2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
47 static struct extent_io_ops btree_extent_io_ops
;
48 static void end_workqueue_fn(struct btrfs_work
*work
);
49 static void free_fs_root(struct btrfs_root
*root
);
50 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
52 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
);
53 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
55 struct btrfs_root
*root
);
56 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
);
57 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
58 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
59 struct extent_io_tree
*dirty_pages
,
61 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
62 struct extent_io_tree
*pinned_extents
);
63 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
74 struct btrfs_fs_info
*info
;
77 struct list_head list
;
78 struct btrfs_work work
;
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
86 struct async_submit_bio
{
89 struct list_head list
;
90 extent_submit_bio_hook_t
*submit_bio_start
;
91 extent_submit_bio_hook_t
*submit_bio_done
;
94 unsigned long bio_flags
;
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
100 struct btrfs_work work
;
104 * Lockdep class keys for extent_buffer->lock's in this root. For a given
105 * eb, the lockdep key is determined by the btrfs_root it belongs to and
106 * the level the eb occupies in the tree.
108 * Different roots are used for different purposes and may nest inside each
109 * other and they require separate keysets. As lockdep keys should be
110 * static, assign keysets according to the purpose of the root as indicated
111 * by btrfs_root->objectid. This ensures that all special purpose roots
112 * have separate keysets.
114 * Lock-nesting across peer nodes is always done with the immediate parent
115 * node locked thus preventing deadlock. As lockdep doesn't know this, use
116 * subclass to avoid triggering lockdep warning in such cases.
118 * The key is set by the readpage_end_io_hook after the buffer has passed
119 * csum validation but before the pages are unlocked. It is also set by
120 * btrfs_init_new_buffer on freshly allocated blocks.
122 * We also add a check to make sure the highest level of the tree is the
123 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
124 * needs update as well.
126 #ifdef CONFIG_DEBUG_LOCK_ALLOC
127 # if BTRFS_MAX_LEVEL != 8
131 static struct btrfs_lockdep_keyset
{
132 u64 id
; /* root objectid */
133 const char *name_stem
; /* lock name stem */
134 char names
[BTRFS_MAX_LEVEL
+ 1][20];
135 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
136 } btrfs_lockdep_keysets
[] = {
137 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
138 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
139 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
140 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
141 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
142 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
143 { .id
= BTRFS_ORPHAN_OBJECTID
, .name_stem
= "orphan" },
144 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
145 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
146 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
147 { .id
= 0, .name_stem
= "tree" },
150 void __init
btrfs_init_lockdep(void)
154 /* initialize lockdep class names */
155 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
156 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
158 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
159 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
160 "btrfs-%s-%02d", ks
->name_stem
, j
);
164 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
167 struct btrfs_lockdep_keyset
*ks
;
169 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
171 /* find the matching keyset, id 0 is the default entry */
172 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
173 if (ks
->id
== objectid
)
176 lockdep_set_class_and_name(&eb
->lock
,
177 &ks
->keys
[level
], ks
->names
[level
]);
183 * extents on the btree inode are pretty simple, there's one extent
184 * that covers the entire device
186 static struct extent_map
*btree_get_extent(struct inode
*inode
,
187 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
190 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
191 struct extent_map
*em
;
194 read_lock(&em_tree
->lock
);
195 em
= lookup_extent_mapping(em_tree
, start
, len
);
198 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
199 read_unlock(&em_tree
->lock
);
202 read_unlock(&em_tree
->lock
);
204 em
= alloc_extent_map();
206 em
= ERR_PTR(-ENOMEM
);
211 em
->block_len
= (u64
)-1;
213 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
215 write_lock(&em_tree
->lock
);
216 ret
= add_extent_mapping(em_tree
, em
);
217 if (ret
== -EEXIST
) {
218 u64 failed_start
= em
->start
;
219 u64 failed_len
= em
->len
;
222 em
= lookup_extent_mapping(em_tree
, start
, len
);
226 em
= lookup_extent_mapping(em_tree
, failed_start
,
234 write_unlock(&em_tree
->lock
);
242 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
244 return crc32c(seed
, data
, len
);
247 void btrfs_csum_final(u32 crc
, char *result
)
249 put_unaligned_le32(~crc
, result
);
253 * compute the csum for a btree block, and either verify it or write it
254 * into the csum field of the block.
256 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
259 u16 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
262 unsigned long cur_len
;
263 unsigned long offset
= BTRFS_CSUM_SIZE
;
265 unsigned long map_start
;
266 unsigned long map_len
;
269 unsigned long inline_result
;
271 len
= buf
->len
- offset
;
273 err
= map_private_extent_buffer(buf
, offset
, 32,
274 &kaddr
, &map_start
, &map_len
);
277 cur_len
= min(len
, map_len
- (offset
- map_start
));
278 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
283 if (csum_size
> sizeof(inline_result
)) {
284 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
288 result
= (char *)&inline_result
;
291 btrfs_csum_final(crc
, result
);
294 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
297 memcpy(&found
, result
, csum_size
);
299 read_extent_buffer(buf
, &val
, 0, csum_size
);
300 printk_ratelimited(KERN_INFO
"btrfs: %s checksum verify "
301 "failed on %llu wanted %X found %X "
303 root
->fs_info
->sb
->s_id
,
304 (unsigned long long)buf
->start
, val
, found
,
305 btrfs_header_level(buf
));
306 if (result
!= (char *)&inline_result
)
311 write_extent_buffer(buf
, result
, 0, csum_size
);
313 if (result
!= (char *)&inline_result
)
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
324 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
325 struct extent_buffer
*eb
, u64 parent_transid
)
327 struct extent_state
*cached_state
= NULL
;
330 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
333 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
334 0, &cached_state
, GFP_NOFS
);
335 if (extent_buffer_uptodate(io_tree
, eb
, cached_state
) &&
336 btrfs_header_generation(eb
) == parent_transid
) {
340 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342 (unsigned long long)eb
->start
,
343 (unsigned long long)parent_transid
,
344 (unsigned long long)btrfs_header_generation(eb
));
346 clear_extent_buffer_uptodate(io_tree
, eb
, &cached_state
);
348 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
349 &cached_state
, GFP_NOFS
);
354 * helper to read a given tree block, doing retries as required when
355 * the checksums don't match and we have alternate mirrors to try.
357 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
358 struct extent_buffer
*eb
,
359 u64 start
, u64 parent_transid
)
361 struct extent_io_tree
*io_tree
;
366 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
367 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
369 ret
= read_extent_buffer_pages(io_tree
, eb
, start
,
371 btree_get_extent
, mirror_num
);
373 !verify_parent_transid(io_tree
, eb
, parent_transid
))
377 * This buffer's crc is fine, but its contents are corrupted, so
378 * there is no reason to read the other copies, they won't be
381 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
384 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
390 if (mirror_num
> num_copies
)
397 * checksum a dirty tree block before IO. This has extra checks to make sure
398 * we only fill in the checksum field in the first page of a multi-page block
401 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
403 struct extent_io_tree
*tree
;
404 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
407 struct extent_buffer
*eb
;
410 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
412 if (page
->private == EXTENT_PAGE_PRIVATE
) {
416 if (!page
->private) {
420 len
= page
->private >> 2;
423 eb
= alloc_extent_buffer(tree
, start
, len
, page
);
428 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
429 btrfs_header_generation(eb
));
431 WARN_ON(!btrfs_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
));
433 found_start
= btrfs_header_bytenr(eb
);
434 if (found_start
!= start
) {
438 if (eb
->first_page
!= page
) {
442 if (!PageUptodate(page
)) {
446 csum_tree_block(root
, eb
, 0);
448 free_extent_buffer(eb
);
453 static int check_tree_block_fsid(struct btrfs_root
*root
,
454 struct extent_buffer
*eb
)
456 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
457 u8 fsid
[BTRFS_UUID_SIZE
];
460 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
463 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
467 fs_devices
= fs_devices
->seed
;
472 #define CORRUPT(reason, eb, root, slot) \
473 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
474 "root=%llu, slot=%d\n", reason, \
475 (unsigned long long)btrfs_header_bytenr(eb), \
476 (unsigned long long)root->objectid, slot)
478 static noinline
int check_leaf(struct btrfs_root
*root
,
479 struct extent_buffer
*leaf
)
481 struct btrfs_key key
;
482 struct btrfs_key leaf_key
;
483 u32 nritems
= btrfs_header_nritems(leaf
);
489 /* Check the 0 item */
490 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
491 BTRFS_LEAF_DATA_SIZE(root
)) {
492 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
497 * Check to make sure each items keys are in the correct order and their
498 * offsets make sense. We only have to loop through nritems-1 because
499 * we check the current slot against the next slot, which verifies the
500 * next slot's offset+size makes sense and that the current's slot
503 for (slot
= 0; slot
< nritems
- 1; slot
++) {
504 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
505 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
507 /* Make sure the keys are in the right order */
508 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
509 CORRUPT("bad key order", leaf
, root
, slot
);
514 * Make sure the offset and ends are right, remember that the
515 * item data starts at the end of the leaf and grows towards the
518 if (btrfs_item_offset_nr(leaf
, slot
) !=
519 btrfs_item_end_nr(leaf
, slot
+ 1)) {
520 CORRUPT("slot offset bad", leaf
, root
, slot
);
525 * Check to make sure that we don't point outside of the leaf,
526 * just incase all the items are consistent to eachother, but
527 * all point outside of the leaf.
