2 * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * This is an implementation of a DWARF unwinder. Its main purpose is
9 * for generating stacktrace information. Based on the DWARF 3
10 * specification from http://www.dwarfstd.org.
13 * - DWARF64 doesn't work.
14 * - Registers with DWARF_VAL_OFFSET rules aren't handled properly.
18 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mempool.h>
23 #include <linux/elf.h>
24 #include <linux/ftrace.h>
25 #include <asm/dwarf.h>
26 #include <asm/unwinder.h>
27 #include <asm/sections.h>
28 #include <asm/unaligned.h>
29 #include <asm/stacktrace.h>
31 /* Reserve enough memory for two stack frames */
32 #define DWARF_FRAME_MIN_REQ 2
33 /* ... with 4 registers per frame. */
34 #define DWARF_REG_MIN_REQ (DWARF_FRAME_MIN_REQ * 4)
36 static struct kmem_cache
*dwarf_frame_cachep
;
37 static mempool_t
*dwarf_frame_pool
;
39 static struct kmem_cache
*dwarf_reg_cachep
;
40 static mempool_t
*dwarf_reg_pool
;
42 static LIST_HEAD(dwarf_cie_list
);
43 static DEFINE_SPINLOCK(dwarf_cie_lock
);
45 static LIST_HEAD(dwarf_fde_list
);
46 static DEFINE_SPINLOCK(dwarf_fde_lock
);
48 static struct dwarf_cie
*cached_cie
;
51 * dwarf_frame_alloc_reg - allocate memory for a DWARF register
52 * @frame: the DWARF frame whose list of registers we insert on
53 * @reg_num: the register number
55 * Allocate space for, and initialise, a dwarf reg from
56 * dwarf_reg_pool and insert it onto the (unsorted) linked-list of
57 * dwarf registers for @frame.
59 * Return the initialised DWARF reg.
61 static struct dwarf_reg
*dwarf_frame_alloc_reg(struct dwarf_frame
*frame
,
64 struct dwarf_reg
*reg
;
66 reg
= mempool_alloc(dwarf_reg_pool
, GFP_ATOMIC
);
68 printk(KERN_WARNING
"Unable to allocate a DWARF register\n");
70 * Let's just bomb hard here, we have no way to
76 reg
->number
= reg_num
;
80 list_add(®
->link
, &frame
->reg_list
);
85 static void dwarf_frame_free_regs(struct dwarf_frame
*frame
)
87 struct dwarf_reg
*reg
, *n
;
89 list_for_each_entry_safe(reg
, n
, &frame
->reg_list
, link
) {
91 mempool_free(reg
, dwarf_reg_pool
);
96 * dwarf_frame_reg - return a DWARF register
97 * @frame: the DWARF frame to search in for @reg_num
98 * @reg_num: the register number to search for
100 * Lookup and return the dwarf reg @reg_num for this frame. Return
101 * NULL if @reg_num is an register invalid number.
103 static struct dwarf_reg
*dwarf_frame_reg(struct dwarf_frame
*frame
,
104 unsigned int reg_num
)
106 struct dwarf_reg
*reg
;
108 list_for_each_entry(reg
, &frame
->reg_list
, link
) {
109 if (reg
->number
== reg_num
)
117 * dwarf_read_addr - read dwarf data
118 * @src: source address of data
119 * @dst: destination address to store the data to
121 * Read 'n' bytes from @src, where 'n' is the size of an address on
122 * the native machine. We return the number of bytes read, which
123 * should always be 'n'. We also have to be careful when reading
124 * from @src and writing to @dst, because they can be arbitrarily
125 * aligned. Return 'n' - the number of bytes read.
127 static inline int dwarf_read_addr(unsigned long *src
, unsigned long *dst
)
129 u32 val
= get_unaligned(src
);
130 put_unaligned(val
, dst
);
131 return sizeof(unsigned long *);
135 * dwarf_read_uleb128 - read unsigned LEB128 data
136 * @addr: the address where the ULEB128 data is stored
137 * @ret: address to store the result
139 * Decode an unsigned LEB128 encoded datum. The algorithm is taken
140 * from Appendix C of the DWARF 3 spec. For information on the
141 * encodings refer to section "7.6 - Variable Length Data". Return
142 * the number of bytes read.
