spi-topcliff-pch: add recovery processing in case wait-event timeout
[zen-stable.git] / sound / soc / fsl / fsl_dma.c
blob4f59bbaba48f4fcb8ae70e0ced615f19ab71404e
1 /*
2 * Freescale DMA ALSA SoC PCM driver
4 * Author: Timur Tabi <timur@freescale.com>
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
12 * This driver implements ASoC support for the Elo DMA controller, which is
13 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14 * the PCM driver is what handles the DMA buffer.
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/gfp.h>
24 #include <linux/of_platform.h>
25 #include <linux/list.h>
26 #include <linux/slab.h>
28 #include <sound/core.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/soc.h>
33 #include <asm/io.h>
35 #include "fsl_dma.h"
36 #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
39 * The formats that the DMA controller supports, which is anything
40 * that is 8, 16, or 32 bits.
42 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
43 SNDRV_PCM_FMTBIT_U8 | \
44 SNDRV_PCM_FMTBIT_S16_LE | \
45 SNDRV_PCM_FMTBIT_S16_BE | \
46 SNDRV_PCM_FMTBIT_U16_LE | \
47 SNDRV_PCM_FMTBIT_U16_BE | \
48 SNDRV_PCM_FMTBIT_S24_LE | \
49 SNDRV_PCM_FMTBIT_S24_BE | \
50 SNDRV_PCM_FMTBIT_U24_LE | \
51 SNDRV_PCM_FMTBIT_U24_BE | \
52 SNDRV_PCM_FMTBIT_S32_LE | \
53 SNDRV_PCM_FMTBIT_S32_BE | \
54 SNDRV_PCM_FMTBIT_U32_LE | \
55 SNDRV_PCM_FMTBIT_U32_BE)
57 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
58 SNDRV_PCM_RATE_CONTINUOUS)
60 struct dma_object {
61 struct snd_soc_platform_driver dai;
62 dma_addr_t ssi_stx_phys;
63 dma_addr_t ssi_srx_phys;
64 unsigned int ssi_fifo_depth;
65 struct ccsr_dma_channel __iomem *channel;
66 unsigned int irq;
67 bool assigned;
68 char path[1];
72 * The number of DMA links to use. Two is the bare minimum, but if you
73 * have really small links you might need more.
75 #define NUM_DMA_LINKS 2
77 /** fsl_dma_private: p-substream DMA data
79 * Each substream has a 1-to-1 association with a DMA channel.
81 * The link[] array is first because it needs to be aligned on a 32-byte
82 * boundary, so putting it first will ensure alignment without padding the
83 * structure.
85 * @link[]: array of link descriptors
86 * @dma_channel: pointer to the DMA channel's registers
87 * @irq: IRQ for this DMA channel
88 * @substream: pointer to the substream object, needed by the ISR
89 * @ssi_sxx_phys: bus address of the STX or SRX register to use
90 * @ld_buf_phys: physical address of the LD buffer
91 * @current_link: index into link[] of the link currently being processed
92 * @dma_buf_phys: physical address of the DMA buffer
93 * @dma_buf_next: physical address of the next period to process
94 * @dma_buf_end: physical address of the byte after the end of the DMA
95 * @buffer period_size: the size of a single period
96 * @num_periods: the number of periods in the DMA buffer
98 struct fsl_dma_private {
99 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
100 struct ccsr_dma_channel __iomem *dma_channel;
101 unsigned int irq;
102 struct snd_pcm_substream *substream;
103 dma_addr_t ssi_sxx_phys;
104 unsigned int ssi_fifo_depth;
105 dma_addr_t ld_buf_phys;
106 unsigned int current_link;
107 dma_addr_t dma_buf_phys;
108 dma_addr_t dma_buf_next;
109 dma_addr_t dma_buf_end;
110 size_t period_size;
111 unsigned int num_periods;
115 * fsl_dma_hardare: define characteristics of the PCM hardware.
117 * The PCM hardware is the Freescale DMA controller. This structure defines
118 * the capabilities of that hardware.
120 * Since the sampling rate and data format are not controlled by the DMA
121 * controller, we specify no limits for those values. The only exception is
122 * period_bytes_min, which is set to a reasonably low value to prevent the
123 * DMA controller from generating too many interrupts per second.
125 * Since each link descriptor has a 32-bit byte count field, we set
126 * period_bytes_max to the largest 32-bit number. We also have no maximum
127 * number of periods.
