ext4: Remove redundant unlikely()
[zen-stable.git] / include / linux / slub_def.h
blobe4f5ed180b9bbe226714f2b40fd0d95516ad3c12
1 #ifndef _LINUX_SLUB_DEF_H
2 #define _LINUX_SLUB_DEF_H
4 /*
5 * SLUB : A Slab allocator without object queues.
7 * (C) 2007 SGI, Christoph Lameter
8 */
9 #include <linux/types.h>
10 #include <linux/gfp.h>
11 #include <linux/workqueue.h>
12 #include <linux/kobject.h>
13 #include <linux/kmemleak.h>
15 #include <trace/events/kmem.h>
17 enum stat_item {
18 ALLOC_FASTPATH, /* Allocation from cpu slab */
19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
20 FREE_FASTPATH, /* Free to cpu slub */
21 FREE_SLOWPATH, /* Freeing not to cpu slab */
22 FREE_FROZEN, /* Freeing to frozen slab */
23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
28 FREE_SLAB, /* Slab freed to the page allocator */
29 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
30 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
31 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
32 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
33 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
34 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
35 ORDER_FALLBACK, /* Number of times fallback was necessary */
36 NR_SLUB_STAT_ITEMS };
38 struct kmem_cache_cpu {
39 void **freelist; /* Pointer to first free per cpu object */
40 struct page *page; /* The slab from which we are allocating */
41 int node; /* The node of the page (or -1 for debug) */
42 #ifdef CONFIG_SLUB_STATS
43 unsigned stat[NR_SLUB_STAT_ITEMS];
44 #endif
47 struct kmem_cache_node {
48 spinlock_t list_lock; /* Protect partial list and nr_partial */
49 unsigned long nr_partial;
50 struct list_head partial;
51 #ifdef CONFIG_SLUB_DEBUG
52 atomic_long_t nr_slabs;
53 atomic_long_t total_objects;
54 struct list_head full;
55 #endif
59 * Word size structure that can be atomically updated or read and that
60 * contains both the order and the number of objects that a slab of the
61 * given order would contain.
63 struct kmem_cache_order_objects {
64 unsigned long x;
68 * Slab cache management.
70 struct kmem_cache {
71 struct kmem_cache_cpu __percpu *cpu_slab;
72 /* Used for retriving partial slabs etc */
73 unsigned long flags;
74 int size; /* The size of an object including meta data */
75 int objsize; /* The size of an object without meta data */
76 int offset; /* Free pointer offset. */
77 struct kmem_cache_order_objects oo;
79 /* Allocation and freeing of slabs */
80 struct kmem_cache_order_objects max;
81 struct kmem_cache_order_objects min;
82 gfp_t allocflags; /* gfp flags to use on each alloc */
83 int refcount; /* Refcount for slab cache destroy */
84 void (*ctor)(void *);
85 int inuse; /* Offset to metadata */
86 int align; /* Alignment */
87 unsigned long min_partial;
88 const char *name; /* Name (only for display!) */
89 struct list_head list; /* List of slab caches */
90 #ifdef CONFIG_SYSFS
91 struct kobject kobj; /* For sysfs */
92 #endif
94 #ifdef CONFIG_NUMA
96 * Defragmentation by allocating from a remote node.
98 int remote_node_defrag_ratio;
99 #endif
100 struct kmem_cache_node *node[MAX_NUMNODES];
104 * Kmalloc subsystem.
106 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
107 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
108 #else
109 #define KMALLOC_MIN_SIZE 8
110 #endif
112 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
114 #ifdef ARCH_DMA_MINALIGN
115 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
116 #else
117 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
118 #endif
120 #ifndef ARCH_SLAB_MINALIGN
121 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
122 #endif
125 * Maximum kmalloc object size handled by SLUB. Larger object allocations
126 * are passed through to the page allocator. The page allocator "fastpath"
127 * is relatively slow so we need this value sufficiently high so that
128 * performance critical objects are allocated through the SLUB fastpath.
130 * This should be dropped to PAGE_SIZE / 2 once the page allocator
131 * "fastpath" becomes competitive with the slab allocator fastpaths.
