1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
19 #include "btrfs_inode.h"
22 static struct kmem_cache
*extent_state_cache
;
23 static struct kmem_cache
*extent_buffer_cache
;
25 static LIST_HEAD(buffers
);
26 static LIST_HEAD(states
);
30 static DEFINE_SPINLOCK(leak_lock
);
33 #define BUFFER_LRU_MAX 64
38 struct rb_node rb_node
;
41 struct extent_page_data
{
43 struct extent_io_tree
*tree
;
44 get_extent_t
*get_extent
;
46 /* tells writepage not to lock the state bits for this range
47 * it still does the unlocking
49 unsigned int extent_locked
:1;
51 /* tells the submit_bio code to use a WRITE_SYNC */
52 unsigned int sync_io
:1;
55 int __init
extent_io_init(void)
57 extent_state_cache
= kmem_cache_create("extent_state",
58 sizeof(struct extent_state
), 0,
59 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
60 if (!extent_state_cache
)
63 extent_buffer_cache
= kmem_cache_create("extent_buffers",
64 sizeof(struct extent_buffer
), 0,
65 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
66 if (!extent_buffer_cache
)
67 goto free_state_cache
;
71 kmem_cache_destroy(extent_state_cache
);
75 void extent_io_exit(void)
77 struct extent_state
*state
;
78 struct extent_buffer
*eb
;
80 while (!list_empty(&states
)) {
81 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
82 printk(KERN_ERR
"btrfs state leak: start %llu end %llu "
83 "state %lu in tree %p refs %d\n",
84 (unsigned long long)state
->start
,
85 (unsigned long long)state
->end
,
86 state
->state
, state
->tree
, atomic_read(&state
->refs
));
87 list_del(&state
->leak_list
);
88 kmem_cache_free(extent_state_cache
, state
);
92 while (!list_empty(&buffers
)) {
93 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
94 printk(KERN_ERR
"btrfs buffer leak start %llu len %lu "
95 "refs %d\n", (unsigned long long)eb
->start
,
96 eb
->len
, atomic_read(&eb
->refs
));
97 list_del(&eb
->leak_list
);
98 kmem_cache_free(extent_buffer_cache
, eb
);
100 if (extent_state_cache
)
101 kmem_cache_destroy(extent_state_cache
);
102 if (extent_buffer_cache
)
103 kmem_cache_destroy(extent_buffer_cache
);
106 void extent_io_tree_init(struct extent_io_tree
*tree
,
107 struct address_space
*mapping
)
109 tree
->state
= RB_ROOT
;
110 INIT_RADIX_TREE(&tree
->buffer
, GFP_ATOMIC
);
112 tree
->dirty_bytes
= 0;
113 spin_lock_init(&tree
->lock
);
114 spin_lock_init(&tree
->buffer_lock
);
115 tree
->mapping
= mapping
;
118 static struct extent_state
*alloc_extent_state(gfp_t mask
)
120 struct extent_state
*state
;
125 state
= kmem_cache_alloc(extent_state_cache
, mask
);
132 spin_lock_irqsave(&leak_lock
, flags
);
133 list_add(&state
->leak_list
, &states
);
134 spin_unlock_irqrestore(&leak_lock
, flags
);
136 atomic_set(&state
->refs
, 1);
137 init_waitqueue_head(&state
->wq
);
141 void free_extent_state(struct extent_state
*state
)
145 if (atomic_dec_and_test(&state
->refs
)) {
149 WARN_ON(state
->tree
);
151 spin_lock_irqsave(&leak_lock
, flags
);
152 list_del(&state
->leak_list
);
153 spin_unlock_irqrestore(&leak_lock
, flags
);
155 kmem_cache_free(extent_state_cache
, state
);
159 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 offset
,
160 struct rb_node
*node
)
162 struct rb_node
**p
= &root
->rb_node
;
163 struct rb_node
*parent
= NULL
;
164 struct tree_entry
*entry
;
168 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
170 if (offset
< entry
->start
)
172 else if (offset
> entry
->end
)
178 entry
= rb_entry(node
, struct tree_entry
, rb_node
);
179 rb_link_node(node
, parent
, p
);
180 rb_insert_color(node
, root
);
184 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
185 struct rb_node
**prev_ret
,
186 struct rb_node
**next_ret
)
188 struct rb_root
*root
= &tree
->state
;
189 struct rb_node
*n
= root
->rb_node
;
190 struct rb_node
*prev
= NULL
;
191 struct rb_node
*orig_prev
= NULL
;
192 struct tree_entry
*entry
;
193 struct tree_entry
*prev_entry
= NULL
;
196 entry
= rb_entry(n
, struct tree_entry
, rb_node
);
200 if (offset
< entry
->start
)
202 else if (offset
> entry
->end
)
210 while (prev
&& offset
> prev_entry
->end
) {
211 prev
= rb_next(prev
);
212 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
219 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
220 while (prev
&& offset
< prev_entry
->start
) {
221 prev
= rb_prev(prev
);
222 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
229 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
232 struct rb_node
*prev
= NULL
;
235 ret
= __etree_search(tree
, offset
, &prev
, NULL
);
241 static void merge_cb(struct extent_io_tree
*tree
, struct extent_state
*new,
242 struct extent_state
*other
)
244 if (tree
->ops
&& tree
->ops
->merge_extent_hook
)
245 tree
->ops
->merge_extent_hook(tree
->mapping
->host
, new,
250 * utility function to look for merge candidates inside a given range.
251 * Any extents with matching state are merged together into a single
252 * extent in the tree. Extents with EXTENT_IO in their state field
253 * are not merged because the end_io handlers need to be able to do
254 * operations on them without sleeping (or doing allocations/splits).
256 * This should be called with the tree lock held.
258 static void merge_state(struct extent_io_tree
*tree
,
259 struct extent_state
*state
)
261 struct extent_state
*other
;
262 struct rb_node
*other_node
;
264 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
267 other_node
= rb_prev(&state
->rb_node
);
269 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
270 if (other
->end
== state
->start
- 1 &&
271 other
->state
== state
->state
) {
272 merge_cb(tree
, state
, other
);
273 state
->start
= other
->start
;
275 rb_erase(&other
->rb_node
, &tree
->state
);
276 free_extent_state(other
);
279 other_node
= rb_next(&state
->rb_node
);
281 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
282 if (other
->start
== state
->end
+ 1 &&
283 other
->state
== state
->state
) {
284 merge_cb(tree
, state
, other
);
285 state
->end
= other
->end
;
287 rb_erase(&other
->rb_node
, &tree
->state
);
288 free_extent_state(other
);
293 static void set_state_cb(struct extent_io_tree
*tree
,
294 struct extent_state
*state
, int *bits
)
296 if (tree
->ops
&& tree
->ops
->set_bit_hook
)
297 tree
->ops
->set_bit_hook(tree
->mapping
->host
, state
, bits
);
300 static void clear_state_cb(struct extent_io_tree
*tree
,
301 struct extent_state
*state
, int *bits
)
303 if (tree
->ops
&& tree
->ops
->clear_bit_hook
)
304 tree
->ops
->clear_bit_hook(tree
->mapping
->host
, state
, bits
);
307 static void set_state_bits(struct extent_io_tree
*tree
,
308 struct extent_state
*state
, int *bits
);
311 * insert an extent_state struct into the tree. 'bits' are set on the
312 * struct before it is inserted.
314 * This may return -EEXIST if the extent is already there, in which case the
315 * state struct is freed.
317 * The tree lock is not taken internally. This is a utility function and
318 * probably isn't what you want to call (see set/clear_extent_bit).
320 static int insert_state(struct extent_io_tree
*tree
,
321 struct extent_state
*state
, u64 start
, u64 end
,
324 struct rb_node
*node
;
327 printk(KERN_ERR
"btrfs end < start %llu %llu\n",
328 (unsigned long long)end
,
329 (unsigned long long)start
);
332 state
->start
= start
;
335 set_state_bits(tree
, state
, bits
);
337 node
= tree_insert(&tree
->state
, end
, &state
->rb_node
);
339 struct extent_state
*found
;
340 found
= rb_entry(node
, struct extent_state
, rb_node
);
341 printk(KERN_ERR
"btrfs found node %llu %llu on insert of "
342 "%llu %llu\n", (unsigned long long)found
->start
,
343 (unsigned long long)found
->end
,
344 (unsigned long long)start
, (unsigned long long)end
);
348 merge_state(tree
, state
);
352 static void split_cb(struct extent_io_tree
*tree
, struct extent_state
*orig
,
355 if (tree
->ops
&& tree
->ops
->split_extent_hook
)
356 tree
->ops
->split_extent_hook(tree
->mapping
->host
, orig
, split
);
360 * split a given extent state struct in two, inserting the preallocated
361 * struct 'prealloc' as the newly created second half. 'split' indicates an
362 * offset inside 'orig' where it should be split.
365 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
366 * are two extent state structs in the tree:
367 * prealloc: [orig->start, split - 1]
368 * orig: [ split, orig->end ]
370 * The tree locks are not taken by this function. They need to be held
373 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
374 struct extent_state
*prealloc
, u64 split
)
376 struct rb_node
*node
;
378 split_cb(tree
, orig
, split
);
380 prealloc
->start
= orig
->start
;
381 prealloc
->end
= split
- 1;
382 prealloc
->state
= orig
->state
;
385 node
= tree_insert(&tree
->state
, prealloc
->end
, &prealloc
->rb_node
);
387 free_extent_state(prealloc
);
390 prealloc
->tree
= tree
;
395 * utility function to clear some bits in an extent state struct.
396 * it will optionally wake up any one waiting on this state (wake == 1), or
397 * forcibly remove the state from the tree (delete == 1).
399 * If no bits are set on the state struct after clearing things, the
400 * struct is freed and removed from the tree
402 static int clear_state_bit(struct extent_io_tree
*tree
,
403 struct extent_state
*state
,
406 int bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
407 int ret
= state
->state
& bits_to_clear
;
409 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
410 u64 range
= state
->end
- state
->start
+ 1;
411 WARN_ON(range
> tree
->dirty_bytes
);
412 tree
->dirty_bytes
-= range
;
414 clear_state_cb(tree
, state
, bits
);
415 state
->state
&= ~bits_to_clear
;
418 if (state
->state
== 0) {
420 rb_erase(&state
->rb_node
, &tree
->state
);
422 free_extent_state(state
);
427 merge_state(tree
, state
);
432 static struct extent_state
*
433 alloc_extent_state_atomic(struct extent_state
*prealloc
)
436 prealloc
= alloc_extent_state(GFP_ATOMIC
);
442 * clear some bits on a range in the tree. This may require splitting
443 * or inserting elements in the tree, so the gfp mask is used to
444 * indicate which allocations or sleeping are allowed.
446 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
447 * the given range from the tree regardless of state (ie for truncate).
449 * the range [start, end] is inclusive.
451 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
452 * bits were already set, or zero if none of the bits were already set.
454 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
455 int bits
, int wake
, int delete,
456 struct extent_state
**cached_state
,
459 struct extent_state
*state
;
460 struct extent_state
*cached
;
461 struct extent_state
*prealloc
= NULL
;
462 struct rb_node
*next_node
;
463 struct rb_node
*node
;
470 bits
|= ~EXTENT_CTLBITS
;
471 bits
|= EXTENT_FIRST_DELALLOC
;
473 if (bits
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
476 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
477 prealloc
= alloc_extent_state(mask
);
482 spin_lock(&tree
->lock
);
484 cached
= *cached_state
;
487 *cached_state
= NULL
;
491 if (cached
&& cached
->tree
&& cached
->start
<= start
&&
492 cached
->end
> start
) {
494 atomic_dec(&cached
->refs
);
499 free_extent_state(cached
);
502 * this search will find the extents that end after
505 node
= tree_search(tree
, start
);
508 state
= rb_entry(node
, struct extent_state
, rb_node
);
510 if (state
->start
> end
)
512 WARN_ON(state
->end
< start
);
513 last_end
= state
->end
;
516 * | ---- desired range ---- |
518 * | ------------- state -------------- |
520 * We need to split the extent we found, and may flip
521 * bits on second half.
523 * If the extent we found extends past our range, we
524 * just split and search again. It'll get split again
525 * the next time though.
527 * If the extent we found is inside our range, we clear
528 * the desired bit on it.
