2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
44 #include "transaction.h"
45 #include "btrfs_inode.h"
47 #include "print-tree.h"
48 #include "ordered-data.h"
52 #include "compression.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
57 struct btrfs_iget_args
{
59 struct btrfs_root
*root
;
62 static const struct inode_operations btrfs_dir_inode_operations
;
63 static const struct inode_operations btrfs_symlink_inode_operations
;
64 static const struct inode_operations btrfs_dir_ro_inode_operations
;
65 static const struct inode_operations btrfs_special_inode_operations
;
66 static const struct inode_operations btrfs_file_inode_operations
;
67 static const struct address_space_operations btrfs_aops
;
68 static const struct address_space_operations btrfs_symlink_aops
;
69 static const struct file_operations btrfs_dir_file_operations
;
70 static struct extent_io_ops btrfs_extent_io_ops
;
72 static struct kmem_cache
*btrfs_inode_cachep
;
73 struct kmem_cache
*btrfs_trans_handle_cachep
;
74 struct kmem_cache
*btrfs_transaction_cachep
;
75 struct kmem_cache
*btrfs_path_cachep
;
76 struct kmem_cache
*btrfs_free_space_cachep
;
79 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
80 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
81 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
82 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
83 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
84 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
85 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
86 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
89 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
);
90 static int btrfs_truncate(struct inode
*inode
);
91 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
92 static noinline
int cow_file_range(struct inode
*inode
,
93 struct page
*locked_page
,
94 u64 start
, u64 end
, int *page_started
,
95 unsigned long *nr_written
, int unlock
);
96 static noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
97 struct btrfs_root
*root
, struct inode
*inode
);
99 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
100 struct inode
*inode
, struct inode
*dir
,
101 const struct qstr
*qstr
)
105 err
= btrfs_init_acl(trans
, inode
, dir
);
107 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
112 * this does all the hard work for inserting an inline extent into
113 * the btree. The caller should have done a btrfs_drop_extents so that
114 * no overlapping inline items exist in the btree
116 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
117 struct btrfs_root
*root
, struct inode
*inode
,
118 u64 start
, size_t size
, size_t compressed_size
,
120 struct page
**compressed_pages
)
122 struct btrfs_key key
;
123 struct btrfs_path
*path
;
124 struct extent_buffer
*leaf
;
125 struct page
*page
= NULL
;
128 struct btrfs_file_extent_item
*ei
;
131 size_t cur_size
= size
;
133 unsigned long offset
;
135 if (compressed_size
&& compressed_pages
)
136 cur_size
= compressed_size
;
138 path
= btrfs_alloc_path();
142 path
->leave_spinning
= 1;
144 key
.objectid
= btrfs_ino(inode
);
146 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
147 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
149 inode_add_bytes(inode
, size
);
150 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
157 leaf
= path
->nodes
[0];
158 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
159 struct btrfs_file_extent_item
);
160 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
161 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
162 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
163 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
164 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
165 ptr
= btrfs_file_extent_inline_start(ei
);
167 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
170 while (compressed_size
> 0) {
171 cpage
= compressed_pages
[i
];
172 cur_size
= min_t(unsigned long, compressed_size
,
175 kaddr
= kmap_atomic(cpage
, KM_USER0
);
176 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
177 kunmap_atomic(kaddr
, KM_USER0
);
181 compressed_size
-= cur_size
;
183 btrfs_set_file_extent_compression(leaf
, ei
,
186 page
= find_get_page(inode
->i_mapping
,
187 start
>> PAGE_CACHE_SHIFT
);
188 btrfs_set_file_extent_compression(leaf
, ei
, 0);
189 kaddr
= kmap_atomic(page
, KM_USER0
);
190 offset
= start
& (PAGE_CACHE_SIZE
- 1);
191 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
192 kunmap_atomic(kaddr
, KM_USER0
);
193 page_cache_release(page
);
195 btrfs_mark_buffer_dirty(leaf
);
196 btrfs_free_path(path
);
199 * we're an inline extent, so nobody can
200 * extend the file past i_size without locking
201 * a page we already have locked.
203 * We must do any isize and inode updates
204 * before we unlock the pages. Otherwise we
205 * could end up racing with unlink.
207 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
208 btrfs_update_inode(trans
, root
, inode
);
212 btrfs_free_path(path
);
218 * conditionally insert an inline extent into the file. This
219 * does the checks required to make sure the data is small enough
220 * to fit as an inline extent.
222 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
223 struct btrfs_root
*root
,
224 struct inode
*inode
, u64 start
, u64 end
,
225 size_t compressed_size
, int compress_type
,
226 struct page
**compressed_pages
)
228 u64 isize
= i_size_read(inode
);
229 u64 actual_end
= min(end
+ 1, isize
);
230 u64 inline_len
= actual_end
- start
;
231 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
232 ~((u64
)root
->sectorsize
- 1);
234 u64 data_len
= inline_len
;
238 data_len
= compressed_size
;
241 actual_end
>= PAGE_CACHE_SIZE
||
242 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
244 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
246 data_len
> root
->fs_info
->max_inline
) {
250 ret
= btrfs_drop_extents(trans
, inode
, start
, aligned_end
,
254 if (isize
> actual_end
)
255 inline_len
= min_t(u64
, isize
, actual_end
);
256 ret
= insert_inline_extent(trans
, root
, inode
, start
,
257 inline_len
, compressed_size
,
258 compress_type
, compressed_pages
);
260 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
261 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
265 struct async_extent
{
270 unsigned long nr_pages
;
272 struct list_head list
;
277 struct btrfs_root
*root
;
278 struct page
*locked_page
;
281 struct list_head extents
;
282 struct btrfs_work work
;
285 static noinline
int add_async_extent(struct async_cow
*cow
,
286 u64 start
, u64 ram_size
,
289 unsigned long nr_pages
,
292 struct async_extent
*async_extent
;
294 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
295 BUG_ON(!async_extent
);
296 async_extent
->start
= start
;
297 async_extent
->ram_size
= ram_size
;
298 async_extent
->compressed_size
= compressed_size
;
299 async_extent
->pages
= pages
;
300 async_extent
->nr_pages
= nr_pages
;
301 async_extent
->compress_type
= compress_type
;
302 list_add_tail(&async_extent
->list
, &cow
->extents
);
307 * we create compressed extents in two phases. The first
308 * phase compresses a range of pages that have already been
309 * locked (both pages and state bits are locked).
311 * This is done inside an ordered work queue, and the compression
312 * is spread across many cpus. The actual IO submission is step
313 * two, and the ordered work queue takes care of making sure that
314 * happens in the same order things were put onto the queue by
315 * writepages and friends.
317 * If this code finds it can't get good compression, it puts an
318 * entry onto the work queue to write the uncompressed bytes. This
319 * makes sure that both compressed inodes and uncompressed inodes
320 * are written in the same order that pdflush sent them down.
322 static noinline
int compress_file_range(struct inode
*inode
,
323 struct page
*locked_page
,
325 struct async_cow
*async_cow
,
328 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
329 struct btrfs_trans_handle
*trans
;
331 u64 blocksize
= root
->sectorsize
;
333 u64 isize
= i_size_read(inode
);
335 struct page
**pages
= NULL
;
336 unsigned long nr_pages
;
337 unsigned long nr_pages_ret
= 0;
338 unsigned long total_compressed
= 0;
339 unsigned long total_in
= 0;
340 unsigned long max_compressed
= 128 * 1024;
341 unsigned long max_uncompressed
= 128 * 1024;
344 int compress_type
= root
->fs_info
->compress_type
;
346 /* if this is a small write inside eof, kick off a defragbot */
347 if (end
<= BTRFS_I(inode
)->disk_i_size
&& (end
- start
+ 1) < 16 * 1024)
348 btrfs_add_inode_defrag(NULL
, inode
);
350 actual_end
= min_t(u64
, isize
, end
+ 1);
353 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
354 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
357 * we don't want to send crud past the end of i_size through
358 * compression, that's just a waste of CPU time. So, if the
359 * end of the file is before the start of our current
360 * requested range of bytes, we bail out to the uncompressed
361 * cleanup code that can deal with all of this.
363 * It isn't really the fastest way to fix things, but this is a
364 * very uncommon corner.
366 if (actual_end
<= start
)
367 goto cleanup_and_bail_uncompressed
;
369 total_compressed
= actual_end
- start
;
371 /* we want to make sure that amount of ram required to uncompress
372 * an extent is reasonable, so we limit the total size in ram
373 * of a compressed extent to 128k. This is a crucial number
374 * because it also controls how easily we can spread reads across
375 * cpus for decompression.
377 * We also want to make sure the amount of IO required to do
378 * a random read is reasonably small, so we limit the size of
379 * a compressed extent to 128k.
381 total_compressed
= min(total_compressed
, max_uncompressed
);
382 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
383 num_bytes
= max(blocksize
, num_bytes
);
388 * we do compression for mount -o compress and when the
389 * inode has not been flagged as nocompress. This flag can
390 * change at any time if we discover bad compression ratios.
392 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
393 (btrfs_test_opt(root
, COMPRESS
) ||
394 (BTRFS_I(inode
)->force_compress
) ||
395 (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))) {
397 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
399 /* just bail out to the uncompressed code */
403 if (BTRFS_I(inode
)->force_compress
)
404 compress_type
= BTRFS_I(inode
)->force_compress
;
406 ret
= btrfs_compress_pages(compress_type
,
407 inode
->i_mapping
, start
,
408 total_compressed
, pages
,
409 nr_pages
, &nr_pages_ret
,
415 unsigned long offset
= total_compressed
&
416 (PAGE_CACHE_SIZE
- 1);
417 struct page
*page
= pages
[nr_pages_ret
- 1];
420 /* zero the tail end of the last page, we might be
421 * sending it down to disk
424 kaddr
= kmap_atomic(page
, KM_USER0
);
425 memset(kaddr
+ offset
, 0,
426 PAGE_CACHE_SIZE
- offset
);
427 kunmap_atomic(kaddr
, KM_USER0
);
434 trans
= btrfs_join_transaction(root
);
435 BUG_ON(IS_ERR(trans
));
436 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
438 /* lets try to make an inline extent */
439 if (ret
|| total_in
< (actual_end
- start
)) {
440 /* we didn't compress the entire range, try
441 * to make an uncompressed inline extent.
443 ret
= cow_file_range_inline(trans
, root
, inode
,
444 start
, end
, 0, 0, NULL
);
446 /* try making a compressed inline extent */
447 ret
= cow_file_range_inline(trans
, root
, inode
,
450 compress_type
, pages
);
454 * inline extent creation worked, we don't need
455 * to create any more async work items. Unlock
456 * and free up our temp pages.
458 extent_clear_unlock_delalloc(inode
,
459 &BTRFS_I(inode
)->io_tree
,
461 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
462 EXTENT_CLEAR_DELALLOC
|
463 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
465 btrfs_end_transaction(trans
, root
);
468 btrfs_end_transaction(trans
, root
);
473 * we aren't doing an inline extent round the compressed size
474 * up to a block size boundary so the allocator does sane
477 total_compressed
= (total_compressed
+ blocksize
- 1) &
481 * one last check to make sure the compression is really a
482 * win, compare the page count read with the blocks on disk
484 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
485 ~(PAGE_CACHE_SIZE
- 1);
486 if (total_compressed
>= total_in
) {
489 num_bytes
= total_in
;
492 if (!will_compress
&& pages
) {
494 * the compression code ran but failed to make things smaller,
495 * free any pages it allocated and our page pointer array
497 for (i
= 0; i
< nr_pages_ret
; i
++) {
498 WARN_ON(pages
[i
]->mapping
);
499 page_cache_release(pages
[i
]);
503 total_compressed
= 0;
506 /* flag the file so we don't compress in the future */
507 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
508 !(BTRFS_I(inode
)->force_compress
)) {
509 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
515 /* the async work queues will take care of doing actual
516 * allocation on disk for these compressed pages,
517 * and will submit them to the elevator.
519 add_async_extent(async_cow
, start
, num_bytes
,
520 total_compressed
, pages
, nr_pages_ret
,
523 if (start
+ num_bytes
< end
) {
530 cleanup_and_bail_uncompressed
:
532 * No compression, but we still need to write the pages in
533 * the file we've been given so far. redirty the locked
534 * page if it corresponds to our extent and set things up
535 * for the async work queue to run cow_file_range to do
536 * the normal delalloc dance
538 if (page_offset(locked_page
) >= start
&&
539 page_offset(locked_page
) <= end
) {
540 __set_page_dirty_nobuffers(locked_page
);
541 /* unlocked later on in the async handlers */
543 add_async_extent(async_cow
, start
, end
- start
+ 1,
544 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
552 for (i
= 0; i
< nr_pages_ret
; i
++) {
553 WARN_ON(pages
[i
]->mapping
);
554 page_cache_release(pages
[i
]);
562 * phase two of compressed writeback. This is the ordered portion
563 * of the code, which only gets called in the order the work was
564 * queued. We walk all the async extents created by compress_file_range
565 * and send them down to the disk.
567 static noinline
int submit_compressed_extents(struct inode
*inode
,
568 struct async_cow
*async_cow
)
570 struct async_extent
*async_extent
;
572 struct btrfs_trans_handle
*trans
;
573 struct btrfs_key ins
;
574 struct extent_map
*em
;
575 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
576 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
577 struct extent_io_tree
*io_tree
;
580 if (list_empty(&async_cow
->extents
))
584 while (!list_empty(&async_cow
->extents
)) {
585 async_extent
= list_entry(async_cow
->extents
.next
,
586 struct async_extent
, list
);
587 list_del(&async_extent
->list
);
589 io_tree
= &BTRFS_I(inode
)->io_tree
;
592 /* did the compression code fall back to uncompressed IO? */
593 if (!async_extent
->pages
) {
594 int page_started
= 0;
595 unsigned long nr_written
= 0;
597 lock_extent(io_tree
, async_extent
->start
,
598 async_extent
->start
+
599 async_extent
->ram_size
- 1, GFP_NOFS
);
601 /* allocate blocks */
602 ret
= cow_file_range(inode
, async_cow
->locked_page
,
604 async_extent
->start
+
605 async_extent
->ram_size
- 1,
606 &page_started
, &nr_written
, 0);
609 * if page_started, cow_file_range inserted an
610 * inline extent and took care of all the unlocking
611 * and IO for us. Otherwise, we need to submit
612 * all those pages down to the drive.
614 if (!page_started
&& !ret
)
615 extent_write_locked_range(io_tree
,
616 inode
, async_extent
->start
,
617 async_extent
->start
+
618 async_extent
->ram_size
- 1,
626 lock_extent(io_tree
, async_extent
->start
,
627 async_extent
->start
+ async_extent
->ram_size
- 1,
630 trans
= btrfs_join_transaction(root
);
631 BUG_ON(IS_ERR(trans
));
632 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
633 ret
= btrfs_reserve_extent(trans
, root
,
634 async_extent
->compressed_size
,
635 async_extent
->compressed_size
,
638 btrfs_end_transaction(trans
, root
);
642 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
643 WARN_ON(async_extent
->pages
[i
]->mapping
);
644 page_cache_release(async_extent
->pages
[i
]);
646 kfree(async_extent
->pages
);
647 async_extent
->nr_pages
= 0;
648 async_extent
->pages
= NULL
;
649 unlock_extent(io_tree
, async_extent
->start
,
650 async_extent
->start
+
651 async_extent
->ram_size
- 1, GFP_NOFS
);
656 * here we're doing allocation and writeback of the
659 btrfs_drop_extent_cache(inode
, async_extent
->start
,
660 async_extent
->start
+
661 async_extent
->ram_size
- 1, 0);
663 em
= alloc_extent_map();
665 em
->start
= async_extent
->start
;
666 em
->len
= async_extent
->ram_size
;
667 em
->orig_start
= em
->start
;
669 em
->block_start
= ins
.objectid
;
670 em
->block_len
= ins
.offset
;
671 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
672 em
->compress_type
= async_extent
->compress_type
;
673 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
674 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
677 write_lock(&em_tree
->lock
);
678 ret
= add_extent_mapping(em_tree
, em
);
679 write_unlock(&em_tree
->lock
);
680 if (ret
!= -EEXIST
) {
684 btrfs_drop_extent_cache(inode
, async_extent
->start
,
685 async_extent
->start
+
686 async_extent
->ram_size
- 1, 0);
689 ret
= btrfs_add_ordered_extent_compress(inode
,
692 async_extent
->ram_size
,
694 BTRFS_ORDERED_COMPRESSED
,
695 async_extent
->compress_type
);
699 * clear dirty, set writeback and unlock the pages.
701 extent_clear_unlock_delalloc(inode
,
702 &BTRFS_I(inode
)->io_tree
,
704 async_extent
->start
+
705 async_extent
->ram_size
- 1,
706 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
707 EXTENT_CLEAR_UNLOCK
|
708 EXTENT_CLEAR_DELALLOC
|
709 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
711 ret
= btrfs_submit_compressed_write(inode
,
713 async_extent
->ram_size
,
715 ins
.offset
, async_extent
->pages
,
716 async_extent
->nr_pages
);
719 alloc_hint
= ins
.objectid
+ ins
.offset
;
727 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
730 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
731 struct extent_map
*em
;
734 read_lock(&em_tree
->lock
);
735 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
738 * if block start isn't an actual block number then find the
739 * first block in this inode and use that as a hint. If that
740 * block is also bogus then just don't worry about it.
742 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
744 em
= search_extent_mapping(em_tree
, 0, 0);
745 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
746 alloc_hint
= em
->block_start
;
750 alloc_hint
= em
->block_start
;
754 read_unlock(&em_tree
->lock
);
760 * when extent_io.c finds a delayed allocation range in the file,
761 * the call backs end up in this code. The basic idea is to
762 * allocate extents on disk for the range, and create ordered data structs
763 * in ram to track those extents.