129 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
130 * limitation in the SSI driver requires the sample rates for playback and
131 * capture to be the same.
133 static const struct snd_pcm_hardware fsl_dma_hardware = {
135 .info = SNDRV_PCM_INFO_INTERLEAVED |
136 SNDRV_PCM_INFO_MMAP |
137 SNDRV_PCM_INFO_MMAP_VALID |
138 SNDRV_PCM_INFO_JOINT_DUPLEX |
139 SNDRV_PCM_INFO_PAUSE,
140 .formats = FSLDMA_PCM_FORMATS,
141 .rates = FSLDMA_PCM_RATES,
142 .rate_min = 5512,
143 .rate_max = 192000,
144 .period_bytes_min = 512, /* A reasonable limit */
145 .period_bytes_max = (u32) -1,
146 .periods_min = NUM_DMA_LINKS,
147 .periods_max = (unsigned int) -1,
148 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
152 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
154 * This function should be called by the ISR whenever the DMA controller
155 * halts data transfer.
157 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
159 unsigned long flags;
161 snd_pcm_stream_lock_irqsave(substream, flags);
163 if (snd_pcm_running(substream))
164 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
166 snd_pcm_stream_unlock_irqrestore(substream, flags);
170 * fsl_dma_update_pointers - update LD pointers to point to the next period
172 * As each period is completed, this function changes the the link
173 * descriptor pointers for that period to point to the next period.
175 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
177 struct fsl_dma_link_descriptor *link =
178 &dma_private->link[dma_private->current_link];
180 /* Update our link descriptors to point to the next period. On a 36-bit
181 * system, we also need to update the ESAD bits. We also set (keep) the
182 * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
184 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
185 link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
186 #ifdef CONFIG_PHYS_64BIT
187 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
188 upper_32_bits(dma_private->dma_buf_next));
189 #endif
190 } else {
191 link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
192 #ifdef CONFIG_PHYS_64BIT
193 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
194 upper_32_bits(dma_private->dma_buf_next));
195 #endif
198 /* Update our variables for next time */
199 dma_private->dma_buf_next += dma_private->period_size;
201 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
202 dma_private->dma_buf_next = dma_private->dma_buf_phys;
204 if (++dma_private->current_link >= NUM_DMA_LINKS)
205 dma_private->current_link = 0;
209 * fsl_dma_isr: interrupt handler for the DMA controller
211 * @irq: IRQ of the DMA channel
212 * @dev_id: pointer to the dma_private structure for this DMA channel
214 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
216 struct fsl_dma_private *dma_private = dev_id;
217 struct snd_pcm_substream *substream = dma_private->substream;
218 struct snd_soc_pcm_runtime *rtd = substream->private_data;
219 struct device *dev = rtd->platform->dev;
220 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
221 irqreturn_t ret = IRQ_NONE;
222 u32 sr, sr2 = 0;
224 /* We got an interrupt, so read the status register to see what we
225 were interrupted for.
227 sr = in_be32(&dma_channel->sr);
229 if (sr & CCSR_DMA_SR_TE) {
230 dev_err(dev, "dma transmit error\n");
231 fsl_dma_abort_stream(substream);
232 sr2 |= CCSR_DMA_SR_TE;
233 ret = IRQ_HANDLED;
236 if (sr & CCSR_DMA_SR_CH)
237 ret = IRQ_HANDLED;
239 if (sr & CCSR_DMA_SR_PE) {
240 dev_err(dev, "dma programming error\n");
241 fsl_dma_abort_stream(substream);
242 sr2 |= CCSR_DMA_SR_PE;
243 ret = IRQ_HANDLED;
246 if (sr & CCSR_DMA_SR_EOLNI) {
247 sr2 |= CCSR_DMA_SR_EOLNI;
248 ret = IRQ_HANDLED;
251 if (sr & CCSR_DMA_SR_CB)
252 ret = IRQ_HANDLED;
254 if (sr & CCSR_DMA_SR_EOSI) {
255 /* Tell ALSA we completed a period. */
256 snd_pcm_period_elapsed(substream);
259 * Update our link descriptors to point to the next period. We
260 * only need to do this if the number of periods is not equal to
261 * the number of links.