531 if (state
->start
< start
) {
532 prealloc
= alloc_extent_state_atomic(prealloc
);
534 err
= split_state(tree
, state
, prealloc
, start
);
535 BUG_ON(err
== -EEXIST
);
539 if (state
->end
<= end
) {
540 set
|= clear_state_bit(tree
, state
, &bits
, wake
);
541 if (last_end
== (u64
)-1)
543 start
= last_end
+ 1;
548 * | ---- desired range ---- |
550 * We need to split the extent, and clear the bit
553 if (state
->start
<= end
&& state
->end
> end
) {
554 prealloc
= alloc_extent_state_atomic(prealloc
);
556 err
= split_state(tree
, state
, prealloc
, end
+ 1);
557 BUG_ON(err
== -EEXIST
);
561 set
|= clear_state_bit(tree
, prealloc
, &bits
, wake
);
567 if (state
->end
< end
&& prealloc
&& !need_resched())
568 next_node
= rb_next(&state
->rb_node
);
572 set
|= clear_state_bit(tree
, state
, &bits
, wake
);
573 if (last_end
== (u64
)-1)
575 start
= last_end
+ 1;
576 if (start
<= end
&& next_node
) {
577 state
= rb_entry(next_node
, struct extent_state
,
579 if (state
->start
== start
)
585 spin_unlock(&tree
->lock
);
587 free_extent_state(prealloc
);
594 spin_unlock(&tree
->lock
);
595 if (mask
& __GFP_WAIT
)
600 static int wait_on_state(struct extent_io_tree
*tree
,
601 struct extent_state
*state
)
602 __releases(tree
->lock
)
603 __acquires(tree
->lock
)
606 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
607 spin_unlock(&tree
->lock
);
609 spin_lock(&tree
->lock
);
610 finish_wait(&state
->wq
, &wait
);
615 * waits for one or more bits to clear on a range in the state tree.
616 * The range [start, end] is inclusive.
617 * The tree lock is taken by this function
619 int wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
, int bits
)
621 struct extent_state
*state
;
622 struct rb_node
*node
;
624 spin_lock(&tree
->lock
);
628 * this search will find all the extents that end after
631 node
= tree_search(tree
, start
);
635 state
= rb_entry(node
, struct extent_state
, rb_node
);
637 if (state
->start
> end
)
640 if (state
->state
& bits
) {
641 start
= state
->start
;
642 atomic_inc(&state
->refs
);
643 wait_on_state(tree
, state
);
644 free_extent_state(state
);
647 start
= state
->end
+ 1;
652 cond_resched_lock(&tree
->lock
);
655 spin_unlock(&tree
->lock
);
659 static void set_state_bits(struct extent_io_tree
*tree
,
660 struct extent_state
*state
,
663 int bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
665 set_state_cb(tree
, state
, bits
);
666 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
667 u64 range
= state
->end
- state
->start
+ 1;
668 tree
->dirty_bytes
+= range
;
670 state
->state
|= bits_to_set
;
673 static void cache_state(struct extent_state
*state
,
674 struct extent_state
**cached_ptr
)
676 if (cached_ptr
&& !(*cached_ptr
)) {
677 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
)) {
679 atomic_inc(&state
->refs
);
684 static void uncache_state(struct extent_state
**cached_ptr
)
686 if (cached_ptr
&& (*cached_ptr
)) {
687 struct extent_state
*state
= *cached_ptr
;
689 free_extent_state(state
);
694 * set some bits on a range in the tree. This may require allocations or
695 * sleeping, so the gfp mask is used to indicate what is allowed.
697 * If any of the exclusive bits are set, this will fail with -EEXIST if some
698 * part of the range already has the desired bits set. The start of the
699 * existing range is returned in failed_start in this case.
701 * [start, end] is inclusive This takes the tree lock.
704 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
705 int bits
, int exclusive_bits
, u64
*failed_start
,
706 struct extent_state
**cached_state
, gfp_t mask
)
708 struct extent_state
*state
;
709 struct extent_state
*prealloc
= NULL
;
710 struct rb_node
*node
;
715 bits
|= EXTENT_FIRST_DELALLOC
;
717 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
718 prealloc
= alloc_extent_state(mask
);
722 spin_lock(&tree
->lock
);
723 if (cached_state
&& *cached_state
) {
724 state
= *cached_state
;
725 if (state
->start
<= start
&& state
->end
> start
&&
727 node
= &state
->rb_node
;
732 * this search will find all the extents that end after
735 node
= tree_search(tree
, start
);
737 prealloc
= alloc_extent_state_atomic(prealloc
);
739 err
= insert_state(tree
, prealloc
, start
, end
, &bits
);
741 BUG_ON(err
== -EEXIST
);
744 state
= rb_entry(node
, struct extent_state
, rb_node
);
746 last_start
= state
->start
;
747 last_end
= state
->end
;
750 * | ---- desired range ---- |
753 * Just lock what we found and keep going
755 if (state
->start
== start
&& state
->end
<= end
) {
756 struct rb_node
*next_node
;
757 if (state
->state
& exclusive_bits
) {
758 *failed_start
= state
->start
;
763 set_state_bits(tree
, state
, &bits
);
765 cache_state(state
, cached_state
);
766 merge_state(tree
, state
);
767 if (last_end
== (u64
)-1)
770 start
= last_end
+ 1;
771 next_node
= rb_next(&state
->rb_node
);
772 if (next_node
&& start
< end
&& prealloc
&& !need_resched()) {
773 state
= rb_entry(next_node
, struct extent_state
,
775 if (state
->start
== start
)
782 * | ---- desired range ---- |
785 * | ------------- state -------------- |
787 * We need to split the extent we found, and may flip bits on
790 * If the extent we found extends past our
791 * range, we just split and search again. It'll get split
792 * again the next time though.
794 * If the extent we found is inside our range, we set the
797 if (state
->start
< start
) {
798 if (state
->state
& exclusive_bits
) {
799 *failed_start
= start
;
804 prealloc
= alloc_extent_state_atomic(prealloc
);
806 err
= split_state(tree
, state
, prealloc
, start
);
807 BUG_ON(err
== -EEXIST
);
811 if (state
->end
<= end
) {
812 set_state_bits(tree
, state
, &bits
);
813 cache_state(state
, cached_state
);
814 merge_state(tree
, state
);
815 if (last_end
== (u64
)-1)
817 start
= last_end
+ 1;
822 * | ---- desired range ---- |
823 * | state | or | state |
825 * There's a hole, we need to insert something in it and
826 * ignore the extent we found.
828 if (state
->start
> start
) {
830 if (end
< last_start
)
833 this_end
= last_start
- 1;
835 prealloc
= alloc_extent_state_atomic(prealloc
);
839 * Avoid to free 'prealloc' if it can be merged with
842 err
= insert_state(tree
, prealloc
, start
, this_end
,
844 BUG_ON(err
== -EEXIST
);
846 free_extent_state(prealloc
);
850 cache_state(prealloc
, cached_state
);
852 start
= this_end
+ 1;
856 * | ---- desired range ---- |
858 * We need to split the extent, and set the bit
861 if (state
->start
<= end
&& state
->end
> end
) {
862 if (state
->state
& exclusive_bits
) {
863 *failed_start
= start
;
868 prealloc
= alloc_extent_state_atomic(prealloc
);
870 err
= split_state(tree
, state
, prealloc
, end
+ 1);
871 BUG_ON(err
== -EEXIST
);
873 set_state_bits(tree
, prealloc
, &bits
);
874 cache_state(prealloc
, cached_state
);
875 merge_state(tree
, prealloc
);
883 spin_unlock(&tree
->lock
);
885 free_extent_state(prealloc
);
892 spin_unlock(&tree
->lock
);
893 if (mask
& __GFP_WAIT
)
899 * convert_extent - convert all bits in a given range from one bit to another
900 * @tree: the io tree to search
901 * @start: the start offset in bytes
902 * @end: the end offset in bytes (inclusive)
903 * @bits: the bits to set in this range
904 * @clear_bits: the bits to clear in this range
905 * @mask: the allocation mask
907 * This will go through and set bits for the given range. If any states exist
908 * already in this range they are set with the given bit and cleared of the
909 * clear_bits. This is only meant to be used by things that are mergeable, ie
910 * converting from say DELALLOC to DIRTY. This is not meant to be used with
911 * boundary bits like LOCK.
913 int convert_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
914 int bits
, int clear_bits
, gfp_t mask
)
916 struct extent_state
*state
;
917 struct extent_state
*prealloc
= NULL
;
918 struct rb_node
*node
;
924 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
925 prealloc
= alloc_extent_state(mask
);
930 spin_lock(&tree
->lock
);
932 * this search will find all the extents that end after
935 node
= tree_search(tree
, start
);
937 prealloc
= alloc_extent_state_atomic(prealloc
);
942 err
= insert_state(tree
, prealloc
, start
, end
, &bits
);
944 BUG_ON(err
== -EEXIST
);
947 state
= rb_entry(node
, struct extent_state
, rb_node
);
949 last_start
= state
->start
;
950 last_end
= state
->end
;
953 * | ---- desired range ---- |
956 * Just lock what we found and keep going
958 if (state
->start
== start
&& state
->end
<= end
) {
959 struct rb_node
*next_node
;
961 set_state_bits(tree
, state
, &bits
);
962 clear_state_bit(tree
, state
, &clear_bits
, 0);
964 merge_state(tree
, state
);
965 if (last_end
== (u64
)-1)
968 start
= last_end
+ 1;
969 next_node
= rb_next(&state
->rb_node
);
970 if (next_node
&& start
< end
&& prealloc
&& !need_resched()) {
971 state
= rb_entry(next_node
, struct extent_state
,
973 if (state
->start
== start
)
980 * | ---- desired range ---- |
983 * | ------------- state -------------- |
985 * We need to split the extent we found, and may flip bits on
988 * If the extent we found extends past our
989 * range, we just split and search again. It'll get split
990 * again the next time though.
992 * If the extent we found is inside our range, we set the
995 if (state
->start
< start
) {
996 prealloc
= alloc_extent_state_atomic(prealloc
);
1001 err
= split_state(tree
, state
, prealloc
, start
);
1002 BUG_ON(err
== -EEXIST
);
1006 if (state
->end
<= end
) {
1007 set_state_bits(tree
, state
, &bits
);
1008 clear_state_bit(tree
, state
, &clear_bits
, 0);
1009 merge_state(tree
, state
);
1010 if (last_end
== (u64
)-1)
1012 start
= last_end
+ 1;
1017 * | ---- desired range ---- |
1018 * | state | or | state |
1020 * There's a hole, we need to insert something in it and
1021 * ignore the extent we found.
1023 if (state
->start
> start
) {
1025 if (end
< last_start
)
1028 this_end
= last_start
- 1;
1030 prealloc
= alloc_extent_state_atomic(prealloc
);
1037 * Avoid to free 'prealloc' if it can be merged with
1040 err
= insert_state(tree
, prealloc
, start
, this_end
,
1042 BUG_ON(err
== -EEXIST
);
1044 free_extent_state(prealloc
);
1049 start
= this_end
+ 1;
1053 * | ---- desired range ---- |
1055 * We need to split the extent, and set the bit
1058 if (state
->start
<= end
&& state
->end
> end
) {
1059 prealloc
= alloc_extent_state_atomic(prealloc
);
1065 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1066 BUG_ON(err
== -EEXIST
);
1068 set_state_bits(tree
, prealloc
, &bits
);
1069 clear_state_bit(tree
, prealloc
, &clear_bits
, 0);
1071 merge_state(tree
, prealloc
);
1079 spin_unlock(&tree
->lock
);
1081 free_extent_state(prealloc
);
1088 spin_unlock(&tree
->lock
);
1089 if (mask
& __GFP_WAIT
)
1094 /* wrappers around set/clear extent bit */
1095 int set_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1098 return set_extent_bit(tree
, start
, end
, EXTENT_DIRTY
, 0, NULL
,
1102 int set_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1103 int bits
, gfp_t mask
)
1105 return set_extent_bit(tree
, start
, end
, bits
, 0, NULL
,
1109 int clear_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1110 int bits
, gfp_t mask
)
1112 return clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, mask
);
1115 int set_extent_delalloc(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1116 struct extent_state
**cached_state
, gfp_t mask
)
1118 return set_extent_bit(tree
, start
, end
,
1119 EXTENT_DELALLOC
| EXTENT_UPTODATE
,
1120 0, NULL
, cached_state
, mask
);
1123 int clear_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1126 return clear_extent_bit(tree
, start
, end
,
1127 EXTENT_DIRTY
| EXTENT_DELALLOC
|
1128 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, mask
);
1131 int set_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1134 return set_extent_bit(tree
, start
, end
, EXTENT_NEW
, 0, NULL
,
1138 int set_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1139 struct extent_state
**cached_state
, gfp_t mask
)
1141 return set_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0,
1142 NULL
, cached_state
, mask
);
1145 static int clear_extent_uptodate(struct extent_io_tree
*tree
, u64 start
,
1146 u64 end
, struct extent_state
**cached_state
,
1149 return clear_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, 0,
1150 cached_state
, mask
);
1154 * either insert or lock state struct between start and end use mask to tell
1155 * us if waiting is desired.