529 if (btrfs_item_end_nr(leaf
, slot
) >
530 BTRFS_LEAF_DATA_SIZE(root
)) {
531 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
539 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
540 struct extent_state
*state
)
542 struct extent_io_tree
*tree
;
546 struct extent_buffer
*eb
;
547 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
550 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
551 if (page
->private == EXTENT_PAGE_PRIVATE
)
556 len
= page
->private >> 2;
559 eb
= alloc_extent_buffer(tree
, start
, len
, page
);
565 found_start
= btrfs_header_bytenr(eb
);
566 if (found_start
!= start
) {
567 printk_ratelimited(KERN_INFO
"btrfs bad tree block start "
569 (unsigned long long)found_start
,
570 (unsigned long long)eb
->start
);
574 if (eb
->first_page
!= page
) {
575 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
576 eb
->first_page
->index
, page
->index
);
581 if (check_tree_block_fsid(root
, eb
)) {
582 printk_ratelimited(KERN_INFO
"btrfs bad fsid on block %llu\n",
583 (unsigned long long)eb
->start
);
587 found_level
= btrfs_header_level(eb
);
589 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
592 ret
= csum_tree_block(root
, eb
, 1);
599 * If this is a leaf block and it is corrupt, set the corrupt bit so
600 * that we don't try and read the other copies of this block, just
603 if (found_level
== 0 && check_leaf(root
, eb
)) {
604 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
608 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
609 end
= eb
->start
+ end
- 1;
611 if (test_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
)) {
612 clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
);
613 btree_readahead_hook(root
, eb
, eb
->start
, ret
);
616 free_extent_buffer(eb
);
621 static int btree_io_failed_hook(struct bio
*failed_bio
,
622 struct page
*page
, u64 start
, u64 end
,
623 int mirror_num
, struct extent_state
*state
)
625 struct extent_io_tree
*tree
;
627 struct extent_buffer
*eb
;
628 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
630 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
631 if (page
->private == EXTENT_PAGE_PRIVATE
)
636 len
= page
->private >> 2;
639 eb
= alloc_extent_buffer(tree
, start
, len
, page
);
643 if (test_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
)) {
644 clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
);
645 btree_readahead_hook(root
, eb
, eb
->start
, -EIO
);
647 free_extent_buffer(eb
);
650 return -EIO
; /* we fixed nothing */
653 static void end_workqueue_bio(struct bio
*bio
, int err
)
655 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
656 struct btrfs_fs_info
*fs_info
;
658 fs_info
= end_io_wq
->info
;
659 end_io_wq
->error
= err
;
660 end_io_wq
->work
.func
= end_workqueue_fn
;
661 end_io_wq
->work
.flags
= 0;
663 if (bio
->bi_rw
& REQ_WRITE
) {
664 if (end_io_wq
->metadata
== 1)
665 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
667 else if (end_io_wq
->metadata
== 2)
668 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
671 btrfs_queue_worker(&fs_info
->endio_write_workers
,
674 if (end_io_wq
->metadata
)
675 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
678 btrfs_queue_worker(&fs_info
->endio_workers
,
684 * For the metadata arg you want
687 * 1 - if normal metadta
688 * 2 - if writing to the free space cache area
690 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
693 struct end_io_wq
*end_io_wq
;
694 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
698 end_io_wq
->private = bio
->bi_private
;
699 end_io_wq
->end_io
= bio
->bi_end_io
;
700 end_io_wq
->info
= info
;
701 end_io_wq
->error
= 0;
702 end_io_wq
->bio
= bio
;
703 end_io_wq
->metadata
= metadata
;
705 bio
->bi_private
= end_io_wq
;
706 bio
->bi_end_io
= end_workqueue_bio
;
710 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
712 unsigned long limit
= min_t(unsigned long,
713 info
->workers
.max_workers
,
714 info
->fs_devices
->open_devices
);
718 static void run_one_async_start(struct btrfs_work
*work
)
720 struct async_submit_bio
*async
;
722 async
= container_of(work
, struct async_submit_bio
, work
);
723 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
724 async
->mirror_num
, async
->bio_flags
,
728 static void run_one_async_done(struct btrfs_work
*work
)
730 struct btrfs_fs_info
*fs_info
;
731 struct async_submit_bio
*async
;
734 async
= container_of(work
, struct async_submit_bio
, work
);
735 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
737 limit
= btrfs_async_submit_limit(fs_info
);
738 limit
= limit
* 2 / 3;
740 atomic_dec(&fs_info
->nr_async_submits
);
742 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
743 waitqueue_active(&fs_info
->async_submit_wait
))
744 wake_up(&fs_info
->async_submit_wait
);
746 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
747 async
->mirror_num
, async
->bio_flags
,
751 static void run_one_async_free(struct btrfs_work
*work
)
753 struct async_submit_bio
*async
;
755 async
= container_of(work
, struct async_submit_bio
, work
);
759 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
760 int rw
, struct bio
*bio
, int mirror_num
,
761 unsigned long bio_flags
,
763 extent_submit_bio_hook_t
*submit_bio_start
,
764 extent_submit_bio_hook_t
*submit_bio_done
)
766 struct async_submit_bio
*async
;
768 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
772 async
->inode
= inode
;
775 async
->mirror_num
= mirror_num
;
776 async
->submit_bio_start
= submit_bio_start
;
777 async
->submit_bio_done
= submit_bio_done
;
779 async
->work
.func
= run_one_async_start
;
780 async
->work
.ordered_func
= run_one_async_done
;
781 async
->work
.ordered_free
= run_one_async_free
;
783 async
->work
.flags
= 0;
784 async
->bio_flags
= bio_flags
;
785 async
->bio_offset
= bio_offset
;
787 atomic_inc(&fs_info
->nr_async_submits
);
790 btrfs_set_work_high_prio(&async
->work
);
792 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
794 while (atomic_read(&fs_info
->async_submit_draining
) &&
795 atomic_read(&fs_info
->nr_async_submits
)) {
796 wait_event(fs_info
->async_submit_wait
,
797 (atomic_read(&fs_info
->nr_async_submits
) == 0));
803 static int btree_csum_one_bio(struct bio
*bio
)
805 struct bio_vec
*bvec
= bio
->bi_io_vec
;
807 struct btrfs_root
*root
;
809 WARN_ON(bio
->bi_vcnt
<= 0);
810 while (bio_index
< bio
->bi_vcnt
) {
811 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
812 csum_dirty_buffer(root
, bvec
->bv_page
);
819 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
820 struct bio
*bio
, int mirror_num
,
821 unsigned long bio_flags
,
825 * when we're called for a write, we're already in the async
826 * submission context. Just jump into btrfs_map_bio
828 btree_csum_one_bio(bio
);
832 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
833 int mirror_num
, unsigned long bio_flags
,
837 * when we're called for a write, we're already in the async
838 * submission context. Just jump into btrfs_map_bio
840 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
843 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
844 int mirror_num
, unsigned long bio_flags
,
849 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
853 if (!(rw
& REQ_WRITE
)) {
855 * called for a read, do the setup so that checksum validation
856 * can happen in the async kernel threads
858 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
863 * kthread helpers are used to submit writes so that checksumming
864 * can happen in parallel across all CPUs
866 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
867 inode
, rw
, bio
, mirror_num
, 0,
869 __btree_submit_bio_start
,
870 __btree_submit_bio_done
);
873 #ifdef CONFIG_MIGRATION
874 static int btree_migratepage(struct address_space
*mapping
,
875 struct page
*newpage
, struct page
*page
)
878 * we can't safely write a btree page from here,
879 * we haven't done the locking hook
884 * Buffers may be managed in a filesystem specific way.
885 * We must have no buffers or drop them.
887 if (page_has_private(page
) &&
888 !try_to_release_page(page
, GFP_KERNEL
))
890 return migrate_page(mapping
, newpage
, page
);
894 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
896 struct extent_io_tree
*tree
;
897 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
898 struct extent_buffer
*eb
;
901 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
902 if (!(current
->flags
& PF_MEMALLOC
)) {
903 return extent_write_full_page(tree
, page
,
904 btree_get_extent
, wbc
);
907 redirty_page_for_writepage(wbc
, page
);
908 eb
= btrfs_find_tree_block(root
, page_offset(page
), PAGE_CACHE_SIZE
);
911 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
913 spin_lock(&root
->fs_info
->delalloc_lock
);
914 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
915 spin_unlock(&root
->fs_info
->delalloc_lock
);
917 free_extent_buffer(eb
);
923 static int btree_writepages(struct address_space
*mapping
,
924 struct writeback_control
*wbc
)
926 struct extent_io_tree
*tree
;
927 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
928 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
929 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
931 unsigned long thresh
= 32 * 1024 * 1024;
933 if (wbc
->for_kupdate
)
936 /* this is a bit racy, but that's ok */
937 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
938 if (num_dirty
< thresh
)
941 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
944 static int btree_readpage(struct file
*file
, struct page
*page
)
946 struct extent_io_tree
*tree
;
947 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
948 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
951 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
953 struct extent_io_tree
*tree
;
954 struct extent_map_tree
*map
;
957 if (PageWriteback(page
) || PageDirty(page
))
960 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
961 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
963 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
967 ret
= try_release_extent_buffer(tree
, page
);
969 ClearPagePrivate(page
);
970 set_page_private(page
, 0);
971 page_cache_release(page
);
977 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
979 struct extent_io_tree
*tree
;
980 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
981 extent_invalidatepage(tree
, page
, offset
);
982 btree_releasepage(page
, GFP_NOFS
);
983 if (PagePrivate(page
)) {
984 printk(KERN_WARNING
"btrfs warning page private not zero "
985 "on page %llu\n", (unsigned long long)page_offset(page
));
986 ClearPagePrivate(page
);
987 set_page_private(page
, 0);
988 page_cache_release(page
);
992 static const struct address_space_operations btree_aops
= {
993 .readpage
= btree_readpage
,
994 .writepage
= btree_writepage
,
995 .writepages
= btree_writepages
,
996 .releasepage
= btree_releasepage
,
997 .invalidatepage
= btree_invalidatepage
,
998 #ifdef CONFIG_MIGRATION
999 .migratepage
= btree_migratepage
,
1003 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1006 struct extent_buffer
*buf
= NULL
;
1007 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1010 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1013 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1014 buf
, 0, WAIT_NONE
, btree_get_extent
, 0);
1015 free_extent_buffer(buf
);
1019 int reada_tree_block_flagged(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1020 int mirror_num
, struct extent_buffer
**eb
)
1022 struct extent_buffer
*buf
= NULL
;
1023 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1024 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1027 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1031 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1033 ret
= read_extent_buffer_pages(io_tree
, buf
, 0, WAIT_PAGE_LOCK
,
1034 btree_get_extent
, mirror_num
);
1036 free_extent_buffer(buf
);
1040 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1041 free_extent_buffer(buf
);
1043 } else if (extent_buffer_uptodate(io_tree
, buf
, NULL
)) {
1046 free_extent_buffer(buf
);
1051 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
1052 u64 bytenr
, u32 blocksize
)
1054 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1055 struct extent_buffer
*eb
;
1056 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1061 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
1062 u64 bytenr
, u32 blocksize
)
1064 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1065 struct extent_buffer
*eb
;
1067 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1068 bytenr
, blocksize
, NULL
);
1073 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1075 return filemap_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
1076 buf
->start
+ buf
->len
- 1);
1079 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1081 return filemap_fdatawait_range(buf
->first_page
->mapping
,
1082 buf
->start
, buf
->start
+ buf
->len
- 1);
1085 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
1086 u32 blocksize
, u64 parent_transid
)
1088 struct extent_buffer
*buf
= NULL
;
1091 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1095 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
1098 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
1103 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
1104 struct extent_buffer
*buf
)
1106 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1107 if (btrfs_header_generation(buf
) ==
1108 root
->fs_info
->running_transaction
->transid
) {
1109 btrfs_assert_tree_locked(buf
);
1111 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1112 spin_lock(&root
->fs_info