263 if (dma_private->num_periods != NUM_DMA_LINKS)
264 fsl_dma_update_pointers(dma_private);
266 sr2 |= CCSR_DMA_SR_EOSI;
267 ret = IRQ_HANDLED;
270 if (sr & CCSR_DMA_SR_EOLSI) {
271 sr2 |= CCSR_DMA_SR_EOLSI;
272 ret = IRQ_HANDLED;
275 /* Clear the bits that we set */
276 if (sr2)
277 out_be32(&dma_channel->sr, sr2);
279 return ret;
283 * fsl_dma_new: initialize this PCM driver.
285 * This function is called when the codec driver calls snd_soc_new_pcms(),
286 * once for each .dai_link in the machine driver's snd_soc_card
287 * structure.
289 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
290 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
291 * is specified. Therefore, any DMA buffers we allocate will always be in low
292 * memory, but we support for 36-bit physical addresses anyway.
294 * Regardless of where the memory is actually allocated, since the device can
295 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
297 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
299 struct snd_card *card = rtd->card->snd_card;
300 struct snd_pcm *pcm = rtd->pcm;
301 static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
302 int ret;
304 if (!card->dev->dma_mask)
305 card->dev->dma_mask = &fsl_dma_dmamask;
307 if (!card->dev->coherent_dma_mask)
308 card->dev->coherent_dma_mask = fsl_dma_dmamask;
310 /* Some codecs have separate DAIs for playback and capture, so we
311 * should allocate a DMA buffer only for the streams that are valid.
314 if (pcm->streams[0].substream) {
315 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
316 fsl_dma_hardware.buffer_bytes_max,
317 &pcm->streams[0].substream->dma_buffer);
318 if (ret) {
319 dev_err(card->dev, "can't alloc playback dma buffer\n");
320 return ret;
324 if (pcm->streams[1].substream) {
325 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
326 fsl_dma_hardware.buffer_bytes_max,
327 &pcm->streams[1].substream->dma_buffer);
328 if (ret) {
329 dev_err(card->dev, "can't alloc capture dma buffer\n");
330 snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
331 return ret;
335 return 0;
339 * fsl_dma_open: open a new substream.
341 * Each substream has its own DMA buffer.
343 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
344 * descriptors that ping-pong from one period to the next. For example, if
345 * there are six periods and two link descriptors, this is how they look
346 * before playback starts:
348 * The last link descriptor
349 * ____________ points back to the first
350 * | |
351 * V |
352 * ___ ___ |
353 * | |->| |->|
354 * |___| |___|
355 * | |
356 * | |
357 * V V
358 * _________________________________________
359 * | | | | | | | The DMA buffer is
360 * | | | | | | | divided into 6 parts
361 * |______|______|______|______|______|______|
363 * and here's how they look after the first period is finished playing:
365 * ____________
366 * | |
367 * V |
368 * ___ ___ |
369 * | |->| |->|
370 * |___| |___|
371 * | |
372 * |______________
373 * | |
374 * V V
375 * _________________________________________
376 * | | | | | | |
377 * | | | | | | |
378 * |______|______|______|______|______|______|
380 * The first link descriptor now points to the third period. The DMA
381 * controller is currently playing the second period. When it finishes, it
382 * will jump back to the first descriptor and play the third period.
384 * There are four reasons we do this:
386 * 1. The only way to get the DMA controller to automatically restart the
387 * transfer when it gets to the end of the buffer is to use chaining
388 * mode. Basic direct mode doesn't offer that feature.
389 * 2. We need to receive an interrupt at the end of every period. The DMA
390 * controller can generate an interrupt at the end of every link transfer
391 * (aka segment). Making each period into a DMA segment will give us the
392 * interrupts we need.
393 * 3. By creating only two link descriptors, regardless of the number of
394 * periods, we do not need to reallocate the link descriptors if the
395 * number of periods changes.
396 * 4. All of the audio data is still stored in a single, contiguous DMA
397 * buffer, which is what ALSA expects. We're just dividing it into
398 * contiguous parts, and creating a link descriptor for each one.
400 static int fsl_dma_open(struct snd_pcm_substream *substream)
402 struct snd_pcm_runtime *runtime = substream->runtime;
403 struct snd_soc_pcm_runtime *rtd = substream->private_data;
404 struct device *dev = rtd->platform->dev;
405 struct dma_object *dma =
406 container_of(rtd->platform->driver, struct dma_object, dai);
407 struct fsl_dma_private *dma_private;
408 struct ccsr_dma_channel __iomem *dma_channel;
409 dma_addr_t ld_buf_phys;
410 u64 temp_link; /* Pointer to next link descriptor */
411 u32 mr;
412 unsigned int channel;
413 int ret = 0;
414 unsigned int i;
417 * Reject any DMA buffer whose size is not a multiple of the period
418 * size. We need to make sure that the DMA buffer can be evenly divided
419 * into periods.