765 * locked_page is the page that writepage had locked already. We use
766 * it to make sure we don't do extra locks or unlocks.
768 * *page_started is set to one if we unlock locked_page and do everything
769 * required to start IO on it. It may be clean and already done with
772 static noinline
int cow_file_range(struct inode
*inode
,
773 struct page
*locked_page
,
774 u64 start
, u64 end
, int *page_started
,
775 unsigned long *nr_written
,
778 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
779 struct btrfs_trans_handle
*trans
;
782 unsigned long ram_size
;
785 u64 blocksize
= root
->sectorsize
;
786 struct btrfs_key ins
;
787 struct extent_map
*em
;
788 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
791 BUG_ON(btrfs_is_free_space_inode(root
, inode
));
792 trans
= btrfs_join_transaction(root
);
793 BUG_ON(IS_ERR(trans
));
794 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
796 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
797 num_bytes
= max(blocksize
, num_bytes
);
798 disk_num_bytes
= num_bytes
;
801 /* if this is a small write inside eof, kick off defrag */
802 if (end
<= BTRFS_I(inode
)->disk_i_size
&& num_bytes
< 64 * 1024)
803 btrfs_add_inode_defrag(trans
, inode
);
806 /* lets try to make an inline extent */
807 ret
= cow_file_range_inline(trans
, root
, inode
,
808 start
, end
, 0, 0, NULL
);
810 extent_clear_unlock_delalloc(inode
,
811 &BTRFS_I(inode
)->io_tree
,
813 EXTENT_CLEAR_UNLOCK_PAGE
|
814 EXTENT_CLEAR_UNLOCK
|
815 EXTENT_CLEAR_DELALLOC
|
817 EXTENT_SET_WRITEBACK
|
818 EXTENT_END_WRITEBACK
);
820 *nr_written
= *nr_written
+
821 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
828 BUG_ON(disk_num_bytes
>
829 btrfs_super_total_bytes(root
->fs_info
->super_copy
));
831 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
832 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
834 while (disk_num_bytes
> 0) {
837 cur_alloc_size
= disk_num_bytes
;
838 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
839 root
->sectorsize
, 0, alloc_hint
,
843 em
= alloc_extent_map();
846 em
->orig_start
= em
->start
;
847 ram_size
= ins
.offset
;
848 em
->len
= ins
.offset
;
850 em
->block_start
= ins
.objectid
;
851 em
->block_len
= ins
.offset
;
852 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
853 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
856 write_lock(&em_tree
->lock
);
857 ret
= add_extent_mapping(em_tree
, em
);
858 write_unlock(&em_tree
->lock
);
859 if (ret
!= -EEXIST
) {
863 btrfs_drop_extent_cache(inode
, start
,
864 start
+ ram_size
- 1, 0);
867 cur_alloc_size
= ins
.offset
;
868 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
869 ram_size
, cur_alloc_size
, 0);
872 if (root
->root_key
.objectid
==
873 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
874 ret
= btrfs_reloc_clone_csums(inode
, start
,
879 if (disk_num_bytes
< cur_alloc_size
)
882 /* we're not doing compressed IO, don't unlock the first
883 * page (which the caller expects to stay locked), don't
884 * clear any dirty bits and don't set any writeback bits
886 * Do set the Private2 bit so we know this page was properly
887 * setup for writepage
889 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
890 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
893 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
894 start
, start
+ ram_size
- 1,
896 disk_num_bytes
-= cur_alloc_size
;
897 num_bytes
-= cur_alloc_size
;
898 alloc_hint
= ins
.objectid
+ ins
.offset
;
899 start
+= cur_alloc_size
;
903 btrfs_end_transaction(trans
, root
);
909 * work queue call back to started compression on a file and pages
911 static noinline
void async_cow_start(struct btrfs_work
*work
)
913 struct async_cow
*async_cow
;
915 async_cow
= container_of(work
, struct async_cow
, work
);
917 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
918 async_cow
->start
, async_cow
->end
, async_cow
,
921 async_cow
->inode
= NULL
;
925 * work queue call back to submit previously compressed pages
927 static noinline
void async_cow_submit(struct btrfs_work
*work
)
929 struct async_cow
*async_cow
;
930 struct btrfs_root
*root
;
931 unsigned long nr_pages
;
933 async_cow
= container_of(work
, struct async_cow
, work
);
935 root
= async_cow
->root
;
936 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
939 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
941 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
943 waitqueue_active(&root
->fs_info
->async_submit_wait
))
944 wake_up(&root
->fs_info
->async_submit_wait
);
946 if (async_cow
->inode
)
947 submit_compressed_extents(async_cow
->inode
, async_cow
);
950 static noinline
void async_cow_free(struct btrfs_work
*work
)
952 struct async_cow
*async_cow
;
953 async_cow
= container_of(work
, struct async_cow
, work
);
957 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
958 u64 start
, u64 end
, int *page_started
,
959 unsigned long *nr_written
)
961 struct async_cow
*async_cow
;
962 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
963 unsigned long nr_pages
;
965 int limit
= 10 * 1024 * 1042;
967 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
968 1, 0, NULL
, GFP_NOFS
);
969 while (start
< end
) {
970 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
972 async_cow
->inode
= inode
;
973 async_cow
->root
= root
;
974 async_cow
->locked_page
= locked_page
;
975 async_cow
->start
= start
;
977 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
980 cur_end
= min(end
, start
+ 512 * 1024 - 1);
982 async_cow
->end
= cur_end
;
983 INIT_LIST_HEAD(&async_cow
->extents
);
985 async_cow
->work
.func
= async_cow_start
;
986 async_cow
->work
.ordered_func
= async_cow_submit
;
987 async_cow
->work
.ordered_free
= async_cow_free
;
988 async_cow
->work
.flags
= 0;
990 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
992 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
994 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
997 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
998 wait_event(root
->fs_info
->async_submit_wait
,
999 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
1003 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
1004 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1005 wait_event(root
->fs_info
->async_submit_wait
,
1006 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1010 *nr_written
+= nr_pages
;
1011 start
= cur_end
+ 1;
1017 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1018 u64 bytenr
, u64 num_bytes
)
1021 struct btrfs_ordered_sum
*sums
;
1024 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1025 bytenr
+ num_bytes
- 1, &list
, 0);
1026 if (ret
== 0 && list_empty(&list
))
1029 while (!list_empty(&list
)) {
1030 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1031 list_del(&sums
->list
);
1038 * when nowcow writeback call back. This checks for snapshots or COW copies
1039 * of the extents that exist in the file, and COWs the file as required.
1041 * If no cow copies or snapshots exist, we write directly to the existing
1044 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1045 struct page
*locked_page
,
1046 u64 start
, u64 end
, int *page_started
, int force
,
1047 unsigned long *nr_written
)
1049 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1050 struct btrfs_trans_handle
*trans
;
1051 struct extent_buffer
*leaf
;
1052 struct btrfs_path
*path
;
1053 struct btrfs_file_extent_item
*fi
;
1054 struct btrfs_key found_key
;
1067 u64 ino
= btrfs_ino(inode
);
1069 path
= btrfs_alloc_path();
1073 nolock
= btrfs_is_free_space_inode(root
, inode
);
1076 trans
= btrfs_join_transaction_nolock(root
);
1078 trans
= btrfs_join_transaction(root
);
1080 BUG_ON(IS_ERR(trans
));
1081 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1083 cow_start
= (u64
)-1;
1086 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1089 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1090 leaf
= path
->nodes
[0];
1091 btrfs_item_key_to_cpu(leaf
, &found_key
,
1092 path
->slots
[0] - 1);
1093 if (found_key
.objectid
== ino
&&
1094 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1099 leaf
= path
->nodes
[0];
1100 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1101 ret
= btrfs_next_leaf(root
, path
);
1106 leaf
= path
->nodes
[0];
1112 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1114 if (found_key
.objectid
> ino
||
1115 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1116 found_key
.offset
> end
)
1119 if (found_key
.offset
> cur_offset
) {
1120 extent_end
= found_key
.offset
;
1125 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1126 struct btrfs_file_extent_item
);
1127 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1129 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1130 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1131 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1132 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1133 extent_end
= found_key
.offset
+
1134 btrfs_file_extent_num_bytes(leaf
, fi
);
1135 if (extent_end
<= start
) {
1139 if (disk_bytenr
== 0)
1141 if (btrfs_file_extent_compression(leaf
, fi
) ||
1142 btrfs_file_extent_encryption(leaf
, fi
) ||
1143 btrfs_file_extent_other_encoding(leaf
, fi
))
1145 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1147 if (btrfs_extent_readonly(root
, disk_bytenr
))
1149 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1151 extent_offset
, disk_bytenr
))
1153 disk_bytenr
+= extent_offset
;
1154 disk_bytenr
+= cur_offset
- found_key
.offset
;
1155 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1157 * force cow if csum exists in the range.
1158 * this ensure that csum for a given extent are
1159 * either valid or do not exist.
1161 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1164 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1165 extent_end
= found_key
.offset
+
1166 btrfs_file_extent_inline_len(leaf
, fi
);
1167 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1172 if (extent_end
<= start
) {
1177 if (cow_start
== (u64
)-1)
1178 cow_start
= cur_offset
;
1179 cur_offset
= extent_end
;
1180 if (cur_offset
> end
)
1186 btrfs_release_path(path
);
1187 if (cow_start
!= (u64
)-1) {
1188 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1189 found_key
.offset
- 1, page_started
,
1192 cow_start
= (u64
)-1;
1195 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1196 struct extent_map
*em
;
1197 struct extent_map_tree
*em_tree
;
1198 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1199 em
= alloc_extent_map();
1201 em
->start
= cur_offset
;
1202 em
->orig_start
= em
->start
;
1203 em
->len
= num_bytes
;
1204 em
->block_len
= num_bytes
;
1205 em
->block_start
= disk_bytenr
;
1206 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1207 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1209 write_lock(&em_tree
->lock
);
1210 ret
= add_extent_mapping(em_tree
, em
);
1211 write_unlock(&em_tree
->lock
);
1212 if (ret
!= -EEXIST
) {
1213 free_extent_map(em
);
1216 btrfs_drop_extent_cache(inode
, em
->start
,
1217 em
->start
+ em
->len
- 1, 0);
1219 type
= BTRFS_ORDERED_PREALLOC
;
1221 type
= BTRFS_ORDERED_NOCOW
;
1224 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1225 num_bytes
, num_bytes
, type
);
1228 if (root
->root_key
.objectid
==
1229 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1230 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1235 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1236 cur_offset
, cur_offset
+ num_bytes
- 1,
1237 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1238 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1239 EXTENT_SET_PRIVATE2
);
1240 cur_offset
= extent_end
;
1241 if (cur_offset
> end
)
1244 btrfs_release_path(path
);
1246 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1247 cow_start
= cur_offset
;
1248 if (cow_start
!= (u64
)-1) {
1249 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1250 page_started
, nr_written
, 1);
1255 ret
= btrfs_end_transaction_nolock(trans
, root
);
1258 ret
= btrfs_end_transaction(trans
, root
);
1261 btrfs_free_path(path
);
1266 * extent_io.c call back to do delayed allocation processing
1268 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1269 u64 start
, u64 end
, int *page_started
,
1270 unsigned long *nr_written
)
1273 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1275 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1276 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1277 page_started
, 1, nr_written
);
1278 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1279 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1280 page_started
, 0, nr_written
);
1281 else if (!btrfs_test_opt(root
, COMPRESS
) &&
1282 !(BTRFS_I(inode
)->force_compress
) &&
1283 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))
1284 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1285 page_started
, nr_written
, 1);
1287 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1288 page_started
, nr_written
);
1292 static void btrfs_split_extent_hook(struct inode
*inode
,
1293 struct extent_state
*orig
, u64 split
)
1295 /* not delalloc, ignore it */
1296 if (!(orig
->state
& EXTENT_DELALLOC
))
1299 spin_lock(&BTRFS_I(inode
)->lock
);
1300 BTRFS_I(inode
)->outstanding_extents
++;
1301 spin_unlock(&BTRFS_I(inode
)->lock
);
1305 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1306 * extents so we can keep track of new extents that are just merged onto old
1307 * extents, such as when we are doing sequential writes, so we can properly
1308 * account for the metadata space we'll need.
1310 static void btrfs_merge_extent_hook(struct inode
*inode
,
1311 struct extent_state
*new,
1312 struct extent_state
*other
)
1314 /* not delalloc, ignore it */
1315 if (!(other
->state
& EXTENT_DELALLOC
))
1318 spin_lock(&BTRFS_I(inode
)->lock
);
1319 BTRFS_I(inode
)->outstanding_extents
--;
1320 spin_unlock(&BTRFS_I(inode
)->lock
);
1324 * extent_io.c set_bit_hook, used to track delayed allocation
1325 * bytes in this file, and to maintain the list of inodes that
1326 * have pending delalloc work to be done.
1328 static void btrfs_set_bit_hook(struct inode
*inode
,
1329 struct extent_state
*state
, int *bits
)
1333 * set_bit and clear bit hooks normally require _irqsave/restore
1334 * but in this case, we are only testing for the DELALLOC
1335 * bit, which is only set or cleared with irqs on
1337 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1338 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1339 u64 len
= state
->end
+ 1 - state
->start
;
1340 bool do_list
= !btrfs_is_free_space_inode(root
, inode
);
1342 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1343 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1345 spin_lock(&BTRFS_I(inode
)->lock
);
1346 BTRFS_I(inode
)->outstanding_extents
++;
1347 spin_unlock(&BTRFS_I(inode
)->lock
);
1350 spin_lock(&root
->fs_info
->delalloc_lock
);
1351 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1352 root
->fs_info
->delalloc_bytes
+= len
;
1353 if (do_list
&& list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1354 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1355 &root
->fs_info
->delalloc_inodes
);
1357 spin_unlock(&root
->fs_info
->delalloc_lock
);
1362 * extent_io.c clear_bit_hook, see set_bit_hook for why
1364 static void btrfs_clear_bit_hook(struct inode
*inode
,
1365 struct extent_state
*state
, int *bits
)
1368 * set_bit and clear bit hooks normally require _irqsave/restore
1369 * but in this case, we are only testing for the DELALLOC
1370 * bit, which is only set or cleared with irqs on
1372 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1373 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1374 u64 len
= state
->end
+ 1 - state
->start
;
1375 bool do_list
= !btrfs_is_free_space_inode(root
, inode
);
1377 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1378 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1379 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1380 spin_lock(&BTRFS_I(inode
)->lock
);
1381 BTRFS_I(inode
)->outstanding_extents
--;
1382 spin_unlock(&BTRFS_I(inode
)->lock
);
1385 if (*bits
& EXTENT_DO_ACCOUNTING
)
1386 btrfs_delalloc_release_metadata(inode
, len
);
1388 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1390 btrfs_free_reserved_data_space(inode
, len
);
1392 spin_lock(&root
->fs_info
->delalloc_lock
);
1393 root
->fs_info
->delalloc_bytes
-= len
;
1394 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1396 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1397 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1398 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1400 spin_unlock(&root
->fs_info
->delalloc_lock
);
1405 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1406 * we don't create bios that span stripes or chunks
1408 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1409 size_t size
, struct bio
*bio
,
1410 unsigned long bio_flags
)
1412 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1413 struct btrfs_mapping_tree
*map_tree
;
1414 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1419 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1422 length
= bio
->bi_size
;
1423 map_tree
= &root
->fs_info
->mapping_tree
;
1424 map_length
= length
;
1425 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1426 &map_length
, NULL
, 0);
1428 if (map_length
< length
+ size
)
1434 * in order to insert checksums into the metadata in large chunks,
1435 * we wait until bio submission time. All the pages in the bio are
1436 * checksummed and sums are attached onto the ordered extent record.
1438 * At IO completion time the cums attached on the ordered extent record
1439 * are inserted into the btree
1441 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1442 struct bio
*bio
, int mirror_num
,
1443 unsigned long bio_flags
,
1446 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1449 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1455 * in order to insert checksums into the metadata in large chunks,
1456 * we wait until bio submission time. All the pages in the bio are
1457 * checksummed and sums are attached onto the ordered extent record.
1459 * At IO completion time the cums attached on the ordered extent record
1460 * are inserted into the btree
1462 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1463 int mirror_num
, unsigned long bio_flags
,
1466 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1467 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1471 * extent_io.c submission hook. This does the right thing for csum calculation
1472 * on write, or reading the csums from the tree before a read
1474 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1475 int mirror_num
, unsigned long bio_flags
,
1478 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1482 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1484 if (btrfs_is_free_space_inode(root
, inode
))
1485 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 2);
1487 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1490 if (!(rw
& REQ_WRITE
)) {
1491 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1492 return btrfs_submit_compressed_read(inode
, bio
,
1493 mirror_num
, bio_flags
);
1494 } else if (!skip_sum
) {
1495 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1500 } else if (!skip_sum
) {
1501 /* csum items have already been cloned */
1502 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1504 /* we're doing a write, do the async checksumming */
1505 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1506 inode
, rw
, bio
, mirror_num
,
1507 bio_flags
, bio_offset
,
1508 __btrfs_submit_bio_start
,
1509 __btrfs_submit_bio_done
);
1513 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1517 * given a list of ordered sums record them in the inode. This happens
1518 * at IO completion time based on sums calculated at bio submission time.