->delalloc_lock
);
1113 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
1114 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
1117 spin_unlock(&root
->fs_info
->delalloc_lock
);
1120 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1121 btrfs_set_lock_blocking(buf
);
1122 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
1128 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
1129 u32 stripesize
, struct btrfs_root
*root
,
1130 struct btrfs_fs_info
*fs_info
,
1134 root
->commit_root
= NULL
;
1135 root
->sectorsize
= sectorsize
;
1136 root
->nodesize
= nodesize
;
1137 root
->leafsize
= leafsize
;
1138 root
->stripesize
= stripesize
;
1140 root
->track_dirty
= 0;
1142 root
->orphan_item_inserted
= 0;
1143 root
->orphan_cleanup_state
= 0;
1145 root
->fs_info
= fs_info
;
1146 root
->objectid
= objectid
;
1147 root
->last_trans
= 0;
1148 root
->highest_objectid
= 0;
1150 root
->inode_tree
= RB_ROOT
;
1151 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1152 root
->block_rsv
= NULL
;
1153 root
->orphan_block_rsv
= NULL
;
1155 INIT_LIST_HEAD(&root
->dirty_list
);
1156 INIT_LIST_HEAD(&root
->orphan_list
);
1157 INIT_LIST_HEAD(&root
->root_list
);
1158 spin_lock_init(&root
->orphan_lock
);
1159 spin_lock_init(&root
->inode_lock
);
1160 spin_lock_init(&root
->accounting_lock
);
1161 mutex_init(&root
->objectid_mutex
);
1162 mutex_init(&root
->log_mutex
);
1163 init_waitqueue_head(&root
->log_writer_wait
);
1164 init_waitqueue_head(&root
->log_commit_wait
[0]);
1165 init_waitqueue_head(&root
->log_commit_wait
[1]);
1166 atomic_set(&root
->log_commit
[0], 0);
1167 atomic_set(&root
->log_commit
[1], 0);
1168 atomic_set(&root
->log_writers
, 0);
1169 root
->log_batch
= 0;
1170 root
->log_transid
= 0;
1171 root
->last_log_commit
= 0;
1172 extent_io_tree_init(&root
->dirty_log_pages
,
1173 fs_info
->btree_inode
->i_mapping
);
1175 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1176 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1177 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1178 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
1179 root
->defrag_trans_start
= fs_info
->generation
;
1180 init_completion(&root
->kobj_unregister
);
1181 root
->defrag_running
= 0;
1182 root
->root_key
.objectid
= objectid
;
1187 static int find_and_setup_root(struct btrfs_root
*tree_root
,
1188 struct btrfs_fs_info
*fs_info
,
1190 struct btrfs_root
*root
)
1196 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1197 tree_root
->sectorsize
, tree_root
->stripesize
,
1198 root
, fs_info
, objectid
);
1199 ret
= btrfs_find_last_root(tree_root
, objectid
,
1200 &root
->root_item
, &root
->root_key
);
1205 generation
= btrfs_root_generation(&root
->root_item
);
1206 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1207 root
->commit_root
= NULL
;
1208 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1209 blocksize
, generation
);
1210 if (!root
->node
|| !btrfs_buffer_uptodate(root
->node
, generation
)) {
1211 free_extent_buffer(root
->node
);
1215 root
->commit_root
= btrfs_root_node(root
);
1219 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1220 struct btrfs_fs_info
*fs_info
)
1222 struct btrfs_root
*root
;
1223 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1224 struct extent_buffer
*leaf
;
1226 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1228 return ERR_PTR(-ENOMEM
);
1230 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1231 tree_root
->sectorsize
, tree_root
->stripesize
,
1232 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1234 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1235 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1236 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1238 * log trees do not get reference counted because they go away
1239 * before a real commit is actually done. They do store pointers
1240 * to file data extents, and those reference counts still get
1241 * updated (along with back refs to the log tree).
1245 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1246 BTRFS_TREE_LOG_OBJECTID
, NULL
, 0, 0, 0);
1249 return ERR_CAST(leaf
);
1252 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1253 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1254 btrfs_set_header_generation(leaf
, trans
->transid
);
1255 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1256 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1259 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1260 (unsigned long)btrfs_header_fsid(root
->node
),
1262 btrfs_mark_buffer_dirty(root
->node
);
1263 btrfs_tree_unlock(root
->node
);
1267 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1268 struct btrfs_fs_info
*fs_info
)
1270 struct btrfs_root
*log_root
;
1272 log_root
= alloc_log_tree(trans
, fs_info
);
1273 if (IS_ERR(log_root
))
1274 return PTR_ERR(log_root
);
1275 WARN_ON(fs_info
->log_root_tree
);
1276 fs_info
->log_root_tree
= log_root
;
1280 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1281 struct btrfs_root
*root
)
1283 struct btrfs_root
*log_root
;
1284 struct btrfs_inode_item
*inode_item
;
1286 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1287 if (IS_ERR(log_root
))
1288 return PTR_ERR(log_root
);
1290 log_root
->last_trans
= trans
->transid
;
1291 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1293 inode_item
= &log_root
->root_item
.inode
;
1294 inode_item
->generation
= cpu_to_le64(1);
1295 inode_item
->size
= cpu_to_le64(3);
1296 inode_item
->nlink
= cpu_to_le32(1);
1297 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1298 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1300 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1302 WARN_ON(root
->log_root
);
1303 root
->log_root
= log_root
;
1304 root
->log_transid
= 0;
1305 root
->last_log_commit
= 0;
1309 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1310 struct btrfs_key
*location
)
1312 struct btrfs_root
*root
;
1313 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1314 struct btrfs_path
*path
;
1315 struct extent_buffer
*l
;
1320 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1322 return ERR_PTR(-ENOMEM
);
1323 if (location
->offset
== (u64
)-1) {
1324 ret
= find_and_setup_root(tree_root
, fs_info
,
1325 location
->objectid
, root
);
1328 return ERR_PTR(ret
);
1333 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1334 tree_root
->sectorsize
, tree_root
->stripesize
,
1335 root
, fs_info
, location
->objectid
);
1337 path
= btrfs_alloc_path();
1340 return ERR_PTR(-ENOMEM
);
1342 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1345 read_extent_buffer(l
, &root
->root_item
,
1346 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1347 sizeof(root
->root_item
));
1348 memcpy(&root
->root_key
, location
, sizeof(*location
));
1350 btrfs_free_path(path
);
1355 return ERR_PTR(ret
);
1358 generation
= btrfs_root_generation(&root
->root_item
);
1359 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1360 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1361 blocksize
, generation
);
1362 root
->commit_root
= btrfs_root_node(root
);
1363 BUG_ON(!root
->node
);
1365 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1367 btrfs_check_and_init_root_item(&root
->root_item
);
1373 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1374 struct btrfs_key
*location
)
1376 struct btrfs_root
*root
;
1379 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1380 return fs_info
->tree_root
;
1381 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1382 return fs_info
->extent_root
;
1383 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1384 return fs_info
->chunk_root
;
1385 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1386 return fs_info
->dev_root
;
1387 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1388 return fs_info
->csum_root
;
1390 spin_lock(&fs_info
->fs_roots_radix_lock
);
1391 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1392 (unsigned long)location
->objectid
);
1393 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1397 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1401 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1402 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1404 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1409 btrfs_init_free_ino_ctl(root
);
1410 mutex_init(&root
->fs_commit_mutex
);
1411 spin_lock_init(&root
->cache_lock
);
1412 init_waitqueue_head(&root
->cache_wait
);
1414 ret
= get_anon_bdev(&root
->anon_dev
);
1418 if (btrfs_root_refs(&root
->root_item
) == 0) {
1423 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1427 root
->orphan_item_inserted
= 1;
1429 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1433 spin_lock(&fs_info
->fs_roots_radix_lock
);
1434 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1435 (unsigned long)root
->root_key
.objectid
,
1440 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1441 radix_tree_preload_end();
1443 if (ret
== -EEXIST
) {
1450 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1451 root
->root_key
.objectid
);
1456 return ERR_PTR(ret
);
1459 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1461 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1463 struct btrfs_device
*device
;
1464 struct backing_dev_info
*bdi
;
1467 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1470 bdi
= blk_get_backing_dev_info(device
->bdev
);
1471 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1481 * If this fails, caller must call bdi_destroy() to get rid of the
1484 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1488 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1489 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1493 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1494 bdi
->congested_fn
= btrfs_congested_fn
;
1495 bdi
->congested_data
= info
;
1499 static int bio_ready_for_csum(struct bio
*bio
)
1505 struct extent_io_tree
*io_tree
= NULL
;
1506 struct bio_vec
*bvec
;
1510 bio_for_each_segment(bvec
, bio
, i
) {
1511 page
= bvec
->bv_page
;
1512 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1513 length
+= bvec
->bv_len
;
1516 if (!page
->private) {
1517 length
+= bvec
->bv_len
;
1520 length
= bvec
->bv_len
;
1521 buf_len
= page
->private >> 2;
1522 start
= page_offset(page
) + bvec
->bv_offset
;
1523 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1525 /* are we fully contained in this bio? */
1526 if (buf_len
<= length
)
1529 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1530 start
+ buf_len
- 1);
1535 * called by the kthread helper functions to finally call the bio end_io
1536 * functions. This is where read checksum verification actually happens
1538 static void end_workqueue_fn(struct btrfs_work
*work
)
1541 struct end_io_wq
*end_io_wq
;
1542 struct btrfs_fs_info
*fs_info
;
1545 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1546 bio
= end_io_wq
->bio
;
1547 fs_info
= end_io_wq
->info
;
1549 /* metadata bio reads are special because the whole tree block must
1550 * be checksummed at once. This makes sure the entire block is in
1551 * ram and up to date before trying to verify things. For
1552 * blocksize <= pagesize, it is basically a noop
1554 if (!(bio
->bi_rw
& REQ_WRITE
) && end_io_wq
->metadata
&&
1555 !bio_ready_for_csum(bio
)) {
1556 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1560 error
= end_io_wq
->error
;
1561 bio
->bi_private
= end_io_wq
->private;
1562 bio
->bi_end_io
= end_io_wq
->end_io
;
1564 bio_endio(bio
, error
);
1567 static int cleaner_kthread(void *arg
)
1569 struct btrfs_root
*root
= arg
;
1572 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1574 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1575 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1576 btrfs_run_delayed_iputs(root
);
1577 btrfs_clean_old_snapshots(root
);
1578 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1579 btrfs_run_defrag_inodes(root
->fs_info
);
1582 if (freezing(current
)) {
1585 set_current_state(TASK_INTERRUPTIBLE
);
1586 if (!kthread_should_stop())
1588 __set_current_state(TASK_RUNNING
);
1590 } while (!kthread_should_stop());
1594 static int transaction_kthread(void *arg
)
1596 struct btrfs_root
*root
= arg
;
1597 struct btrfs_trans_handle
*trans
;
1598 struct btrfs_transaction
*cur
;
1601 unsigned long delay
;
1606 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1607 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1609 spin_lock(&root
->fs_info
->trans_lock
);
1610 cur
= root
->fs_info
->running_transaction
;
1612 spin_unlock(&root
->fs_info
->trans_lock
);
1616 now
= get_seconds();
1617 if (!cur
->blocked
&&
1618 (now
< cur
->start_time
|| now
- cur
->start_time
< 30)) {
1619 spin_unlock(&root
->fs_info
->trans_lock
);
1623 transid
= cur
->transid
;
1624 spin_unlock(&root
->fs_info
->trans_lock
);
1626 trans
= btrfs_join_transaction(root
);
1627 BUG_ON(IS_ERR(trans
));
1628 if (transid
== trans
->transid
) {
1629 ret
= btrfs_commit_transaction(trans
, root
);
1632 btrfs_end_transaction(trans
, root
);
1635 wake_up_process(root
->fs_info
->cleaner_kthread
);
1636 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1638 if (freezing(current
)) {
1641 set_current_state(TASK_INTERRUPTIBLE
);
1642 if (!kthread_should_stop() &&
1643 !btrfs_transaction_blocked(root
->fs_info
))
1644 schedule_timeout(delay
);
1645 __set_current_state(TASK_RUNNING
);
1647 } while (!kthread_should_stop());
1652 * this will find the highest generation in the array of
1653 * root backups. The index of the highest array is returned,
1654 * or -1 if we can't find anything.