144 static inline unsigned long dwarf_read_uleb128(char *addr
, unsigned int *ret
)
155 byte
= __raw_readb(addr
);
159 result
|= (byte
& 0x7f) << shift
;
172 * dwarf_read_leb128 - read signed LEB128 data
173 * @addr: the address of the LEB128 encoded data
174 * @ret: address to store the result
176 * Decode signed LEB128 data. The algorithm is taken from Appendix
177 * C of the DWARF 3 spec. Return the number of bytes read.
179 static inline unsigned long dwarf_read_leb128(char *addr
, int *ret
)
191 byte
= __raw_readb(addr
);
193 result
|= (byte
& 0x7f) << shift
;
201 /* The number of bits in a signed integer. */
202 num_bits
= 8 * sizeof(result
);
204 if ((shift
< num_bits
) && (byte
& 0x40))
205 result
|= (-1 << shift
);
213 * dwarf_read_encoded_value - return the decoded value at @addr
214 * @addr: the address of the encoded value
215 * @val: where to write the decoded value
216 * @encoding: the encoding with which we can decode @addr
218 * GCC emits encoded address in the .eh_frame FDE entries. Decode
219 * the value at @addr using @encoding. The decoded value is written
220 * to @val and the number of bytes read is returned.
222 static int dwarf_read_encoded_value(char *addr
, unsigned long *val
,
225 unsigned long decoded_addr
= 0;
228 switch (encoding
& 0x70) {
229 case DW_EH_PE_absptr
:
232 decoded_addr
= (unsigned long)addr
;
235 pr_debug("encoding=0x%x\n", (encoding
& 0x70));
239 if ((encoding
& 0x07) == 0x00)
240 encoding
|= DW_EH_PE_udata4
;
242 switch (encoding
& 0x0f) {
243 case DW_EH_PE_sdata4
:
244 case DW_EH_PE_udata4
:
246 decoded_addr
+= get_unaligned((u32
*)addr
);
247 __raw_writel(decoded_addr
, val
);
250 pr_debug("encoding=0x%x\n", encoding
);
258 * dwarf_entry_len - return the length of an FDE or CIE
259 * @addr: the address of the entry
260 * @len: the length of the entry
262 * Read the initial_length field of the entry and store the size of
263 * the entry in @len. We return the number of bytes read. Return a
264 * count of 0 on error.
266 static inline int dwarf_entry_len(char *addr
, unsigned long *len
)
271 initial_len
= get_unaligned((u32
*)addr
);
275 * An initial length field value in the range DW_LEN_EXT_LO -
276 * DW_LEN_EXT_HI indicates an extension, and should not be
277 * interpreted as a length. The only extension that we currently
278 * understand is the use of DWARF64 addresses.
280 if (initial_len
>= DW_EXT_LO
&& initial_len
<= DW_EXT_HI
) {
282 * The 64-bit length field immediately follows the
283 * compulsory 32-bit length field.
285 if (initial_len
== DW_EXT_DWARF64
) {
286 *len
= get_unaligned((u64
*)addr
+ 4);
289 printk(KERN_WARNING
"Unknown DWARF extension\n");
299 * dwarf_lookup_cie - locate the cie
300 * @cie_ptr: pointer to help with lookup
302 static struct dwarf_cie
*dwarf_lookup_cie(unsigned long cie_ptr
)
304 struct dwarf_cie
*cie
;
307 spin_lock_irqsave(&dwarf_cie_lock
, flags
);
310 * We've cached the last CIE we looked up because chances are
311 * that the FDE wants this CIE.