1520 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1521 struct inode
*inode
, u64 file_offset
,
1522 struct list_head
*list
)
1524 struct btrfs_ordered_sum
*sum
;
1526 list_for_each_entry(sum
, list
, list
) {
1527 btrfs_csum_file_blocks(trans
,
1528 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1533 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1534 struct extent_state
**cached_state
)
1536 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1538 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1539 cached_state
, GFP_NOFS
);
1542 /* see btrfs_writepage_start_hook for details on why this is required */
1543 struct btrfs_writepage_fixup
{
1545 struct btrfs_work work
;
1548 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1550 struct btrfs_writepage_fixup
*fixup
;
1551 struct btrfs_ordered_extent
*ordered
;
1552 struct extent_state
*cached_state
= NULL
;
1554 struct inode
*inode
;
1558 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1562 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1563 ClearPageChecked(page
);
1567 inode
= page
->mapping
->host
;
1568 page_start
= page_offset(page
);
1569 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1571 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1572 &cached_state
, GFP_NOFS
);
1574 /* already ordered? We're done */
1575 if (PagePrivate2(page
))
1578 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1580 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1581 page_end
, &cached_state
, GFP_NOFS
);
1583 btrfs_start_ordered_extent(inode
, ordered
, 1);
1588 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1589 ClearPageChecked(page
);
1591 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1592 &cached_state
, GFP_NOFS
);
1595 page_cache_release(page
);
1600 * There are a few paths in the higher layers of the kernel that directly
1601 * set the page dirty bit without asking the filesystem if it is a
1602 * good idea. This causes problems because we want to make sure COW
1603 * properly happens and the data=ordered rules are followed.
1605 * In our case any range that doesn't have the ORDERED bit set
1606 * hasn't been properly setup for IO. We kick off an async process
1607 * to fix it up. The async helper will wait for ordered extents, set
1608 * the delalloc bit and make it safe to write the page.
1610 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1612 struct inode
*inode
= page
->mapping
->host
;
1613 struct btrfs_writepage_fixup
*fixup
;
1614 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1616 /* this page is properly in the ordered list */
1617 if (TestClearPagePrivate2(page
))
1620 if (PageChecked(page
))
1623 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1627 SetPageChecked(page
);
1628 page_cache_get(page
);
1629 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1631 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1635 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1636 struct inode
*inode
, u64 file_pos
,
1637 u64 disk_bytenr
, u64 disk_num_bytes
,
1638 u64 num_bytes
, u64 ram_bytes
,
1639 u8 compression
, u8 encryption
,
1640 u16 other_encoding
, int extent_type
)
1642 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1643 struct btrfs_file_extent_item
*fi
;
1644 struct btrfs_path
*path
;
1645 struct extent_buffer
*leaf
;
1646 struct btrfs_key ins
;
1650 path
= btrfs_alloc_path();
1654 path
->leave_spinning
= 1;
1657 * we may be replacing one extent in the tree with another.
1658 * The new extent is pinned in the extent map, and we don't want
1659 * to drop it from the cache until it is completely in the btree.
1661 * So, tell btrfs_drop_extents to leave this extent in the cache.
1662 * the caller is expected to unpin it and allow it to be merged
1665 ret
= btrfs_drop_extents(trans
, inode
, file_pos
, file_pos
+ num_bytes
,
1669 ins
.objectid
= btrfs_ino(inode
);
1670 ins
.offset
= file_pos
;
1671 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1672 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1674 leaf
= path
->nodes
[0];
1675 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1676 struct btrfs_file_extent_item
);
1677 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1678 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1679 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1680 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1681 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1682 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1683 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1684 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1685 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1686 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1688 btrfs_unlock_up_safe(path
, 1);
1689 btrfs_set_lock_blocking(leaf
);
1691 btrfs_mark_buffer_dirty(leaf
);
1693 inode_add_bytes(inode
, num_bytes
);
1695 ins
.objectid
= disk_bytenr
;
1696 ins
.offset
= disk_num_bytes
;
1697 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1698 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1699 root
->root_key
.objectid
,
1700 btrfs_ino(inode
), file_pos
, &ins
);
1702 btrfs_free_path(path
);
1708 * helper function for btrfs_finish_ordered_io, this
1709 * just reads in some of the csum leaves to prime them into ram
1710 * before we start the transaction. It limits the amount of btree
1711 * reads required while inside the transaction.
1713 /* as ordered data IO finishes, this gets called so we can finish
1714 * an ordered extent if the range of bytes in the file it covers are
1717 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1719 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1720 struct btrfs_trans_handle
*trans
= NULL
;
1721 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1722 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1723 struct extent_state
*cached_state
= NULL
;
1724 int compress_type
= 0;
1728 ret
= btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
1732 BUG_ON(!ordered_extent
);
1734 nolock
= btrfs_is_free_space_inode(root
, inode
);
1736 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1737 BUG_ON(!list_empty(&ordered_extent
->list
));
1738 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1741 trans
= btrfs_join_transaction_nolock(root
);
1743 trans
= btrfs_join_transaction(root
);
1744 BUG_ON(IS_ERR(trans
));
1745 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1746 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
1752 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1753 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1754 0, &cached_state
, GFP_NOFS
);
1757 trans
= btrfs_join_transaction_nolock(root
);
1759 trans
= btrfs_join_transaction(root
);
1760 BUG_ON(IS_ERR(trans
));
1761 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1763 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1764 compress_type
= ordered_extent
->compress_type
;
1765 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1766 BUG_ON(compress_type
);
1767 ret
= btrfs_mark_extent_written(trans
, inode
,
1768 ordered_extent
->file_offset
,
1769 ordered_extent
->file_offset
+
1770 ordered_extent
->len
);
1773 BUG_ON(root
== root
->fs_info
->tree_root
);
1774 ret
= insert_reserved_file_extent(trans
, inode
,
1775 ordered_extent
->file_offset
,
1776 ordered_extent
->start
,
1777 ordered_extent
->disk_len
,
1778 ordered_extent
->len
,
1779 ordered_extent
->len
,
1780 compress_type
, 0, 0,
1781 BTRFS_FILE_EXTENT_REG
);
1782 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1783 ordered_extent
->file_offset
,
1784 ordered_extent
->len
);
1787 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1788 ordered_extent
->file_offset
+
1789 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1791 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1792 &ordered_extent
->list
);
1794 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1795 if (!ret
|| !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1796 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
1801 if (root
!= root
->fs_info
->tree_root
)
1802 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
1805 btrfs_end_transaction_nolock(trans
, root
);
1807 btrfs_end_transaction(trans
, root
);
1811 btrfs_put_ordered_extent(ordered_extent
);
1812 /* once for the tree */
1813 btrfs_put_ordered_extent(ordered_extent
);
1818 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1819 struct extent_state
*state
, int uptodate
)
1821 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
1823 ClearPagePrivate2(page
);
1824 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1828 * when reads are done, we need to check csums to verify the data is correct
1829 * if there's a match, we allow the bio to finish. If not, the code in
1830 * extent_io.c will try to find good copies for us.
1832 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1833 struct extent_state
*state
)
1835 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1836 struct inode
*inode
= page
->mapping
->host
;
1837 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1839 u64
private = ~(u32
)0;
1841 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1844 if (PageChecked(page
)) {
1845 ClearPageChecked(page
);
1849 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1852 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1853 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
1854 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1859 if (state
&& state
->start
== start
) {
1860 private = state
->private;
1863 ret
= get_state_private(io_tree
, start
, &private);
1865 kaddr
= kmap_atomic(page
, KM_USER0
);
1869 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1870 btrfs_csum_final(csum
, (char *)&csum
);
1871 if (csum
!= private)
1874 kunmap_atomic(kaddr
, KM_USER0
);
1879 printk_ratelimited(KERN_INFO
"btrfs csum failed ino %llu off %llu csum %u "
1881 (unsigned long long)btrfs_ino(page
->mapping
->host
),
1882 (unsigned long long)start
, csum
,
1883 (unsigned long long)private);
1884 memset(kaddr
+ offset
, 1, end
- start
+ 1);
1885 flush_dcache_page(page
);
1886 kunmap_atomic(kaddr
, KM_USER0
);
1892 struct delayed_iput
{
1893 struct list_head list
;
1894 struct inode
*inode
;
1897 void btrfs_add_delayed_iput(struct inode
*inode
)
1899 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
1900 struct delayed_iput
*delayed
;
1902 if (atomic_add_unless(&inode
->i_count
, -1, 1))
1905 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
1906 delayed
->inode
= inode
;
1908 spin_lock(&fs_info
->delayed_iput_lock
);
1909 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
1910 spin_unlock(&fs_info
->delayed_iput_lock
);
1913 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
1916 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1917 struct delayed_iput
*delayed
;
1920 spin_lock(&fs_info
->delayed_iput_lock
);
1921 empty
= list_empty(&fs_info
->delayed_iputs
);
1922 spin_unlock(&fs_info
->delayed_iput_lock
);
1926 down_read(&root
->fs_info
->cleanup_work_sem
);
1927 spin_lock(&fs_info
->delayed_iput_lock
);
1928 list_splice_init(&fs_info
->delayed_iputs
, &list
);
1929 spin_unlock(&fs_info
->delayed_iput_lock
);
1931 while (!list_empty(&list
)) {
1932 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
1933 list_del(&delayed
->list
);
1934 iput(delayed
->inode
);
1937 up_read(&root
->fs_info
->cleanup_work_sem
);
1940 enum btrfs_orphan_cleanup_state
{
1941 ORPHAN_CLEANUP_STARTED
= 1,
1942 ORPHAN_CLEANUP_DONE
= 2,
1946 * This is called in transaction commmit time. If there are no orphan
1947 * files in the subvolume, it removes orphan item and frees block_rsv
1950 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
1951 struct btrfs_root
*root
)
1955 if (!list_empty(&root
->orphan_list
) ||
1956 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
1959 if (root
->orphan_item_inserted
&&
1960 btrfs_root_refs(&root
->root_item
) > 0) {
1961 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
1962 root
->root_key
.objectid
);
1964 root
->orphan_item_inserted
= 0;
1967 if (root
->orphan_block_rsv
) {
1968 WARN_ON(root
->orphan_block_rsv
->size
> 0);
1969 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
1970 root
->orphan_block_rsv
= NULL
;
1975 * This creates an orphan entry for the given inode in case something goes
1976 * wrong in the middle of an unlink/truncate.
1978 * NOTE: caller of this function should reserve 5 units of metadata for
1981 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1983 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1984 struct btrfs_block_rsv
*block_rsv
= NULL
;
1989 if (!root
->orphan_block_rsv
) {
1990 block_rsv
= btrfs_alloc_block_rsv(root
);
1995 spin_lock(&root
->orphan_lock
);
1996 if (!root
->orphan_block_rsv
) {
1997 root
->orphan_block_rsv
= block_rsv
;
1998 } else if (block_rsv
) {
1999 btrfs_free_block_rsv(root
, block_rsv
);
2003 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2004 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2007 * For proper ENOSPC handling, we should do orphan
2008 * cleanup when mounting. But this introduces backward
2009 * compatibility issue.
2011 if (!xchg(&root
->orphan_item_inserted
, 1))
2019 if (!BTRFS_I(inode
)->orphan_meta_reserved
) {
2020 BTRFS_I(inode
)->orphan_meta_reserved
= 1;
2023 spin_unlock(&root
->orphan_lock
);
2025 /* grab metadata reservation from transaction handle */
2027 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2031 /* insert an orphan item to track this unlinked/truncated file */
2033 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
2037 /* insert an orphan item to track subvolume contains orphan files */
2039 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2040 root
->root_key
.objectid
);
2047 * We have done the truncate/delete so we can go ahead and remove the orphan
2048 * item for this particular inode.
2050 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2052 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2053 int delete_item
= 0;
2054 int release_rsv
= 0;
2057 spin_lock(&root
->orphan_lock
);
2058 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2059 list_del_init(&BTRFS_I(inode
)->i_orphan
);
2063 if (BTRFS_I(inode
)->orphan_meta_reserved
) {
2064 BTRFS_I(inode
)->orphan_meta_reserved
= 0;
2067 spin_unlock(&root
->orphan_lock
);
2069 if (trans
&& delete_item
) {
2070 ret
= btrfs_del_orphan_item(trans
, root
, btrfs_ino(inode
));
2075 btrfs_orphan_release_metadata(inode
);
2081 * this cleans up any orphans that may be left on the list from the last use
2084 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
2086 struct btrfs_path
*path
;
2087 struct extent_buffer
*leaf
;
2088 struct btrfs_key key
, found_key
;
2089 struct btrfs_trans_handle
*trans
;
2090 struct inode
*inode
;
2091 u64 last_objectid
= 0;
2092 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2094 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2097 path
= btrfs_alloc_path();
2104 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2105 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2106 key
.offset
= (u64
)-1;
2109 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2114 * if ret == 0 means we found what we were searching for, which
2115 * is weird, but possible, so only screw with path if we didn't
2116 * find the key and see if we have stuff that matches
2120 if (path
->slots
[0] == 0)
2125 /* pull out the item */
2126 leaf
= path
->nodes
[0];
2127 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2129 /* make sure the item matches what we want */
2130 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2132 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2135 /* release the path since we're done with it */
2136 btrfs_release_path(path
);
2139 * this is where we are basically btrfs_lookup, without the
2140 * crossing root thing. we store the inode number in the
2141 * offset of the orphan item.
2144 if (found_key
.offset
== last_objectid
) {
2145 printk(KERN_ERR
"btrfs: Error removing orphan entry, "
2146 "stopping orphan cleanup\n");
2151 last_objectid
= found_key
.offset
;
2153 found_key
.objectid
= found_key
.offset
;
2154 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2155 found_key
.offset
= 0;
2156 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2157 ret
= PTR_RET(inode
);
2158 if (ret
&& ret
!= -ESTALE
)
2162 * Inode is already gone but the orphan item is still there,
2163 * kill the orphan item.
2165 if (ret
== -ESTALE
) {
2166 trans
= btrfs_start_transaction(root
, 1);
2167 if (IS_ERR(trans
)) {
2168 ret
= PTR_ERR(trans
);
2171 ret
= btrfs_del_orphan_item(trans
, root
,
2172 found_key
.objectid
);
2174 btrfs_end_transaction(trans
, root
);
2179 * add this inode to the orphan list so btrfs_orphan_del does
2180 * the proper thing when we hit it
2182 spin_lock(&root
->orphan_lock
);
2183 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2184 spin_unlock(&root
->orphan_lock
);
2186 /* if we have links, this was a truncate, lets do that */
2187 if (inode
->i_nlink
) {
2188 if (!S_ISREG(inode
->i_mode
)) {
2194 ret
= btrfs_truncate(inode
);
2199 /* this will do delete_inode and everything for us */
2204 /* release the path since we're done with it */
2205 btrfs_release_path(path
);
2207 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
2209 if (root
->orphan_block_rsv
)
2210 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
2213 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
2214 trans
= btrfs_join_transaction(root
);
2216 btrfs_end_transaction(trans
, root
);
2220 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2222 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2226 printk(KERN_CRIT
"btrfs: could not do orphan cleanup %d\n", ret
);
2227 btrfs_free_path(path
);
2232 * very simple check to peek ahead in the leaf looking for xattrs. If we
2233 * don't find any xattrs, we know there can't be any acls.
2235 * slot is the slot the inode is in, objectid is the objectid of the inode
2237 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2238 int slot
, u64 objectid
)
2240 u32 nritems
= btrfs_header_nritems(leaf
);
2241 struct btrfs_key found_key
;
2245 while (slot
< nritems
) {
2246 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2248 /* we found a different objectid, there must not be acls */
2249 if (found_key
.objectid
!= objectid
)
2252 /* we found an xattr, assume we've got an acl */
2253 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2257 * we found a key greater than an xattr key, there can't
2258 * be any acls later on
2260 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2267 * it goes inode, inode backrefs, xattrs, extents,
2268 * so if there are a ton of hard links to an inode there can
2269 * be a lot of backrefs. Don't waste time searching too hard,
2270 * this is just an optimization
2275 /* we hit the end of the leaf before we found an xattr or
2276 * something larger than an xattr. We have to assume the inode
2283 * read an inode from the btree into the in-memory inode
2285 static void btrfs_read_locked_inode(struct inode
*inode
)
2287 struct btrfs_path
*path
;
2288 struct extent_buffer
*leaf
;
2289 struct btrfs_inode_item
*inode_item
;
2290 struct btrfs_timespec
*tspec
;
2291 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2292 struct btrfs_key location
;
2296 bool filled
= false;
2298 ret
= btrfs_fill_inode(inode
, &rdev
);
2302 path
= btrfs_alloc_path();
2306 path
->leave_spinning
= 1;
2307 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2309 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2313 leaf
= path
->nodes
[0];
2318 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2319 struct btrfs_inode_item
);
2320 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2321 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
2322 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2323 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2324 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2326 tspec
= btrfs_inode_atime(inode_item
);
2327 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2328 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2330 tspec
= btrfs_inode_mtime(inode_item
);
2331 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2332 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2334 tspec
= btrfs_inode_ctime(inode_item
);
2335 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2336 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2338 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2339 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2340 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2341 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2343 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2345 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2346 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2349 * try to precache a NULL acl entry for files that don't have
2350 * any xattrs or acls
2352 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
2355 cache_no_acl(inode
);
2357 btrfs_free_path(path
);
2359 switch (inode
->i_mode
& S_IFMT
) {
2361 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2362 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2363 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2364 inode
->i_fop
= &btrfs_file_operations
;
2365 inode
->i_op
= &btrfs_file_inode_operations
;
2368 inode
->i_fop
= &btrfs_dir_file_operations
;
2369 if (root
== root
->fs_info
->tree_root
)
2370 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2372 inode
->i_op
= &btrfs_dir_inode_operations
;
2375 inode
->i_op
= &btrfs_symlink_inode_operations
;
2376 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2377 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2380 inode
->i_op
= &btrfs_special_inode_operations
;
2381 init_special_inode(inode
, inode
->i_mode
, rdev
);
2385 btrfs_update_iflags(inode
);
2389 btrfs_free_path(path
);
2390 make_bad_inode(inode
);
2394 * given a leaf and an inode, copy the inode fields into the leaf
2396 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2397 struct extent_buffer
*leaf
,
2398 struct btrfs_inode_item
*item
,
2399 struct inode
*inode
)
2401 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2402 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2403 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2404 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2405 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2407 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2408 inode
->i_atime
.tv_sec
);
2409 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2410 inode
->i_atime
.tv_nsec
);
2412 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2413 inode
->i_mtime
.tv_sec
);
2414 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2415 inode
->i_mtime
.tv_nsec
);
2417 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2418 inode
->i_ctime
.tv_sec
);
2419 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2420 inode
->i_ctime
.tv_nsec
);
2422 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2423 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2424 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2425 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2426 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2427 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2428 btrfs_set_inode_block_group(leaf
, item
, 0);
2432 * copy everything in the in-memory inode into the btree.