133 #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
135 #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
137 #ifdef CONFIG_ZONE_DMA
138 #define SLUB_DMA __GFP_DMA
139 #else
140 /* Disable DMA functionality */
141 #define SLUB_DMA (__force gfp_t)0
142 #endif
145 * We keep the general caches in an array of slab caches that are used for
146 * 2^x bytes of allocations.
148 extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
151 * Sorry that the following has to be that ugly but some versions of GCC
152 * have trouble with constant propagation and loops.
154 static __always_inline int kmalloc_index(size_t size)
156 if (!size)
157 return 0;
159 if (size <= KMALLOC_MIN_SIZE)
160 return KMALLOC_SHIFT_LOW;
162 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
163 return 1;
164 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
165 return 2;
166 if (size <= 8) return 3;
167 if (size <= 16) return 4;
168 if (size <= 32) return 5;
169 if (size <= 64) return 6;
170 if (size <= 128) return 7;
171 if (size <= 256) return 8;
172 if (size <= 512) return 9;
173 if (size <= 1024) return 10;
174 if (size <= 2 * 1024) return 11;
175 if (size <= 4 * 1024) return 12;
177 * The following is only needed to support architectures with a larger page
178 * size than 4k.
180 if (size <= 8 * 1024) return 13;
181 if (size <= 16 * 1024) return 14;
182 if (size <= 32 * 1024) return 15;
183 if (size <= 64 * 1024) return 16;
184 if (size <= 128 * 1024) return 17;
185 if (size <= 256 * 1024) return 18;
186 if (size <= 512 * 1024) return 19;
187 if (size <= 1024 * 1024) return 20;
188 if (size <= 2 * 1024 * 1024) return 21;
189 return -1;
192 * What we really wanted to do and cannot do because of compiler issues is:
193 * int i;
194 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
195 * if (size <= (1 << i))
196 * return i;
201 * Find the slab cache for a given combination of allocation flags and size.
203 * This ought to end up with a global pointer to the right cache
204 * in kmalloc_caches.
206 static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
208 int index = kmalloc_index(size);
210 if (index == 0)
211 return NULL;
213 return kmalloc_caches[index];
216 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
217 void *__kmalloc(size_t size, gfp_t flags);
219 #ifdef CONFIG_TRACING
220 extern void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags);
221 #else
222 static __always_inline void *
223 kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
225 return kmem_cache_alloc(s, gfpflags);
227 #endif
229 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
231 unsigned int order = get_order(size);
232 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
234 kmemleak_alloc(ret, size, 1, flags);
235 trace_kmalloc(_THIS_IP_, ret, size, PAGE_SIZE << order, flags);
237 return ret;
240 static __always_inline void *kmalloc(size_t size, gfp_t flags)
242 void *ret;
244 if (__builtin_constant_p(size)) {
245 if (size > SLUB_MAX_SIZE)
246 return kmalloc_large(size, flags);
248 if (!(flags & SLUB_DMA)) {
249 struct kmem_cache *s = kmalloc_slab(size);
251 if (!s)
252 return ZERO_SIZE_PTR;
254 ret = kmem_cache_alloc_notrace(s, flags);
256 trace_kmalloc(_THIS_IP_, ret, size, s->size, flags);
258 return ret;
261 return __kmalloc(size, flags);
264 #ifdef CONFIG_NUMA
265 void *__kmalloc_node(size_t size, gfp_t flags, int node);
266 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
268 #ifdef CONFIG_TRACING
269 extern void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
270 gfp_t gfpflags,
271 int node);
272 #else
273 static __always_inline void *
274 kmem_cache_alloc_node_notrace(struct kmem_cache *s,
275 gfp_t gfpflags,
276 int node)
278 return kmem_cache_alloc_node(s, gfpflags, node);
280 #endif
282 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
284 void *ret;
286 if (__builtin_constant_p(size) &&
287 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
288 struct kmem_cache *s = kmalloc_slab(size);
290 if (!s)
291 return ZERO_SIZE_PTR;
293 ret = kmem_cache_alloc_node_notrace(s, flags, node);
295 trace_kmalloc_node(_THIS_IP_, ret,
296 size, s->size, flags, node);
298 return ret;
300 return __kmalloc_node(size, flags, node);
302 #endif
304 #endif /* _LINUX_SLUB_DEF_H */