1656 * We check to make sure the array is valid by comparing the
1657 * generation of the latest root in the array with the generation
1658 * in the super block. If they don't match we pitch it.
1660 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1663 int newest_index
= -1;
1664 struct btrfs_root_backup
*root_backup
;
1667 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1668 root_backup
= info
->super_copy
->super_roots
+ i
;
1669 cur
= btrfs_backup_tree_root_gen(root_backup
);
1670 if (cur
== newest_gen
)
1674 /* check to see if we actually wrapped around */
1675 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1676 root_backup
= info
->super_copy
->super_roots
;
1677 cur
= btrfs_backup_tree_root_gen(root_backup
);
1678 if (cur
== newest_gen
)
1681 return newest_index
;
1686 * find the oldest backup so we know where to store new entries
1687 * in the backup array. This will set the backup_root_index
1688 * field in the fs_info struct
1690 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1693 int newest_index
= -1;
1695 newest_index
= find_newest_super_backup(info
, newest_gen
);
1696 /* if there was garbage in there, just move along */
1697 if (newest_index
== -1) {
1698 info
->backup_root_index
= 0;
1700 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1705 * copy all the root pointers into the super backup array.
1706 * this will bump the backup pointer by one when it is
1709 static void backup_super_roots(struct btrfs_fs_info
*info
)
1712 struct btrfs_root_backup
*root_backup
;
1715 next_backup
= info
->backup_root_index
;
1716 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1717 BTRFS_NUM_BACKUP_ROOTS
;
1720 * just overwrite the last backup if we're at the same generation
1721 * this happens only at umount
1723 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1724 if (btrfs_backup_tree_root_gen(root_backup
) ==
1725 btrfs_header_generation(info
->tree_root
->node
))
1726 next_backup
= last_backup
;
1728 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1731 * make sure all of our padding and empty slots get zero filled
1732 * regardless of which ones we use today
1734 memset(root_backup
, 0, sizeof(*root_backup
));
1736 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1738 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1739 btrfs_set_backup_tree_root_gen(root_backup
,
1740 btrfs_header_generation(info
->tree_root
->node
));
1742 btrfs_set_backup_tree_root_level(root_backup
,
1743 btrfs_header_level(info
->tree_root
->node
));
1745 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1746 btrfs_set_backup_chunk_root_gen(root_backup
,
1747 btrfs_header_generation(info
->chunk_root
->node
));
1748 btrfs_set_backup_chunk_root_level(root_backup
,
1749 btrfs_header_level(info
->chunk_root
->node
));
1751 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1752 btrfs_set_backup_extent_root_gen(root_backup
,
1753 btrfs_header_generation(info
->extent_root
->node
));
1754 btrfs_set_backup_extent_root_level(root_backup
,
1755 btrfs_header_level(info
->extent_root
->node
));
1758 * we might commit during log recovery, which happens before we set
1759 * the fs_root. Make sure it is valid before we fill it in.
1761 if (info
->fs_root
&& info
->fs_root
->node
) {
1762 btrfs_set_backup_fs_root(root_backup
,
1763 info
->fs_root
->node
->start
);
1764 btrfs_set_backup_fs_root_gen(root_backup
,
1765 btrfs_header_generation(info
->fs_root
->node
));
1766 btrfs_set_backup_fs_root_level(root_backup
,
1767 btrfs_header_level(info
->fs_root
->node
));
1770 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1771 btrfs_set_backup_dev_root_gen(root_backup
,
1772 btrfs_header_generation(info
->dev_root
->node
));
1773 btrfs_set_backup_dev_root_level(root_backup
,
1774 btrfs_header_level(info
->dev_root
->node
));
1776 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1777 btrfs_set_backup_csum_root_gen(root_backup
,
1778 btrfs_header_generation(info
->csum_root
->node
));
1779 btrfs_set_backup_csum_root_level(root_backup
,
1780 btrfs_header_level(info
->csum_root
->node
));
1782 btrfs_set_backup_total_bytes(root_backup
,
1783 btrfs_super_total_bytes(info
->super_copy
));
1784 btrfs_set_backup_bytes_used(root_backup
,
1785 btrfs_super_bytes_used(info
->super_copy
));
1786 btrfs_set_backup_num_devices(root_backup
,
1787 btrfs_super_num_devices(info
->super_copy
));
1790 * if we don't copy this out to the super_copy, it won't get remembered
1791 * for the next commit
1793 memcpy(&info
->super_copy
->super_roots
,
1794 &info
->super_for_commit
->super_roots
,
1795 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1799 * this copies info out of the root backup array and back into
1800 * the in-memory super block. It is meant to help iterate through
1801 * the array, so you send it the number of backups you've already
1802 * tried and the last backup index you used.