313 if (cached_cie
&& cached_cie
->cie_pointer
== cie_ptr
) {
318 list_for_each_entry(cie
, &dwarf_cie_list
, link
) {
319 if (cie
->cie_pointer
== cie_ptr
) {
325 /* Couldn't find the entry in the list. */
326 if (&cie
->link
== &dwarf_cie_list
)
329 spin_unlock_irqrestore(&dwarf_cie_lock
, flags
);
334 * dwarf_lookup_fde - locate the FDE that covers pc
335 * @pc: the program counter
337 struct dwarf_fde
*dwarf_lookup_fde(unsigned long pc
)
339 struct dwarf_fde
*fde
;
342 spin_lock_irqsave(&dwarf_fde_lock
, flags
);
344 list_for_each_entry(fde
, &dwarf_fde_list
, link
) {
345 unsigned long start
, end
;
347 start
= fde
->initial_location
;
348 end
= fde
->initial_location
+ fde
->address_range
;
350 if (pc
>= start
&& pc
< end
)
354 /* Couldn't find the entry in the list. */
355 if (&fde
->link
== &dwarf_fde_list
)
358 spin_unlock_irqrestore(&dwarf_fde_lock
, flags
);
364 * dwarf_cfa_execute_insns - execute instructions to calculate a CFA
365 * @insn_start: address of the first instruction
366 * @insn_end: address of the last instruction
367 * @cie: the CIE for this function
368 * @fde: the FDE for this function
369 * @frame: the instructions calculate the CFA for this frame
370 * @pc: the program counter of the address we're interested in
372 * Execute the Call Frame instruction sequence starting at
373 * @insn_start and ending at @insn_end. The instructions describe
374 * how to calculate the Canonical Frame Address of a stackframe.
375 * Store the results in @frame.
377 static int dwarf_cfa_execute_insns(unsigned char *insn_start
,
378 unsigned char *insn_end
,
379 struct dwarf_cie
*cie
,
380 struct dwarf_fde
*fde
,
381 struct dwarf_frame
*frame
,
385 unsigned char *current_insn
;
386 unsigned int count
, delta
, reg
, expr_len
, offset
;
387 struct dwarf_reg
*regp
;
389 current_insn
= insn_start
;
391 while (current_insn
< insn_end
&& frame
->pc
<= pc
) {
392 insn
= __raw_readb(current_insn
++);
395 * Firstly, handle the opcodes that embed their operands
396 * in the instructions.
398 switch (DW_CFA_opcode(insn
)) {
399 case DW_CFA_advance_loc
:
400 delta
= DW_CFA_operand(insn
);
401 delta
*= cie
->code_alignment_factor
;
406 reg
= DW_CFA_operand(insn
);
407 count
= dwarf_read_uleb128(current_insn
, &offset
);
408 current_insn
+= count
;
409 offset
*= cie
->data_alignment_factor
;
410 regp
= dwarf_frame_alloc_reg(frame
, reg
);
412 regp
->flags
|= DWARF_REG_OFFSET
;
416 reg
= DW_CFA_operand(insn
);
422 * Secondly, handle the opcodes that don't embed their
423 * operands in the instruction.
428 case DW_CFA_advance_loc1
:
429 delta
= *current_insn
++;
430 frame
->pc
+= delta
* cie
->code_alignment_factor
;
432 case DW_CFA_advance_loc2
:
433 delta
= get_unaligned((u16
*)current_insn
);
435 frame
->pc
+= delta
* cie
->code_alignment_factor
;
437 case DW_CFA_advance_loc4
:
438 delta
= get_unaligned((u32
*)current_insn
);
440 frame
->pc
+= delta
* cie
->code_alignment_factor
;
442 case DW_CFA_offset_extended
:
443 count
= dwarf_read_uleb128(current_insn
, ®
);
444 current_insn
+= count
;
445 count
= dwarf_read_uleb128(current_insn
, &offset
);
446 current_insn
+= count
;
447 offset
*= cie
->data_alignment_factor
;
449 case DW_CFA_restore_extended
:
450 count
= dwarf_read_uleb128(current_insn
, ®
);
451 current_insn
+= count
;
453 case DW_CFA_undefined
:
454 count
= dwarf_read_uleb128(current_insn
, ®
);
455 current_insn
+= count
;
456 regp
= dwarf_frame_alloc_reg(frame
, reg
);
457 regp
->flags
|= DWARF_UNDEFINED
;
460 count
= dwarf_read_uleb128(current_insn
,
461 &frame
->cfa_register
);
462 current_insn
+= count
;
463 count
= dwarf_read_uleb128(current_insn
,
465 current_insn
+= count
;
467 frame
->flags
|= DWARF_FRAME_CFA_REG_OFFSET
;
469 case DW_CFA_def_cfa_register
:
470 count
= dwarf_read_uleb128(current_insn
,
471 &frame
->cfa_register
);
472 current_insn
+= count
;