421 ret = snd_pcm_hw_constraint_integer(runtime,
422 SNDRV_PCM_HW_PARAM_PERIODS);
423 if (ret < 0) {
424 dev_err(dev, "invalid buffer size\n");
425 return ret;
428 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
430 if (dma->assigned) {
431 dev_err(dev, "dma channel already assigned\n");
432 return -EBUSY;
435 dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
436 &ld_buf_phys, GFP_KERNEL);
437 if (!dma_private) {
438 dev_err(dev, "can't allocate dma private data\n");
439 return -ENOMEM;
441 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
442 dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
443 else
444 dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
446 dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
447 dma_private->dma_channel = dma->channel;
448 dma_private->irq = dma->irq;
449 dma_private->substream = substream;
450 dma_private->ld_buf_phys = ld_buf_phys;
451 dma_private->dma_buf_phys = substream->dma_buffer.addr;
453 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
454 dma_private);
455 if (ret) {
456 dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
457 dma_private->irq, ret);
458 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
459 dma_private, dma_private->ld_buf_phys);
460 return ret;
463 dma->assigned = 1;
465 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
466 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
467 runtime->private_data = dma_private;
469 /* Program the fixed DMA controller parameters */
471 dma_channel = dma_private->dma_channel;
473 temp_link = dma_private->ld_buf_phys +
474 sizeof(struct fsl_dma_link_descriptor);
476 for (i = 0; i < NUM_DMA_LINKS; i++) {
477 dma_private->link[i].next = cpu_to_be64(temp_link);
479 temp_link += sizeof(struct fsl_dma_link_descriptor);
481 /* The last link descriptor points to the first */
482 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
484 /* Tell the DMA controller where the first link descriptor is */
485 out_be32(&dma_channel->clndar,
486 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
487 out_be32(&dma_channel->eclndar,
488 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
490 /* The manual says the BCR must be clear before enabling EMP */
491 out_be32(&dma_channel->bcr, 0);
494 * Program the mode register for interrupts, external master control,
495 * and source/destination hold. Also clear the Channel Abort bit.
497 mr = in_be32(&dma_channel->mr) &
498 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
501 * We want External Master Start and External Master Pause enabled,
502 * because the SSI is controlling the DMA controller. We want the DMA
503 * controller to be set up in advance, and then we signal only the SSI
504 * to start transferring.
506 * We want End-Of-Segment Interrupts enabled, because this will generate
507 * an interrupt at the end of each segment (each link descriptor
508 * represents one segment). Each DMA segment is the same thing as an
509 * ALSA period, so this is how we get an interrupt at the end of every
510 * period.
512 * We want Error Interrupt enabled, so that we can get an error if
513 * the DMA controller is mis-programmed somehow.
515 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
516 CCSR_DMA_MR_EMS_EN;
518 /* For playback, we want the destination address to be held. For
519 capture, set the source address to be held. */
520 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
521 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
523 out_be32(&dma_channel->mr, mr);
525 return 0;
529 * fsl_dma_hw_params: continue initializing the DMA links
531 * This function obtains hardware parameters about the opened stream and
532 * programs the DMA controller accordingly.
534 * One drawback of big-endian is that when copying integers of different
535 * sizes to a fixed-sized register, the address to which the integer must be
536 * copied is dependent on the size of the integer.
538 * For example, if P is the address of a 32-bit register, and X is a 32-bit
539 * integer, then X should be copied to address P. However, if X is a 16-bit
540 * integer, then it should be copied to P+2. If X is an 8-bit register,
541 * then it should be copied to P+3.
543 * So for playback of 8-bit samples, the DMA controller must transfer single
544 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
545 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
547 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
548 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
549 * and 8 bytes at a time). So we do not support packed 24-bit samples.
550 * 24-bit data must be padded to 32 bits.