1157 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1158 int bits
, struct extent_state
**cached_state
, gfp_t mask
)
1163 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
| bits
,
1164 EXTENT_LOCKED
, &failed_start
,
1165 cached_state
, mask
);
1166 if (err
== -EEXIST
&& (mask
& __GFP_WAIT
)) {
1167 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1168 start
= failed_start
;
1172 WARN_ON(start
> end
);
1177 int lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
, gfp_t mask
)
1179 return lock_extent_bits(tree
, start
, end
, 0, NULL
, mask
);
1182 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1188 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1189 &failed_start
, NULL
, mask
);
1190 if (err
== -EEXIST
) {
1191 if (failed_start
> start
)
1192 clear_extent_bit(tree
, start
, failed_start
- 1,
1193 EXTENT_LOCKED
, 1, 0, NULL
, mask
);
1199 int unlock_extent_cached(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1200 struct extent_state
**cached
, gfp_t mask
)
1202 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, cached
,
1206 int unlock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
, gfp_t mask
)
1208 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, NULL
,
1213 * helper function to set both pages and extents in the tree writeback
1215 static int set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1217 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1218 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1221 while (index
<= end_index
) {
1222 page
= find_get_page(tree
->mapping
, index
);
1224 set_page_writeback(page
);
1225 page_cache_release(page
);
1231 /* find the first state struct with 'bits' set after 'start', and
1232 * return it. tree->lock must be held. NULL will returned if
1233 * nothing was found after 'start'
1235 struct extent_state
*find_first_extent_bit_state(struct extent_io_tree
*tree
,
1236 u64 start
, int bits
)
1238 struct rb_node
*node
;
1239 struct extent_state
*state
;
1242 * this search will find all the extents that end after
1245 node
= tree_search(tree
, start
);
1250 state
= rb_entry(node
, struct extent_state
, rb_node
);
1251 if (state
->end
>= start
&& (state
->state
& bits
))
1254 node
= rb_next(node
);
1263 * find the first offset in the io tree with 'bits' set. zero is
1264 * returned if we find something, and *start_ret and *end_ret are
1265 * set to reflect the state struct that was found.
1267 * If nothing was found, 1 is returned, < 0 on error
1269 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1270 u64
*start_ret
, u64
*end_ret
, int bits
)
1272 struct extent_state
*state
;
1275 spin_lock(&tree
->lock
);
1276 state
= find_first_extent_bit_state(tree
, start
, bits
);
1278 *start_ret
= state
->start
;
1279 *end_ret
= state
->end
;
1282 spin_unlock(&tree
->lock
);
1287 * find a contiguous range of bytes in the file marked as delalloc, not
1288 * more than 'max_bytes'. start and end are used to return the range,
1290 * 1 is returned if we find something, 0 if nothing was in the tree
1292 static noinline u64
find_delalloc_range(struct extent_io_tree
*tree
,
1293 u64
*start
, u64
*end
, u64 max_bytes
,
1294 struct extent_state
**cached_state
)
1296 struct rb_node
*node
;
1297 struct extent_state
*state
;
1298 u64 cur_start
= *start
;
1300 u64 total_bytes
= 0;
1302 spin_lock(&tree
->lock
);
1305 * this search will find all the extents that end after
1308 node
= tree_search(tree
, cur_start
);
1316 state
= rb_entry(node
, struct extent_state
, rb_node
);
1317 if (found
&& (state
->start
!= cur_start
||
1318 (state
->state
& EXTENT_BOUNDARY
))) {
1321 if (!(state
->state
& EXTENT_DELALLOC
)) {
1327 *start
= state
->start
;
1328 *cached_state
= state
;
1329 atomic_inc(&state
->refs
);
1333 cur_start
= state
->end
+ 1;
1334 node
= rb_next(node
);
1337 total_bytes
+= state
->end
- state
->start
+ 1;
1338 if (total_bytes
>= max_bytes
)
1342 spin_unlock(&tree
->lock
);
1346 static noinline
int __unlock_for_delalloc(struct inode
*inode
,
1347 struct page
*locked_page
,
1351 struct page
*pages
[16];
1352 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1353 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1354 unsigned long nr_pages
= end_index
- index
+ 1;
1357 if (index
== locked_page
->index
&& end_index
== index
)
1360 while (nr_pages
> 0) {
1361 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1362 min_t(unsigned long, nr_pages
,
1363 ARRAY_SIZE(pages
)), pages
);
1364 for (i
= 0; i
< ret
; i
++) {
1365 if (pages
[i
] != locked_page
)
1366 unlock_page(pages
[i
]);
1367 page_cache_release(pages
[i
]);
1376 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1377 struct page
*locked_page
,
1381 unsigned long index
= delalloc_start
>> PAGE_CACHE_SHIFT
;
1382 unsigned long start_index
= index
;
1383 unsigned long end_index
= delalloc_end
>> PAGE_CACHE_SHIFT
;
1384 unsigned long pages_locked
= 0;
1385 struct page
*pages
[16];
1386 unsigned long nrpages
;
1390 /* the caller is responsible for locking the start index */
1391 if (index
== locked_page
->index
&& index
== end_index
)
1394 /* skip the page at the start index */
1395 nrpages
= end_index
- index
+ 1;
1396 while (nrpages
> 0) {
1397 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1398 min_t(unsigned long,
1399 nrpages
, ARRAY_SIZE(pages
)), pages
);
1404 /* now we have an array of pages, lock them all */
1405 for (i
= 0; i
< ret
; i
++) {
1407 * the caller is taking responsibility for
1410 if (pages
[i
] != locked_page
) {
1411 lock_page(pages
[i
]);
1412 if (!PageDirty(pages
[i
]) ||
1413 pages
[i
]->mapping
!= inode
->i_mapping
) {
1415 unlock_page(pages
[i
]);
1416 page_cache_release(pages
[i
]);
1420 page_cache_release(pages
[i
]);
1429 if (ret
&& pages_locked
) {
1430 __unlock_for_delalloc(inode
, locked_page
,
1432 ((u64
)(start_index
+ pages_locked
- 1)) <<
1439 * find a contiguous range of bytes in the file marked as delalloc, not
1440 * more than 'max_bytes'. start and end are used to return the range,
1442 * 1 is returned if we find something, 0 if nothing was in the tree
1444 static noinline u64
find_lock_delalloc_range(struct inode
*inode
,
1445 struct extent_io_tree
*tree
,
1446 struct page
*locked_page
,
1447 u64
*start
, u64
*end
,
1453 struct extent_state
*cached_state
= NULL
;
1458 /* step one, find a bunch of delalloc bytes starting at start */
1459 delalloc_start
= *start
;
1461 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1462 max_bytes
, &cached_state
);
1463 if (!found
|| delalloc_end
<= *start
) {
1464 *start
= delalloc_start
;
1465 *end
= delalloc_end
;
1466 free_extent_state(cached_state
);
1471 * start comes from the offset of locked_page. We have to lock
1472 * pages in order, so we can't process delalloc bytes before
1475 if (delalloc_start
< *start
)
1476 delalloc_start
= *start
;
1479 * make sure to limit the number of pages we try to lock down
1482 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
&& loops
)
1483 delalloc_end
= delalloc_start
+ PAGE_CACHE_SIZE
- 1;
1485 /* step two, lock all the pages after the page that has start */
1486 ret
= lock_delalloc_pages(inode
, locked_page
,
1487 delalloc_start
, delalloc_end
);
1488 if (ret
== -EAGAIN
) {
1489 /* some of the pages are gone, lets avoid looping by
1490 * shortening the size of the delalloc range we're searching
1492 free_extent_state(cached_state
);
1494 unsigned long offset
= (*start
) & (PAGE_CACHE_SIZE
- 1);
1495 max_bytes
= PAGE_CACHE_SIZE
- offset
;
1505 /* step three, lock the state bits for the whole range */
1506 lock_extent_bits(tree
, delalloc_start
, delalloc_end
,
1507 0, &cached_state
, GFP_NOFS
);
1509 /* then test to make sure it is all still delalloc */
1510 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1511 EXTENT_DELALLOC
, 1, cached_state
);
1513 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1514 &cached_state
, GFP_NOFS
);
1515 __unlock_for_delalloc(inode
, locked_page
,
1516 delalloc_start
, delalloc_end
);
1520 free_extent_state(cached_state
);
1521 *start
= delalloc_start
;
1522 *end
= delalloc_end
;
1527 int extent_clear_unlock_delalloc(struct inode
*inode
,
1528 struct extent_io_tree
*tree
,
1529 u64 start
, u64 end
, struct page
*locked_page
,
1533 struct page
*pages
[16];
1534 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1535 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1536 unsigned long nr_pages
= end_index
- index
+ 1;
1540 if (op
& EXTENT_CLEAR_UNLOCK
)
1541 clear_bits
|= EXTENT_LOCKED
;
1542 if (op
& EXTENT_CLEAR_DIRTY
)
1543 clear_bits
|= EXTENT_DIRTY
;
1545 if (op
& EXTENT_CLEAR_DELALLOC
)
1546 clear_bits
|= EXTENT_DELALLOC
;
1548 clear_extent_bit(tree
, start
, end
, clear_bits
, 1, 0, NULL
, GFP_NOFS
);
1549 if (!(op
& (EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
1550 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
|
1551 EXTENT_SET_PRIVATE2
)))
1554 while (nr_pages
> 0) {
1555 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1556 min_t(unsigned long,
1557 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1558 for (i
= 0; i
< ret
; i
++) {
1560 if (op
& EXTENT_SET_PRIVATE2
)
1561 SetPagePrivate2(pages
[i
]);
1563 if (pages
[i
] == locked_page
) {
1564 page_cache_release(pages
[i
]);
1567 if (op
& EXTENT_CLEAR_DIRTY
)
1568 clear_page_dirty_for_io(pages
[i
]);
1569 if (op
& EXTENT_SET_WRITEBACK
)
1570 set_page_writeback(pages
[i
]);
1571 if (op
& EXTENT_END_WRITEBACK
)
1572 end_page_writeback(pages
[i
]);
1573 if (op
& EXTENT_CLEAR_UNLOCK_PAGE
)
1574 unlock_page(pages
[i
]);
1575 page_cache_release(pages
[i
]);
1585 * count the number of bytes in the tree that have a given bit(s)
1586 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1587 * cached. The total number found is returned.
1589 u64
count_range_bits(struct extent_io_tree
*tree
,
1590 u64
*start
, u64 search_end
, u64 max_bytes
,
1591 unsigned long bits
, int contig
)
1593 struct rb_node
*node
;
1594 struct extent_state
*state
;
1595 u64 cur_start
= *start
;
1596 u64 total_bytes
= 0;
1600 if (search_end
<= cur_start
) {
1605 spin_lock(&tree
->lock
);
1606 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1607 total_bytes
= tree
->dirty_bytes
;
1611 * this search will find all the extents that end after
1614 node
= tree_search(tree
, cur_start
);
1619 state
= rb_entry(node
, struct extent_state
, rb_node
);
1620 if (state
->start
> search_end
)
1622 if (contig
&& found
&& state
->start
> last
+ 1)
1624 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
1625 total_bytes
+= min(search_end
, state
->end
) + 1 -
1626 max(cur_start
, state
->start
);
1627 if (total_bytes
>= max_bytes
)
1630 *start
= max(cur_start
, state
->start
);
1634 } else if (contig
&& found
) {
1637 node
= rb_next(node
);
1642 spin_unlock(&tree
->lock
);
1647 * set the private field for a given byte offset in the tree. If there isn't
1648 * an extent_state there already, this does nothing.
1650 int set_state_private(struct extent_io_tree
*tree
, u64 start
, u64
private)
1652 struct rb_node
*node
;
1653 struct extent_state
*state
;
1656 spin_lock(&tree
->lock
);
1658 * this search will find all the extents that end after
1661 node
= tree_search(tree
, start
);
1666 state
= rb_entry(node
, struct extent_state
, rb_node
);
1667 if (state
->start
!= start
) {
1671 state
->private = private;
1673 spin_unlock(&tree
->lock
);
1677 int get_state_private(struct extent_io_tree
*tree
, u64 start
, u64
*private)
1679 struct rb_node
*node
;
1680 struct extent_state
*state
;
1683 spin_lock(&tree
->lock
);
1685 * this search will find all the extents that end after
1688 node
= tree_search(tree
, start
);
1693 state
= rb_entry(node
, struct extent_state
, rb_node
);
1694 if (state
->start
!= start
) {
1698 *private = state
->private;
1700 spin_unlock(&tree
->lock
);
1705 * searches a range in the state tree for a given mask.
1706 * If 'filled' == 1, this returns 1 only if every extent in the tree
1707 * has the bits set. Otherwise, 1 is returned if any bit in the
1708 * range is found set.