473 frame
->flags
|= DWARF_FRAME_CFA_REG_OFFSET
;
475 case DW_CFA_def_cfa_offset
:
476 count
= dwarf_read_uleb128(current_insn
, &offset
);
477 current_insn
+= count
;
478 frame
->cfa_offset
= offset
;
480 case DW_CFA_def_cfa_expression
:
481 count
= dwarf_read_uleb128(current_insn
, &expr_len
);
482 current_insn
+= count
;
484 frame
->cfa_expr
= current_insn
;
485 frame
->cfa_expr_len
= expr_len
;
486 current_insn
+= expr_len
;
488 frame
->flags
|= DWARF_FRAME_CFA_REG_EXP
;
490 case DW_CFA_offset_extended_sf
:
491 count
= dwarf_read_uleb128(current_insn
, ®
);
492 current_insn
+= count
;
493 count
= dwarf_read_leb128(current_insn
, &offset
);
494 current_insn
+= count
;
495 offset
*= cie
->data_alignment_factor
;
496 regp
= dwarf_frame_alloc_reg(frame
, reg
);
497 regp
->flags
|= DWARF_REG_OFFSET
;
500 case DW_CFA_val_offset
:
501 count
= dwarf_read_uleb128(current_insn
, ®
);
502 current_insn
+= count
;
503 count
= dwarf_read_leb128(current_insn
, &offset
);
504 offset
*= cie
->data_alignment_factor
;
505 regp
= dwarf_frame_alloc_reg(frame
, reg
);
506 regp
->flags
|= DWARF_VAL_OFFSET
;
509 case DW_CFA_GNU_args_size
:
510 count
= dwarf_read_uleb128(current_insn
, &offset
);
511 current_insn
+= count
;
513 case DW_CFA_GNU_negative_offset_extended
:
514 count
= dwarf_read_uleb128(current_insn
, ®
);
515 current_insn
+= count
;
516 count
= dwarf_read_uleb128(current_insn
, &offset
);
517 offset
*= cie
->data_alignment_factor
;
519 regp
= dwarf_frame_alloc_reg(frame
, reg
);
520 regp
->flags
|= DWARF_REG_OFFSET
;
521 regp
->addr
= -offset
;
524 pr_debug("unhandled DWARF instruction 0x%x\n", insn
);
534 * dwarf_free_frame - free the memory allocated for @frame
535 * @frame: the frame to free
537 void dwarf_free_frame(struct dwarf_frame
*frame
)
539 dwarf_frame_free_regs(frame
);
540 mempool_free(frame
, dwarf_frame_pool
);
544 * dwarf_unwind_stack - unwind the stack
546 * @pc: address of the function to unwind
547 * @prev: struct dwarf_frame of the previous stackframe on the callstack
549 * Return a struct dwarf_frame representing the most recent frame
550 * on the callstack. Each of the lower (older) stack frames are
551 * linked via the "prev" member.
553 struct dwarf_frame
* dwarf_unwind_stack(unsigned long pc
,
554 struct dwarf_frame
*prev
)
556 struct dwarf_frame
*frame
;
557 struct dwarf_cie
*cie
;
558 struct dwarf_fde
*fde
;
559 struct dwarf_reg
*reg
;
563 * If we're starting at the top of the stack we need get the
564 * contents of a physical register to get the CFA in order to
565 * begin the virtual unwinding of the stack.
567 * NOTE: the return address is guaranteed to be setup by the
568 * time this function makes its first function call.
571 pc
= (unsigned long)current_text_addr();
573 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
575 * If our stack has been patched by the function graph tracer
576 * then we might see the address of return_to_handler() where we
577 * expected to find the real return address.
579 if (pc
== (unsigned long)&return_to_handler
) {
580 int index
= current
->curr_ret_stack
;
583 * We currently have no way of tracking how many
584 * return_to_handler()'s we've seen. If there is more
585 * than one patched return address on our stack,
590 pc
= current
->ret_stack
[index
].ret
;
594 frame
= mempool_alloc(dwarf_frame_pool
, GFP_ATOMIC
);
596 printk(KERN_ERR
"Unable to allocate a dwarf frame\n");
600 INIT_LIST_HEAD(&frame
->reg_list
);
603 frame
->return_addr
= 0;
605 fde
= dwarf_lookup_fde(pc
);
608 * This is our normal exit path. There are two reasons
609 * why we might exit here,
611 * a) pc has no asscociated DWARF frame info and so
612 * we don't know how to unwind this frame. This is
613 * usually the case when we're trying to unwind a
614 * frame that was called from some assembly code
615 * that has no DWARF info, e.g. syscalls.