552 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
553 struct snd_pcm_hw_params *hw_params)
555 struct snd_pcm_runtime *runtime = substream->runtime;
556 struct fsl_dma_private *dma_private = runtime->private_data;
557 struct snd_soc_pcm_runtime *rtd = substream->private_data;
558 struct device *dev = rtd->platform->dev;
560 /* Number of bits per sample */
561 unsigned int sample_bits =
562 snd_pcm_format_physical_width(params_format(hw_params));
564 /* Number of bytes per frame */
565 unsigned int sample_bytes = sample_bits / 8;
567 /* Bus address of SSI STX register */
568 dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
570 /* Size of the DMA buffer, in bytes */
571 size_t buffer_size = params_buffer_bytes(hw_params);
573 /* Number of bytes per period */
574 size_t period_size = params_period_bytes(hw_params);
576 /* Pointer to next period */
577 dma_addr_t temp_addr = substream->dma_buffer.addr;
579 /* Pointer to DMA controller */
580 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
582 u32 mr; /* DMA Mode Register */
584 unsigned int i;
586 /* Initialize our DMA tracking variables */
587 dma_private->period_size = period_size;
588 dma_private->num_periods = params_periods(hw_params);
589 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
590 dma_private->dma_buf_next = dma_private->dma_buf_phys +
591 (NUM_DMA_LINKS * period_size);
593 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
594 /* This happens if the number of periods == NUM_DMA_LINKS */
595 dma_private->dma_buf_next = dma_private->dma_buf_phys;
597 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
598 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
600 /* Due to a quirk of the SSI's STX register, the target address
601 * for the DMA operations depends on the sample size. So we calculate
602 * that offset here. While we're at it, also tell the DMA controller
603 * how much data to transfer per sample.
605 switch (sample_bits) {
606 case 8:
607 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
608 ssi_sxx_phys += 3;
609 break;
610 case 16:
611 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
612 ssi_sxx_phys += 2;
613 break;
614 case 32:
615 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
616 break;
617 default:
618 /* We should never get here */
619 dev_err(dev, "unsupported sample size %u\n", sample_bits);
620 return -EINVAL;
624 * BWC determines how many bytes are sent/received before the DMA
625 * controller checks the SSI to see if it needs to stop. BWC should
626 * always be a multiple of the frame size, so that we always transmit
627 * whole frames. Each frame occupies two slots in the FIFO. The
628 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
629 * (MR[BWC] can only represent even powers of two).
631 * To simplify the process, we set BWC to the largest value that is
632 * less than or equal to the FIFO watermark. For playback, this ensures
633 * that we transfer the maximum amount without overrunning the FIFO.
634 * For capture, this ensures that we transfer the maximum amount without
635 * underrunning the FIFO.
637 * f = SSI FIFO depth
638 * w = SSI watermark value (which equals f - 2)
639 * b = DMA bandwidth count (in bytes)
640 * s = sample size (in bytes, which equals frame_size * 2)
642 * For playback, we never transmit more than the transmit FIFO
643 * watermark, otherwise we might write more data than the FIFO can hold.
644 * The watermark is equal to the FIFO depth minus two.
646 * For capture, two equations must hold:
647 * w > f - (b / s)
648 * w >= b / s
650 * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
651 * b = s * w, which is equal to
652 * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
654 mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
656 out_be32(&dma_channel->mr, mr);
658 for (i = 0; i < NUM_DMA_LINKS; i++) {
659 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
661 link->count = cpu_to_be32(period_size);
663 /* The snoop bit tells the DMA controller whether it should tell
664 * the ECM to snoop during a read or write to an address. For
665 * audio, we use DMA to transfer data between memory and an I/O
666 * device (the SSI's STX0 or SRX0 register). Snooping is only
667 * needed if there is a cache, so we need to snoop memory
668 * addresses only. For playback, that means we snoop the source
669 * but not the destination. For capture, we snoop the
670 * destination but not the source.
672 * Note that failing to snoop properly is unlikely to cause
673 * cache incoherency if the period size is larger than the
674 * size of L1 cache. This is because filling in one period will
675 * flush out the data for the previous period. So if you
676 * increased period_bytes_min to a large enough size, you might
677 * get more performance by not snooping, and you'll still be
678 * okay. You'll need to update fsl_dma_update_pointers() also.
680 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
681 link->source_addr = cpu_to_be32(temp_addr);
682 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
683 upper_32_bits(temp_addr));
685 link->dest_addr = cpu_to_be32(ssi_sxx_phys);
686 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
687 upper_32_bits(ssi_sxx_phys));
688 } else {
689 link->source_addr = cpu_to_be32(ssi_sxx_phys);
690 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
691 upper_32_bits(ssi_sxx_phys));
693 link->dest_addr = cpu_to_be32(temp_addr);
694 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
695 upper_32_bits(temp_addr));
698 temp_addr += period_size;
701 return 0;
705 * fsl_dma_pointer: determine the current position of the DMA transfer
707 * This function is called by ALSA when ALSA wants to know where in the
708 * stream buffer the hardware currently is.