2434 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
2435 struct btrfs_root
*root
, struct inode
*inode
)
2437 struct btrfs_inode_item
*inode_item
;
2438 struct btrfs_path
*path
;
2439 struct extent_buffer
*leaf
;
2442 path
= btrfs_alloc_path();
2446 path
->leave_spinning
= 1;
2447 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
2455 btrfs_unlock_up_safe(path
, 1);
2456 leaf
= path
->nodes
[0];
2457 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2458 struct btrfs_inode_item
);
2460 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2461 btrfs_mark_buffer_dirty(leaf
);
2462 btrfs_set_inode_last_trans(trans
, inode
);
2465 btrfs_free_path(path
);
2470 * copy everything in the in-memory inode into the btree.
2472 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2473 struct btrfs_root
*root
, struct inode
*inode
)
2478 * If the inode is a free space inode, we can deadlock during commit
2479 * if we put it into the delayed code.
2481 * The data relocation inode should also be directly updated
2484 if (!btrfs_is_free_space_inode(root
, inode
)
2485 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
) {
2486 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
2488 btrfs_set_inode_last_trans(trans
, inode
);
2492 return btrfs_update_inode_item(trans
, root
, inode
);
2495 static noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
2496 struct btrfs_root
*root
, struct inode
*inode
)
2500 ret
= btrfs_update_inode(trans
, root
, inode
);
2502 return btrfs_update_inode_item(trans
, root
, inode
);
2507 * unlink helper that gets used here in inode.c and in the tree logging
2508 * recovery code. It remove a link in a directory with a given name, and
2509 * also drops the back refs in the inode to the directory
2511 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2512 struct btrfs_root
*root
,
2513 struct inode
*dir
, struct inode
*inode
,
2514 const char *name
, int name_len
)
2516 struct btrfs_path
*path
;
2518 struct extent_buffer
*leaf
;
2519 struct btrfs_dir_item
*di
;
2520 struct btrfs_key key
;
2522 u64 ino
= btrfs_ino(inode
);
2523 u64 dir_ino
= btrfs_ino(dir
);
2525 path
= btrfs_alloc_path();
2531 path
->leave_spinning
= 1;
2532 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2533 name
, name_len
, -1);
2542 leaf
= path
->nodes
[0];
2543 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2544 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2547 btrfs_release_path(path
);
2549 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
2552 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2553 "inode %llu parent %llu\n", name_len
, name
,
2554 (unsigned long long)ino
, (unsigned long long)dir_ino
);
2558 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
2562 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2564 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2566 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2571 btrfs_free_path(path
);
2575 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2576 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2577 btrfs_update_inode(trans
, root
, dir
);
2582 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2583 struct btrfs_root
*root
,
2584 struct inode
*dir
, struct inode
*inode
,
2585 const char *name
, int name_len
)
2588 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
2590 btrfs_drop_nlink(inode
);
2591 ret
= btrfs_update_inode(trans
, root
, inode
);
2597 /* helper to check if there is any shared block in the path */
2598 static int check_path_shared(struct btrfs_root
*root
,
2599 struct btrfs_path
*path
)
2601 struct extent_buffer
*eb
;
2605 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2608 if (!path
->nodes
[level
])
2610 eb
= path
->nodes
[level
];
2611 if (!btrfs_block_can_be_shared(root
, eb
))
2613 ret
= btrfs_lookup_extent_info(NULL
, root
, eb
->start
, eb
->len
,
2622 * helper to start transaction for unlink and rmdir.
2624 * unlink and rmdir are special in btrfs, they do not always free space.
2625 * so in enospc case, we should make sure they will free space before
2626 * allowing them to use the global metadata reservation.
2628 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
,
2629 struct dentry
*dentry
)
2631 struct btrfs_trans_handle
*trans
;
2632 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2633 struct btrfs_path
*path
;
2634 struct btrfs_inode_ref
*ref
;
2635 struct btrfs_dir_item
*di
;
2636 struct inode
*inode
= dentry
->d_inode
;
2641 u64 ino
= btrfs_ino(inode
);
2642 u64 dir_ino
= btrfs_ino(dir
);
2645 * 1 for the possible orphan item
2646 * 1 for the dir item
2647 * 1 for the dir index
2648 * 1 for the inode ref
2649 * 1 for the inode ref in the tree log
2650 * 2 for the dir entries in the log
2653 trans
= btrfs_start_transaction(root
, 8);
2654 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
2657 if (ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
2658 return ERR_PTR(-ENOSPC
);
2660 /* check if there is someone else holds reference */
2661 if (S_ISDIR(inode
->i_mode
) && atomic_read(&inode
->i_count
) > 1)
2662 return ERR_PTR(-ENOSPC
);
2664 if (atomic_read(&inode
->i_count
) > 2)
2665 return ERR_PTR(-ENOSPC
);
2667 if (xchg(&root
->fs_info
->enospc_unlink
, 1))
2668 return ERR_PTR(-ENOSPC
);
2670 path
= btrfs_alloc_path();
2672 root
->fs_info
->enospc_unlink
= 0;
2673 return ERR_PTR(-ENOMEM
);
2676 /* 1 for the orphan item */
2677 trans
= btrfs_start_transaction(root
, 1);
2678 if (IS_ERR(trans
)) {
2679 btrfs_free_path(path
);
2680 root
->fs_info
->enospc_unlink
= 0;
2684 path
->skip_locking
= 1;
2685 path
->search_commit_root
= 1;
2687 ret
= btrfs_lookup_inode(trans
, root
, path
,
2688 &BTRFS_I(dir
)->location
, 0);
2694 if (check_path_shared(root
, path
))
2699 btrfs_release_path(path
);
2701 ret
= btrfs_lookup_inode(trans
, root
, path
,
2702 &BTRFS_I(inode
)->location
, 0);
2708 if (check_path_shared(root
, path
))
2713 btrfs_release_path(path
);
2715 if (ret
== 0 && S_ISREG(inode
->i_mode
)) {
2716 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
2723 if (check_path_shared(root
, path
))
2725 btrfs_release_path(path
);
2733 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2734 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2740 if (check_path_shared(root
, path
))
2746 btrfs_release_path(path
);
2748 ref
= btrfs_lookup_inode_ref(trans
, root
, path
,
2749 dentry
->d_name
.name
, dentry
->d_name
.len
,
2756 if (check_path_shared(root
, path
))
2758 index
= btrfs_inode_ref_index(path
->nodes
[0], ref
);
2759 btrfs_release_path(path
);
2762 * This is a commit root search, if we can lookup inode item and other
2763 * relative items in the commit root, it means the transaction of
2764 * dir/file creation has been committed, and the dir index item that we
2765 * delay to insert has also been inserted into the commit root. So
2766 * we needn't worry about the delayed insertion of the dir index item
2769 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir_ino
, index
,
2770 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2775 BUG_ON(ret
== -ENOENT
);
2776 if (check_path_shared(root
, path
))
2781 btrfs_free_path(path
);
2782 /* Migrate the orphan reservation over */
2784 err
= btrfs_block_rsv_migrate(trans
->block_rsv
,
2785 &root
->fs_info
->global_block_rsv
,
2786 trans
->bytes_reserved
);
2789 btrfs_end_transaction(trans
, root
);
2790 root
->fs_info
->enospc_unlink
= 0;
2791 return ERR_PTR(err
);
2794 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
2798 static void __unlink_end_trans(struct btrfs_trans_handle
*trans
,
2799 struct btrfs_root
*root
)
2801 if (trans
->block_rsv
== &root
->fs_info
->global_block_rsv
) {
2802 btrfs_block_rsv_release(root
, trans
->block_rsv
,
2803 trans
->bytes_reserved
);
2804 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2805 BUG_ON(!root
->fs_info
->enospc_unlink
);
2806 root
->fs_info
->enospc_unlink
= 0;
2808 btrfs_end_transaction_throttle(trans
, root
);
2811 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2813 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2814 struct btrfs_trans_handle
*trans
;
2815 struct inode
*inode
= dentry
->d_inode
;
2817 unsigned long nr
= 0;
2819 trans
= __unlink_start_trans(dir
, dentry
);
2821 return PTR_ERR(trans
);
2823 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2825 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2826 dentry
->d_name
.name
, dentry
->d_name
.len
);
2830 if (inode
->i_nlink
== 0) {
2831 ret
= btrfs_orphan_add(trans
, inode
);
2837 nr
= trans
->blocks_used
;
2838 __unlink_end_trans(trans
, root
);
2839 btrfs_btree_balance_dirty(root
, nr
);
2843 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
2844 struct btrfs_root
*root
,
2845 struct inode
*dir
, u64 objectid
,
2846 const char *name
, int name_len
)
2848 struct btrfs_path
*path
;
2849 struct extent_buffer
*leaf
;
2850 struct btrfs_dir_item
*di
;
2851 struct btrfs_key key
;
2854 u64 dir_ino
= btrfs_ino(dir
);
2856 path
= btrfs_alloc_path();
2860 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2861 name
, name_len
, -1);
2862 BUG_ON(IS_ERR_OR_NULL(di
));
2864 leaf
= path
->nodes
[0];
2865 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2866 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2867 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2869 btrfs_release_path(path
);
2871 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
2872 objectid
, root
->root_key
.objectid
,
2873 dir_ino
, &index
, name
, name_len
);
2875 BUG_ON(ret
!= -ENOENT
);
2876 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
2878 BUG_ON(IS_ERR_OR_NULL(di
));
2880 leaf
= path
->nodes
[0];
2881 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2882 btrfs_release_path(path
);
2885 btrfs_release_path(path
);
2887 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
2890 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2891 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2892 ret
= btrfs_update_inode(trans
, root
, dir
);
2895 btrfs_free_path(path
);
2899 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2901 struct inode
*inode
= dentry
->d_inode
;
2903 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2904 struct btrfs_trans_handle
*trans
;
2905 unsigned long nr
= 0;
2907 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
2908 btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
2911 trans
= __unlink_start_trans(dir
, dentry
);
2913 return PTR_ERR(trans
);
2915 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
2916 err
= btrfs_unlink_subvol(trans
, root
, dir
,
2917 BTRFS_I(inode
)->location
.objectid
,
2918 dentry
->d_name
.name
,
2919 dentry
->d_name
.len
);
2923 err
= btrfs_orphan_add(trans
, inode
);
2927 /* now the directory is empty */
2928 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2929 dentry
->d_name
.name
, dentry
->d_name
.len
);
2931 btrfs_i_size_write(inode
, 0);
2933 nr
= trans
->blocks_used
;
2934 __unlink_end_trans(trans
, root
);
2935 btrfs_btree_balance_dirty(root
, nr
);
2941 * this can truncate away extent items, csum items and directory items.
2942 * It starts at a high offset and removes keys until it can't find
2943 * any higher than new_size
2945 * csum items that cross the new i_size are truncated to the new size
2948 * min_type is the minimum key type to truncate down to. If set to 0, this
2949 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2951 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
2952 struct btrfs_root
*root
,
2953 struct inode
*inode
,
2954 u64 new_size
, u32 min_type
)
2956 struct btrfs_path
*path
;
2957 struct extent_buffer
*leaf
;
2958 struct btrfs_file_extent_item
*fi
;
2959 struct btrfs_key key
;
2960 struct btrfs_key found_key
;
2961 u64 extent_start
= 0;
2962 u64 extent_num_bytes
= 0;
2963 u64 extent_offset
= 0;
2965 u64 mask
= root
->sectorsize
- 1;
2966 u32 found_type
= (u8
)-1;
2969 int pending_del_nr
= 0;
2970 int pending_del_slot
= 0;
2971 int extent_type
= -1;
2975 u64 ino
= btrfs_ino(inode
);
2977 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
2979 path
= btrfs_alloc_path();
2984 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
2985 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
2988 * This function is also used to drop the items in the log tree before
2989 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
2990 * it is used to drop the loged items. So we shouldn't kill the delayed
2993 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
2994 btrfs_kill_delayed_inode_items(inode
);
2997 key
.offset
= (u64
)-1;
3001 path
->leave_spinning
= 1;
3002 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3009 /* there are no items in the tree for us to truncate, we're
3012 if (path
->slots
[0] == 0)
3019 leaf
= path
->nodes
[0];
3020 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3021 found_type
= btrfs_key_type(&found_key
);
3024 if (found_key
.objectid
!= ino
)
3027 if (found_type
< min_type
)
3030 item_end
= found_key
.offset
;
3031 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3032 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3033 struct btrfs_file_extent_item
);
3034 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3035 encoding
= btrfs_file_extent_compression(leaf
, fi
);
3036 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
3037 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
3039 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3041 btrfs_file_extent_num_bytes(leaf
, fi
);
3042 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3043 item_end
+= btrfs_file_extent_inline_len(leaf
,
3048 if (found_type
> min_type
) {
3051 if (item_end
< new_size
)
3053 if (found_key
.offset
>= new_size
)
3059 /* FIXME, shrink the extent if the ref count is only 1 */
3060 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3063 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3065 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3066 if (!del_item
&& !encoding
) {
3067 u64 orig_num_bytes
=
3068 btrfs_file_extent_num_bytes(leaf
, fi
);
3069 extent_num_bytes
= new_size
-
3070 found_key
.offset
+ root
->sectorsize
- 1;
3071 extent_num_bytes
= extent_num_bytes
&
3072 ~((u64
)root
->sectorsize
- 1);
3073 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3075 num_dec
= (orig_num_bytes
-
3077 if (root
->ref_cows
&& extent_start
!= 0)
3078 inode_sub_bytes(inode
, num_dec
);
3079 btrfs_mark_buffer_dirty(leaf
);
3082 btrfs_file_extent_disk_num_bytes(leaf
,
3084 extent_offset
= found_key
.offset
-
3085 btrfs_file_extent_offset(leaf
, fi
);
3087 /* FIXME blocksize != 4096 */
3088 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
3089 if (extent_start
!= 0) {
3092 inode_sub_bytes(inode
, num_dec
);
3095 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3097 * we can't truncate inline items that have had
3101 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
3102 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
3103 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
3104 u32 size
= new_size
- found_key
.offset
;
3106 if (root
->ref_cows
) {
3107 inode_sub_bytes(inode
, item_end
+ 1 -
3111 btrfs_file_extent_calc_inline_size(size
);
3112 ret
= btrfs_truncate_item(trans
, root
, path
,
3114 } else if (root
->ref_cows
) {
3115 inode_sub_bytes(inode
, item_end
+ 1 -
3121 if (!pending_del_nr
) {
3122 /* no pending yet, add ourselves */
3123 pending_del_slot
= path
->slots
[0];
3125 } else if (pending_del_nr
&&
3126 path
->slots
[0] + 1 == pending_del_slot
) {
3127 /* hop on the pending chunk */
3129 pending_del_slot
= path
->slots
[0];
3136 if (found_extent
&& (root
->ref_cows
||
3137 root
== root
->fs_info
->tree_root
)) {
3138 btrfs_set_path_blocking(path
);
3139 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3140 extent_num_bytes
, 0,
3141 btrfs_header_owner(leaf
),
3142 ino
, extent_offset
);
3146 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3149 if (path
->slots
[0] == 0 ||
3150 path
->slots
[0] != pending_del_slot
) {
3151 if (root
->ref_cows
&&
3152 BTRFS_I(inode
)->location
.objectid
!=
3153 BTRFS_FREE_INO_OBJECTID
) {
3157 if (pending_del_nr
) {
3158 ret
= btrfs_del_items(trans
, root
, path
,
3164 btrfs_release_path(path
);
3171 if (pending_del_nr
) {
3172 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3176 btrfs_free_path(path
);
3181 * taken from block_truncate_page, but does cow as it zeros out
3182 * any bytes left in the last page in the file.