617 * b) the DEBUG info for pc is bogus. There's
618 * really no way to distinguish this case from the
619 * case above, which sucks because we could print a
625 cie
= dwarf_lookup_cie(fde
->cie_pointer
);
627 frame
->pc
= fde
->initial_location
;
629 /* CIE initial instructions */
630 dwarf_cfa_execute_insns(cie
->initial_instructions
,
631 cie
->instructions_end
, cie
, fde
,
634 /* FDE instructions */
635 dwarf_cfa_execute_insns(fde
->instructions
, fde
->end
, cie
,
638 /* Calculate the CFA */
639 switch (frame
->flags
) {
640 case DWARF_FRAME_CFA_REG_OFFSET
:
642 reg
= dwarf_frame_reg(prev
, frame
->cfa_register
);
643 UNWINDER_BUG_ON(!reg
);
644 UNWINDER_BUG_ON(reg
->flags
!= DWARF_REG_OFFSET
);
646 addr
= prev
->cfa
+ reg
->addr
;
647 frame
->cfa
= __raw_readl(addr
);
651 * Again, we're starting from the top of the
652 * stack. We need to physically read
653 * the contents of a register in order to get
654 * the Canonical Frame Address for this
657 frame
->cfa
= dwarf_read_arch_reg(frame
->cfa_register
);
660 frame
->cfa
+= frame
->cfa_offset
;
666 reg
= dwarf_frame_reg(frame
, DWARF_ARCH_RA_REG
);
669 * If we haven't seen the return address register or the return
670 * address column is undefined then we must assume that this is
671 * the end of the callstack.
673 if (!reg
|| reg
->flags
== DWARF_UNDEFINED
)
676 UNWINDER_BUG_ON(reg
->flags
!= DWARF_REG_OFFSET
);
678 addr
= frame
->cfa
+ reg
->addr
;
679 frame
->return_addr
= __raw_readl(addr
);
684 dwarf_free_frame(frame
);
688 static int dwarf_parse_cie(void *entry
, void *p
, unsigned long len
,
689 unsigned char *end
, struct module
*mod
)
691 struct dwarf_cie
*cie
;
695 cie
= kzalloc(sizeof(*cie
), GFP_KERNEL
);
702 * Record the offset into the .eh_frame section
703 * for this CIE. It allows this CIE to be
704 * quickly and easily looked up from the
707 cie
->cie_pointer
= (unsigned long)entry
;
709 cie
->version
= *(char *)p
++;
710 UNWINDER_BUG_ON(cie
->version
!= 1);
712 cie
->augmentation
= p
;
713 p
+= strlen(cie
->augmentation
) + 1;
715 count
= dwarf_read_uleb128(p
, &cie
->code_alignment_factor
);
718 count
= dwarf_read_leb128(p
, &cie
->data_alignment_factor
);
722 * Which column in the rule table contains the
725 if (cie
->version
== 1) {
726 cie
->return_address_reg
= __raw_readb(p
);
729 count
= dwarf_read_uleb128(p
, &cie
->return_address_reg
);
733 if (cie
->augmentation
[0] == 'z') {
734 unsigned int length
, count
;
735 cie
->flags
|= DWARF_CIE_Z_AUGMENTATION
;
737 count
= dwarf_read_uleb128(p
, &length
);
740 UNWINDER_BUG_ON((unsigned char *)p
> end
);
742 cie
->initial_instructions
= p
+ length
;
746 while (*cie
->augmentation
) {
748 * "L" indicates a byte showing how the
749 * LSDA pointer is encoded. Skip it.