1710 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1711 int bits
, int filled
, struct extent_state
*cached
)
1713 struct extent_state
*state
= NULL
;
1714 struct rb_node
*node
;
1717 spin_lock(&tree
->lock
);
1718 if (cached
&& cached
->tree
&& cached
->start
<= start
&&
1719 cached
->end
> start
)
1720 node
= &cached
->rb_node
;
1722 node
= tree_search(tree
, start
);
1723 while (node
&& start
<= end
) {
1724 state
= rb_entry(node
, struct extent_state
, rb_node
);
1726 if (filled
&& state
->start
> start
) {
1731 if (state
->start
> end
)
1734 if (state
->state
& bits
) {
1738 } else if (filled
) {
1743 if (state
->end
== (u64
)-1)
1746 start
= state
->end
+ 1;
1749 node
= rb_next(node
);
1756 spin_unlock(&tree
->lock
);
1761 * helper function to set a given page up to date if all the
1762 * extents in the tree for that page are up to date
1764 static int check_page_uptodate(struct extent_io_tree
*tree
,
1767 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1768 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1769 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
1770 SetPageUptodate(page
);
1775 * helper function to unlock a page if all the extents in the tree
1776 * for that page are unlocked
1778 static int check_page_locked(struct extent_io_tree
*tree
,
1781 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1782 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1783 if (!test_range_bit(tree
, start
, end
, EXTENT_LOCKED
, 0, NULL
))
1789 * helper function to end page writeback if all the extents
1790 * in the tree for that page are done with writeback
1792 static int check_page_writeback(struct extent_io_tree
*tree
,
1795 end_page_writeback(page
);
1800 * When IO fails, either with EIO or csum verification fails, we
1801 * try other mirrors that might have a good copy of the data. This
1802 * io_failure_record is used to record state as we go through all the
1803 * mirrors. If another mirror has good data, the page is set up to date
1804 * and things continue. If a good mirror can't be found, the original
1805 * bio end_io callback is called to indicate things have failed.
1807 struct io_failure_record
{
1812 unsigned long bio_flags
;
1818 static int free_io_failure(struct inode
*inode
, struct io_failure_record
*rec
,
1823 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1825 set_state_private(failure_tree
, rec
->start
, 0);
1826 ret
= clear_extent_bits(failure_tree
, rec
->start
,
1827 rec
->start
+ rec
->len
- 1,
1828 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1833 ret
= clear_extent_bits(&BTRFS_I(inode
)->io_tree
, rec
->start
,
1834 rec
->start
+ rec
->len
- 1,
1835 EXTENT_DAMAGED
, GFP_NOFS
);
1844 static void repair_io_failure_callback(struct bio
*bio
, int err
)
1846 complete(bio
->bi_private
);
1850 * this bypasses the standard btrfs submit functions deliberately, as
1851 * the standard behavior is to write all copies in a raid setup. here we only
1852 * want to write the one bad copy. so we do the mapping for ourselves and issue
1853 * submit_bio directly.
1854 * to avoid any synchonization issues, wait for the data after writing, which
1855 * actually prevents the read that triggered the error from finishing.
1856 * currently, there can be no more than two copies of every data bit. thus,
1857 * exactly one rewrite is required.
1859 int repair_io_failure(struct btrfs_mapping_tree
*map_tree
, u64 start
,
1860 u64 length
, u64 logical
, struct page
*page
,
1864 struct btrfs_device
*dev
;
1865 DECLARE_COMPLETION_ONSTACK(compl);
1868 struct btrfs_bio
*bbio
= NULL
;
1871 BUG_ON(!mirror_num
);
1873 bio
= bio_alloc(GFP_NOFS
, 1);
1876 bio
->bi_private
= &compl;
1877 bio
->bi_end_io
= repair_io_failure_callback
;
1879 map_length
= length
;
1881 ret
= btrfs_map_block(map_tree
, WRITE
, logical
,
1882 &map_length
, &bbio
, mirror_num
);
1887 BUG_ON(mirror_num
!= bbio
->mirror_num
);
1888 sector
= bbio
->stripes
[mirror_num
-1].physical
>> 9;
1889 bio
->bi_sector
= sector
;
1890 dev
= bbio
->stripes
[mirror_num
-1].dev
;
1892 if (!dev
|| !dev
->bdev
|| !dev
->writeable
) {
1896 bio
->bi_bdev
= dev
->bdev
;
1897 bio_add_page(bio
, page
, length
, start
-page_offset(page
));
1898 submit_bio(WRITE_SYNC
, bio
);
1899 wait_for_completion(&compl);
1901 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
1902 /* try to remap that extent elsewhere? */
1907 printk(KERN_INFO
"btrfs read error corrected: ino %lu off %llu (dev %s "
1908 "sector %llu)\n", page
->mapping
->host
->i_ino
, start
,
1916 * each time an IO finishes, we do a fast check in the IO failure tree
1917 * to see if we need to process or clean up an io_failure_record
1919 static int clean_io_failure(u64 start
, struct page
*page
)
1922 u64 private_failure
;
1923 struct io_failure_record
*failrec
;
1924 struct btrfs_mapping_tree
*map_tree
;
1925 struct extent_state
*state
;
1929 struct inode
*inode
= page
->mapping
->host
;
1932 ret
= count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1933 (u64
)-1, 1, EXTENT_DIRTY
, 0);
1937 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
, start
,
1942 failrec
= (struct io_failure_record
*)(unsigned long) private_failure
;
1943 BUG_ON(!failrec
->this_mirror
);
1945 if (failrec
->in_validation
) {
1946 /* there was no real error, just free the record */
1947 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1953 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1954 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1957 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1959 if (state
&& state
->start
== failrec
->start
) {
1960 map_tree
= &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
;
1961 num_copies
= btrfs_num_copies(map_tree
, failrec
->logical
,
1963 if (num_copies
> 1) {
1964 ret
= repair_io_failure(map_tree
, start
, failrec
->len
,
1965 failrec
->logical
, page
,
1966 failrec
->failed_mirror
);
1973 ret
= free_io_failure(inode
, failrec
, did_repair
);
1979 * this is a generic handler for readpage errors (default
1980 * readpage_io_failed_hook). if other copies exist, read those and write back
1981 * good data to the failed position. does not investigate in remapping the
1982 * failed extent elsewhere, hoping the device will be smart enough to do this as
1986 static int bio_readpage_error(struct bio
*failed_bio
, struct page
*page
,
1987 u64 start
, u64 end
, int failed_mirror
,
1988 struct extent_state
*state
)
1990 struct io_failure_record
*failrec
= NULL
;
1992 struct extent_map
*em
;
1993 struct inode
*inode
= page
->mapping
->host
;
1994 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1995 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
1996 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2003 BUG_ON(failed_bio
->bi_rw
& REQ_WRITE
);
2005 ret
= get_state_private(failure_tree
, start
, &private);
2007 failrec
= kzalloc(sizeof(*failrec
), GFP_NOFS
);
2010 failrec
->start
= start
;
2011 failrec
->len
= end
- start
+ 1;
2012 failrec
->this_mirror
= 0;
2013 failrec
->bio_flags
= 0;
2014 failrec
->in_validation
= 0;
2016 read_lock(&em_tree
->lock
);
2017 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
2019 read_unlock(&em_tree
->lock
);
2024 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
2025 free_extent_map(em
);
2028 read_unlock(&em_tree
->lock
);
2030 if (!em
|| IS_ERR(em
)) {
2034 logical
= start
- em
->start
;
2035 logical
= em
->block_start
+ logical
;
2036 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2037 logical
= em
->block_start
;
2038 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
2039 extent_set_compress_type(&failrec
->bio_flags
,
2042 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2043 "len=%llu\n", logical
, start
, failrec
->len
);
2044 failrec
->logical
= logical
;
2045 free_extent_map(em
);
2047 /* set the bits in the private failure tree */
2048 ret
= set_extent_bits(failure_tree
, start
, end
,
2049 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
2051 ret
= set_state_private(failure_tree
, start
,
2052 (u64
)(unsigned long)failrec
);
2053 /* set the bits in the inode's tree */
2055 ret
= set_extent_bits(tree
, start
, end
, EXTENT_DAMAGED
,
2062 failrec
= (struct io_failure_record
*)(unsigned long)private;
2063 pr_debug("bio_readpage_error: (found) logical=%llu, "
2064 "start=%llu, len=%llu, validation=%d\n",
2065 failrec
->logical
, failrec
->start
, failrec
->len
,
2066 failrec
->in_validation
);
2068 * when data can be on disk more than twice, add to failrec here
2069 * (e.g. with a list for failed_mirror) to make
2070 * clean_io_failure() clean all those errors at once.
2073 num_copies
= btrfs_num_copies(
2074 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
2075 failrec
->logical
, failrec
->len
);
2076 if (num_copies
== 1) {
2078 * we only have a single copy of the data, so don't bother with
2079 * all the retry and error correction code that follows. no
2080 * matter what the error is, it is very likely to persist.
2082 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2083 "state=%p, num_copies=%d, next_mirror %d, "
2084 "failed_mirror %d\n", state
, num_copies
,
2085 failrec
->this_mirror
, failed_mirror
);
2086 free_io_failure(inode
, failrec
, 0);
2091 spin_lock(&tree
->lock
);
2092 state
= find_first_extent_bit_state(tree
, failrec
->start
,
2094 if (state
&& state
->start
!= failrec
->start
)
2096 spin_unlock(&tree
->lock
);
2100 * there are two premises:
2101 * a) deliver good data to the caller
2102 * b) correct the bad sectors on disk
2104 if (failed_bio
->bi_vcnt
> 1) {
2106 * to fulfill b), we need to know the exact failing sectors, as
2107 * we don't want to rewrite any more than the failed ones. thus,
2108 * we need separate read requests for the failed bio
2110 * if the following BUG_ON triggers, our validation request got
2111 * merged. we need separate requests for our algorithm to work.
2113 BUG_ON(failrec
->in_validation
);
2114 failrec
->in_validation
= 1;
2115 failrec
->this_mirror
= failed_mirror
;
2116 read_mode
= READ_SYNC
| REQ_FAILFAST_DEV
;
2119 * we're ready to fulfill a) and b) alongside. get a good copy
2120 * of the failed sector and if we succeed, we have setup
2121 * everything for repair_io_failure to do the rest for us.
2123 if (failrec
->in_validation
) {
2124 BUG_ON(failrec
->this_mirror
!= failed_mirror
);
2125 failrec
->in_validation
= 0;
2126 failrec
->this_mirror
= 0;
2128 failrec
->failed_mirror
= failed_mirror
;
2129 failrec
->this_mirror
++;
2130 if (failrec
->this_mirror
== failed_mirror
)
2131 failrec
->this_mirror
++;
2132 read_mode
= READ_SYNC
;
2135 if (!state
|| failrec
->this_mirror
> num_copies
) {
2136 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2137 "next_mirror %d, failed_mirror %d\n", state
,
2138 num_copies
, failrec
->this_mirror
, failed_mirror
);
2139 free_io_failure(inode
, failrec
, 0);
2143 bio
= bio_alloc(GFP_NOFS
, 1);
2144 bio
->bi_private
= state
;
2145 bio
->bi_end_io
= failed_bio
->bi_end_io
;
2146 bio
->bi_sector
= failrec
->logical
>> 9;
2147 bio
->bi_bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
2150 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
2152 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2153 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode
,
2154 failrec
->this_mirror
, num_copies
, failrec
->in_validation
);
2156 tree
->ops
->submit_bio_hook(inode
, read_mode
, bio
, failrec
->this_mirror
,
2157 failrec
->bio_flags
, 0);
2161 /* lots and lots of room for performance fixes in the end_bio funcs */
2164 * after a writepage IO is done, we need to:
2165 * clear the uptodate bits on error
2166 * clear the writeback bits in the extent tree for this IO
2167 * end_page_writeback if the page has no more pending IO
2169 * Scheduling is not allowed, so the extent state tree is expected
2170 * to have one and only one object corresponding to this IO.
2172 static void end_bio_extent_writepage(struct bio
*bio
, int err
)
2174 int uptodate
= err
== 0;
2175 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
2176 struct extent_io_tree
*tree
;
2183 struct page
*page
= bvec
->bv_page
;
2184 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
2186 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
2188 end
= start
+ bvec
->bv_len
- 1;
2190 if (bvec
->bv_offset
== 0 && bvec
->bv_len
== PAGE_CACHE_SIZE
)
2195 if (--bvec
>= bio
->bi_io_vec
)
2196 prefetchw(&bvec
->bv_page
->flags
);
2197 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
) {
2198 ret
= tree
->ops
->writepage_end_io_hook(page
, start
,
2199 end
, NULL
, uptodate
);
2204 if (!uptodate
&& tree
->ops
&&
2205 tree
->ops
->writepage_io_failed_hook
) {
2206 ret
= tree
->ops
->writepage_io_failed_hook(bio
, page
,
2209 uptodate
= (err
== 0);
2215 clear_extent_uptodate(tree
, start
, end
, NULL
, GFP_NOFS
);
2216 ClearPageUptodate(page
);
2221 end_page_writeback(page
);
2223 check_page_writeback(tree
, page
);
2224 } while (bvec
>= bio
->bi_io_vec
);
2230 * after a readpage IO is done, we need to:
2231 * clear the uptodate bits on error
2232 * set the uptodate bits if things worked
2233 * set the page up to date if all extents in the tree are uptodate
2234 * clear the lock bit in the extent tree
2235 * unlock the page if there are no other extents locked for it
2237 * Scheduling is not allowed, so the extent state tree is expected
2238 * to have one and only one object corresponding to this IO.