3184 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
3186 struct inode
*inode
= mapping
->host
;
3187 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3188 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3189 struct btrfs_ordered_extent
*ordered
;
3190 struct extent_state
*cached_state
= NULL
;
3192 u32 blocksize
= root
->sectorsize
;
3193 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3194 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3196 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
3201 if ((offset
& (blocksize
- 1)) == 0)
3203 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
3209 page
= find_or_create_page(mapping
, index
, mask
);
3211 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3215 page_start
= page_offset(page
);
3216 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3218 if (!PageUptodate(page
)) {
3219 ret
= btrfs_readpage(NULL
, page
);
3221 if (page
->mapping
!= mapping
) {
3223 page_cache_release(page
);
3226 if (!PageUptodate(page
)) {
3231 wait_on_page_writeback(page
);
3233 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
3235 set_page_extent_mapped(page
);
3237 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3239 unlock_extent_cached(io_tree
, page_start
, page_end
,
3240 &cached_state
, GFP_NOFS
);
3242 page_cache_release(page
);
3243 btrfs_start_ordered_extent(inode
, ordered
, 1);
3244 btrfs_put_ordered_extent(ordered
);
3248 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3249 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
3250 0, 0, &cached_state
, GFP_NOFS
);
3252 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3255 unlock_extent_cached(io_tree
, page_start
, page_end
,
3256 &cached_state
, GFP_NOFS
);
3261 if (offset
!= PAGE_CACHE_SIZE
) {
3263 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
3264 flush_dcache_page(page
);
3267 ClearPageChecked(page
);
3268 set_page_dirty(page
);
3269 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3274 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3276 page_cache_release(page
);
3282 * This function puts in dummy file extents for the area we're creating a hole
3283 * for. So if we are truncating this file to a larger size we need to insert
3284 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3285 * the range between oldsize and size
3287 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
3289 struct btrfs_trans_handle
*trans
;
3290 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3291 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3292 struct extent_map
*em
= NULL
;
3293 struct extent_state
*cached_state
= NULL
;
3294 u64 mask
= root
->sectorsize
- 1;
3295 u64 hole_start
= (oldsize
+ mask
) & ~mask
;
3296 u64 block_end
= (size
+ mask
) & ~mask
;
3302 if (size
<= hole_start
)
3306 struct btrfs_ordered_extent
*ordered
;
3307 btrfs_wait_ordered_range(inode
, hole_start
,
3308 block_end
- hole_start
);
3309 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3310 &cached_state
, GFP_NOFS
);
3311 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3314 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3315 &cached_state
, GFP_NOFS
);
3316 btrfs_put_ordered_extent(ordered
);
3319 cur_offset
= hole_start
;
3321 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3322 block_end
- cur_offset
, 0);
3323 BUG_ON(IS_ERR_OR_NULL(em
));
3324 last_byte
= min(extent_map_end(em
), block_end
);
3325 last_byte
= (last_byte
+ mask
) & ~mask
;
3326 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3328 hole_size
= last_byte
- cur_offset
;
3330 trans
= btrfs_start_transaction(root
, 2);
3331 if (IS_ERR(trans
)) {
3332 err
= PTR_ERR(trans
);
3336 err
= btrfs_drop_extents(trans
, inode
, cur_offset
,
3337 cur_offset
+ hole_size
,
3340 btrfs_end_transaction(trans
, root
);
3344 err
= btrfs_insert_file_extent(trans
, root
,
3345 btrfs_ino(inode
), cur_offset
, 0,
3346 0, hole_size
, 0, hole_size
,
3349 btrfs_end_transaction(trans
, root
);
3353 btrfs_drop_extent_cache(inode
, hole_start
,
3356 btrfs_end_transaction(trans
, root
);
3358 free_extent_map(em
);
3360 cur_offset
= last_byte
;
3361 if (cur_offset
>= block_end
)
3365 free_extent_map(em
);
3366 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3371 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
)
3373 loff_t oldsize
= i_size_read(inode
);
3376 if (newsize
== oldsize
)
3379 if (newsize
> oldsize
) {
3380 i_size_write(inode
, newsize
);
3381 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
3382 truncate_pagecache(inode
, oldsize
, newsize
);
3383 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
3385 btrfs_setsize(inode
, oldsize
);
3389 mark_inode_dirty(inode
);
3393 * We're truncating a file that used to have good data down to
3394 * zero. Make sure it gets into the ordered flush list so that
3395 * any new writes get down to disk quickly.
3398 BTRFS_I(inode
)->ordered_data_close
= 1;
3400 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3401 truncate_setsize(inode
, newsize
);
3402 ret
= btrfs_truncate(inode
);
3408 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3410 struct inode
*inode
= dentry
->d_inode
;
3411 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3414 if (btrfs_root_readonly(root
))
3417 err
= inode_change_ok(inode
, attr
);
3421 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3422 err
= btrfs_setsize(inode
, attr
->ia_size
);
3427 if (attr
->ia_valid
) {
3428 setattr_copy(inode
, attr
);
3429 mark_inode_dirty(inode
);
3431 if (attr
->ia_valid
& ATTR_MODE
)
3432 err
= btrfs_acl_chmod(inode
);
3438 void btrfs_evict_inode(struct inode
*inode
)
3440 struct btrfs_trans_handle
*trans
;
3441 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3442 struct btrfs_block_rsv
*rsv
, *global_rsv
;
3443 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
3447 trace_btrfs_inode_evict(inode
);
3449 truncate_inode_pages(&inode
->i_data
, 0);
3450 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
3451 btrfs_is_free_space_inode(root
, inode
)))
3454 if (is_bad_inode(inode
)) {
3455 btrfs_orphan_del(NULL
, inode
);
3458 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3459 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3461 if (root
->fs_info
->log_root_recovering
) {
3462 BUG_ON(!list_empty(&BTRFS_I(inode
)->i_orphan
));
3466 if (inode
->i_nlink
> 0) {
3467 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3471 rsv
= btrfs_alloc_block_rsv(root
);
3473 btrfs_orphan_del(NULL
, inode
);
3476 rsv
->size
= min_size
;
3477 global_rsv
= &root
->fs_info
->global_block_rsv
;
3479 btrfs_i_size_write(inode
, 0);
3482 * This is a bit simpler than btrfs_truncate since
3484 * 1) We've already reserved our space for our orphan item in the
3486 * 2) We're going to delete the inode item, so we don't need to update
3489 * So we just need to reserve some slack space in case we add bytes when
3490 * doing the truncate.
3493 ret
= btrfs_block_rsv_refill_noflush(root
, rsv
, min_size
);
3496 * Try and steal from the global reserve since we will
3497 * likely not use this space anyway, we want to try as
3498 * hard as possible to get this to work.
3501 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, min_size
);
3504 printk(KERN_WARNING
"Could not get space for a "
3505 "delete, will truncate on mount %d\n", ret
);
3506 btrfs_orphan_del(NULL
, inode
);
3507 btrfs_free_block_rsv(root
, rsv
);
3511 trans
= btrfs_start_transaction(root
, 0);
3512 if (IS_ERR(trans
)) {
3513 btrfs_orphan_del(NULL
, inode
);
3514 btrfs_free_block_rsv(root
, rsv
);
3518 trans
->block_rsv
= rsv
;
3520 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3524 nr
= trans
->blocks_used
;
3525 btrfs_end_transaction(trans
, root
);
3527 btrfs_btree_balance_dirty(root
, nr
);
3530 btrfs_free_block_rsv(root
, rsv
);
3533 trans
->block_rsv
= root
->orphan_block_rsv
;
3534 ret
= btrfs_orphan_del(trans
, inode
);
3538 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3539 if (!(root
== root
->fs_info
->tree_root
||
3540 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
3541 btrfs_return_ino(root
, btrfs_ino(inode
));
3543 nr
= trans
->blocks_used
;
3544 btrfs_end_transaction(trans
, root
);
3545 btrfs_btree_balance_dirty(root
, nr
);
3547 end_writeback(inode
);
3552 * this returns the key found in the dir entry in the location pointer.
3553 * If no dir entries were found, location->objectid is 0.
3555 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3556 struct btrfs_key
*location
)
3558 const char *name
= dentry
->d_name
.name
;
3559 int namelen
= dentry
->d_name
.len
;
3560 struct btrfs_dir_item
*di
;
3561 struct btrfs_path
*path
;
3562 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3565 path
= btrfs_alloc_path();
3569 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
3574 if (IS_ERR_OR_NULL(di
))
3577 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3579 btrfs_free_path(path
);
3582 location
->objectid
= 0;
3587 * when we hit a tree root in a directory, the btrfs part of the inode
3588 * needs to be changed to reflect the root directory of the tree root. This
3589 * is kind of like crossing a mount point.
3591 static int fixup_tree_root_location(struct btrfs_root
*root
,
3593 struct dentry
*dentry
,
3594 struct btrfs_key
*location
,
3595 struct btrfs_root
**sub_root
)
3597 struct btrfs_path
*path
;
3598 struct btrfs_root
*new_root
;
3599 struct btrfs_root_ref
*ref
;
3600 struct extent_buffer
*leaf
;
3604 path
= btrfs_alloc_path();
3611 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3612 BTRFS_I(dir
)->root
->root_key
.objectid
,
3613 location
->objectid
);
3620 leaf
= path
->nodes
[0];
3621 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3622 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
3623 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3626 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3627 (unsigned long)(ref
+ 1),
3628 dentry
->d_name
.len
);
3632 btrfs_release_path(path
);
3634 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3635 if (IS_ERR(new_root
)) {
3636 err
= PTR_ERR(new_root
);
3640 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
3645 *sub_root
= new_root
;
3646 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
3647 location
->type
= BTRFS_INODE_ITEM_KEY
;
3648 location
->offset
= 0;
3651 btrfs_free_path(path
);
3655 static void inode_tree_add(struct inode
*inode
)
3657 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3658 struct btrfs_inode
*entry
;
3660 struct rb_node
*parent
;
3661 u64 ino
= btrfs_ino(inode
);
3663 p
= &root
->inode_tree
.rb_node
;
3666 if (inode_unhashed(inode
))
3669 spin_lock(&root
->inode_lock
);
3672 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3674 if (ino
< btrfs_ino(&entry
->vfs_inode
))
3675 p
= &parent
->rb_left
;
3676 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
3677 p
= &parent
->rb_right
;
3679 WARN_ON(!(entry
->vfs_inode
.i_state
&
3680 (I_WILL_FREE
| I_FREEING
)));
3681 rb_erase(parent
, &root
->inode_tree
);
3682 RB_CLEAR_NODE(parent
);
3683 spin_unlock(&root
->inode_lock
);
3687 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3688 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3689 spin_unlock(&root
->inode_lock
);
3692 static void inode_tree_del(struct inode
*inode
)
3694 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3697 spin_lock(&root
->inode_lock
);
3698 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3699 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3700 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3701 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3703 spin_unlock(&root
->inode_lock
);
3706 * Free space cache has inodes in the tree root, but the tree root has a
3707 * root_refs of 0, so this could end up dropping the tree root as a
3708 * snapshot, so we need the extra !root->fs_info->tree_root check to
3709 * make sure we don't drop it.
3711 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
3712 root
!= root
->fs_info
->tree_root
) {
3713 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
3714 spin_lock(&root
->inode_lock
);
3715 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3716 spin_unlock(&root
->inode_lock
);
3718 btrfs_add_dead_root(root
);
3722 int btrfs_invalidate_inodes(struct btrfs_root
*root
)
3724 struct rb_node
*node
;
3725 struct rb_node
*prev
;
3726 struct btrfs_inode
*entry
;
3727 struct inode
*inode
;
3730 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3732 spin_lock(&root
->inode_lock
);
3734 node
= root
->inode_tree
.rb_node
;
3738 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3740 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
3741 node
= node
->rb_left
;
3742 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
3743 node
= node
->rb_right
;
3749 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
3750 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
3754 prev
= rb_next(prev
);
3758 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3759 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
3760 inode
= igrab(&entry
->vfs_inode
);
3762 spin_unlock(&root
->inode_lock
);
3763 if (atomic_read(&inode
->i_count
) > 1)
3764 d_prune_aliases(inode
);
3766 * btrfs_drop_inode will have it removed from
3767 * the inode cache when its usage count
3772 spin_lock(&root
->inode_lock
);
3776 if (cond_resched_lock(&root
->inode_lock
))
3779 node
= rb_next(node
);
3781 spin_unlock(&root
->inode_lock
);
3785 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
3787 struct btrfs_iget_args
*args
= p
;
3788 inode
->i_ino
= args
->ino
;
3789 BTRFS_I(inode
)->root
= args
->root
;
3790 btrfs_set_inode_space_info(args
->root
, inode
);
3794 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
3796 struct btrfs_iget_args
*args
= opaque
;
3797 return args
->ino
== btrfs_ino(inode
) &&
3798 args
->root
== BTRFS_I(inode
)->root
;
3801 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
3803 struct btrfs_root
*root
)
3805 struct inode
*inode
;
3806 struct btrfs_iget_args args
;
3807 args
.ino
= objectid
;
3810 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
3811 btrfs_init_locked_inode
,
3816 /* Get an inode object given its location and corresponding root.
3817 * Returns in *is_new if the inode was read from disk
3819 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
3820 struct btrfs_root
*root
, int *new)
3822 struct inode
*inode
;
3824 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
3826 return ERR_PTR(-ENOMEM
);
3828 if (inode
->i_state
& I_NEW
) {
3829 BTRFS_I(inode
)->root
= root
;
3830 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
3831 btrfs_read_locked_inode(inode
);
3832 if (!is_bad_inode(inode
)) {
3833 inode_tree_add(inode
);
3834 unlock_new_inode(inode
);
3838 unlock_new_inode(inode
);
3840 inode
= ERR_PTR(-ESTALE
);
3847 static struct inode
*new_simple_dir(struct super_block
*s
,
3848 struct btrfs_key
*key
,
3849 struct btrfs_root
*root
)
3851 struct inode
*inode
= new_inode(s
);
3854 return ERR_PTR(-ENOMEM
);
3856 BTRFS_I(inode
)->root
= root
;
3857 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
3858 BTRFS_I(inode
)->dummy_inode
= 1;
3860 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
3861 inode
->i_op
= &simple_dir_inode_operations
;
3862 inode
->i_fop
= &simple_dir_operations
;
3863 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
3864 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
3869 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
3871 struct inode
*inode
;
3872 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3873 struct btrfs_root
*sub_root
= root
;
3874 struct btrfs_key location
;
3878 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3879 return ERR_PTR(-ENAMETOOLONG
);
3881 if (unlikely(d_need_lookup(dentry
))) {
3882 memcpy(&location
, dentry
->d_fsdata
, sizeof(struct btrfs_key
));
3883 kfree(dentry
->d_fsdata
);
3884 dentry
->d_fsdata
= NULL
;
3885 /* This thing is hashed, drop it for now */
3888 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
3892 return ERR_PTR(ret
);
3894 if (location
.objectid
== 0)
3897 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
3898 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
3902 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
3904 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
3905 ret
= fixup_tree_root_location(root
, dir
, dentry
,
3906 &location
, &sub_root
);
3909 inode
= ERR_PTR(ret
);
3911 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
3913 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
3915 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
3917 if (!IS_ERR(inode
) && root
!= sub_root
) {
3918 down_read(&root
->fs_info
->cleanup_work_sem
);
3919 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
3920 ret
= btrfs_orphan_cleanup(sub_root
);
3921 up_read(&root
->fs_info
->cleanup_work_sem
);
3923 inode
= ERR_PTR(ret
);
3929 static int btrfs_dentry_delete(const struct dentry
*dentry
)
3931 struct btrfs_root
*root
;
3933 if (!dentry
->d_inode
&& !IS_ROOT(dentry
))
3934 dentry
= dentry
->d_parent
;
3936 if (dentry
->d_inode
) {
3937 root
= BTRFS_I(dentry
->d_inode
)->root
;
3938 if (btrfs_root_refs(&root
->root_item
) == 0)
3944 static void btrfs_dentry_release(struct dentry
*dentry
)
3946 if (dentry
->d_fsdata
)
3947 kfree(dentry
->d_fsdata
);
3950 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
3951 struct nameidata
*nd
)
3955 ret
= d_splice_alias(btrfs_lookup_dentry(dir
, dentry
), dentry
);
3956 if (unlikely(d_need_lookup(dentry
))) {
3957 spin_lock(&dentry
->d_lock
);
3958 dentry
->d_flags
&= ~DCACHE_NEED_LOOKUP
;
3959 spin_unlock(&dentry
->d_lock
);
3964 unsigned char btrfs_filetype_table
[] = {
3965 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
3968 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
3971 struct inode
*inode
= filp
->f_dentry
->d_inode
;
3972 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3973 struct btrfs_item
*item
;
3974 struct btrfs_dir_item
*di
;
3975 struct btrfs_key key
;
3976 struct btrfs_key found_key
;
3977 struct btrfs_path
*path
;
3978 struct list_head ins_list
;
3979 struct list_head del_list
;
3982 struct extent_buffer
*leaf
;
3984 unsigned char d_type
;
3989 int key_type
= BTRFS_DIR_INDEX_KEY
;
3993 int is_curr
= 0; /* filp->f_pos points to the current index? */
3995 /* FIXME, use a real flag for deciding about the key type */
3996 if (root
->fs_info
->tree_root
== root
)
3997 key_type
= BTRFS_DIR_ITEM_KEY
;
3999 /* special case for "." */
4000 if (filp
->f_pos
== 0) {
4001 over
= filldir(dirent
, ".", 1,
4002 filp
->f_pos
, btrfs_ino(inode
), DT_DIR
);
4007 /* special case for .., just use the back ref */
4008 if (filp
->f_pos
== 1) {
4009 u64 pino
= parent_ino(filp
->f_path
.dentry
);
4010 over
= filldir(dirent
, "..", 2,
4011 filp
->f_pos
, pino
, DT_DIR
);
4016 path
= btrfs_alloc_path();
4022 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4023 INIT_LIST_HEAD(&ins_list
);
4024 INIT_LIST_HEAD(&del_list
);
4025 btrfs_get_delayed_items(inode
, &ins_list
, &del_list
);
4028 btrfs_set_key_type(&key
, key_type
);
4029 key
.offset
= filp
->f_pos
;
4030 key
.objectid
= btrfs_ino(inode
);
4032 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4037 leaf
= path
->nodes
[0];
4038 slot
= path
->slots
[0];
4039 if (slot
>= btrfs_header_nritems(leaf
)) {
4040 ret
= btrfs_next_leaf(root
, path
);
4048 item
= btrfs_item_nr(leaf
, slot
);
4049 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4051 if (found_key
.objectid
!= key
.objectid
)
4053 if (btrfs_key_type(&found_key
) != key_type
)
4055 if (found_key
.offset
< filp
->f_pos
)
4057 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
4058 btrfs_should_delete_dir_index(&del_list
,
4062 filp
->f_pos
= found_key
.offset
;
4065 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
4067 di_total
= btrfs_item_size(leaf
, item
);
4069 while (di_cur
< di_total
) {
4070 struct btrfs_key location
;
4073 if (verify_dir_item(root
, leaf
, di
))
4076 name_len
= btrfs_dir_name_len(leaf
, di
);
4077 if (name_len
<= sizeof(tmp_name
)) {
4078 name_ptr
= tmp_name
;
4080 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
4086 read_extent_buffer(leaf
, name_ptr
,
4087 (unsigned long)(di
+ 1), name_len
);
4089 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
4090 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
4094 q
.hash
= full_name_hash(q
.name
, q
.len
);
4095 tmp
= d_lookup(filp
->f_dentry
, &q
);
4097 struct btrfs_key
*newkey
;
4099 newkey
= kzalloc(sizeof(struct btrfs_key
),
4103 tmp
= d_alloc(filp
->f_dentry
, &q
);
4109 memcpy(newkey
, &location
,
4110 sizeof(struct btrfs_key
));
4111 tmp
->d_fsdata
= newkey
;
4112 tmp
->d_flags
|= DCACHE_NEED_LOOKUP
;
4119 /* is this a reference to our own snapshot? If so
4122 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
4123 location
.objectid
== root
->root_key
.objectid
) {
4127 over
= filldir(dirent
, name_ptr
, name_len
,
4128 found_key
.offset
, location
.objectid
,
4132 if (name_ptr
!= tmp_name
)
4137 di_len
= btrfs_dir_name_len(leaf
, di
) +
4138 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
4140 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
4146 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4149 ret
= btrfs_readdir_delayed_dir_index(filp
, dirent
, filldir
,
4155 /* Reached end of directory/root. Bump pos past the last item. */
4156 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4158 * 32-bit glibc will use getdents64, but then strtol -
4159 * so the last number we can serve is this.