710 * For playback, the SAR register contains the physical address of the most
711 * recent DMA transfer. For capture, the value is in the DAR register.
713 * The base address of the buffer is stored in the source_addr field of the
714 * first link descriptor.
716 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
718 struct snd_pcm_runtime *runtime = substream->runtime;
719 struct fsl_dma_private *dma_private = runtime->private_data;
720 struct snd_soc_pcm_runtime *rtd = substream->private_data;
721 struct device *dev = rtd->platform->dev;
722 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
723 dma_addr_t position;
724 snd_pcm_uframes_t frames;
726 /* Obtain the current DMA pointer, but don't read the ESAD bits if we
727 * only have 32-bit DMA addresses. This function is typically called
728 * in interrupt context, so we need to optimize it.
730 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
731 position = in_be32(&dma_channel->sar);
732 #ifdef CONFIG_PHYS_64BIT
733 position |= (u64)(in_be32(&dma_channel->satr) &
734 CCSR_DMA_ATR_ESAD_MASK) << 32;
735 #endif
736 } else {
737 position = in_be32(&dma_channel->dar);
738 #ifdef CONFIG_PHYS_64BIT
739 position |= (u64)(in_be32(&dma_channel->datr) &
740 CCSR_DMA_ATR_ESAD_MASK) << 32;
741 #endif
745 * When capture is started, the SSI immediately starts to fill its FIFO.
746 * This means that the DMA controller is not started until the FIFO is
747 * full. However, ALSA calls this function before that happens, when
748 * MR.DAR is still zero. In this case, just return zero to indicate
749 * that nothing has been received yet.
751 if (!position)
752 return 0;
754 if ((position < dma_private->dma_buf_phys) ||
755 (position > dma_private->dma_buf_end)) {
756 dev_err(dev, "dma pointer is out of range, halting stream\n");
757 return SNDRV_PCM_POS_XRUN;
760 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
763 * If the current address is just past the end of the buffer, wrap it
764 * around.
766 if (frames == runtime->buffer_size)
767 frames = 0;
769 return frames;
773 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
775 * Release the resources allocated in fsl_dma_hw_params() and de-program the
776 * registers.
778 * This function can be called multiple times.
780 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
782 struct snd_pcm_runtime *runtime = substream->runtime;
783 struct fsl_dma_private *dma_private = runtime->private_data;
785 if (dma_private) {
786 struct ccsr_dma_channel __iomem *dma_channel;
788 dma_channel = dma_private->dma_channel;
790 /* Stop the DMA */
791 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
792 out_be32(&dma_channel->mr, 0);
794 /* Reset all the other registers */
795 out_be32(&dma_channel->sr, -1);
796 out_be32(&dma_channel->clndar, 0);
797 out_be32(&dma_channel->eclndar, 0);
798 out_be32(&dma_channel->satr, 0);
799 out_be32(&dma_channel->sar, 0);
800 out_be32(&dma_channel->datr, 0);
801 out_be32(&dma_channel->dar, 0);
802 out_be32(&dma_channel->bcr, 0);
803 out_be32(&dma_channel->nlndar, 0);
804 out_be32(&dma_channel->enlndar, 0);
807 return 0;
811 * fsl_dma_close: close the stream.
813 static int fsl_dma_close(struct snd_pcm_substream *substream)
815 struct snd_pcm_runtime *runtime = substream->runtime;
816 struct fsl_dma_private *dma_private = runtime->private_data;
817 struct snd_soc_pcm_runtime *rtd = substream->private_data;
818 struct device *dev = rtd->platform->dev;
819 struct dma_object *dma =
820 container_of(rtd->platform->driver, struct dma_object, dai);
822 if (dma_private) {
823 if (dma_private->irq)
824 free_irq(dma_private->irq, dma_private);
826 if (dma_private->ld_buf_phys) {
827 dma_unmap_single(dev, dma_private->ld_buf_phys,
828 sizeof(dma_private->link),
829 DMA_TO_DEVICE);
832 /* Deallocate the fsl_dma_private structure */
833 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
834 dma_private, dma_private->ld_buf_phys);
835 substream->runtime->private_data = NULL;
838 dma->assigned = 0;
840 return 0;
844 * Remove this PCM driver.