1804 * this returns -1 when it has tried all the backups
1806 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
1807 struct btrfs_super_block
*super
,
1808 int *num_backups_tried
, int *backup_index
)
1810 struct btrfs_root_backup
*root_backup
;
1811 int newest
= *backup_index
;
1813 if (*num_backups_tried
== 0) {
1814 u64 gen
= btrfs_super_generation(super
);
1816 newest
= find_newest_super_backup(info
, gen
);
1820 *backup_index
= newest
;
1821 *num_backups_tried
= 1;
1822 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
1823 /* we've tried all the backups, all done */
1826 /* jump to the next oldest backup */
1827 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1828 BTRFS_NUM_BACKUP_ROOTS
;
1829 *backup_index
= newest
;
1830 *num_backups_tried
+= 1;
1832 root_backup
= super
->super_roots
+ newest
;
1834 btrfs_set_super_generation(super
,
1835 btrfs_backup_tree_root_gen(root_backup
));
1836 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
1837 btrfs_set_super_root_level(super
,
1838 btrfs_backup_tree_root_level(root_backup
));
1839 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
1842 * fixme: the total bytes and num_devices need to match or we should
1845 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
1846 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
1850 /* helper to cleanup tree roots */
1851 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
1853 free_extent_buffer(info
->tree_root
->node
);
1854 free_extent_buffer(info
->tree_root
->commit_root
);
1855 free_extent_buffer(info
->dev_root
->node
);
1856 free_extent_buffer(info
->dev_root
->commit_root
);
1857 free_extent_buffer(info
->extent_root
->node
);
1858 free_extent_buffer(info
->extent_root
->commit_root
);
1859 free_extent_buffer(info
->csum_root
->node
);
1860 free_extent_buffer(info
->csum_root
->commit_root
);
1862 info
->tree_root
->node
= NULL
;
1863 info
->tree_root
->commit_root
= NULL
;
1864 info
->dev_root
->node
= NULL
;
1865 info
->dev_root
->commit_root
= NULL
;
1866 info
->extent_root
->node
= NULL
;
1867 info
->extent_root
->commit_root
= NULL
;
1868 info
->csum_root
->node
= NULL
;
1869 info
->csum_root
->commit_root
= NULL
;
1872 free_extent_buffer(info
->chunk_root
->node
);
1873 free_extent_buffer(info
->chunk_root
->commit_root
);
1874 info
->chunk_root
->node
= NULL
;
1875 info
->chunk_root
->commit_root
= NULL
;
1880 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1881 struct btrfs_fs_devices
*fs_devices
,
1891 struct btrfs_key location
;
1892 struct buffer_head
*bh
;
1893 struct btrfs_super_block
*disk_super
;
1894 struct btrfs_root
*tree_root
= btrfs_sb(sb
);
1895 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1896 struct btrfs_root
*extent_root
;
1897 struct btrfs_root
*csum_root
;
1898 struct btrfs_root
*chunk_root
;
1899 struct btrfs_root
*dev_root
;
1900 struct btrfs_root
*log_tree_root
;
1903 int num_backups_tried
= 0;
1904 int backup_index
= 0;
1906 extent_root
= fs_info
->extent_root
=
1907 kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
1908 csum_root
= fs_info
->csum_root
=
1909 kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
1910 chunk_root
= fs_info
->chunk_root
=
1911 kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
1912 dev_root
= fs_info
->dev_root
=
1913 kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
1915 if (!extent_root
|| !csum_root
|| !chunk_root
|| !dev_root
) {
1920 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
1926 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
1932 fs_info
->btree_inode
= new_inode(sb
);
1933 if (!fs_info
->btree_inode
) {
1938 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1940 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
1941 INIT_LIST_HEAD(&fs_info
->trans_list
);
1942 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1943 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
1944 INIT_LIST_HEAD(&fs_info
->hashers
);
1945 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1946 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1947 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
1948 spin_lock_init(&fs_info
->delalloc_lock
);
1949 spin_lock_init(&fs_info
->trans_lock
);
1950 spin_lock_init(&fs_info
->ref_cache_lock
);
1951 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
1952 spin_lock_init(&fs_info
->delayed_iput_lock
);
1953 spin_lock_init(&fs_info
->defrag_inodes_lock
);
1954 spin_lock_init(&fs_info
->free_chunk_lock
);
1955 mutex_init(&fs_info
->reloc_mutex
);
1957 init_completion(&fs_info
->kobj_unregister
);
1958 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1959 INIT_LIST_HEAD(&fs_info
->space_info
);
1960 btrfs_mapping_init(&fs_info
->mapping_tree
);
1961 btrfs_init_block_rsv(&fs_info
->global_block_rsv
);
1962 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
);
1963 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
);
1964 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
);
1965 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
);
1966 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
);
1967 atomic_set(&fs_info
->nr_async_submits
, 0);
1968 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1969 atomic_set(&fs_info
->async_submit_draining
, 0);
1970 atomic_set(&fs_info
->nr_async_bios
, 0);
1971 atomic_set(&fs_info
->defrag_running
, 0);
1973 fs_info
->max_inline
= 8192 * 1024;
1974 fs_info
->metadata_ratio
= 0;
1975 fs_info
->defrag_inodes
= RB_ROOT
;
1976 fs_info
->trans_no_join
= 0;
1977 fs_info
->free_chunk_space
= 0;
1979 /* readahead state */
1980 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_WAIT
);
1981 spin_lock_init(&fs_info
->reada_lock
);
1983 fs_info
->thread_pool_size
= min_t(unsigned long,
1984 num_online_cpus() + 2, 8);
1986 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1987 spin_lock_init(&fs_info
->ordered_extent_lock
);
1988 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
1990 if (!fs_info
->delayed_root
) {
1994 btrfs_init_delayed_root(fs_info
->delayed_root
);
1996 mutex_init(&fs_info
->scrub_lock
);
1997 atomic_set(&fs_info
->scrubs_running
, 0);
1998 atomic_set(&fs_info
->scrub_pause_req
, 0);
1999 atomic_set(&fs_info
->scrubs_paused
, 0);
2000 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2001 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2002 init_rwsem(&fs_info
->scrub_super_lock
);
2003 fs_info
->scrub_workers_refcnt
= 0;
2005 sb
->s_blocksize
= 4096;
2006 sb
->s_blocksize_bits
= blksize_bits(4096);
2007 sb
->s_bdi
= &fs_info
->bdi
;
2009 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2010 set_nlink(fs_info
->btree_inode
, 1);
2012 * we set the i_size on the btree inode to the max possible int.
2013 * the real end of the address space is determined by all of
2014 * the devices in the system
2016 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
2017 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
2018 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
2020 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
2021 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
2022 fs_info
->btree_inode
->i_mapping
);
2023 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
2025 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2027 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
2028 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
2029 sizeof(struct btrfs_key
));
2030 BTRFS_I(fs_info
->btree_inode
)->dummy_inode
= 1;
2031 insert_inode_hash(fs_info
->btree_inode
);
2033 spin_lock_init(&fs_info
->block_group_cache_lock
);
2034 fs_info
->block_group_cache_tree
= RB_ROOT
;
2036 extent_io_tree_init(&fs_info
->freed_extents
[0],
2037 fs_info
->btree_inode
->i_mapping
);
2038 extent_io_tree_init(&fs_info
->freed_extents
[1],
2039 fs_info
->btree_inode
->i_mapping
);
2040 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2041 fs_info
->do_barriers
= 1;
2044 mutex_init(&fs_info
->ordered_operations_mutex
);
2045 mutex_init(&fs_info
->tree_log_mutex
);
2046 mutex_init(&fs_info
->chunk_mutex
);
2047 mutex_init(&fs_info
->transaction_kthread_mutex
);
2048 mutex_init(&fs_info
->cleaner_mutex
);
2049 mutex_init(&fs_info
->volume_mutex
);
2050 init_rwsem(&fs_info
->extent_commit_sem
);
2051 init_rwsem(&fs_info
->cleanup_work_sem
);
2052 init_rwsem(&fs_info
->subvol_sem
);
2054 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2055 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2057 init_waitqueue_head(&fs_info
->transaction_throttle
);
2058 init_waitqueue_head(&fs_info
->transaction_wait
);
2059 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2060 init_waitqueue_head(&fs_info
->async_submit_wait
);
2062 __setup_root(4096, 4096, 4096, 4096, tree_root
,
2063 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2065 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2071 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2072 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2073 sizeof(*fs_info
->super_for_commit
));
2076 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2078 disk_super
= fs_info
->super_copy
;
2079 if (!btrfs_super_root(disk_super
))
2082 /* check FS state, whether FS is broken. */
2083 fs_info
->fs_state
|= btrfs_super_flags(disk_super
);
2085 btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
2088 * run through our array of backup supers and setup
2089 * our ring pointer to the oldest one
2091 generation
= btrfs_super_generation(disk_super
);
2092 find_oldest_super_backup(fs_info
, generation
);
2095 * In the long term, we'll store the compression type in the super
2096 * block, and it'll be used for per file compression control.
2098 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2100 ret
= btrfs_parse_options(tree_root
, options
);
2106 features
= btrfs_super_incompat_flags(disk_super
) &
2107 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2109 printk(KERN_ERR
"BTRFS: couldn't mount because of "
2110 "unsupported optional features (%Lx).\n",
2111 (unsigned long long)features
);
2116 features
= btrfs_super_incompat_flags(disk_super
);
2117 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2118 if (tree_root
->fs_info
->compress_type
& BTRFS_COMPRESS_LZO
)
2119 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2120 btrfs_set_super_incompat_flags(disk_super
, features
);
2122 features
= btrfs_super_compat_ro_flags(disk_super
) &
2123 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2124 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2125 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
2126 "unsupported option features (%Lx).\n",
2127 (unsigned long long)features
);
2132 btrfs_init_workers(&fs_info
->generic_worker
,
2133 "genwork", 1, NULL
);
2135 btrfs_init_workers(&fs_info
->workers
, "worker",
2136 fs_info
->thread_pool_size
,
2137 &fs_info
->generic_worker
);
2139 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
2140 fs_info
->thread_pool_size
,
2141 &fs_info
->generic_worker
);
2143 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
2144 min_t(u64
, fs_devices
->num_devices
,
2145 fs_info
->thread_pool_size
),
2146 &fs_info
->generic_worker
);
2148 btrfs_init_workers(&fs_info
->caching_workers
, "cache",
2149 2, &fs_info
->generic_worker
);
2151 /* a higher idle thresh on the submit workers makes it much more
2152 * likely that bios will be send down in a sane order to the
2155 fs_info
->submit_workers
.idle_thresh
= 64;
2157 fs_info
->workers
.idle_thresh
= 16;
2158 fs_info
->workers
.ordered
= 1;
2160 fs_info
->delalloc_workers
.idle_thresh
= 2;
2161 fs_info
->delalloc_workers
.ordered
= 1;
2163 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
2164 &fs_info
->generic_worker
);
2165 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
2166 fs_info
->thread_pool_size
,
2167 &fs_info
->generic_worker
);
2168 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
2169 fs_info
->thread_pool_size
,
2170 &fs_info
->generic_worker
);
2171 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
2172 "endio-meta-write", fs_info
->thread_pool_size
,
2173 &fs_info
->generic_worker
);
2174 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
2175 fs_info
->thread_pool_size
,
2176 &fs_info
->generic_worker
);
2177 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
2178 1, &fs_info
->generic_worker
);
2179 btrfs_init_workers(&fs_info
->delayed_workers
, "delayed-meta",
2180 fs_info
->thread_pool_size
,
2181 &fs_info
->generic_worker
);
2182 btrfs_init_workers(&fs_info
->readahead_workers
, "readahead",
2183 fs_info
->thread_pool_size
,
2184 &fs_info
->generic_worker