4161 filp
->f_pos
= 0x7fffffff;
4167 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4168 btrfs_put_delayed_items(&ins_list
, &del_list
);
4169 btrfs_free_path(path
);
4173 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4175 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4176 struct btrfs_trans_handle
*trans
;
4178 bool nolock
= false;
4180 if (BTRFS_I(inode
)->dummy_inode
)
4183 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(root
, inode
))
4186 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
4188 trans
= btrfs_join_transaction_nolock(root
);
4190 trans
= btrfs_join_transaction(root
);
4192 return PTR_ERR(trans
);
4194 ret
= btrfs_end_transaction_nolock(trans
, root
);
4196 ret
= btrfs_commit_transaction(trans
, root
);
4202 * This is somewhat expensive, updating the tree every time the
4203 * inode changes. But, it is most likely to find the inode in cache.
4204 * FIXME, needs more benchmarking...there are no reasons other than performance
4205 * to keep or drop this code.
4207 void btrfs_dirty_inode(struct inode
*inode
, int flags
)
4209 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4210 struct btrfs_trans_handle
*trans
;
4213 if (BTRFS_I(inode
)->dummy_inode
)
4216 trans
= btrfs_join_transaction(root
);
4217 BUG_ON(IS_ERR(trans
));
4219 ret
= btrfs_update_inode(trans
, root
, inode
);
4220 if (ret
&& ret
== -ENOSPC
) {
4221 /* whoops, lets try again with the full transaction */
4222 btrfs_end_transaction(trans
, root
);
4223 trans
= btrfs_start_transaction(root
, 1);
4224 if (IS_ERR(trans
)) {
4225 printk_ratelimited(KERN_ERR
"btrfs: fail to "
4226 "dirty inode %llu error %ld\n",
4227 (unsigned long long)btrfs_ino(inode
),
4232 ret
= btrfs_update_inode(trans
, root
, inode
);
4234 printk_ratelimited(KERN_ERR
"btrfs: fail to "
4235 "dirty inode %llu error %d\n",
4236 (unsigned long long)btrfs_ino(inode
),
4240 btrfs_end_transaction(trans
, root
);
4241 if (BTRFS_I(inode
)->delayed_node
)
4242 btrfs_balance_delayed_items(root
);
4246 * find the highest existing sequence number in a directory
4247 * and then set the in-memory index_cnt variable to reflect
4248 * free sequence numbers
4250 static int btrfs_set_inode_index_count(struct inode
*inode
)
4252 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4253 struct btrfs_key key
, found_key
;
4254 struct btrfs_path
*path
;
4255 struct extent_buffer
*leaf
;
4258 key
.objectid
= btrfs_ino(inode
);
4259 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
4260 key
.offset
= (u64
)-1;
4262 path
= btrfs_alloc_path();
4266 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4269 /* FIXME: we should be able to handle this */
4275 * MAGIC NUMBER EXPLANATION:
4276 * since we search a directory based on f_pos we have to start at 2
4277 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4278 * else has to start at 2
4280 if (path
->slots
[0] == 0) {
4281 BTRFS_I(inode
)->index_cnt
= 2;
4287 leaf
= path
->nodes
[0];
4288 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4290 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4291 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4292 BTRFS_I(inode
)->index_cnt
= 2;
4296 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4298 btrfs_free_path(path
);
4303 * helper to find a free sequence number in a given directory. This current
4304 * code is very simple, later versions will do smarter things in the btree
4306 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4310 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4311 ret
= btrfs_inode_delayed_dir_index_count(dir
);
4313 ret
= btrfs_set_inode_index_count(dir
);
4319 *index
= BTRFS_I(dir
)->index_cnt
;
4320 BTRFS_I(dir
)->index_cnt
++;
4325 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4326 struct btrfs_root
*root
,
4328 const char *name
, int name_len
,
4329 u64 ref_objectid
, u64 objectid
, int mode
,
4332 struct inode
*inode
;
4333 struct btrfs_inode_item
*inode_item
;
4334 struct btrfs_key
*location
;
4335 struct btrfs_path
*path
;
4336 struct btrfs_inode_ref
*ref
;
4337 struct btrfs_key key
[2];
4343 path
= btrfs_alloc_path();
4345 return ERR_PTR(-ENOMEM
);
4347 inode
= new_inode(root
->fs_info
->sb
);
4349 btrfs_free_path(path
);
4350 return ERR_PTR(-ENOMEM
);
4354 * we have to initialize this early, so we can reclaim the inode
4355 * number if we fail afterwards in this function.
4357 inode
->i_ino
= objectid
;
4360 trace_btrfs_inode_request(dir
);
4362 ret
= btrfs_set_inode_index(dir
, index
);
4364 btrfs_free_path(path
);
4366 return ERR_PTR(ret
);
4370 * index_cnt is ignored for everything but a dir,
4371 * btrfs_get_inode_index_count has an explanation for the magic
4374 BTRFS_I(inode
)->index_cnt
= 2;
4375 BTRFS_I(inode
)->root
= root
;
4376 BTRFS_I(inode
)->generation
= trans
->transid
;
4377 inode
->i_generation
= BTRFS_I(inode
)->generation
;
4378 btrfs_set_inode_space_info(root
, inode
);
4385 key
[0].objectid
= objectid
;
4386 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4389 key
[1].objectid
= objectid
;
4390 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4391 key
[1].offset
= ref_objectid
;
4393 sizes
[0] = sizeof(struct btrfs_inode_item
);
4394 sizes
[1] = name_len
+ sizeof(*ref
);
4396 path
->leave_spinning
= 1;
4397 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4401 inode_init_owner(inode
, dir
, mode
);
4402 inode_set_bytes(inode
, 0);
4403 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4404 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4405 struct btrfs_inode_item
);
4406 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4408 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4409 struct btrfs_inode_ref
);
4410 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4411 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4412 ptr
= (unsigned long)(ref
+ 1);
4413 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4415 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4416 btrfs_free_path(path
);
4418 location
= &BTRFS_I(inode
)->location
;
4419 location
->objectid
= objectid
;
4420 location
->offset
= 0;
4421 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4423 btrfs_inherit_iflags(inode
, dir
);
4425 if (S_ISREG(mode
)) {
4426 if (btrfs_test_opt(root
, NODATASUM
))
4427 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4428 if (btrfs_test_opt(root
, NODATACOW
) ||
4429 (BTRFS_I(dir
)->flags
& BTRFS_INODE_NODATACOW
))
4430 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4433 insert_inode_hash(inode
);
4434 inode_tree_add(inode
);
4436 trace_btrfs_inode_new(inode
);
4437 btrfs_set_inode_last_trans(trans
, inode
);
4442 BTRFS_I(dir
)->index_cnt
--;
4443 btrfs_free_path(path
);
4445 return ERR_PTR(ret
);
4448 static inline u8
btrfs_inode_type(struct inode
*inode
)
4450 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4454 * utility function to add 'inode' into 'parent_inode' with
4455 * a give name and a given sequence number.
4456 * if 'add_backref' is true, also insert a backref from the
4457 * inode to the parent directory.
4459 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4460 struct inode
*parent_inode
, struct inode
*inode
,
4461 const char *name
, int name_len
, int add_backref
, u64 index
)
4464 struct btrfs_key key
;
4465 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4466 u64 ino
= btrfs_ino(inode
);
4467 u64 parent_ino
= btrfs_ino(parent_inode
);
4469 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4470 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4473 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4477 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4478 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4479 key
.objectid
, root
->root_key
.objectid
,
4480 parent_ino
, index
, name
, name_len
);
4481 } else if (add_backref
) {
4482 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
4487 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4489 btrfs_inode_type(inode
), index
);
4492 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4494 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4495 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4500 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4501 struct inode
*dir
, struct dentry
*dentry
,
4502 struct inode
*inode
, int backref
, u64 index
)
4504 int err
= btrfs_add_link(trans
, dir
, inode
,
4505 dentry
->d_name
.name
, dentry
->d_name
.len
,
4508 d_instantiate(dentry
, inode
);
4516 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4517 int mode
, dev_t rdev
)
4519 struct btrfs_trans_handle
*trans
;
4520 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4521 struct inode
*inode
= NULL
;
4525 unsigned long nr
= 0;
4528 if (!new_valid_dev(rdev
))
4532 * 2 for inode item and ref
4534 * 1 for xattr if selinux is on
4536 trans
= btrfs_start_transaction(root
, 5);
4538 return PTR_ERR(trans
);
4540 err
= btrfs_find_free_ino(root
, &objectid
);
4544 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4545 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4547 if (IS_ERR(inode
)) {
4548 err
= PTR_ERR(inode
);
4552 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4558 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4562 inode
->i_op
= &btrfs_special_inode_operations
;
4563 init_special_inode(inode
, inode
->i_mode
, rdev
);
4564 btrfs_update_inode(trans
, root
, inode
);
4567 nr
= trans
->blocks_used
;
4568 btrfs_end_transaction_throttle(trans
, root
);
4569 btrfs_btree_balance_dirty(root
, nr
);
4571 inode_dec_link_count(inode
);
4577 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4578 int mode
, struct nameidata
*nd
)
4580 struct btrfs_trans_handle
*trans
;
4581 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4582 struct inode
*inode
= NULL
;
4585 unsigned long nr
= 0;
4590 * 2 for inode item and ref
4592 * 1 for xattr if selinux is on
4594 trans
= btrfs_start_transaction(root
, 5);
4596 return PTR_ERR(trans
);
4598 err
= btrfs_find_free_ino(root
, &objectid
);
4602 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4603 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4605 if (IS_ERR(inode
)) {
4606 err
= PTR_ERR(inode
);
4610 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4616 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4620 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4621 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4622 inode
->i_fop
= &btrfs_file_operations
;
4623 inode
->i_op
= &btrfs_file_inode_operations
;
4624 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4627 nr
= trans
->blocks_used
;
4628 btrfs_end_transaction_throttle(trans
, root
);
4630 inode_dec_link_count(inode
);
4633 btrfs_btree_balance_dirty(root
, nr
);
4637 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
4638 struct dentry
*dentry
)
4640 struct btrfs_trans_handle
*trans
;
4641 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4642 struct inode
*inode
= old_dentry
->d_inode
;
4644 unsigned long nr
= 0;
4648 /* do not allow sys_link's with other subvols of the same device */
4649 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
4652 if (inode
->i_nlink
== ~0U)
4655 err
= btrfs_set_inode_index(dir
, &index
);
4660 * 2 items for inode and inode ref
4661 * 2 items for dir items
4662 * 1 item for parent inode
4664 trans
= btrfs_start_transaction(root
, 5);
4665 if (IS_ERR(trans
)) {
4666 err
= PTR_ERR(trans
);
4670 btrfs_inc_nlink(inode
);
4671 inode
->i_ctime
= CURRENT_TIME
;
4674 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
4679 struct dentry
*parent
= dentry
->d_parent
;
4680 err
= btrfs_update_inode(trans
, root
, inode
);
4682 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
4685 nr
= trans
->blocks_used
;
4686 btrfs_end_transaction_throttle(trans
, root
);
4689 inode_dec_link_count(inode
);
4692 btrfs_btree_balance_dirty(root
, nr
);
4696 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
4698 struct inode
*inode
= NULL
;
4699 struct btrfs_trans_handle
*trans
;
4700 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4702 int drop_on_err
= 0;
4705 unsigned long nr
= 1;
4708 * 2 items for inode and ref
4709 * 2 items for dir items
4710 * 1 for xattr if selinux is on
4712 trans
= btrfs_start_transaction(root
, 5);
4714 return PTR_ERR(trans
);
4716 err
= btrfs_find_free_ino(root
, &objectid
);
4720 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4721 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4722 S_IFDIR
| mode
, &index
);
4723 if (IS_ERR(inode
)) {
4724 err
= PTR_ERR(inode
);
4730 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4734 inode
->i_op
= &btrfs_dir_inode_operations
;
4735 inode
->i_fop
= &btrfs_dir_file_operations
;
4737 btrfs_i_size_write(inode
, 0);
4738 err
= btrfs_update_inode(trans
, root
, inode
);
4742 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
4743 dentry
->d_name
.len
, 0, index
);
4747 d_instantiate(dentry
, inode
);
4751 nr
= trans
->blocks_used
;
4752 btrfs_end_transaction_throttle(trans
, root
);
4755 btrfs_btree_balance_dirty(root
, nr
);
4759 /* helper for btfs_get_extent. Given an existing extent in the tree,
4760 * and an extent that you want to insert, deal with overlap and insert
4761 * the new extent into the tree.
4763 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
4764 struct extent_map
*existing
,
4765 struct extent_map
*em
,
4766 u64 map_start
, u64 map_len
)
4770 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
4771 start_diff
= map_start
- em
->start
;
4772 em
->start
= map_start
;
4774 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
4775 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
4776 em
->block_start
+= start_diff
;
4777 em
->block_len
-= start_diff
;
4779 return add_extent_mapping(em_tree
, em
);
4782 static noinline
int uncompress_inline(struct btrfs_path
*path
,
4783 struct inode
*inode
, struct page
*page
,
4784 size_t pg_offset
, u64 extent_offset
,
4785 struct btrfs_file_extent_item
*item
)
4788 struct extent_buffer
*leaf
= path
->nodes
[0];
4791 unsigned long inline_size
;
4795 WARN_ON(pg_offset
!= 0);
4796 compress_type
= btrfs_file_extent_compression(leaf
, item
);
4797 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4798 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4799 btrfs_item_nr(leaf
, path
->slots
[0]));
4800 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4803 ptr
= btrfs_file_extent_inline_start(item
);
4805 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
4807 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
4808 ret
= btrfs_decompress(compress_type
, tmp
, page
,
4809 extent_offset
, inline_size
, max_size
);
4811 char *kaddr
= kmap_atomic(page
, KM_USER0
);
4812 unsigned long copy_size
= min_t(u64
,
4813 PAGE_CACHE_SIZE
- pg_offset
,
4814 max_size
- extent_offset
);
4815 memset(kaddr
+ pg_offset
, 0, copy_size
);
4816 kunmap_atomic(kaddr
, KM_USER0
);
4823 * a bit scary, this does extent mapping from logical file offset to the disk.
4824 * the ugly parts come from merging extents from the disk with the in-ram
4825 * representation. This gets more complex because of the data=ordered code,
4826 * where the in-ram extents might be locked pending data=ordered completion.
4828 * This also copies inline extents directly into the page.