2240 static void end_bio_extent_readpage(struct bio
*bio
, int err
)
2242 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2243 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
2244 struct bio_vec
*bvec
= bio
->bi_io_vec
;
2245 struct extent_io_tree
*tree
;
2255 struct page
*page
= bvec
->bv_page
;
2256 struct extent_state
*cached
= NULL
;
2257 struct extent_state
*state
;
2259 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2260 "mirror=%ld\n", bio
->bi_vcnt
, bio
->bi_idx
, err
,
2261 (long int)bio
->bi_bdev
);
2262 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
2264 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
2266 end
= start
+ bvec
->bv_len
- 1;
2268 if (bvec
->bv_offset
== 0 && bvec
->bv_len
== PAGE_CACHE_SIZE
)
2273 if (++bvec
<= bvec_end
)
2274 prefetchw(&bvec
->bv_page
->flags
);
2276 spin_lock(&tree
->lock
);
2277 state
= find_first_extent_bit_state(tree
, start
, EXTENT_LOCKED
);
2278 if (state
&& state
->start
== start
) {
2280 * take a reference on the state, unlock will drop
2283 cache_state(state
, &cached
);
2285 spin_unlock(&tree
->lock
);
2287 if (uptodate
&& tree
->ops
&& tree
->ops
->readpage_end_io_hook
) {
2288 ret
= tree
->ops
->readpage_end_io_hook(page
, start
, end
,
2293 clean_io_failure(start
, page
);
2297 failed_mirror
= (int)(unsigned long)bio
->bi_bdev
;
2299 * The generic bio_readpage_error handles errors the
2300 * following way: If possible, new read requests are
2301 * created and submitted and will end up in
2302 * end_bio_extent_readpage as well (if we're lucky, not
2303 * in the !uptodate case). In that case it returns 0 and
2304 * we just go on with the next page in our bio. If it
2305 * can't handle the error it will return -EIO and we
2306 * remain responsible for that page.
2308 ret
= bio_readpage_error(bio
, page
, start
, end
,
2309 failed_mirror
, NULL
);
2313 test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2316 uncache_state(&cached
);
2319 if (tree
->ops
&& tree
->ops
->readpage_io_failed_hook
) {
2320 ret
= tree
->ops
->readpage_io_failed_hook(
2321 bio
, page
, start
, end
,
2322 failed_mirror
, state
);
2329 set_extent_uptodate(tree
, start
, end
, &cached
,
2332 unlock_extent_cached(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2336 SetPageUptodate(page
);
2338 ClearPageUptodate(page
);
2344 check_page_uptodate(tree
, page
);
2346 ClearPageUptodate(page
);
2349 check_page_locked(tree
, page
);
2351 } while (bvec
<= bvec_end
);
2357 btrfs_bio_alloc(struct block_device
*bdev
, u64 first_sector
, int nr_vecs
,
2362 bio
= bio_alloc(gfp_flags
, nr_vecs
);
2364 if (bio
== NULL
&& (current
->flags
& PF_MEMALLOC
)) {
2365 while (!bio
&& (nr_vecs
/= 2))
2366 bio
= bio_alloc(gfp_flags
, nr_vecs
);
2371 bio
->bi_bdev
= bdev
;
2372 bio
->bi_sector
= first_sector
;
2377 static int submit_one_bio(int rw
, struct bio
*bio
, int mirror_num
,
2378 unsigned long bio_flags
)
2381 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
2382 struct page
*page
= bvec
->bv_page
;
2383 struct extent_io_tree
*tree
= bio
->bi_private
;
2386 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) + bvec
->bv_offset
;
2388 bio
->bi_private
= NULL
;
2392 if (tree
->ops
&& tree
->ops
->submit_bio_hook
)
2393 ret
= tree
->ops
->submit_bio_hook(page
->mapping
->host
, rw
, bio
,
2394 mirror_num
, bio_flags
, start
);
2396 submit_bio(rw
, bio
);
2398 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
2404 static int submit_extent_page(int rw
, struct extent_io_tree
*tree
,
2405 struct page
*page
, sector_t sector
,
2406 size_t size
, unsigned long offset
,
2407 struct block_device
*bdev
,
2408 struct bio
**bio_ret
,
2409 unsigned long max_pages
,
2410 bio_end_io_t end_io_func
,
2412 unsigned long prev_bio_flags
,
2413 unsigned long bio_flags
)
2419 int this_compressed
= bio_flags
& EXTENT_BIO_COMPRESSED
;
2420 int old_compressed
= prev_bio_flags
& EXTENT_BIO_COMPRESSED
;
2421 size_t page_size
= min_t(size_t, size
, PAGE_CACHE_SIZE
);
2423 if (bio_ret
&& *bio_ret
) {
2426 contig
= bio
->bi_sector
== sector
;
2428 contig
= bio
->bi_sector
+ (bio
->bi_size
>> 9) ==
2431 if (prev_bio_flags
!= bio_flags
|| !contig
||
2432 (tree
->ops
&& tree
->ops
->merge_bio_hook
&&
2433 tree
->ops
->merge_bio_hook(page
, offset
, page_size
, bio
,
2435 bio_add_page(bio
, page
, page_size
, offset
) < page_size
) {
2436 ret
= submit_one_bio(rw
, bio
, mirror_num
,
2443 if (this_compressed
)
2446 nr
= bio_get_nr_vecs(bdev
);
2448 bio
= btrfs_bio_alloc(bdev
, sector
, nr
, GFP_NOFS
| __GFP_HIGH
);
2452 bio_add_page(bio
, page
, page_size
, offset
);
2453 bio
->bi_end_io
= end_io_func
;
2454 bio
->bi_private
= tree
;
2459 ret
= submit_one_bio(rw
, bio
, mirror_num
, bio_flags
);
2464 void set_page_extent_mapped(struct page
*page
)
2466 if (!PagePrivate(page
)) {
2467 SetPagePrivate(page
);
2468 page_cache_get(page
);
2469 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
2473 static void set_page_extent_head(struct page
*page
, unsigned long len
)
2475 WARN_ON(!PagePrivate(page
));
2476 set_page_private(page
, EXTENT_PAGE_PRIVATE_FIRST_PAGE
| len
<< 2);
2480 * basic readpage implementation. Locked extent state structs are inserted
2481 * into the tree that are removed when the IO is done (by the end_io
2484 static int __extent_read_full_page(struct extent_io_tree
*tree
,
2486 get_extent_t
*get_extent
,
2487 struct bio
**bio
, int mirror_num
,
2488 unsigned long *bio_flags
)
2490 struct inode
*inode
= page
->mapping
->host
;
2491 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2492 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2496 u64 last_byte
= i_size_read(inode
);
2500 struct extent_map
*em
;
2501 struct block_device
*bdev
;
2502 struct btrfs_ordered_extent
*ordered
;
2505 size_t pg_offset
= 0;
2507 size_t disk_io_size
;
2508 size_t blocksize
= inode
->i_sb
->s_blocksize
;
2509 unsigned long this_bio_flag
= 0;
2511 set_page_extent_mapped(page
);
2513 if (!PageUptodate(page
)) {
2514 if (cleancache_get_page(page
) == 0) {
2515 BUG_ON(blocksize
!= PAGE_SIZE
);
2522 lock_extent(tree
, start
, end
, GFP_NOFS
);
2523 ordered
= btrfs_lookup_ordered_extent(inode
, start
);
2526 unlock_extent(tree
, start
, end
, GFP_NOFS
);
2527 btrfs_start_ordered_extent(inode
, ordered
, 1);
2528 btrfs_put_ordered_extent(ordered
);
2531 if (page
->index
== last_byte
>> PAGE_CACHE_SHIFT
) {
2533 size_t zero_offset
= last_byte
& (PAGE_CACHE_SIZE
- 1);
2536 iosize
= PAGE_CACHE_SIZE
- zero_offset
;
2537 userpage
= kmap_atomic(page
, KM_USER0
);
2538 memset(userpage
+ zero_offset
, 0, iosize
);
2539 flush_dcache_page(page
);
2540 kunmap_atomic(userpage
, KM_USER0
);
2543 while (cur
<= end
) {
2544 if (cur
>= last_byte
) {
2546 struct extent_state
*cached
= NULL
;
2548 iosize
= PAGE_CACHE_SIZE
- pg_offset
;
2549 userpage
= kmap_atomic(page
, KM_USER0
);
2550 memset(userpage
+ pg_offset
, 0, iosize
);
2551 flush_dcache_page(page
);
2552 kunmap_atomic(userpage
, KM_USER0
);
2553 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2555 unlock_extent_cached(tree
, cur
, cur
+ iosize
- 1,
2559 em
= get_extent(inode
, page
, pg_offset
, cur
,
2561 if (IS_ERR_OR_NULL(em
)) {
2563 unlock_extent(tree
, cur
, end
, GFP_NOFS
);
2566 extent_offset
= cur
- em
->start
;
2567 BUG_ON(extent_map_end(em
) <= cur
);
2570 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2571 this_bio_flag
= EXTENT_BIO_COMPRESSED
;
2572 extent_set_compress_type(&this_bio_flag
,
2576 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2577 cur_end
= min(extent_map_end(em
) - 1, end
);
2578 iosize
= (iosize
+ blocksize
- 1) & ~((u64
)blocksize
- 1);
2579 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
2580 disk_io_size
= em
->block_len
;
2581 sector
= em
->block_start
>> 9;
2583 sector
= (em
->block_start
+ extent_offset
) >> 9;
2584 disk_io_size
= iosize
;
2587 block_start
= em
->block_start
;
2588 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
2589 block_start
= EXTENT_MAP_HOLE
;
2590 free_extent_map(em
);
2593 /* we've found a hole, just zero and go on */
2594 if (block_start
== EXTENT_MAP_HOLE
) {
2596 struct extent_state
*cached
= NULL
;
2598 userpage
= kmap_atomic(page
, KM_USER0
);
2599 memset(userpage
+ pg_offset
, 0, iosize
);
2600 flush_dcache_page(page
);
2601 kunmap_atomic(userpage
, KM_USER0
);
2603 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2605 unlock_extent_cached(tree
, cur
, cur
+ iosize
- 1,
2608 pg_offset
+= iosize
;
2611 /* the get_extent function already copied into the page */
2612 if (test_range_bit(tree
, cur
, cur_end
,
2613 EXTENT_UPTODATE
, 1, NULL
)) {
2614 check_page_uptodate(tree
, page
);
2615 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2617 pg_offset
+= iosize
;
2620 /* we have an inline extent but it didn't get marked up
2621 * to date. Error out
2623 if (block_start
== EXTENT_MAP_INLINE
) {
2625 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2627 pg_offset
+= iosize
;
2632 if (tree
->ops
&& tree
->ops
->readpage_io_hook
) {
2633 ret
= tree
->ops
->readpage_io_hook(page
, cur
,
2637 unsigned long pnr
= (last_byte
>> PAGE_CACHE_SHIFT
) + 1;
2639 ret
= submit_extent_page(READ
, tree
, page
,
2640 sector
, disk_io_size
, pg_offset
,
2642 end_bio_extent_readpage
, mirror_num
,
2646 *bio_flags
= this_bio_flag
;
2651 pg_offset
+= iosize
;
2655 if (!PageError(page
))
2656 SetPageUptodate(page
);
2662 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
2663 get_extent_t
*get_extent
, int mirror_num
)
2665 struct bio
*bio
= NULL
;
2666 unsigned long bio_flags
= 0;
2669 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, mirror_num
,
2672 ret
= submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
2676 static noinline
void update_nr_written(struct page
*page
,
2677 struct writeback_control
*wbc
,
2678 unsigned long nr_written
)
2680 wbc
->nr_to_write
-= nr_written
;
2681 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 &&
2682 wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
))
2683 page
->mapping
->writeback_index
= page
->index
+ nr_written
;
2687 * the writepage semantics are similar to regular writepage. extent
2688 * records are inserted to lock ranges in the tree, and as dirty areas
2689 * are found, they are marked writeback. Then the lock bits are removed
2690 * and the end_io handler clears the writeback ranges
2692 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
2695 struct inode
*inode
= page
->mapping
->host
;
2696 struct extent_page_data
*epd
= data
;
2697 struct extent_io_tree
*tree
= epd
->tree
;
2698 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2700 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2704 u64 last_byte
= i_size_read(inode
);
2708 struct extent_state
*cached_state
= NULL
;
2709 struct extent_map
*em
;
2710 struct block_device
*bdev
;
2713 size_t pg_offset
= 0;
2715 loff_t i_size
= i_size_read(inode
);
2716 unsigned long end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2722 unsigned long nr_written
= 0;
2723 bool fill_delalloc
= true;
2725 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2726 write_flags
= WRITE_SYNC
;
2728 write_flags
= WRITE
;
2730 trace___extent_writepage(page
, inode
, wbc
);
2732 WARN_ON(!PageLocked(page
));
2734 ClearPageError(page
);
2736 pg_offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
2737 if (page
->index
> end_index
||
2738 (page
->index
== end_index
&& !pg_offset
)) {
2739 page
->mapping
->a_ops
->invalidatepage(page
, 0);
2744 if (page
->index
== end_index