751 if (*cie
->augmentation
== 'L') {
754 } else if (*cie
->augmentation
== 'R') {
756 * "R" indicates a byte showing
757 * how FDE addresses are
760 cie
->encoding
= *(char *)p
++;
762 } else if (*cie
->augmentation
== 'P') {
764 * "R" indicates a personality
769 } else if (*cie
->augmentation
== 'S') {
773 * Unknown augmentation. Assume
776 p
= cie
->initial_instructions
;
782 cie
->initial_instructions
= p
;
783 cie
->instructions_end
= end
;
788 spin_lock_irqsave(&dwarf_cie_lock
, flags
);
789 list_add_tail(&cie
->link
, &dwarf_cie_list
);
790 spin_unlock_irqrestore(&dwarf_cie_lock
, flags
);
795 static int dwarf_parse_fde(void *entry
, u32 entry_type
,
796 void *start
, unsigned long len
,
797 unsigned char *end
, struct module
*mod
)
799 struct dwarf_fde
*fde
;
800 struct dwarf_cie
*cie
;
805 fde
= kzalloc(sizeof(*fde
), GFP_KERNEL
);
812 * In a .eh_frame section the CIE pointer is the
813 * delta between the address within the FDE
815 fde
->cie_pointer
= (unsigned long)(p
- entry_type
- 4);
817 cie
= dwarf_lookup_cie(fde
->cie_pointer
);
821 count
= dwarf_read_encoded_value(p
, &fde
->initial_location
,
824 count
= dwarf_read_addr(p
, &fde
->initial_location
);
829 count
= dwarf_read_encoded_value(p
, &fde
->address_range
,
830 cie
->encoding
& 0x0f);
832 count
= dwarf_read_addr(p
, &fde
->address_range
);
836 if (fde
->cie
->flags
& DWARF_CIE_Z_AUGMENTATION
) {
838 count
= dwarf_read_uleb128(p
, &length
);
842 /* Call frame instructions. */
843 fde
->instructions
= p
;
849 spin_lock_irqsave(&dwarf_fde_lock
, flags
);
850 list_add_tail(&fde
->link
, &dwarf_fde_list
);
851 spin_unlock_irqrestore(&dwarf_fde_lock
, flags
);
856 static void dwarf_unwinder_dump(struct task_struct
*task
,
857 struct pt_regs
*regs
,
859 const struct stacktrace_ops
*ops
,
862 struct dwarf_frame
*frame
, *_frame
;
863 unsigned long return_addr
;
869 frame
= dwarf_unwind_stack(return_addr
, _frame
);
872 dwarf_free_frame(_frame
);
876 if (!frame
|| !frame
->return_addr
)
879 return_addr
= frame
->return_addr
;
880 ops
->address(data
, return_addr
, 1);
884 dwarf_free_frame(frame
);
887 static struct unwinder dwarf_unwinder
= {
888 .name
= "dwarf-unwinder",
889 .dump
= dwarf_unwinder_dump
,
893 static void dwarf_unwinder_cleanup(void)
895 struct dwarf_cie
*cie
;
896 struct dwarf_fde
*fde
;
899 * Deallocate all the memory allocated for the DWARF unwinder.
900 * Traverse all the FDE/CIE lists and remove and free all the
901 * memory associated with those data structures.
903 list_for_each_entry(cie
, &dwarf_cie_list
, link
)
906 list_for_each_entry(fde
, &dwarf_fde_list
, link
)
909 kmem_cache_destroy(dwarf_reg_cachep
);
910 kmem_cache_destroy(dwarf_frame_cachep
);
914 * dwarf_parse_section - parse DWARF section
915 * @eh_frame_start: start address of the .eh_frame section
916 * @eh_frame_end: end address of the .eh_frame section
917 * @mod: the kernel module containing the .eh_frame section
919 * Parse the information in a .eh_frame section.
921 static int dwarf_parse_section(char *eh_frame_start
, char *eh_frame_end
,
927 unsigned long len
= 0;
928 unsigned int c_entries
, f_entries
;
933 entry
= eh_frame_start
;
935 while ((char *)entry
< eh_frame_end
) {
938 count
= dwarf_entry_len(p
, &len
);
941 * We read a bogus length field value. There is
942 * nothing we can do here apart from disabling
943 * the DWARF unwinder. We can't even skip this
944 * entry and move to the next one because 'len'
945 * tells us where our next entry is.