4831 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
4832 size_t pg_offset
, u64 start
, u64 len
,
4838 u64 extent_start
= 0;
4840 u64 objectid
= btrfs_ino(inode
);
4842 struct btrfs_path
*path
= NULL
;
4843 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4844 struct btrfs_file_extent_item
*item
;
4845 struct extent_buffer
*leaf
;
4846 struct btrfs_key found_key
;
4847 struct extent_map
*em
= NULL
;
4848 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4849 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4850 struct btrfs_trans_handle
*trans
= NULL
;
4854 read_lock(&em_tree
->lock
);
4855 em
= lookup_extent_mapping(em_tree
, start
, len
);
4857 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4858 read_unlock(&em_tree
->lock
);
4861 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
4862 free_extent_map(em
);
4863 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
4864 free_extent_map(em
);
4868 em
= alloc_extent_map();
4873 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4874 em
->start
= EXTENT_MAP_HOLE
;
4875 em
->orig_start
= EXTENT_MAP_HOLE
;
4877 em
->block_len
= (u64
)-1;
4880 path
= btrfs_alloc_path();
4886 * Chances are we'll be called again, so go ahead and do
4892 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
4893 objectid
, start
, trans
!= NULL
);
4900 if (path
->slots
[0] == 0)
4905 leaf
= path
->nodes
[0];
4906 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4907 struct btrfs_file_extent_item
);
4908 /* are we inside the extent that was found? */
4909 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4910 found_type
= btrfs_key_type(&found_key
);
4911 if (found_key
.objectid
!= objectid
||
4912 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4916 found_type
= btrfs_file_extent_type(leaf
, item
);
4917 extent_start
= found_key
.offset
;
4918 compress_type
= btrfs_file_extent_compression(leaf
, item
);
4919 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4920 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4921 extent_end
= extent_start
+
4922 btrfs_file_extent_num_bytes(leaf
, item
);
4923 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4925 size
= btrfs_file_extent_inline_len(leaf
, item
);
4926 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
4927 ~((u64
)root
->sectorsize
- 1);
4930 if (start
>= extent_end
) {
4932 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
4933 ret
= btrfs_next_leaf(root
, path
);
4940 leaf
= path
->nodes
[0];
4942 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4943 if (found_key
.objectid
!= objectid
||
4944 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
4946 if (start
+ len
<= found_key
.offset
)
4949 em
->len
= found_key
.offset
- start
;
4953 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4954 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4955 em
->start
= extent_start
;
4956 em
->len
= extent_end
- extent_start
;
4957 em
->orig_start
= extent_start
-
4958 btrfs_file_extent_offset(leaf
, item
);
4959 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
4961 em
->block_start
= EXTENT_MAP_HOLE
;
4964 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
4965 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4966 em
->compress_type
= compress_type
;
4967 em
->block_start
= bytenr
;
4968 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
4971 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
4972 em
->block_start
= bytenr
;
4973 em
->block_len
= em
->len
;
4974 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
4975 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
4978 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4982 size_t extent_offset
;
4985 em
->block_start
= EXTENT_MAP_INLINE
;
4986 if (!page
|| create
) {
4987 em
->start
= extent_start
;
4988 em
->len
= extent_end
- extent_start
;
4992 size
= btrfs_file_extent_inline_len(leaf
, item
);
4993 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
4994 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
4995 size
- extent_offset
);
4996 em
->start
= extent_start
+ extent_offset
;
4997 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
4998 ~((u64
)root
->sectorsize
- 1);
4999 em
->orig_start
= EXTENT_MAP_INLINE
;
5000 if (compress_type
) {
5001 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5002 em
->compress_type
= compress_type
;
5004 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
5005 if (create
== 0 && !PageUptodate(page
)) {
5006 if (btrfs_file_extent_compression(leaf
, item
) !=
5007 BTRFS_COMPRESS_NONE
) {
5008 ret
= uncompress_inline(path
, inode
, page
,
5010 extent_offset
, item
);
5014 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5016 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
5017 memset(map
+ pg_offset
+ copy_size
, 0,
5018 PAGE_CACHE_SIZE
- pg_offset
-
5023 flush_dcache_page(page
);
5024 } else if (create
&& PageUptodate(page
)) {
5028 free_extent_map(em
);
5031 btrfs_release_path(path
);
5032 trans
= btrfs_join_transaction(root
);
5035 return ERR_CAST(trans
);
5039 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5042 btrfs_mark_buffer_dirty(leaf
);
5044 set_extent_uptodate(io_tree
, em
->start
,
5045 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
5048 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
5055 em
->block_start
= EXTENT_MAP_HOLE
;
5056 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
5058 btrfs_release_path(path
);
5059 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
5060 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
5061 "[%llu %llu]\n", (unsigned long long)em
->start
,
5062 (unsigned long long)em
->len
,
5063 (unsigned long long)start
,
5064 (unsigned long long)len
);
5070 write_lock(&em_tree
->lock
);
5071 ret
= add_extent_mapping(em_tree
, em
);
5072 /* it is possible that someone inserted the extent into the tree
5073 * while we had the lock dropped. It is also possible that
5074 * an overlapping map exists in the tree
5076 if (ret
== -EEXIST
) {
5077 struct extent_map
*existing
;
5081 existing
= lookup_extent_mapping(em_tree
, start
, len
);
5082 if (existing
&& (existing
->start
> start
||
5083 existing
->start
+ existing
->len
<= start
)) {
5084 free_extent_map(existing
);
5088 existing
= lookup_extent_mapping(em_tree
, em
->start
,
5091 err
= merge_extent_mapping(em_tree
, existing
,
5094 free_extent_map(existing
);
5096 free_extent_map(em
);
5101 free_extent_map(em
);
5105 free_extent_map(em
);
5110 write_unlock(&em_tree
->lock
);
5113 trace_btrfs_get_extent(root
, em
);
5116 btrfs_free_path(path
);
5118 ret
= btrfs_end_transaction(trans
, root
);
5123 free_extent_map(em
);
5124 return ERR_PTR(err
);
5129 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
5130 size_t pg_offset
, u64 start
, u64 len
,
5133 struct extent_map
*em
;
5134 struct extent_map
*hole_em
= NULL
;
5135 u64 range_start
= start
;
5141 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
5146 * if our em maps to a hole, there might
5147 * actually be delalloc bytes behind it
5149 if (em
->block_start
!= EXTENT_MAP_HOLE
)
5155 /* check to see if we've wrapped (len == -1 or similar) */
5164 /* ok, we didn't find anything, lets look for delalloc */
5165 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
5166 end
, len
, EXTENT_DELALLOC
, 1);
5167 found_end
= range_start
+ found
;
5168 if (found_end
< range_start
)
5169 found_end
= (u64
)-1;
5172 * we didn't find anything useful, return
5173 * the original results from get_extent()
5175 if (range_start
> end
|| found_end
<= start
) {
5181 /* adjust the range_start to make sure it doesn't
5182 * go backwards from the start they passed in
5184 range_start
= max(start
,range_start
);
5185 found
= found_end
- range_start
;
5188 u64 hole_start
= start
;
5191 em
= alloc_extent_map();
5197 * when btrfs_get_extent can't find anything it
5198 * returns one huge hole
5200 * make sure what it found really fits our range, and
5201 * adjust to make sure it is based on the start from
5205 u64 calc_end
= extent_map_end(hole_em
);
5207 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
5208 free_extent_map(hole_em
);
5211 hole_start
= max(hole_em
->start
, start
);
5212 hole_len
= calc_end
- hole_start
;
5216 if (hole_em
&& range_start
> hole_start
) {
5217 /* our hole starts before our delalloc, so we
5218 * have to return just the parts of the hole
5219 * that go until the delalloc starts
5221 em
->len
= min(hole_len
,
5222 range_start
- hole_start
);
5223 em
->start
= hole_start
;
5224 em
->orig_start
= hole_start
;
5226 * don't adjust block start at all,
5227 * it is fixed at EXTENT_MAP_HOLE
5229 em
->block_start
= hole_em
->block_start
;
5230 em
->block_len
= hole_len
;
5232 em
->start
= range_start
;
5234 em
->orig_start
= range_start
;
5235 em
->block_start
= EXTENT_MAP_DELALLOC
;
5236 em
->block_len
= found
;
5238 } else if (hole_em
) {
5243 free_extent_map(hole_em
);
5245 free_extent_map(em
);
5246 return ERR_PTR(err
);
5251 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
5252 struct extent_map
*em
,
5255 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5256 struct btrfs_trans_handle
*trans
;
5257 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5258 struct btrfs_key ins
;
5261 bool insert
= false;
5264 * Ok if the extent map we looked up is a hole and is for the exact
5265 * range we want, there is no reason to allocate a new one, however if
5266 * it is not right then we need to free this one and drop the cache for
5269 if (em
->block_start
!= EXTENT_MAP_HOLE
|| em
->start
!= start
||
5271 free_extent_map(em
);
5274 btrfs_drop_extent_cache(inode
, start
, start
+ len
- 1, 0);
5277 trans
= btrfs_join_transaction(root
);
5279 return ERR_CAST(trans
);
5281 if (start
<= BTRFS_I(inode
)->disk_i_size
&& len
< 64 * 1024)
5282 btrfs_add_inode_defrag(trans
, inode
);
5284 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5286 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
5287 ret
= btrfs_reserve_extent(trans
, root
, len
, root
->sectorsize
, 0,
5288 alloc_hint
, (u64
)-1, &ins
, 1);
5295 em
= alloc_extent_map();
5297 em
= ERR_PTR(-ENOMEM
);
5303 em
->orig_start
= em
->start
;
5304 em
->len
= ins
.offset
;
5306 em
->block_start
= ins
.objectid
;
5307 em
->block_len
= ins
.offset
;
5308 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5311 * We need to do this because if we're using the original em we searched
5312 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5315 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5318 write_lock(&em_tree
->lock
);
5319 ret
= add_extent_mapping(em_tree
, em
);
5320 write_unlock(&em_tree
->lock
);
5323 btrfs_drop_extent_cache(inode
, start
, start
+ em
->len
- 1, 0);
5326 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
5327 ins
.offset
, ins
.offset
, 0);
5329 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
5333 btrfs_end_transaction(trans
, root
);
5338 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5339 * block must be cow'd
5341 static noinline
int can_nocow_odirect(struct btrfs_trans_handle
*trans
,
5342 struct inode
*inode
, u64 offset
, u64 len
)
5344 struct btrfs_path
*path
;
5346 struct extent_buffer
*leaf
;
5347 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5348 struct btrfs_file_extent_item
*fi
;
5349 struct btrfs_key key
;
5357 path
= btrfs_alloc_path();
5361 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
5366 slot
= path
->slots
[0];
5369 /* can't find the item, must cow */
5376 leaf
= path
->nodes
[0];
5377 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5378 if (key
.objectid
!= btrfs_ino(inode
) ||
5379 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5380 /* not our file or wrong item type, must cow */
5384 if (key
.offset
> offset
) {
5385 /* Wrong offset, must cow */
5389 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5390 found_type
= btrfs_file_extent_type(leaf
, fi
);
5391 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
5392 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
5393 /* not a regular extent, must cow */
5396 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
5397 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
5399 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
5400 if (extent_end
< offset
+ len
) {
5401 /* extent doesn't include our full range, must cow */
5405 if (btrfs_extent_readonly(root
, disk_bytenr
))
5409 * look for other files referencing this extent, if we
5410 * find any we must cow
5412 if (btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
5413 key
.offset
- backref_offset
, disk_bytenr
))
5417 * adjust disk_bytenr and num_bytes to cover just the bytes
5418 * in this extent we are about to write. If there
5419 * are any csums in that range we have to cow in order
5420 * to keep the csums correct
5422 disk_bytenr
+= backref_offset
;
5423 disk_bytenr
+= offset
- key
.offset
;
5424 num_bytes
= min(offset
+ len
, extent_end
) - offset
;
5425 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
5428 * all of the above have passed, it is safe to overwrite this extent
5433 btrfs_free_path(path
);
5437 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
5438 struct buffer_head
*bh_result
, int create
)
5440 struct extent_map
*em
;
5441 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5442 u64 start
= iblock
<< inode
->i_blkbits
;
5443 u64 len
= bh_result
->b_size
;
5444 struct btrfs_trans_handle
*trans
;
5446 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
5451 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5452 * io. INLINE is special, and we could probably kludge it in here, but
5453 * it's still buffered so for safety lets just fall back to the generic
5456 * For COMPRESSED we _have_ to read the entire extent in so we can
5457 * decompress it, so there will be buffering required no matter what we
5458 * do, so go ahead and fallback to buffered.
5460 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5461 * to buffered IO. Don't blame me, this is the price we pay for using
5464 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
5465 em
->block_start
== EXTENT_MAP_INLINE
) {
5466 free_extent_map(em
);
5470 /* Just a good old fashioned hole, return */
5471 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
5472 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
5473 free_extent_map(em
);
5474 /* DIO will do one hole at a time, so just unlock a sector */
5475 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
,
5476 start
+ root
->sectorsize
- 1, GFP_NOFS
);
5481 * We don't allocate a new extent in the following cases
5483 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5485 * 2) The extent is marked as PREALLOC. We're good to go here and can
5486 * just use the extent.
5490 len
= em
->len
- (start
- em
->start
);
5494 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
5495 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
5496 em
->block_start
!= EXTENT_MAP_HOLE
)) {
5501 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5502 type
= BTRFS_ORDERED_PREALLOC
;
5504 type
= BTRFS_ORDERED_NOCOW
;
5505 len
= min(len
, em
->len
- (start
- em
->start
));
5506 block_start
= em
->block_start
+ (start
- em
->start
);
5509 * we're not going to log anything, but we do need
5510 * to make sure the current transaction stays open
5511 * while we look for nocow cross refs
5513 trans
= btrfs_join_transaction(root
);
5517 if (can_nocow_odirect(trans
, inode
, start
, len
) == 1) {
5518 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
5519 block_start
, len
, len
, type
);
5520 btrfs_end_transaction(trans
, root
);
5522 free_extent_map(em
);
5527 btrfs_end_transaction(trans
, root
);
5531 * this will cow the extent, reset the len in case we changed
5534 len
= bh_result
->b_size
;
5535 em
= btrfs_new_extent_direct(inode
, em
, start
, len
);
5538 len
= min(len
, em
->len
- (start
- em
->start
));
5540 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
5541 EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DIRTY
, 1,
5544 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
5546 bh_result
->b_size
= len
;
5547 bh_result
->b_bdev
= em
->bdev
;
5548 set_buffer_mapped(bh_result
);
5549 if (create
&& !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5550 set_buffer_new(bh_result
);
5552 free_extent_map(em
);
5557 struct btrfs_dio_private
{
5558 struct inode
*inode
;
5565 /* number of bios pending for this dio */
5566 atomic_t pending_bios
;
5571 struct bio
*orig_bio
;
5574 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
5576 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5577 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
5578 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5579 struct inode
*inode
= dip
->inode
;
5580 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5582 u32
*private = dip
->csums
;
5584 start
= dip
->logical_offset
;
5586 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
5587 struct page
*page
= bvec
->bv_page
;
5590 unsigned long flags
;
5592 local_irq_save(flags
);
5593 kaddr
= kmap_atomic(page
, KM_IRQ0
);
5594 csum
= btrfs_csum_data(root
, kaddr
+ bvec
->bv_offset
,
5595 csum
, bvec
->bv_len
);
5596 btrfs_csum_final(csum
, (char *)&csum
);
5597 kunmap_atomic(kaddr
, KM_IRQ0
);
5598 local_irq_restore(flags
);
5600 flush_dcache_page(bvec
->bv_page
);
5601 if (csum
!= *private) {
5602 printk(KERN_ERR
"btrfs csum failed ino %llu off"
5603 " %llu csum %u private %u\n",
5604 (unsigned long long)btrfs_ino(inode
),
5605 (unsigned long long)start
,
5611 start
+= bvec
->bv_len
;
5614 } while (bvec
<= bvec_end
);
5616 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
5617 dip
->logical_offset
+ dip
->bytes
- 1, GFP_NOFS
);
5618 bio
->bi_private
= dip
->private;
5623 /* If we had a csum failure make sure to clear the uptodate flag */
5625 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5626 dio_end_io(bio
, err
);
5629 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
5631 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5632 struct inode
*inode
= dip
->inode
;
5633 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5634 struct btrfs_trans_handle
*trans
;
5635 struct btrfs_ordered_extent
*ordered
= NULL
;
5636 struct extent_state
*cached_state
= NULL
;
5637 u64 ordered_offset
= dip
->logical_offset
;
5638 u64 ordered_bytes
= dip
->bytes
;
5644 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
5652 trans
= btrfs_join_transaction(root
);
5653 if (IS_ERR(trans
)) {
5657 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5659 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
)) {
5660 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5662 err
= btrfs_update_inode_fallback(trans
, root
, inode
);
5666 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5667 ordered
->file_offset
+ ordered
->len
- 1, 0,
5668 &cached_state
, GFP_NOFS
);
5670 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
5671 ret
= btrfs_mark_extent_written(trans
, inode
,
5672 ordered
->file_offset
,
5673 ordered
->file_offset
+
5680 ret
= insert_reserved_file_extent(trans
, inode
,
5681 ordered
->file_offset
,
5687 BTRFS_FILE_EXTENT_REG
);
5688 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
5689 ordered
->file_offset
, ordered
->len
);
5697 add_pending_csums(trans
, inode
, ordered
->file_offset
, &ordered
->list
);
5698 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5699 if (!ret
|| !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
))
5700 btrfs_update_inode_fallback(trans
, root
, inode
);
5703 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5704 ordered
->file_offset
+ ordered
->len
- 1,
5705 &cached_state
, GFP_NOFS
);
5707 btrfs_delalloc_release_metadata(inode
, ordered
->len
);
5708 btrfs_end_transaction(trans
, root
);
5709 ordered_offset
= ordered
->file_offset
+ ordered
->len
;
5710 btrfs_put_ordered_extent(ordered
);
5711 btrfs_put_ordered_extent(ordered
);
5715 * our bio might span multiple ordered extents. If we haven't
5716 * completed the accounting for the whole dio, go back and try again
5718 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
5719 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
5724 bio
->bi_private
= dip
->private;
5729 /* If we had an error make sure to clear the uptodate flag */
5731 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5732 dio_end_io(bio
, err
);
5735 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
5736 struct bio
*bio
, int mirror_num
,
5737 unsigned long bio_flags
, u64 offset
)
5740 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5741 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
5746 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
5748 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5751 printk(KERN_ERR
"btrfs direct IO failed ino %llu rw %lu "
5752 "sector %#Lx len %u err no %d\n",
5753 (unsigned long long)btrfs_ino(dip
->inode
), bio
->bi_rw
,
5754 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
5758 * before atomic variable goto zero, we must make sure
5759 * dip->errors is perceived to be set.