) {
2747 userpage
= kmap_atomic(page
, KM_USER0
);
2748 memset(userpage
+ pg_offset
, 0,
2749 PAGE_CACHE_SIZE
- pg_offset
);
2750 kunmap_atomic(userpage
, KM_USER0
);
2751 flush_dcache_page(page
);
2755 set_page_extent_mapped(page
);
2757 if (!tree
->ops
|| !tree
->ops
->fill_delalloc
)
2758 fill_delalloc
= false;
2760 delalloc_start
= start
;
2763 if (!epd
->extent_locked
&& fill_delalloc
) {
2764 u64 delalloc_to_write
= 0;
2766 * make sure the wbc mapping index is at least updated
2769 update_nr_written(page
, wbc
, 0);
2771 while (delalloc_end
< page_end
) {
2772 nr_delalloc
= find_lock_delalloc_range(inode
, tree
,
2777 if (nr_delalloc
== 0) {
2778 delalloc_start
= delalloc_end
+ 1;
2781 tree
->ops
->fill_delalloc(inode
, page
, delalloc_start
,
2782 delalloc_end
, &page_started
,
2785 * delalloc_end is already one less than the total
2786 * length, so we don't subtract one from
2789 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
2792 delalloc_start
= delalloc_end
+ 1;
2794 if (wbc
->nr_to_write
< delalloc_to_write
) {
2797 if (delalloc_to_write
< thresh
* 2)
2798 thresh
= delalloc_to_write
;
2799 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
2803 /* did the fill delalloc function already unlock and start
2809 * we've unlocked the page, so we can't update
2810 * the mapping's writeback index, just update
2813 wbc
->nr_to_write
-= nr_written
;
2817 if (tree
->ops
&& tree
->ops
->writepage_start_hook
) {
2818 ret
= tree
->ops
->writepage_start_hook(page
, start
,
2820 if (ret
== -EAGAIN
) {
2821 redirty_page_for_writepage(wbc
, page
);
2822 update_nr_written(page
, wbc
, nr_written
);
2830 * we don't want to touch the inode after unlocking the page,
2831 * so we update the mapping writeback index now
2833 update_nr_written(page
, wbc
, nr_written
+ 1);
2836 if (last_byte
<= start
) {
2837 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2838 tree
->ops
->writepage_end_io_hook(page
, start
,
2843 blocksize
= inode
->i_sb
->s_blocksize
;
2845 while (cur
<= end
) {
2846 if (cur
>= last_byte
) {
2847 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2848 tree
->ops
->writepage_end_io_hook(page
, cur
,
2852 em
= epd
->get_extent(inode
, page
, pg_offset
, cur
,
2854 if (IS_ERR_OR_NULL(em
)) {
2859 extent_offset
= cur
- em
->start
;
2860 BUG_ON(extent_map_end(em
) <= cur
);
2862 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2863 iosize
= (iosize
+ blocksize
- 1) & ~((u64
)blocksize
- 1);
2864 sector
= (em
->block_start
+ extent_offset
) >> 9;
2866 block_start
= em
->block_start
;
2867 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
2868 free_extent_map(em
);
2872 * compressed and inline extents are written through other
2875 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
2876 block_start
== EXTENT_MAP_INLINE
) {
2878 * end_io notification does not happen here for
2879 * compressed extents
2881 if (!compressed
&& tree
->ops
&&
2882 tree
->ops
->writepage_end_io_hook
)
2883 tree
->ops
->writepage_end_io_hook(page
, cur
,
2886 else if (compressed
) {
2887 /* we don't want to end_page_writeback on
2888 * a compressed extent. this happens
2895 pg_offset
+= iosize
;
2898 /* leave this out until we have a page_mkwrite call */
2899 if (0 && !test_range_bit(tree
, cur
, cur
+ iosize
- 1,
2900 EXTENT_DIRTY
, 0, NULL
)) {
2902 pg_offset
+= iosize
;
2906 if (tree
->ops
&& tree
->ops
->writepage_io_hook
) {
2907 ret
= tree
->ops
->writepage_io_hook(page
, cur
,
2915 unsigned long max_nr
= end_index
+ 1;
2917 set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
2918 if (!PageWriteback(page
)) {
2919 printk(KERN_ERR
"btrfs warning page %lu not "
2920 "writeback, cur %llu end %llu\n",
2921 page
->index
, (unsigned long long)cur
,
2922 (unsigned long long)end
);
2925 ret
= submit_extent_page(write_flags
, tree
, page
,
2926 sector
, iosize
, pg_offset
,
2927 bdev
, &epd
->bio
, max_nr
,
2928 end_bio_extent_writepage
,
2934 pg_offset
+= iosize
;
2939 /* make sure the mapping tag for page dirty gets cleared */
2940 set_page_writeback(page
);
2941 end_page_writeback(page
);
2947 /* drop our reference on any cached states */
2948 free_extent_state(cached_state
);
2953 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2954 * @mapping: address space structure to write
2955 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2956 * @writepage: function called for each page
2957 * @data: data passed to writepage function
2959 * If a page is already under I/O, write_cache_pages() skips it, even
2960 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2961 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2962 * and msync() need to guarantee that all the data which was dirty at the time
2963 * the call was made get new I/O started against them. If wbc->sync_mode is
2964 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2965 * existing IO to complete.
2967 static int extent_write_cache_pages(struct extent_io_tree
*tree
,
2968 struct address_space
*mapping
,
2969 struct writeback_control
*wbc
,
2970 writepage_t writepage
, void *data
,
2971 void (*flush_fn
)(void *))
2975 int nr_to_write_done
= 0;
2976 struct pagevec pvec
;
2979 pgoff_t end
; /* Inclusive */
2983 pagevec_init(&pvec
, 0);
2984 if (wbc
->range_cyclic
) {
2985 index
= mapping
->writeback_index
; /* Start from prev offset */
2988 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2989 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2992 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2993 tag
= PAGECACHE_TAG_TOWRITE
;
2995 tag
= PAGECACHE_TAG_DIRTY
;
2997 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2998 tag_pages_for_writeback(mapping
, index
, end
);
2999 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3000 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
3001 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
3005 for (i
= 0; i
< nr_pages
; i
++) {
3006 struct page
*page
= pvec
.pages
[i
];
3009 * At this point we hold neither mapping->tree_lock nor
3010 * lock on the page itself: the page may be truncated or
3011 * invalidated (changing page->mapping to NULL), or even
3012 * swizzled back from swapper_space to tmpfs file
3016 tree
->ops
->write_cache_pages_lock_hook
) {
3017 tree
->ops
->write_cache_pages_lock_hook(page
,
3020 if (!trylock_page(page
)) {
3026 if (unlikely(page
->mapping
!= mapping
)) {
3031 if (!wbc
->range_cyclic
&& page
->index
> end
) {
3037 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
3038 if (PageWriteback(page
))
3040 wait_on_page_writeback(page
);
3043 if (PageWriteback(page
) ||
3044 !clear_page_dirty_for_io(page
)) {
3049 ret
= (*writepage
)(page
, wbc
, data
);
3051 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
)) {
3059 * the filesystem may choose to bump up nr_to_write.
3060 * We have to make sure to honor the new nr_to_write
3063 nr_to_write_done
= wbc
->nr_to_write
<= 0;
3065 pagevec_release(&pvec
);
3068 if (!scanned
&& !done
) {
3070 * We hit the last page and there is more work to be done: wrap
3071 * back to the start of the file
3080 static void flush_epd_write_bio(struct extent_page_data
*epd
)
3084 submit_one_bio(WRITE_SYNC
, epd
->bio
, 0, 0);
3086 submit_one_bio(WRITE
, epd
->bio
, 0, 0);
3091 static noinline
void flush_write_bio(void *data
)
3093 struct extent_page_data
*epd
= data
;
3094 flush_epd_write_bio(epd
);
3097 int extent_write_full_page(struct extent_io_tree
*tree
, struct page
*page
,
3098 get_extent_t
*get_extent
,
3099 struct writeback_control
*wbc
)
3102 struct extent_page_data epd
= {
3105 .get_extent
= get_extent
,
3107 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3110 ret
= __extent_writepage(page
, wbc
, &epd
);
3112 flush_epd_write_bio(&epd
);
3116 int extent_write_locked_range(struct extent_io_tree
*tree
, struct inode
*inode
,
3117 u64 start
, u64 end
, get_extent_t
*get_extent
,
3121 struct address_space
*mapping
= inode
->i_mapping
;
3123 unsigned long nr_pages
= (end
- start
+ PAGE_CACHE_SIZE
) >>
3126 struct extent_page_data epd
= {
3129 .get_extent
= get_extent
,
3131 .sync_io
= mode
== WB_SYNC_ALL
,
3133 struct writeback_control wbc_writepages
= {
3135 .nr_to_write
= nr_pages
* 2,
3136 .range_start
= start
,
3137 .range_end
= end
+ 1,
3140 while (start
<= end
) {
3141 page
= find_get_page(mapping
, start
>> PAGE_CACHE_SHIFT
);
3142 if (clear_page_dirty_for_io(page
))
3143 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
3145 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3146 tree
->ops
->writepage_end_io_hook(page
, start
,
3147 start
+ PAGE_CACHE_SIZE
- 1,
3151 page_cache_release(page
);
3152 start
+= PAGE_CACHE_SIZE
;
3155 flush_epd_write_bio(&epd
);
3159 int extent_writepages(struct extent_io_tree
*tree
,
3160 struct address_space
*mapping
,
3161 get_extent_t
*get_extent
,
3162 struct writeback_control
*wbc
)
3165 struct extent_page_data epd
= {
3168 .get_extent
= get_extent
,
3170 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3173 ret
= extent_write_cache_pages(tree
, mapping
, wbc
,
3174 __extent_writepage
, &epd
,
3176 flush_epd_write_bio(&epd
);
3180 int extent_readpages(struct extent_io_tree
*tree
,
3181 struct address_space
*mapping
,
3182 struct list_head
*pages
, unsigned nr_pages
,
3183 get_extent_t get_extent
)
3185 struct bio
*bio
= NULL
;
3187 unsigned long bio_flags
= 0;
3189 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
3190 struct page
*page
= list_entry(pages
->prev
, struct page
, lru
);
3192 prefetchw(&page
->flags
);
3193 list_del(&page
->lru
);
3194 if (!add_to_page_cache_lru(page
, mapping
,
3195 page
->index
, GFP_NOFS
)) {
3196 __extent_read_full_page(tree
, page
, get_extent
,
3197 &bio
, 0, &bio_flags
);
3199 page_cache_release(page
);
3201 BUG_ON(!list_empty(pages
));
3203 submit_one_bio(READ
, bio
, 0, bio_flags
);
3208 * basic invalidatepage code, this waits on any locked or writeback
3209 * ranges corresponding to the page, and then deletes any extent state
3210 * records from the tree
3212 int extent_invalidatepage(struct extent_io_tree
*tree
,
3213 struct page
*page
, unsigned long offset
)
3215 struct extent_state
*cached_state
= NULL
;
3216 u64 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
3217 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3218 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
3220 start
+= (offset
+ blocksize
- 1) & ~(blocksize
- 1);
3224 lock_extent_bits(tree
, start
, end
, 0, &cached_state
, GFP_NOFS
);
3225 wait_on_page_writeback(page
);
3226 clear_extent_bit(tree
, start
, end
,
3227 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
3228 EXTENT_DO_ACCOUNTING
,
3229 1, 1, &cached_state
, GFP_NOFS
);
3234 * a helper for releasepage, this tests for areas of the page that
3235 * are locked or under IO and drops the related state bits if it is safe
3238 int try_release_extent_state(struct extent_map_tree
*map
,
3239 struct extent_io_tree
*tree
, struct page
*page
,
3242 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
3243 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3246 if (test_range_bit(tree
, start
, end
,
3247 EXTENT_IOBITS
, 0, NULL
))
3250 if ((mask
& GFP_NOFS
) == GFP_NOFS
)
3253 * at this point we can safely clear everything except the
3254 * locked bit and the nodatasum bit
3256 ret
= clear_extent_bit(tree
, start
, end
,
3257 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
3260 /* if clear_extent_bit failed for enomem reasons,
3261 * we can't allow the release to continue.