952 /* initial length does not include itself */
955 entry_type
= get_unaligned((u32
*)p
);
958 if (entry_type
== DW_EH_FRAME_CIE
) {
959 err
= dwarf_parse_cie(entry
, p
, len
, end
, mod
);
965 err
= dwarf_parse_fde(entry
, entry_type
, p
, len
,
973 entry
= (char *)entry
+ len
+ 4;
976 printk(KERN_INFO
"DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
977 c_entries
, f_entries
);
985 #ifdef CONFIG_MODULES
986 int module_dwarf_finalize(const Elf_Ehdr
*hdr
, const Elf_Shdr
*sechdrs
,
990 unsigned long start
, end
;
991 char *secstrings
= (void *)hdr
+ sechdrs
[hdr
->e_shstrndx
].sh_offset
;
995 for (i
= 1; i
< hdr
->e_shnum
; i
++) {
996 /* Alloc bit cleared means "ignore it." */
997 if ((sechdrs
[i
].sh_flags
& SHF_ALLOC
)
998 && !strcmp(secstrings
+sechdrs
[i
].sh_name
, ".eh_frame")) {
999 start
= sechdrs
[i
].sh_addr
;
1000 end
= start
+ sechdrs
[i
].sh_size
;
1005 /* Did we find the .eh_frame section? */
1006 if (i
!= hdr
->e_shnum
) {
1007 err
= dwarf_parse_section((char *)start
, (char *)end
, me
);
1009 printk(KERN_WARNING
"%s: failed to parse DWARF info\n",
1019 * module_dwarf_cleanup - remove FDE/CIEs associated with @mod
1020 * @mod: the module that is being unloaded
1022 * Remove any FDEs and CIEs from the global lists that came from
1023 * @mod's .eh_frame section because @mod is being unloaded.
1025 void module_dwarf_cleanup(struct module
*mod
)
1027 struct dwarf_fde
*fde
;
1028 struct dwarf_cie
*cie
;
1029 unsigned long flags
;
1031 spin_lock_irqsave(&dwarf_cie_lock
, flags
);
1034 list_for_each_entry(cie
, &dwarf_cie_list
, link
) {
1035 if (cie
->mod
== mod
)
1039 if (&cie
->link
!= &dwarf_cie_list
) {
1040 list_del(&cie
->link
);
1045 spin_unlock_irqrestore(&dwarf_cie_lock
, flags
);
1047 spin_lock_irqsave(&dwarf_fde_lock
, flags
);
1050 list_for_each_entry(fde
, &dwarf_fde_list
, link
) {
1051 if (fde
->mod
== mod
)
1055 if (&fde
->link
!= &dwarf_fde_list
) {
1056 list_del(&fde
->link
);
1061 spin_unlock_irqrestore(&dwarf_fde_lock
, flags
);
1063 #endif /* CONFIG_MODULES */
1066 * dwarf_unwinder_init - initialise the dwarf unwinder
1068 * Build the data structures describing the .dwarf_frame section to
1069 * make it easier to lookup CIE and FDE entries. Because the
1070 * .eh_frame section is packed as tightly as possible it is not
1071 * easy to lookup the FDE for a given PC, so we build a list of FDE
1072 * and CIE entries that make it easier.
1074 static int __init
dwarf_unwinder_init(void)
1077 INIT_LIST_HEAD(&dwarf_cie_list
);
1078 INIT_LIST_HEAD(&dwarf_fde_list
);
1080 dwarf_frame_cachep
= kmem_cache_create("dwarf_frames",
1081 sizeof(struct dwarf_frame
), 0,
1082 SLAB_PANIC
| SLAB_HWCACHE_ALIGN
| SLAB_NOTRACK
, NULL
);
1084 dwarf_reg_cachep
= kmem_cache_create("dwarf_regs",
1085 sizeof(struct dwarf_reg
), 0,
1086 SLAB_PANIC
| SLAB_HWCACHE_ALIGN
| SLAB_NOTRACK
, NULL
);
1088 dwarf_frame_pool
= mempool_create(DWARF_FRAME_MIN_REQ
,
1091 dwarf_frame_cachep
);
1093 dwarf_reg_pool
= mempool_create(DWARF_REG_MIN_REQ
,
1098 err
= dwarf_parse_section(__start_eh_frame
, __stop_eh_frame
, NULL
);
1102 err
= unwinder_register(&dwarf_unwinder
);
1109 printk(KERN_ERR
"Failed to initialise DWARF unwinder: %d\n", err
);
1110 dwarf_unwinder_cleanup();
1113 early_initcall(dwarf_unwinder_init
);