846 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
848 struct snd_pcm_substream *substream;
849 unsigned int i;
851 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
852 substream = pcm->streams[i].substream;
853 if (substream) {
854 snd_dma_free_pages(&substream->dma_buffer);
855 substream->dma_buffer.area = NULL;
856 substream->dma_buffer.addr = 0;
862 * find_ssi_node -- returns the SSI node that points to his DMA channel node
864 * Although this DMA driver attempts to operate independently of the other
865 * devices, it still needs to determine some information about the SSI device
866 * that it's working with. Unfortunately, the device tree does not contain
867 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
868 * other way. So we need to scan the device tree for SSI nodes until we find
869 * the one that points to the given DMA channel node. It's ugly, but at least
870 * it's contained in this one function.
872 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
874 struct device_node *ssi_np, *np;
876 for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
877 /* Check each DMA phandle to see if it points to us. We
878 * assume that device_node pointers are a valid comparison.
880 np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
881 of_node_put(np);
882 if (np == dma_channel_np)
883 return ssi_np;
885 np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
886 of_node_put(np);
887 if (np == dma_channel_np)
888 return ssi_np;
891 return NULL;
894 static struct snd_pcm_ops fsl_dma_ops = {
895 .open = fsl_dma_open,
896 .close = fsl_dma_close,
897 .ioctl = snd_pcm_lib_ioctl,
898 .hw_params = fsl_dma_hw_params,
899 .hw_free = fsl_dma_hw_free,
900 .pointer = fsl_dma_pointer,
903 static int __devinit fsl_soc_dma_probe(struct platform_device *pdev)
905 struct dma_object *dma;
906 struct device_node *np = pdev->dev.of_node;
907 struct device_node *ssi_np;
908 struct resource res;
909 const uint32_t *iprop;
910 int ret;
912 /* Find the SSI node that points to us. */
913 ssi_np = find_ssi_node(np);
914 if (!ssi_np) {
915 dev_err(&pdev->dev, "cannot find parent SSI node\n");
916 return -ENODEV;
919 ret = of_address_to_resource(ssi_np, 0, &res);
920 if (ret) {
921 dev_err(&pdev->dev, "could not determine resources for %s\n",
922 ssi_np->full_name);
923 of_node_put(ssi_np);
924 return ret;
927 dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
928 if (!dma) {
929 dev_err(&pdev->dev, "could not allocate dma object\n");
930 of_node_put(ssi_np);
931 return -ENOMEM;
934 strcpy(dma->path, np->full_name);
935 dma->dai.ops = &fsl_dma_ops;
936 dma->dai.pcm_new = fsl_dma_new;
937 dma->dai.pcm_free = fsl_dma_free_dma_buffers;
939 /* Store the SSI-specific information that we need */
940 dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
941 dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
943 iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
944 if (iprop)
945 dma->ssi_fifo_depth = be32_to_cpup(iprop);
946 else
947 /* Older 8610 DTs didn't have the fifo-depth property */
948 dma->ssi_fifo_depth = 8;
950 of_node_put(ssi_np);
952 ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
953 if (ret) {
954 dev_err(&pdev->dev, "could not register platform\n");
955 kfree(dma);
956 return ret;
959 dma->channel = of_iomap(np, 0);
960 dma->irq = irq_of_parse_and_map(np, 0);
962 dev_set_drvdata(&pdev->dev, dma);
964 return 0;
967 static int __devexit fsl_soc_dma_remove(struct platform_device *pdev)
969 struct dma_object *dma = dev_get_drvdata(&pdev->dev);
971 snd_soc_unregister_platform(&pdev->dev);
972 iounmap(dma->channel);
973 irq_dispose_mapping(dma->irq);
974 kfree(dma);
976 return 0;
979 static const struct of_device_id fsl_soc_dma_ids[] = {
980 { .compatible = "fsl,ssi-dma-channel", },
983 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
985 static struct platform_driver fsl_soc_dma_driver = {
986 .driver = {
987 .name = "fsl-pcm-audio",
988 .owner = THIS_MODULE,
989 .of_match_table = fsl_soc_dma_ids,
991 .probe = fsl_soc_dma_probe,
992 .remove = __devexit_p(fsl_soc_dma_remove),
995 module_platform_driver(fsl_soc_dma_driver);
997 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
998 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
999 MODULE_LICENSE("GPL v2");