3272 * a helper for releasepage. As long as there are no locked extents
3273 * in the range corresponding to the page, both state records and extent
3274 * map records are removed
3276 int try_release_extent_mapping(struct extent_map_tree
*map
,
3277 struct extent_io_tree
*tree
, struct page
*page
,
3280 struct extent_map
*em
;
3281 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
3282 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3284 if ((mask
& __GFP_WAIT
) &&
3285 page
->mapping
->host
->i_size
> 16 * 1024 * 1024) {
3287 while (start
<= end
) {
3288 len
= end
- start
+ 1;
3289 write_lock(&map
->lock
);
3290 em
= lookup_extent_mapping(map
, start
, len
);
3291 if (IS_ERR_OR_NULL(em
)) {
3292 write_unlock(&map
->lock
);
3295 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
3296 em
->start
!= start
) {
3297 write_unlock(&map
->lock
);
3298 free_extent_map(em
);
3301 if (!test_range_bit(tree
, em
->start
,
3302 extent_map_end(em
) - 1,
3303 EXTENT_LOCKED
| EXTENT_WRITEBACK
,
3305 remove_extent_mapping(map
, em
);
3306 /* once for the rb tree */
3307 free_extent_map(em
);
3309 start
= extent_map_end(em
);
3310 write_unlock(&map
->lock
);
3313 free_extent_map(em
);
3316 return try_release_extent_state(map
, tree
, page
, mask
);
3320 * helper function for fiemap, which doesn't want to see any holes.
3321 * This maps until we find something past 'last'
3323 static struct extent_map
*get_extent_skip_holes(struct inode
*inode
,
3326 get_extent_t
*get_extent
)
3328 u64 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
3329 struct extent_map
*em
;
3336 len
= last
- offset
;
3339 len
= (len
+ sectorsize
- 1) & ~(sectorsize
- 1);
3340 em
= get_extent(inode
, NULL
, 0, offset
, len
, 0);
3341 if (IS_ERR_OR_NULL(em
))
3344 /* if this isn't a hole return it */
3345 if (!test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
) &&
3346 em
->block_start
!= EXTENT_MAP_HOLE
) {
3350 /* this is a hole, advance to the next extent */
3351 offset
= extent_map_end(em
);
3352 free_extent_map(em
);
3359 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
3360 __u64 start
, __u64 len
, get_extent_t
*get_extent
)
3364 u64 max
= start
+ len
;
3368 u64 last_for_get_extent
= 0;
3370 u64 isize
= i_size_read(inode
);
3371 struct btrfs_key found_key
;
3372 struct extent_map
*em
= NULL
;
3373 struct extent_state
*cached_state
= NULL
;
3374 struct btrfs_path
*path
;
3375 struct btrfs_file_extent_item
*item
;
3380 unsigned long emflags
;
3385 path
= btrfs_alloc_path();
3388 path
->leave_spinning
= 1;
3390 start
= ALIGN(start
, BTRFS_I(inode
)->root
->sectorsize
);
3391 len
= ALIGN(len
, BTRFS_I(inode
)->root
->sectorsize
);
3394 * lookup the last file extent. We're not using i_size here
3395 * because there might be preallocation past i_size
3397 ret
= btrfs_lookup_file_extent(NULL
, BTRFS_I(inode
)->root
,
3398 path
, btrfs_ino(inode
), -1, 0);
3400 btrfs_free_path(path
);
3405 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3406 struct btrfs_file_extent_item
);
3407 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
3408 found_type
= btrfs_key_type(&found_key
);
3410 /* No extents, but there might be delalloc bits */
3411 if (found_key
.objectid
!= btrfs_ino(inode
) ||
3412 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
3413 /* have to trust i_size as the end */
3415 last_for_get_extent
= isize
;
3418 * remember the start of the last extent. There are a
3419 * bunch of different factors that go into the length of the
3420 * extent, so its much less complex to remember where it started
3422 last
= found_key
.offset
;
3423 last_for_get_extent
= last
+ 1;
3425 btrfs_free_path(path
);
3428 * we might have some extents allocated but more delalloc past those
3429 * extents. so, we trust isize unless the start of the last extent is
3434 last_for_get_extent
= isize
;
3437 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
, 0,
3438 &cached_state
, GFP_NOFS
);
3440 em
= get_extent_skip_holes(inode
, start
, last_for_get_extent
,
3450 u64 offset_in_extent
;
3452 /* break if the extent we found is outside the range */
3453 if (em
->start
>= max
|| extent_map_end(em
) < off
)
3457 * get_extent may return an extent that starts before our
3458 * requested range. We have to make sure the ranges
3459 * we return to fiemap always move forward and don't
3460 * overlap, so adjust the offsets here
3462 em_start
= max(em
->start
, off
);
3465 * record the offset from the start of the extent
3466 * for adjusting the disk offset below
3468 offset_in_extent
= em_start
- em
->start
;
3469 em_end
= extent_map_end(em
);
3470 em_len
= em_end
- em_start
;
3471 emflags
= em
->flags
;
3476 * bump off for our next call to get_extent
3478 off
= extent_map_end(em
);
3482 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
3484 flags
|= FIEMAP_EXTENT_LAST
;
3485 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
3486 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
3487 FIEMAP_EXTENT_NOT_ALIGNED
);
3488 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
3489 flags
|= (FIEMAP_EXTENT_DELALLOC
|
3490 FIEMAP_EXTENT_UNKNOWN
);
3492 disko
= em
->block_start
+ offset_in_extent
;
3494 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
3495 flags
|= FIEMAP_EXTENT_ENCODED
;
3497 free_extent_map(em
);
3499 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
3500 (last
== (u64
)-1 && isize
<= em_end
)) {
3501 flags
|= FIEMAP_EXTENT_LAST
;
3505 /* now scan forward to see if this is really the last extent. */
3506 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
,
3513 flags
|= FIEMAP_EXTENT_LAST
;
3516 ret
= fiemap_fill_next_extent(fieinfo
, em_start
, disko
,
3522 free_extent_map(em
);
3524 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
,
3525 &cached_state
, GFP_NOFS
);
3529 inline struct page
*extent_buffer_page(struct extent_buffer
*eb
,
3533 struct address_space
*mapping
;
3536 return eb
->first_page
;
3537 i
+= eb
->start
>> PAGE_CACHE_SHIFT
;
3538 mapping
= eb
->first_page
->mapping
;
3543 * extent_buffer_page is only called after pinning the page
3544 * by increasing the reference count. So we know the page must
3545 * be in the radix tree.
3548 p
= radix_tree_lookup(&mapping
->page_tree
, i
);
3554 inline unsigned long num_extent_pages(u64 start
, u64 len
)
3556 return ((start
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
) -
3557 (start
>> PAGE_CACHE_SHIFT
);
3560 static struct extent_buffer
*__alloc_extent_buffer(struct extent_io_tree
*tree
,
3565 struct extent_buffer
*eb
= NULL
;
3567 unsigned long flags
;
3570 eb
= kmem_cache_zalloc(extent_buffer_cache
, mask
);
3575 rwlock_init(&eb
->lock
);
3576 atomic_set(&eb
->write_locks
, 0);
3577 atomic_set(&eb
->read_locks
, 0);
3578 atomic_set(&eb
->blocking_readers
, 0);
3579 atomic_set(&eb
->blocking_writers
, 0);
3580 atomic_set(&eb
->spinning_readers
, 0);
3581 atomic_set(&eb
->spinning_writers
, 0);
3582 init_waitqueue_head(&eb
->write_lock_wq
);
3583 init_waitqueue_head(&eb
->read_lock_wq
);
3586 spin_lock_irqsave(&leak_lock
, flags
);
3587 list_add(&eb
->leak_list
, &buffers
);
3588 spin_unlock_irqrestore(&leak_lock
, flags
);
3590 atomic_set(&eb
->refs
, 1);
3595 static void __free_extent_buffer(struct extent_buffer
*eb
)
3598 unsigned long flags
;
3599 spin_lock_irqsave(&leak_lock
, flags
);
3600 list_del(&eb
->leak_list
);
3601 spin_unlock_irqrestore(&leak_lock
, flags
);
3603 kmem_cache_free(extent_buffer_cache
, eb
);
3607 * Helper for releasing extent buffer page.
3609 static void btrfs_release_extent_buffer_page(struct extent_buffer
*eb
,
3610 unsigned long start_idx
)
3612 unsigned long index
;
3615 if (!eb
->first_page
)
3618 index
= num_extent_pages(eb
->start
, eb
->len
);
3619 if (start_idx
>= index
)
3624 page
= extent_buffer_page(eb
, index
);
3626 page_cache_release(page
);
3627 } while (index
!= start_idx
);
3631 * Helper for releasing the extent buffer.
3633 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
3635 btrfs_release_extent_buffer_page(eb
, 0);
3636 __free_extent_buffer(eb
);
3639 struct extent_buffer
*alloc_extent_buffer(struct extent_io_tree
*tree
,
3640 u64 start
, unsigned long len
,
3643 unsigned long num_pages
= num_extent_pages(start
, len
);
3645 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
3646 struct extent_buffer
*eb
;
3647 struct extent_buffer
*exists
= NULL
;
3649 struct address_space
*mapping
= tree
->mapping
;
3654 eb
= radix_tree_lookup(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
3655 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
3657 mark_page_accessed(eb
->first_page
);
3662 eb
= __alloc_extent_buffer(tree
, start
, len
, GFP_NOFS
);
3667 eb
->first_page
= page0
;
3670 page_cache_get(page0
);
3671 mark_page_accessed(page0
);
3672 set_page_extent_mapped(page0
);
3673 set_page_extent_head(page0
, len
);
3674 uptodate
= PageUptodate(page0
);
3678 for (; i
< num_pages
; i
++, index
++) {
3679 p
= find_or_create_page(mapping
, index
, GFP_NOFS
);
3684 set_page_extent_mapped(p
);
3685 mark_page_accessed(p
);
3688 set_page_extent_head(p
, len
);
3690 set_page_private(p
, EXTENT_PAGE_PRIVATE
);
3692 if (!PageUptodate(p
))
3696 * see below about how we avoid a nasty race with release page
3697 * and why we unlock later
3703 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3705 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
3709 spin_lock(&tree
->buffer_lock
);
3710 ret
= radix_tree_insert(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
, eb
);
3711 if (ret
== -EEXIST
) {
3712 exists
= radix_tree_lookup(&tree
->buffer
,
3713 start
>> PAGE_CACHE_SHIFT
);
3714 /* add one reference for the caller */
3715 atomic_inc(&exists
->refs
);
3716 spin_unlock(&tree
->buffer_lock
);
3717 radix_tree_preload_end();
3720 /* add one reference for the tree */
3721 atomic_inc(&eb
->refs
);
3722 spin_unlock(&tree
->buffer_lock
);
3723 radix_tree_preload_end();
3726 * there is a race where release page may have
3727 * tried to find this extent buffer in the radix
3728 * but failed. It will tell the VM it is safe to
3729 * reclaim the, and it will clear the page private bit.