);
2187 * endios are largely parallel and should have a very
2190 fs_info
->endio_workers
.idle_thresh
= 4;
2191 fs_info
->endio_meta_workers
.idle_thresh
= 4;
2193 fs_info
->endio_write_workers
.idle_thresh
= 2;
2194 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
2195 fs_info
->readahead_workers
.idle_thresh
= 2;
2197 btrfs_start_workers(&fs_info
->workers
, 1);
2198 btrfs_start_workers(&fs_info
->generic_worker
, 1);
2199 btrfs_start_workers(&fs_info
->submit_workers
, 1);
2200 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
2201 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
2202 btrfs_start_workers(&fs_info
->endio_workers
, 1);
2203 btrfs_start_workers(&fs_info
->endio_meta_workers
, 1);
2204 btrfs_start_workers(&fs_info
->endio_meta_write_workers
, 1);
2205 btrfs_start_workers(&fs_info
->endio_write_workers
, 1);
2206 btrfs_start_workers(&fs_info
->endio_freespace_worker
, 1);
2207 btrfs_start_workers(&fs_info
->delayed_workers
, 1);
2208 btrfs_start_workers(&fs_info
->caching_workers
, 1);
2209 btrfs_start_workers(&fs_info
->readahead_workers
, 1);
2211 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
2212 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
2213 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
2215 nodesize
= btrfs_super_nodesize(disk_super
);
2216 leafsize
= btrfs_super_leafsize(disk_super
);
2217 sectorsize
= btrfs_super_sectorsize(disk_super
);
2218 stripesize
= btrfs_super_stripesize(disk_super
);
2219 tree_root
->nodesize
= nodesize
;
2220 tree_root
->leafsize
= leafsize
;
2221 tree_root
->sectorsize
= sectorsize
;
2222 tree_root
->stripesize
= stripesize
;
2224 sb
->s_blocksize
= sectorsize
;
2225 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2227 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
2228 sizeof(disk_super
->magic
))) {
2229 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
2230 goto fail_sb_buffer
;
2233 mutex_lock(&fs_info
->chunk_mutex
);
2234 ret
= btrfs_read_sys_array(tree_root
);
2235 mutex_unlock(&fs_info
->chunk_mutex
);
2237 printk(KERN_WARNING
"btrfs: failed to read the system "
2238 "array on %s\n", sb
->s_id
);
2239 goto fail_sb_buffer
;
2242 blocksize
= btrfs_level_size(tree_root
,
2243 btrfs_super_chunk_root_level(disk_super
));
2244 generation
= btrfs_super_chunk_root_generation(disk_super
);
2246 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2247 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2249 chunk_root
->node
= read_tree_block(chunk_root
,
2250 btrfs_super_chunk_root(disk_super
),
2251 blocksize
, generation
);
2252 BUG_ON(!chunk_root
->node
);
2253 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
2254 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
2256 goto fail_tree_roots
;
2258 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2259 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2261 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2262 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
2265 mutex_lock(&fs_info
->chunk_mutex
);
2266 ret
= btrfs_read_chunk_tree(chunk_root
);
2267 mutex_unlock(&fs_info
->chunk_mutex
);
2269 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
2271 goto fail_tree_roots
;
2274 btrfs_close_extra_devices(fs_devices
);
2277 blocksize
= btrfs_level_size(tree_root
,
2278 btrfs_super_root_level(disk_super
));
2279 generation
= btrfs_super_generation(disk_super
);
2281 tree_root
->node
= read_tree_block(tree_root
,
2282 btrfs_super_root(disk_super
),
2283 blocksize
, generation
);
2284 if (!tree_root
->node
||
2285 !test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
2286 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
2289 goto recovery_tree_root
;
2292 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2293 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2295 ret
= find_and_setup_root(tree_root
, fs_info
,
2296 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
2298 goto recovery_tree_root
;
2299 extent_root
->track_dirty
= 1;
2301 ret
= find_and_setup_root(tree_root
, fs_info
,
2302 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
2304 goto recovery_tree_root
;
2305 dev_root
->track_dirty
= 1;
2307 ret
= find_and_setup_root(tree_root
, fs_info
,
2308 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
2310 goto recovery_tree_root
;
2312 csum_root
->track_dirty
= 1;
2314 fs_info
->generation
= generation
;
2315 fs_info
->last_trans_committed
= generation
;
2316 fs_info
->data_alloc_profile
= (u64
)-1;
2317 fs_info
->metadata_alloc_profile
= (u64
)-1;
2318 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
2320 ret
= btrfs_init_space_info(fs_info
);
2322 printk(KERN_ERR
"Failed to initial space info: %d\n", ret
);
2323 goto fail_block_groups
;
2326 ret
= btrfs_read_block_groups(extent_root
);
2328 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
2329 goto fail_block_groups
;
2332 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2334 if (IS_ERR(fs_info
->cleaner_kthread
))
2335 goto fail_block_groups
;
2337 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2339 "btrfs-transaction");
2340 if (IS_ERR(fs_info
->transaction_kthread
))
2343 if (!btrfs_test_opt(tree_root
, SSD
) &&
2344 !btrfs_test_opt(tree_root
, NOSSD
) &&
2345 !fs_info
->fs_devices
->rotating
) {
2346 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
2348 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2351 /* do not make disk changes in broken FS */
2352 if (btrfs_super_log_root(disk_super
) != 0 &&
2353 !(fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)) {
2354 u64 bytenr
= btrfs_super_log_root(disk_super
);
2356 if (fs_devices
->rw_devices
== 0) {
2357 printk(KERN_WARNING
"Btrfs log replay required "
2360 goto fail_trans_kthread
;
2363 btrfs_level_size(tree_root
,
2364 btrfs_super_log_root_level(disk_super
));
2366 log_tree_root
= kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
2367 if (!log_tree_root
) {
2369 goto fail_trans_kthread
;
2372 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2373 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2375 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2378 ret
= btrfs_recover_log_trees(log_tree_root
);
2381 if (sb
->s_flags
& MS_RDONLY
) {
2382 ret
= btrfs_commit_super(tree_root
);
2387 ret
= btrfs_find_orphan_roots(tree_root
);
2390 if (!(sb
->s_flags
& MS_RDONLY
)) {
2391 ret
= btrfs_cleanup_fs_roots(fs_info
);
2394 ret
= btrfs_recover_relocation(tree_root
);
2397 "btrfs: failed to recover relocation\n");
2399 goto fail_trans_kthread
;
2403 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2404 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2405 location
.offset
= (u64
)-1;
2407 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2408 if (!fs_info
->fs_root
)
2409 goto fail_trans_kthread
;
2410 if (IS_ERR(fs_info
->fs_root
)) {
2411 err
= PTR_ERR(fs_info
->fs_root
);
2412 goto fail_trans_kthread
;
2415 if (!(sb
->s_flags
& MS_RDONLY
)) {
2416 down_read(&fs_info
->cleanup_work_sem
);
2417 err
= btrfs_orphan_cleanup(fs_info
->fs_root
);
2419 err
= btrfs_orphan_cleanup(fs_info
->tree_root
);
2420 up_read(&fs_info
->cleanup_work_sem
);
2422 close_ctree(tree_root
);
2423 return ERR_PTR(err
);
2430 kthread_stop(fs_info
->transaction_kthread
);
2432 kthread_stop(fs_info
->cleaner_kthread
);
2435 * make sure we're done with the btree inode before we stop our
2438 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2439 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2442 btrfs_free_block_groups(fs_info
);
2445 free_root_pointers(fs_info
, 1);
2448 btrfs_stop_workers(&fs_info
->generic_worker
);
2449 btrfs_stop_workers(&fs_info
->readahead_workers
);
2450 btrfs_stop_workers(&fs_info
->fixup_workers
);
2451 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2452 btrfs_stop_workers(&fs_info
->workers
);
2453 btrfs_stop_workers(&fs_info
->endio_workers
);
2454 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2455 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2456 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2457 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2458 btrfs_stop_workers(&fs_info
->submit_workers
);
2459 btrfs_stop_workers(&fs_info
->delayed_workers
);
2460 btrfs_stop_workers(&fs_info
->caching_workers
);
2463 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2465 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2466 iput(fs_info
->btree_inode
);
2468 bdi_destroy(&fs_info
->bdi
);
2470 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2472 btrfs_close_devices(fs_info
->fs_devices
);
2473 free_fs_info(fs_info
);
2474 return ERR_PTR(err
);
2477 if (!btrfs_test_opt(tree_root
, RECOVERY
))
2478 goto fail_tree_roots
;
2480 free_root_pointers(fs_info
, 0);
2482 /* don't use the log in recovery mode, it won't be valid */
2483 btrfs_set_super_log_root(disk_super
, 0);
2485 /* we can't trust the free space cache either */
2486 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
2488 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
2489 &num_backups_tried
, &backup_index
);
2491 goto fail_block_groups
;
2492 goto retry_root_backup
;
2495 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2497 char b
[BDEVNAME_SIZE
];
2500 set_buffer_uptodate(bh
);
2502 printk_ratelimited(KERN_WARNING
"lost page write due to "
2503 "I/O error on %s\n",
2504 bdevname(bh
->b_bdev
, b
));
2505 /* note, we dont' set_buffer_write_io_error because we have
2506 * our own ways of dealing with the IO errors
2508 clear_buffer_uptodate(bh
);
2514 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2516 struct buffer_head
*bh
;
2517 struct buffer_head
*latest
= NULL
;
2518 struct btrfs_super_block
*super
;
2523 /* we would like to check all the supers, but that would make
2524 * a btrfs mount succeed after a mkfs from a different FS.
2525 * So, we need to add a special mount option to scan for
2526 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2528 for (i
= 0; i
< 1; i
++) {
2529 bytenr
= btrfs_sb_offset(i
);
2530 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2532 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2536 super
= (struct btrfs_super_block
*)bh
->b_data
;
2537 if (btrfs_super_bytenr(super
) != bytenr
||
2538 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2539 sizeof(super
->magic
))) {
2544 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2547 transid
= btrfs_super_generation(super
);
2556 * this should be called twice, once with wait == 0 and
2557 * once with wait == 1. When wait == 0 is done, all the buffer heads
2558 * we write are pinned.
2560 * They are released when wait == 1 is done.
2561 * max_mirrors must be the same for both runs, and it indicates how
2562 * many supers on this one device should be written.
2564 * max_mirrors == 0 means to write them all.
2566 static int write_dev_supers(struct btrfs_device
*device
,
2567 struct btrfs_super_block
*sb
,
2568 int do_barriers
, int wait
, int max_mirrors
)
2570 struct buffer_head
*bh
;
2577 if (max_mirrors
== 0)
2578 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2580 for (i
= 0; i
< max_mirrors
; i
++) {
2581 bytenr
= btrfs_sb_offset(i
);
2582 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2586 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2587 BTRFS_SUPER_INFO_SIZE
);
2590 if (!buffer_uptodate(bh
))
2593 /* drop our reference */
2596 /* drop the reference from the wait == 0 run */
2600 btrfs_set_super_bytenr(sb
, bytenr
);
2603 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2604 BTRFS_CSUM_SIZE
, crc
,
2605 BTRFS_SUPER_INFO_SIZE
-
2607 btrfs_csum_final(crc
, sb
->csum
);
2610 * one reference for us, and we leave it for the
2613 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2614 BTRFS_SUPER_INFO_SIZE
);
2615 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2617 /* one reference for submit_bh */
2620 set_buffer_uptodate(bh
);
2622 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2626 * we fua the first super. The others we allow
2629 ret
= submit_bh(WRITE_FUA
, bh
);
2633 return errors
< i
? 0 : -1;
2637 * endio for the write_dev_flush, this will wake anyone waiting
2638 * for the barrier when it is done
2640 static void btrfs_end_empty_barrier(struct bio
*bio
, int err
)
2643 if (err
== -EOPNOTSUPP
)
2644 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2645 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2647 if (bio
->bi_private
)
2648 complete(bio
->bi_private
);
2653 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2654 * sent down. With wait == 1, it waits for the previous flush.
