nested(&key->sem, 1);
921 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
922 key->type->revoke)
923 key->type->revoke(key);
925 /* set the death time to no more than the expiry time */
926 now = current_kernel_time();
927 time = now.tv_sec;
928 if (key->revoked_at == 0 || key->revoked_at > time) {
929 key->revoked_at = time;
930 key_schedule_gc(key->revoked_at + key_gc_delay);
933 up_write(&key->sem);
935 EXPORT_SYMBOL(key_revoke);
938 * register_key_type - Register a type of key.
939 * @ktype: The new key type.
941 * Register a new key type.
943 * Returns 0 on success or -EEXIST if a type of this name already exists.
945 int register_key_type(struct key_type *ktype)
947 struct key_type *p;
948 int ret;
950 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
952 ret = -EEXIST;
953 down_write(&key_types_sem);
955 /* disallow key types with the same name */
956 list_for_each_entry(p, &key_types_list, link) {
957 if (strcmp(p->name, ktype->name) == 0)
958 goto out;
961 /* store the type */
962 list_add(&ktype->link, &key_types_list);
963 ret = 0;
965 out:
966 up_write(&key_types_sem);
967 return ret;
969 EXPORT_SYMBOL(register_key_type);
972 * unregister_key_type - Unregister a type of key.
973 * @ktype: The key type.
975 * Unregister a key type and mark all the extant keys of this type as dead.
976 * Those keys of this type are then destroyed to get rid of their payloads and
977 * they and their links will be garbage collected as soon as possible.
979 void unregister_key_type(struct key_type *ktype)
981 down_write(&key_types_sem);
982 list_del_init(&ktype->link);
983 downgrade_write(&key_types_sem);
984 key_gc_keytype(ktype);
985 up_read(&key_types_sem);
987 EXPORT_SYMBOL(unregister_key_type);
990 * Initialise the key management state.
992 void __init key_init(void)
994 /* allocate a slab in which we can store keys */
995 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
996 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
998 /* add the special key types */
999 list_add_tail(&key_type_keyring.link, &key_types_list);
1000 list_add_tail(&key_type_dead.link, &key_types_list);
1001 list_add_tail(&key_type_user.link, &key_types_list);
1002 list_add_tail(&key_type_logon.link, &key_types_list);
1004 /* record the root user tracking */
1005 rb_link_node(&root_key_user.node,
1006 NULL,
1007 &key_user_tree.rb_node);
1009 rb_insert_color(&root_key_user.node,
1010 &key_user_tree);