3730 * We must make sure to set the page private bit properly
3731 * after the extent buffer is in the radix tree so
3732 * it doesn't get lost
3734 set_page_extent_mapped(eb
->first_page
);
3735 set_page_extent_head(eb
->first_page
, eb
->len
);
3737 unlock_page(eb
->first_page
);
3741 if (eb
->first_page
&& !page0
)
3742 unlock_page(eb
->first_page
);
3744 if (!atomic_dec_and_test(&eb
->refs
))
3746 btrfs_release_extent_buffer(eb
);
3750 struct extent_buffer
*find_extent_buffer(struct extent_io_tree
*tree
,
3751 u64 start
, unsigned long len
)
3753 struct extent_buffer
*eb
;
3756 eb
= radix_tree_lookup(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
3757 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
3759 mark_page_accessed(eb
->first_page
);
3767 void free_extent_buffer(struct extent_buffer
*eb
)
3772 if (!atomic_dec_and_test(&eb
->refs
))
3778 int clear_extent_buffer_dirty(struct extent_io_tree
*tree
,
3779 struct extent_buffer
*eb
)
3782 unsigned long num_pages
;
3785 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3787 for (i
= 0; i
< num_pages
; i
++) {
3788 page
= extent_buffer_page(eb
, i
);
3789 if (!PageDirty(page
))
3793 WARN_ON(!PagePrivate(page
));
3795 set_page_extent_mapped(page
);
3797 set_page_extent_head(page
, eb
->len
);
3799 clear_page_dirty_for_io(page
);
3800 spin_lock_irq(&page
->mapping
->tree_lock
);
3801 if (!PageDirty(page
)) {
3802 radix_tree_tag_clear(&page
->mapping
->page_tree
,
3804 PAGECACHE_TAG_DIRTY
);
3806 spin_unlock_irq(&page
->mapping
->tree_lock
);
3807 ClearPageError(page
);
3813 int set_extent_buffer_dirty(struct extent_io_tree
*tree
,
3814 struct extent_buffer
*eb
)
3817 unsigned long num_pages
;
3820 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
3821 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3822 for (i
= 0; i
< num_pages
; i
++)
3823 __set_page_dirty_nobuffers(extent_buffer_page(eb
, i
));
3827 static int __eb_straddles_pages(u64 start
, u64 len
)
3829 if (len
< PAGE_CACHE_SIZE
)
3831 if (start
& (PAGE_CACHE_SIZE
- 1))
3833 if ((start
+ len
) & (PAGE_CACHE_SIZE
- 1))
3838 static int eb_straddles_pages(struct extent_buffer
*eb
)
3840 return __eb_straddles_pages(eb
->start
, eb
->len
);
3843 int clear_extent_buffer_uptodate(struct extent_io_tree
*tree
,
3844 struct extent_buffer
*eb
,
3845 struct extent_state
**cached_state
)
3849 unsigned long num_pages
;
3851 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3852 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3854 if (eb_straddles_pages(eb
)) {
3855 clear_extent_uptodate(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3856 cached_state
, GFP_NOFS
);
3858 for (i
= 0; i
< num_pages
; i
++) {
3859 page
= extent_buffer_page(eb
, i
);
3861 ClearPageUptodate(page
);
3866 int set_extent_buffer_uptodate(struct extent_io_tree
*tree
,
3867 struct extent_buffer
*eb
)
3871 unsigned long num_pages
;
3873 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3875 if (eb_straddles_pages(eb
)) {
3876 set_extent_uptodate(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3879 for (i
= 0; i
< num_pages
; i
++) {
3880 page
= extent_buffer_page(eb
, i
);
3881 if ((i
== 0 && (eb
->start
& (PAGE_CACHE_SIZE
- 1))) ||
3882 ((i
== num_pages
- 1) &&
3883 ((eb
->start
+ eb
->len
) & (PAGE_CACHE_SIZE
- 1)))) {
3884 check_page_uptodate(tree
, page
);
3887 SetPageUptodate(page
);
3892 int extent_range_uptodate(struct extent_io_tree
*tree
,
3897 int pg_uptodate
= 1;
3899 unsigned long index
;
3901 if (__eb_straddles_pages(start
, end
- start
+ 1)) {
3902 ret
= test_range_bit(tree
, start
, end
,
3903 EXTENT_UPTODATE
, 1, NULL
);
3907 while (start
<= end
) {
3908 index
= start
>> PAGE_CACHE_SHIFT
;
3909 page
= find_get_page(tree
->mapping
, index
);
3910 uptodate
= PageUptodate(page
);
3911 page_cache_release(page
);
3916 start
+= PAGE_CACHE_SIZE
;
3921 int extent_buffer_uptodate(struct extent_io_tree
*tree
,
3922 struct extent_buffer
*eb
,
3923 struct extent_state
*cached_state
)
3926 unsigned long num_pages
;
3929 int pg_uptodate
= 1;
3931 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
3934 if (eb_straddles_pages(eb
)) {
3935 ret
= test_range_bit(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3936 EXTENT_UPTODATE
, 1, cached_state
);
3941 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3942 for (i
= 0; i
< num_pages
; i
++) {
3943 page
= extent_buffer_page(eb
, i
);
3944 if (!PageUptodate(page
)) {
3952 int read_extent_buffer_pages(struct extent_io_tree
*tree
,
3953 struct extent_buffer
*eb
, u64 start
, int wait
,
3954 get_extent_t
*get_extent
, int mirror_num
)
3957 unsigned long start_i
;
3961 int locked_pages
= 0;
3962 int all_uptodate
= 1;
3963 int inc_all_pages
= 0;
3964 unsigned long num_pages
;
3965 struct bio
*bio
= NULL
;
3966 unsigned long bio_flags
= 0;
3968 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
3971 if (eb_straddles_pages(eb
)) {
3972 if (test_range_bit(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3973 EXTENT_UPTODATE
, 1, NULL
)) {
3979 WARN_ON(start
< eb
->start
);
3980 start_i
= (start
>> PAGE_CACHE_SHIFT
) -
3981 (eb
->start
>> PAGE_CACHE_SHIFT
);
3986 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3987 for (i
= start_i
; i
< num_pages
; i
++) {
3988 page
= extent_buffer_page(eb
, i
);
3989 if (wait
== WAIT_NONE
) {
3990 if (!trylock_page(page
))
3996 if (!PageUptodate(page
))
4001 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4005 for (i
= start_i
; i
< num_pages
; i
++) {
4006 page
= extent_buffer_page(eb
, i
);
4008 WARN_ON(!PagePrivate(page
));
4010 set_page_extent_mapped(page
);
4012 set_page_extent_head(page
, eb
->len
);
4015 page_cache_get(page
);
4016 if (!PageUptodate(page
)) {
4019 ClearPageError(page
);
4020 err
= __extent_read_full_page(tree
, page
,
4022 mirror_num
, &bio_flags
);
4031 submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
4033 if (ret
|| wait
!= WAIT_COMPLETE
)
4036 for (i
= start_i
; i
< num_pages
; i
++) {
4037 page
= extent_buffer_page(eb
, i
);
4038 wait_on_page_locked(page
);
4039 if (!PageUptodate(page
))
4044 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4049 while (locked_pages
> 0) {
4050 page
= extent_buffer_page(eb
, i
);
4058 void read_extent_buffer(struct extent_buffer
*eb
, void *dstv
,
4059 unsigned long start
,
4066 char *dst
= (char *)dstv
;
4067 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4068 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4070 WARN_ON(start
> eb
->len
);
4071 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
4073 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
4076 page
= extent_buffer_page(eb
, i
);
4078 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
4079 kaddr
= page_address(page
);
4080 memcpy(dst
, kaddr
+ offset
, cur
);
4089 int map_private_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
4090 unsigned long min_len
, char **map
,
4091 unsigned long *map_start
,
4092 unsigned long *map_len
)
4094 size_t offset
= start
& (PAGE_CACHE_SIZE
- 1);
4097 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4098 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4099 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
4106 offset
= start_offset
;
4110 *map_start
= ((u64
)i
<< PAGE_CACHE_SHIFT
) - start_offset
;
4113 if (start
+ min_len
> eb
->len
) {
4114 printk(KERN_ERR
"btrfs bad mapping eb start %llu len %lu, "
4115 "wanted %lu %lu\n", (unsigned long long)eb
->start
,
4116 eb
->len
, start
, min_len
);
4121 p
= extent_buffer_page(eb
, i
);
4122 kaddr
= page_address(p
);
4123 *map
= kaddr
+ offset
;
4124 *map_len
= PAGE_CACHE_SIZE
- offset
;
4128 int memcmp_extent_buffer(struct extent_buffer
*eb
, const void *ptrv
,
4129 unsigned long start
,
4136 char *ptr
= (char *)ptrv
;
4137 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4138 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4141 WARN_ON(start
> eb
->len
);
4142 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
4144 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
4147 page
= extent_buffer_page(eb
, i
);
4149 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
4151 kaddr
= page_address(page
);
4152 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
4164 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
4165 unsigned long start
, unsigned long len
)
4171 char *src
= (char *)srcv
;
4172 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4173 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4175 WARN_ON(start
> eb
->len
);
4176 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
4178 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
4181 page
= extent_buffer_page(eb
, i
);
4182 WARN_ON(!PageUptodate(page
));
4184 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
4185 kaddr
= page_address(page
);
4186 memcpy(kaddr
+ offset
, src
, cur
);
4195 void memset_extent_buffer(struct extent_buffer
*eb
, char c
,
4196 unsigned long start
, unsigned long len
)
4202 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4203 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4205 WARN_ON(start
> eb
->len
);
4206 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
4208 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
4211 page
= extent_buffer_page(eb
, i
);
4212 WARN_ON(!PageUptodate(page
));
4214 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
4215 kaddr
= page_address(page
);
4216 memset(kaddr
+ offset
, c
, cur
);
4224 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
4225 unsigned long dst_offset
, unsigned long src_offset
,
4228 u64 dst_len
= dst
->len
;
4233 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4234 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
4236 WARN_ON(src
->len
!= dst_len
);
4238 offset
= (start_offset
+ dst_offset
) &
4239 ((unsigned long)PAGE_CACHE_SIZE
- 1);
4242 page
= extent_buffer_page(dst
, i
);
4243 WARN_ON(!PageUptodate(page
));
4245 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
- offset
));
4247 kaddr
= page_address(page
);
4248 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
4257 static void move_pages(struct page
*dst_page
, struct page
*src_page
,
4258 unsigned long dst_off
, unsigned long src_off
,
4261 char *dst_kaddr
= page_address(dst_page
);
4262 if (dst_page
== src_page
) {
4263 memmove(dst_kaddr
+ dst_off
, dst_kaddr
+ src_off
, len
);
4265 char *src_kaddr
= page_address(src_page
);
4266 char *p
= dst_kaddr
+ dst_off
+ len
;
4267 char *s
= src_kaddr
+ src_off
+ len
;
4274 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
4276 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
4277 return distance
< len
;
4280 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
4281 unsigned long dst_off
, unsigned long src_off
,
4284 char *dst_kaddr
= page_address(dst_page
);
4287 if (dst_page
!= src_page
) {
4288 src_kaddr
= page_address(src_page
);
4290 src_kaddr
= dst_kaddr
;
4291 BUG_ON(areas_overlap(src_off
, dst_off
, len
));
4294 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
4297 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
4298 unsigned long src_offset
, unsigned long len
)
4301 size_t dst_off_in_page
;
4302 size_t src_off_in_page
;
4303 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4304 unsigned long dst_i
;
4305 unsigned long src_i
;
4307 if (src_offset
+ len
> dst
->len
) {
4308 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
4309 "len %lu dst len %lu\n", src_offset
, len
, dst
->len
);
4312 if (dst_offset
+ len
> dst
->len
) {
4313 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
4314 "len %lu dst len %lu\n", dst_offset
, len
, dst
->len
);
4319 dst_off_in_page
= (start_offset
+ dst_offset
) &
4320 ((unsigned long)PAGE_CACHE_SIZE
- 1);
4321 src_off_in_page
= (start_offset
+ src_offset
) &
4322 ((unsigned long)PAGE_CACHE_SIZE
- 1);
4324 dst_i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
4325 src_i
= (start_offset
+ src_offset
) >> PAGE_CACHE_SHIFT
;
4327 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
-
4329 cur
= min_t(unsigned long, cur
,
4330 (unsigned long)(PAGE_CACHE_SIZE
- dst_off_in_page
));
4332 copy_pages(extent_buffer_page(dst
, dst_i
),
4333 extent_buffer_page(dst
, src_i
),
4334 dst_off_in_page
, src_off_in_page
, cur
);
4342 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
4343 unsigned long src_offset
, unsigned long len
)
4346 size_t dst_off_in_page
;
4347 size_t src_off_in_page
;
4348 unsigned long dst_end
= dst_offset
+ len
- 1;
4349 unsigned long src_end
= src_offset
+ len
- 1;
4350 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4351 unsigned long dst_i
;
4352 unsigned long src_i
;
4354 if (src_offset
+ len
> dst
->len
) {
4355 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
4356 "len %lu len %lu\n", src_offset
, len
, dst
->len
);
4359 if (dst_offset
+ len
> dst
->len
) {
4360 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
4361 "len %lu len %lu\n", dst_offset
, len
, dst
->len
);
4364 if (!areas_overlap(src_offset
, dst_offset
, len
)) {
4365 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
4369 dst_i
= (start_offset
+ dst_end
) >> PAGE_CACHE_SHIFT
;
4370 src_i
= (start_offset
+ src_end
) >> PAGE_CACHE_SHIFT
;
4372 dst_off_in_page
= (start_offset
+ dst_end
) &
4373 ((unsigned long)PAGE_CACHE_SIZE
- 1);
4374 src_off_in_page
= (start_offset
+ src_end
) &
4375 ((unsigned long)PAGE_CACHE_SIZE
- 1);
4377 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
4378 cur
= min(cur
, dst_off_in_page
+ 1);
4379 move_pages(extent_buffer_page(dst
, dst_i
),
4380 extent_buffer_page(dst
, src_i
),
4381 dst_off_in_page
- cur
+ 1,
4382 src_off_in_page
- cur
+ 1, cur
);
4390 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
4392 struct extent_buffer
*eb
=
4393 container_of(head
, struct extent_buffer
, rcu_head
);
4395 btrfs_release_extent_buffer(eb
);
4398 int try_release_extent_buffer(struct extent_io_tree
*tree
, struct page
*page
)
4400 u64 start
= page_offset(page
);
4401 struct extent_buffer
*eb
;
4404 spin_lock(&tree
->buffer_lock
);
4405 eb
= radix_tree_lookup(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
4407 spin_unlock(&tree
->buffer_lock
);
4411 if (test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
4417 * set @eb->refs to 0 if it is already 1, and then release the @eb.
4420 if (atomic_cmpxchg(&eb
->refs
, 1, 0) != 1) {
4425 radix_tree_delete(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
4427 spin_unlock(&tree
->buffer_lock
);
4429 /* at this point we can safely release the extent buffer */
4430 if (atomic_read(&eb
->refs
) == 0)
4431 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);