2656 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2659 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
2664 if (device
->nobarriers
)
2668 bio
= device
->flush_bio
;
2672 wait_for_completion(&device
->flush_wait
);
2674 if (bio_flagged(bio
, BIO_EOPNOTSUPP
)) {
2675 printk("btrfs: disabling barriers on dev %s\n",
2677 device
->nobarriers
= 1;
2679 if (!bio_flagged(bio
, BIO_UPTODATE
)) {
2683 /* drop the reference from the wait == 0 run */
2685 device
->flush_bio
= NULL
;
2691 * one reference for us, and we leave it for the
2694 device
->flush_bio
= NULL
;;
2695 bio
= bio_alloc(GFP_NOFS
, 0);
2699 bio
->bi_end_io
= btrfs_end_empty_barrier
;
2700 bio
->bi_bdev
= device
->bdev
;
2701 init_completion(&device
->flush_wait
);
2702 bio
->bi_private
= &device
->flush_wait
;
2703 device
->flush_bio
= bio
;
2706 submit_bio(WRITE_FLUSH
, bio
);
2712 * send an empty flush down to each device in parallel,
2713 * then wait for them
2715 static int barrier_all_devices(struct btrfs_fs_info
*info
)
2717 struct list_head
*head
;
2718 struct btrfs_device
*dev
;
2722 /* send down all the barriers */
2723 head
= &info
->fs_devices
->devices
;
2724 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2729 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2732 ret
= write_dev_flush(dev
, 0);
2737 /* wait for all the barriers */
2738 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2743 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2746 ret
= write_dev_flush(dev
, 1);
2755 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2757 struct list_head
*head
;
2758 struct btrfs_device
*dev
;
2759 struct btrfs_super_block
*sb
;
2760 struct btrfs_dev_item
*dev_item
;
2764 int total_errors
= 0;
2767 max_errors
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
2768 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2769 backup_super_roots(root
->fs_info
);
2771 sb
= root
->fs_info
->super_for_commit
;
2772 dev_item
= &sb
->dev_item
;
2774 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2775 head
= &root
->fs_info
->fs_devices
->devices
;
2778 barrier_all_devices(root
->fs_info
);
2780 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2785 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2788 btrfs_set_stack_device_generation(dev_item
, 0);
2789 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2790 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2791 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2792 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2793 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2794 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2795 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2796 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2797 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2799 flags
= btrfs_super_flags(sb
);
2800 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2802 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2806 if (total_errors
> max_errors
) {
2807 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2813 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2816 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2819 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2823 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2824 if (total_errors
> max_errors
) {
2825 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2832 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2833 struct btrfs_root
*root
, int max_mirrors
)
2837 ret
= write_all_supers(root
, max_mirrors
);
2841 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2843 spin_lock(&fs_info
->fs_roots_radix_lock
);
2844 radix_tree_delete(&fs_info
->fs_roots_radix
,
2845 (unsigned long)root
->root_key
.objectid
);
2846 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2848 if (btrfs_root_refs(&root
->root_item
) == 0)
2849 synchronize_srcu(&fs_info
->subvol_srcu
);
2851 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
2852 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
2857 static void free_fs_root(struct btrfs_root
*root
)
2859 iput(root
->cache_inode
);
2860 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2862 free_anon_bdev(root
->anon_dev
);
2863 free_extent_buffer(root
->node
);
2864 free_extent_buffer(root
->commit_root
);
2865 kfree(root
->free_ino_ctl
);
2866 kfree(root
->free_ino_pinned
);
2871 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2874 struct btrfs_root
*gang
[8];
2877 while (!list_empty(&fs_info
->dead_roots
)) {
2878 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2879 struct btrfs_root
, root_list
);
2880 list_del(&gang
[0]->root_list
);
2882 if (gang
[0]->in_radix
) {
2883 btrfs_free_fs_root(fs_info
, gang
[0]);
2885 free_extent_buffer(gang
[0]->node
);
2886 free_extent_buffer(gang
[0]->commit_root
);
2892 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2897 for (i
= 0; i
< ret
; i
++)
2898 btrfs_free_fs_root(fs_info
, gang
[i
]);
2903 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2905 u64 root_objectid
= 0;
2906 struct btrfs_root
*gang
[8];
2911 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2912 (void **)gang
, root_objectid
,
2917 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2918 for (i
= 0; i
< ret
; i
++) {
2921 root_objectid
= gang
[i
]->root_key
.objectid
;
2922 err
= btrfs_orphan_cleanup(gang
[i
]);
2931 int btrfs_commit_super(struct btrfs_root
*root
)
2933 struct btrfs_trans_handle
*trans
;
2936 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2937 btrfs_run_delayed_iputs(root
);
2938 btrfs_clean_old_snapshots(root
);
2939 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2941 /* wait until ongoing cleanup work done */
2942 down_write(&root
->fs_info
->cleanup_work_sem
);
2943 up_write(&root
->fs_info
->cleanup_work_sem
);
2945 trans
= btrfs_join_transaction(root
);
2947 return PTR_ERR(trans
);
2948 ret
= btrfs_commit_transaction(trans
, root
);
2950 /* run commit again to drop the original snapshot */
2951 trans
= btrfs_join_transaction(root
);
2953 return PTR_ERR(trans
);
2954 btrfs_commit_transaction(trans
, root
);
2955 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2958 ret
= write_ctree_super(NULL
, root
, 0);
2962 int close_ctree(struct btrfs_root
*root
)
2964 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2967 fs_info
->closing
= 1;
2970 btrfs_scrub_cancel(root
);
2972 /* wait for any defraggers to finish */
2973 wait_event(fs_info
->transaction_wait
,
2974 (atomic_read(&fs_info
->defrag_running
) == 0));
2976 /* clear out the rbtree of defraggable inodes */
2977 btrfs_run_defrag_inodes(root
->fs_info
);
2980 * Here come 2 situations when btrfs is broken to flip readonly:
2982 * 1. when btrfs flips readonly somewhere else before
2983 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2984 * and btrfs will skip to write sb directly to keep
2985 * ERROR state on disk.
2987 * 2. when btrfs flips readonly just in btrfs_commit_super,
2988 * and in such case, btrfs cannot write sb via btrfs_commit_super,
2989 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2990 * btrfs will cleanup all FS resources first and write sb then.
2992 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2993 ret
= btrfs_commit_super(root
);
2995 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2998 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
) {
2999 ret
= btrfs_error_commit_super(root
);
3001 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
3004 btrfs_put_block_group_cache(fs_info
);
3006 kthread_stop(root
->fs_info
->transaction_kthread
);
3007 kthread_stop(root
->fs_info
->cleaner_kthread
);
3009 fs_info
->closing
= 2;
3012 if (fs_info
->delalloc_bytes
) {
3013 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
3014 (unsigned long long)fs_info
->delalloc_bytes
);
3016 if (fs_info
->total_ref_cache_size
) {
3017 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
3018 (unsigned long long)fs_info
->total_ref_cache_size
);
3021 free_extent_buffer(fs_info
->extent_root
->node
);
3022 free_extent_buffer(fs_info
->extent_root
->commit_root
);
3023 free_extent_buffer(fs_info
->tree_root
->node
);
3024 free_extent_buffer(fs_info
->tree_root
->commit_root
);
3025 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
3026 free_extent_buffer(root
->fs_info
->chunk_root
->commit_root
);
3027 free_extent_buffer(root
->fs_info
->dev_root
->node
);
3028 free_extent_buffer(root
->fs_info
->dev_root
->commit_root
);
3029 free_extent_buffer(root
->fs_info
->csum_root
->node
);
3030 free_extent_buffer(root
->fs_info
->csum_root
->commit_root
);
3032 btrfs_free_block_groups(root
->fs_info
);
3034 del_fs_roots(fs_info
);
3036 iput(fs_info
->btree_inode
);
3038 btrfs_stop_workers(&fs_info
->generic_worker
);
3039 btrfs_stop_workers(&fs_info
->fixup_workers
);
3040 btrfs_stop_workers(&fs_info
->delalloc_workers
);
3041 btrfs_stop_workers(&fs_info
->workers
);
3042 btrfs_stop_workers(&fs_info
->endio_workers
);
3043 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
3044 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
3045 btrfs_stop_workers(&fs_info
->endio_write_workers
);
3046 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
3047 btrfs_stop_workers(&fs_info
->submit_workers
);
3048 btrfs_stop_workers(&fs_info
->delayed_workers
);
3049 btrfs_stop_workers(&fs_info
->caching_workers
);
3050 btrfs_stop_workers(&fs_info
->readahead_workers
);
3052 btrfs_close_devices(fs_info
->fs_devices
);
3053 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3055 bdi_destroy(&fs_info
->bdi
);
3056 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3058 free_fs_info(fs_info
);
3063 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
3066 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
3068 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3073 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3078 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
3080 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
3081 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
3085 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
3087 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
3088 u64 transid
= btrfs_header_generation(buf
);
3089 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
3092 btrfs_assert_tree_locked(buf
);
3093 if (transid
!= root
->fs_info
->generation
) {
3094 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
3095 "found %llu running %llu\n",
3096 (unsigned long long)buf
->start
,
3097 (unsigned long long)transid
,
3098 (unsigned long long)root
->fs_info
->generation
);
3101 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
3104 spin_lock(&root
->fs_info
->delalloc_lock
);
3105 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
3106 spin_unlock(&root
->fs_info
->delalloc_lock
);
3110 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
3113 * looks as though older kernels can get into trouble with
3114 * this code, they end up stuck in balance_dirty_pages forever
3117 unsigned long thresh
= 32 * 1024 * 1024;
3119 if (current
->flags
& PF_MEMALLOC
)
3122 btrfs_balance_delayed_items(root
);
3124 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
3126 if (num_dirty
> thresh
) {
3127 balance_dirty_pages_ratelimited_nr(
3128 root
->fs_info
->btree_inode
->i_mapping
, 1);
3133 void __btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
3136 * looks as though older kernels can get into trouble with
3137 * this code, they end up stuck in balance_dirty_pages forever
3140 unsigned long thresh
= 32 * 1024 * 1024;
3142 if (current
->flags
& PF_MEMALLOC
)
3145 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
3147 if (num_dirty
> thresh
) {
3148 balance_dirty_pages_ratelimited_nr(
3149 root
->fs_info
->btree_inode
->i_mapping
, 1);
3154 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
3156 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
3158 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
3160 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
3164 static int btree_lock_page_hook(struct page
*page
, void *data
,
3165 void (*flush_fn
)(void *))
3167 struct inode
*inode
= page
->mapping
->host
;
3168 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3169 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3170 struct extent_buffer
*eb
;
3172 u64 bytenr
= page_offset(page
);
3174 if (page
->private == EXTENT_PAGE_PRIVATE
)
3177 len
= page
->private >> 2;
3178 eb
= find_extent_buffer(io_tree
, bytenr
, len
);
3182 if (!btrfs_try_tree_write_lock(eb
)) {
3184 btrfs_tree_lock(eb
);
3186 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3188 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3189 spin_lock(&root
->fs_info
->delalloc_lock
);
3190 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
3191 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
3194 spin_unlock(&root
->fs_info
->delalloc_lock
);
3197 btrfs_tree_unlock(eb
);
3198 free_extent_buffer(eb
);
3200 if (!trylock_page(page
)) {
3207 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
3213 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)
3214 printk(KERN_WARNING
"warning: mount fs with errors, "
3215 "running btrfsck is recommended\n");
3218 int btrfs_error_commit_super(struct btrfs_root
*root
)
3222 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3223 btrfs_run_delayed_iputs(root
);
3224 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3226 down_write(&root
->fs_info
->cleanup_work_sem
);
3227 up_write(&root
->fs_info
->cleanup_work_sem
);
3229 /* cleanup FS via transaction */
3230 btrfs_cleanup_transaction(root
);
3232 ret
= write_ctree_super(NULL
, root
, 0);
3237 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
)
3239 struct btrfs_inode
*btrfs_inode
;
3240 struct list_head splice
;
3242 INIT_LIST_HEAD(&splice
);
3244 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
3245 spin_lock(&root
->fs_info
->ordered_extent_lock
);
3247 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
3248 while (!list_empty(&splice
)) {
3249 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
3250 ordered_operations
);
3252 list_del_init(&btrfs_inode
->ordered_operations
);
3254 btrfs_invalidate_inodes(btrfs_inode
->root
);
3257 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
3258 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
3263 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
3265 struct list_head splice
;
3266 struct btrfs_ordered_extent
*ordered
;
3267 struct inode
*inode
;
3269 INIT_LIST_HEAD(&splice
);
3271 spin_lock(&root
->fs_info
->ordered_extent_lock
);
3273 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
3274 while (!list_empty(&splice
)) {
3275 ordered
= list_entry(splice
.next
, struct btrfs_ordered_extent
,
3278 list_del_init(&ordered
->root_extent_list
);
3279 atomic_inc(&ordered
->refs
);
3281 /* the inode may be getting freed (in sys_unlink path). */
3282 inode
= igrab(ordered
->inode
);
3284 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
3288 atomic_set(&ordered
->refs
, 1);
3289 btrfs_put_ordered_extent(ordered
);
3291 spin_lock(&root
->fs_info
->ordered_extent_lock
);
3294 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
3299 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
3300 struct btrfs_root
*root
)
3302 struct rb_node
*node
;
3303 struct btrfs_delayed_ref_root
*delayed_refs
;
3304 struct btrfs_delayed_ref_node
*ref
;
3307 delayed_refs
= &trans
->delayed_refs
;
3309 spin_lock(&delayed_refs
->lock
);
3310 if (delayed_refs
->num_entries
== 0) {
3311 spin_unlock(&delayed_refs
->lock
);
3312 printk(KERN_INFO
"delayed_refs has NO entry\n");
3316 node
= rb_first(&delayed_refs
->root
);
3318 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
3319 node
= rb_next(node
);
3322 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
3323 delayed_refs
->num_entries
--;
3325 atomic_set(&ref
->refs
, 1);
3326 if (btrfs_delayed_ref_is_head(ref
)) {
3327 struct btrfs_delayed_ref_head
*head
;
3329 head
= btrfs_delayed_node_to_head(ref
);
3330 mutex_lock(&head
->mutex
);
3331 kfree(head
->extent_op
);
3332 delayed_refs
->num_heads
--;
3333 if (list_empty(&head
->cluster
))
3334 delayed_refs
->num_heads_ready
--;
3335 list_del_init(&head
->cluster
);
3336 mutex_unlock(&head
->mutex
);
3339 spin_unlock(&delayed_refs
->lock
);
3340 btrfs_put_delayed_ref(ref
);
3343 spin_lock(&delayed_refs
->lock
);
3346 spin_unlock(&delayed_refs
->lock
);
3351 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
)
3353 struct btrfs_pending_snapshot
*snapshot
;
3354 struct list_head splice
;
3356 INIT_LIST_HEAD(&splice
);
3358 list_splice_init(&t
->pending_snapshots
, &splice
);
3360 while (!list_empty(&splice
)) {
3361 snapshot
= list_entry(splice
.next
,
3362 struct btrfs_pending_snapshot
,
3365 list_del_init(&snapshot
->list
);
3373 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
3375 struct btrfs_inode
*btrfs_inode
;
3376 struct list_head splice
;
3378 INIT_LIST_HEAD(&splice
);
3380 spin_lock(&root
->fs_info
->delalloc_lock
);
3381 list_splice_init(&root
->fs_info
->delalloc_inodes
, &splice
);
3383 while (!list_empty(&splice
)) {
3384 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
3387 list_del_init(&btrfs_inode
->delalloc_inodes
);
3389 btrfs_invalidate_inodes(btrfs_inode
->root
);
3392 spin_unlock(&root
->fs_info
->delalloc_lock
);
3397 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
3398 struct extent_io_tree
*dirty_pages
,
3403 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
3404 struct extent_buffer
*eb
;
3408 unsigned long index
;
3411 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
3416 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
3417 while (start
<= end
) {
3418 index
= start
>> PAGE_CACHE_SHIFT
;
3419 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
3420 page
= find_get_page(btree_inode
->i_mapping
, index
);
3423 offset
= page_offset(page
);
3425 spin_lock(&dirty_pages
->buffer_lock
);
3426 eb
= radix_tree_lookup(
3427 &(&BTRFS_I(page
->mapping
->host
)->io_tree
)->buffer
,
3428 offset
>> PAGE_CACHE_SHIFT
);
3429 spin_unlock(&dirty_pages
->buffer_lock
);
3431 ret
= test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
3433 atomic_set(&eb
->refs
, 1);
3435 if (PageWriteback(page
))
3436 end_page_writeback(page
);
3439 if (PageDirty(page
)) {
3440 clear_page_dirty_for_io(page
);
3441 spin_lock_irq(&page
->mapping
->tree_lock
);
3442 radix_tree_tag_clear(&page
->mapping
->page_tree
,
3444 PAGECACHE_TAG_DIRTY
);
3445 spin_unlock_irq(&page
->mapping
->tree_lock
);
3448 page
->mapping
->a_ops
->invalidatepage(page
, 0);
3456 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
3457 struct extent_io_tree
*pinned_extents
)
3459 struct extent_io_tree
*unpin
;
3464 unpin
= pinned_extents
;
3466 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3472 if (btrfs_test_opt(root
, DISCARD
))
3473 ret
= btrfs_error_discard_extent(root
, start
,
3477 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
3478 btrfs_error_unpin_extent_range(root
, start
, end
);
3485 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
3487 struct btrfs_transaction
*t
;
3492 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
3494 spin_lock(&root
->fs_info
->trans_lock
);
3495 list_splice_init(&root
->fs_info
->trans_list
, &list
);
3496 root
->fs_info
->trans_no_join
= 1;
3497 spin_unlock(&root
->fs_info
->trans_lock
);
3499 while (!list_empty(&list
)) {
3500 t
= list_entry(list
.next
, struct btrfs_transaction
, list
);
3504 btrfs_destroy_ordered_operations(root
);
3506 btrfs_destroy_ordered_extents(root
);
3508 btrfs_destroy_delayed_refs(t
, root
);
3510 btrfs_block_rsv_release(root
,
3511 &root
->fs_info
->trans_block_rsv
,
3512 t
->dirty_pages
.dirty_bytes
);
3514 /* FIXME: cleanup wait for commit */
3517 if (waitqueue_active(&root
->fs_info
->transaction_blocked_wait
))
3518 wake_up(&root
->fs_info
->transaction_blocked_wait
);
3521 if (waitqueue_active(&root
->fs_info
->transaction_wait
))
3522 wake_up(&root
->fs_info
->transaction_wait
);
3525 if (waitqueue_active(&t
->commit_wait
))
3526 wake_up(&t
->commit_wait
);
3528 btrfs_destroy_pending_snapshots(t
);
3530 btrfs_destroy_delalloc_inodes(root
);
3532 spin_lock(&root
->fs_info
->trans_lock
);
3533 root
->fs_info
->running_transaction
= NULL
;
3534 spin_unlock(&root
->fs_info
->trans_lock
);
3536 btrfs_destroy_marked_extents(root
, &t
->dirty_pages
,
3539 btrfs_destroy_pinned_extent(root
,
3540 root
->fs_info
->pinned_extents
);
3542 atomic_set(&t
->use_count
, 0);
3543 list_del_init(&t
->list
);
3544 memset(t
, 0, sizeof(*t
));
3545 kmem_cache_free(btrfs_transaction_cachep
, t
);
3548 spin_lock(&root
->fs_info
->trans_lock
);
3549 root
->fs_info
->trans_no_join
= 0;
3550 spin_unlock(&root
->fs_info
->trans_lock
);
3551 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
3556 static struct extent_io_ops btree_extent_io_ops
= {
3557 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
3558 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
3559 .readpage_io_failed_hook
= btree_io_failed_hook
,
3560 .submit_bio_hook
= btree_submit_bio_hook
,
3561 /* note we're sharing with inode.c for the merge bio hook */
3562 .merge_bio_hook
= btrfs_merge_bio_hook
,