5761 smp_mb__before_atomic_dec();
5764 /* if there are more bios still pending for this dio, just exit */
5765 if (!atomic_dec_and_test(&dip
->pending_bios
))
5769 bio_io_error(dip
->orig_bio
);
5771 set_bit(BIO_UPTODATE
, &dip
->orig_bio
->bi_flags
);
5772 bio_endio(dip
->orig_bio
, 0);
5778 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
5779 u64 first_sector
, gfp_t gfp_flags
)
5781 int nr_vecs
= bio_get_nr_vecs(bdev
);
5782 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
5785 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
5786 int rw
, u64 file_offset
, int skip_sum
,
5787 u32
*csums
, int async_submit
)
5789 int write
= rw
& REQ_WRITE
;
5790 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5794 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
5801 if (write
&& async_submit
) {
5802 ret
= btrfs_wq_submit_bio(root
->fs_info
,
5803 inode
, rw
, bio
, 0, 0,
5805 __btrfs_submit_bio_start_direct_io
,
5806 __btrfs_submit_bio_done
);
5810 * If we aren't doing async submit, calculate the csum of the
5813 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
5816 } else if (!skip_sum
) {
5817 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, bio
,
5818 file_offset
, csums
);
5824 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
5830 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
5833 struct inode
*inode
= dip
->inode
;
5834 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5835 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5837 struct bio
*orig_bio
= dip
->orig_bio
;
5838 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
5839 u64 start_sector
= orig_bio
->bi_sector
;
5840 u64 file_offset
= dip
->logical_offset
;
5844 u32
*csums
= dip
->csums
;
5846 int async_submit
= 0;
5847 int write
= rw
& REQ_WRITE
;
5849 map_length
= orig_bio
->bi_size
;
5850 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
5851 &map_length
, NULL
, 0);
5857 if (map_length
>= orig_bio
->bi_size
) {
5863 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
5866 bio
->bi_private
= dip
;
5867 bio
->bi_end_io
= btrfs_end_dio_bio
;
5868 atomic_inc(&dip
->pending_bios
);
5870 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
5871 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
5872 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
5873 bvec
->bv_offset
) < bvec
->bv_len
)) {
5875 * inc the count before we submit the bio so
5876 * we know the end IO handler won't happen before
5877 * we inc the count. Otherwise, the dip might get freed
5878 * before we're done setting it up
5880 atomic_inc(&dip
->pending_bios
);
5881 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
5882 file_offset
, skip_sum
,
5883 csums
, async_submit
);
5886 atomic_dec(&dip
->pending_bios
);
5890 /* Write's use the ordered csums */
5891 if (!write
&& !skip_sum
)
5892 csums
= csums
+ nr_pages
;
5893 start_sector
+= submit_len
>> 9;
5894 file_offset
+= submit_len
;
5899 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
5900 start_sector
, GFP_NOFS
);
5903 bio
->bi_private
= dip
;
5904 bio
->bi_end_io
= btrfs_end_dio_bio
;
5906 map_length
= orig_bio
->bi_size
;
5907 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
5908 &map_length
, NULL
, 0);
5914 submit_len
+= bvec
->bv_len
;
5921 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
5922 csums
, async_submit
);
5930 * before atomic variable goto zero, we must
5931 * make sure dip->errors is perceived to be set.
5933 smp_mb__before_atomic_dec();
5934 if (atomic_dec_and_test(&dip
->pending_bios
))
5935 bio_io_error(dip
->orig_bio
);
5937 /* bio_end_io() will handle error, so we needn't return it */
5941 static void btrfs_submit_direct(int rw
, struct bio
*bio
, struct inode
*inode
,
5944 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5945 struct btrfs_dio_private
*dip
;
5946 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5948 int write
= rw
& REQ_WRITE
;
5951 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
5953 dip
= kmalloc(sizeof(*dip
), GFP_NOFS
);
5960 /* Write's use the ordered csum stuff, so we don't need dip->csums */
5961 if (!write
&& !skip_sum
) {
5962 dip
->csums
= kmalloc(sizeof(u32
) * bio
->bi_vcnt
, GFP_NOFS
);
5970 dip
->private = bio
->bi_private
;
5972 dip
->logical_offset
= file_offset
;
5976 dip
->bytes
+= bvec
->bv_len
;
5978 } while (bvec
<= (bio
->bi_io_vec
+ bio
->bi_vcnt
- 1));
5980 dip
->disk_bytenr
= (u64
)bio
->bi_sector
<< 9;
5981 bio
->bi_private
= dip
;
5983 dip
->orig_bio
= bio
;
5984 atomic_set(&dip
->pending_bios
, 0);
5987 bio
->bi_end_io
= btrfs_endio_direct_write
;
5989 bio
->bi_end_io
= btrfs_endio_direct_read
;
5991 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
5996 * If this is a write, we need to clean up the reserved space and kill
5997 * the ordered extent.
6000 struct btrfs_ordered_extent
*ordered
;
6001 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
6002 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
6003 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
6004 btrfs_free_reserved_extent(root
, ordered
->start
,
6006 btrfs_put_ordered_extent(ordered
);
6007 btrfs_put_ordered_extent(ordered
);
6009 bio_endio(bio
, ret
);
6012 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
6013 const struct iovec
*iov
, loff_t offset
,
6014 unsigned long nr_segs
)
6020 unsigned blocksize_mask
= root
->sectorsize
- 1;
6021 ssize_t retval
= -EINVAL
;
6022 loff_t end
= offset
;
6024 if (offset
& blocksize_mask
)
6027 /* Check the memory alignment. Blocks cannot straddle pages */
6028 for (seg
= 0; seg
< nr_segs
; seg
++) {
6029 addr
= (unsigned long)iov
[seg
].iov_base
;
6030 size
= iov
[seg
].iov_len
;
6032 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
6035 /* If this is a write we don't need to check anymore */
6040 * Check to make sure we don't have duplicate iov_base's in this
6041 * iovec, if so return EINVAL, otherwise we'll get csum errors
6042 * when reading back.
6044 for (i
= seg
+ 1; i
< nr_segs
; i
++) {
6045 if (iov
[seg
].iov_base
== iov
[i
].iov_base
)
6053 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
6054 const struct iovec
*iov
, loff_t offset
,
6055 unsigned long nr_segs
)
6057 struct file
*file
= iocb
->ki_filp
;
6058 struct inode
*inode
= file
->f_mapping
->host
;
6059 struct btrfs_ordered_extent
*ordered
;
6060 struct extent_state
*cached_state
= NULL
;
6061 u64 lockstart
, lockend
;
6063 int writing
= rw
& WRITE
;
6065 size_t count
= iov_length(iov
, nr_segs
);
6067 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
6073 lockend
= offset
+ count
- 1;
6076 ret
= btrfs_delalloc_reserve_space(inode
, count
);
6082 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6083 0, &cached_state
, GFP_NOFS
);
6085 * We're concerned with the entire range that we're going to be
6086 * doing DIO to, so we need to make sure theres no ordered
6087 * extents in this range.
6089 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
6090 lockend
- lockstart
+ 1);
6093 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6094 &cached_state
, GFP_NOFS
);
6095 btrfs_start_ordered_extent(inode
, ordered
, 1);
6096 btrfs_put_ordered_extent(ordered
);
6101 * we don't use btrfs_set_extent_delalloc because we don't want
6102 * the dirty or uptodate bits
6105 write_bits
= EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
;
6106 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6107 EXTENT_DELALLOC
, 0, NULL
, &cached_state
,
6110 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6111 lockend
, EXTENT_LOCKED
| write_bits
,
6112 1, 0, &cached_state
, GFP_NOFS
);
6117 free_extent_state(cached_state
);
6118 cached_state
= NULL
;
6120 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
6121 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
6122 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
6123 btrfs_submit_direct
, 0);
6125 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
6126 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
,
6127 offset
+ iov_length(iov
, nr_segs
) - 1,
6128 EXTENT_LOCKED
| write_bits
, 1, 0,
6129 &cached_state
, GFP_NOFS
);
6130 } else if (ret
>= 0 && ret
< iov_length(iov
, nr_segs
)) {
6132 * We're falling back to buffered, unlock the section we didn't
6135 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
+ ret
,
6136 offset
+ iov_length(iov
, nr_segs
) - 1,
6137 EXTENT_LOCKED
| write_bits
, 1, 0,
6138 &cached_state
, GFP_NOFS
);
6141 free_extent_state(cached_state
);
6145 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
6146 __u64 start
, __u64 len
)
6148 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
6151 int btrfs_readpage(struct file
*file
, struct page
*page
)
6153 struct extent_io_tree
*tree
;
6154 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6155 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
6158 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
6160 struct extent_io_tree
*tree
;
6163 if (current
->flags
& PF_MEMALLOC
) {
6164 redirty_page_for_writepage(wbc
, page
);
6168 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6169 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
6172 int btrfs_writepages(struct address_space
*mapping
,
6173 struct writeback_control
*wbc
)
6175 struct extent_io_tree
*tree
;
6177 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6178 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
6182 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
6183 struct list_head
*pages
, unsigned nr_pages
)
6185 struct extent_io_tree
*tree
;
6186 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6187 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
6190 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6192 struct extent_io_tree
*tree
;
6193 struct extent_map_tree
*map
;
6196 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6197 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
6198 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
6200 ClearPagePrivate(page
);
6201 set_page_private(page
, 0);
6202 page_cache_release(page
);
6207 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6209 if (PageWriteback(page
) || PageDirty(page
))
6211 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
6214 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
6216 struct extent_io_tree
*tree
;
6217 struct btrfs_ordered_extent
*ordered
;
6218 struct extent_state
*cached_state
= NULL
;
6219 u64 page_start
= page_offset(page
);
6220 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6224 * we have the page locked, so new writeback can't start,
6225 * and the dirty bit won't be cleared while we are here.
6227 * Wait for IO on this page so that we can safely clear
6228 * the PagePrivate2 bit and do ordered accounting
6230 wait_on_page_writeback(page
);
6232 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6234 btrfs_releasepage(page
, GFP_NOFS
);
6237 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6239 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
6243 * IO on this page will never be started, so we need
6244 * to account for any ordered extents now
6246 clear_extent_bit(tree
, page_start
, page_end
,
6247 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6248 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
, 1, 0,
6249 &cached_state
, GFP_NOFS
);
6251 * whoever cleared the private bit is responsible
6252 * for the finish_ordered_io
6254 if (TestClearPagePrivate2(page
)) {
6255 btrfs_finish_ordered_io(page
->mapping
->host
,
6256 page_start
, page_end
);
6258 btrfs_put_ordered_extent(ordered
);
6259 cached_state
= NULL
;
6260 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6263 clear_extent_bit(tree
, page_start
, page_end
,
6264 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
6265 EXTENT_DO_ACCOUNTING
, 1, 1, &cached_state
, GFP_NOFS
);
6266 __btrfs_releasepage(page
, GFP_NOFS
);
6268 ClearPageChecked(page
);
6269 if (PagePrivate(page
)) {
6270 ClearPagePrivate(page
);
6271 set_page_private(page
, 0);
6272 page_cache_release(page
);
6277 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6278 * called from a page fault handler when a page is first dirtied. Hence we must
6279 * be careful to check for EOF conditions here. We set the page up correctly
6280 * for a written page which means we get ENOSPC checking when writing into
6281 * holes and correct delalloc and unwritten extent mapping on filesystems that
6282 * support these features.
6284 * We are not allowed to take the i_mutex here so we have to play games to
6285 * protect against truncate races as the page could now be beyond EOF. Because
6286 * vmtruncate() writes the inode size before removing pages, once we have the
6287 * page lock we can determine safely if the page is beyond EOF. If it is not
6288 * beyond EOF, then the page is guaranteed safe against truncation until we
6291 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
6293 struct page
*page
= vmf
->page
;
6294 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
6295 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6296 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6297 struct btrfs_ordered_extent
*ordered
;
6298 struct extent_state
*cached_state
= NULL
;
6300 unsigned long zero_start
;
6306 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
6310 else /* -ENOSPC, -EIO, etc */
6311 ret
= VM_FAULT_SIGBUS
;
6315 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
6318 size
= i_size_read(inode
);
6319 page_start
= page_offset(page
);
6320 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6322 if ((page
->mapping
!= inode
->i_mapping
) ||
6323 (page_start
>= size
)) {
6324 /* page got truncated out from underneath us */
6327 wait_on_page_writeback(page
);
6329 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
6331 set_page_extent_mapped(page
);
6334 * we can't set the delalloc bits if there are pending ordered
6335 * extents. Drop our locks and wait for them to finish
6337 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6339 unlock_extent_cached(io_tree
, page_start
, page_end
,
6340 &cached_state
, GFP_NOFS
);
6342 btrfs_start_ordered_extent(inode
, ordered
, 1);
6343 btrfs_put_ordered_extent(ordered
);
6348 * XXX - page_mkwrite gets called every time the page is dirtied, even
6349 * if it was already dirty, so for space accounting reasons we need to
6350 * clear any delalloc bits for the range we are fixing to save. There
6351 * is probably a better way to do this, but for now keep consistent with
6352 * prepare_pages in the normal write path.
6354 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
6355 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
6356 0, 0, &cached_state
, GFP_NOFS
);
6358 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
6361 unlock_extent_cached(io_tree
, page_start
, page_end
,
6362 &cached_state
, GFP_NOFS
);
6363 ret
= VM_FAULT_SIGBUS
;
6368 /* page is wholly or partially inside EOF */
6369 if (page_start
+ PAGE_CACHE_SIZE
> size
)
6370 zero_start
= size
& ~PAGE_CACHE_MASK
;
6372 zero_start
= PAGE_CACHE_SIZE
;
6374 if (zero_start
!= PAGE_CACHE_SIZE
) {
6376 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
6377 flush_dcache_page(page
);
6380 ClearPageChecked(page
);
6381 set_page_dirty(page
);
6382 SetPageUptodate(page
);
6384 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
6385 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
6387 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
6391 return VM_FAULT_LOCKED
;
6393 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
6398 static int btrfs_truncate(struct inode
*inode
)
6400 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6401 struct btrfs_block_rsv
*rsv
;
6404 struct btrfs_trans_handle
*trans
;
6406 u64 mask
= root
->sectorsize
- 1;
6407 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
6409 ret
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
6413 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
6414 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
6417 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6418 * 3 things going on here
6420 * 1) We need to reserve space for our orphan item and the space to
6421 * delete our orphan item. Lord knows we don't want to have a dangling
6422 * orphan item because we didn't reserve space to remove it.
6424 * 2) We need to reserve space to update our inode.
6426 * 3) We need to have something to cache all the space that is going to
6427 * be free'd up by the truncate operation, but also have some slack
6428 * space reserved in case it uses space during the truncate (thank you
6429 * very much snapshotting).
6431 * And we need these to all be seperate. The fact is we can use alot of
6432 * space doing the truncate, and we have no earthly idea how much space
6433 * we will use, so we need the truncate reservation to be seperate so it
6434 * doesn't end up using space reserved for updating the inode or
6435 * removing the orphan item. We also need to be able to stop the
6436 * transaction and start a new one, which means we need to be able to
6437 * update the inode several times, and we have no idea of knowing how
6438 * many times that will be, so we can't just reserve 1 item for the
6439 * entirety of the opration, so that has to be done seperately as well.
6440 * Then there is the orphan item, which does indeed need to be held on
6441 * to for the whole operation, and we need nobody to touch this reserved
6442 * space except the orphan code.
6444 * So that leaves us with
6446 * 1) root->orphan_block_rsv - for the orphan deletion.
6447 * 2) rsv - for the truncate reservation, which we will steal from the
6448 * transaction reservation.
6449 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6450 * updating the inode.
6452 rsv
= btrfs_alloc_block_rsv(root
);
6455 rsv
->size
= min_size
;
6458 * 1 for the truncate slack space
6459 * 1 for the orphan item we're going to add
6460 * 1 for the orphan item deletion
6461 * 1 for updating the inode.
6463 trans
= btrfs_start_transaction(root
, 4);
6464 if (IS_ERR(trans
)) {
6465 err
= PTR_ERR(trans
);
6469 /* Migrate the slack space for the truncate to our reserve */
6470 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
6474 ret
= btrfs_orphan_add(trans
, inode
);
6476 btrfs_end_transaction(trans
, root
);
6481 * setattr is responsible for setting the ordered_data_close flag,
6482 * but that is only tested during the last file release. That
6483 * could happen well after the next commit, leaving a great big
6484 * window where new writes may get lost if someone chooses to write
6485 * to this file after truncating to zero
6487 * The inode doesn't have any dirty data here, and so if we commit
6488 * this is a noop. If someone immediately starts writing to the inode
6489 * it is very likely we'll catch some of their writes in this
6490 * transaction, and the commit will find this file on the ordered
6491 * data list with good things to send down.
6493 * This is a best effort solution, there is still a window where
6494 * using truncate to replace the contents of the file will
6495 * end up with a zero length file after a crash.
6497 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
6498 btrfs_add_ordered_operation(trans
, root
, inode
);
6501 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
);
6504 * This can only happen with the original transaction we
6505 * started above, every other time we shouldn't have a
6506 * transaction started yet.
6515 /* Just need the 1 for updating the inode */
6516 trans
= btrfs_start_transaction(root
, 1);
6517 if (IS_ERR(trans
)) {
6518 err
= PTR_ERR(trans
);
6523 trans
->block_rsv
= rsv
;
6525 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
6527 BTRFS_EXTENT_DATA_KEY
);
6528 if (ret
!= -EAGAIN
) {
6533 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
6534 ret
= btrfs_update_inode(trans
, root
, inode
);
6540 nr
= trans
->blocks_used
;
6541 btrfs_end_transaction(trans
, root
);
6543 btrfs_btree_balance_dirty(root
, nr
);
6546 if (ret
== 0 && inode
->i_nlink
> 0) {
6547 trans
->block_rsv
= root
->orphan_block_rsv
;
6548 ret
= btrfs_orphan_del(trans
, inode
);
6551 } else if (ret
&& inode
->i_nlink
> 0) {
6553 * Failed to do the truncate, remove us from the in memory
6556 ret
= btrfs_orphan_del(NULL
, inode
);
6560 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
6561 ret
= btrfs_update_inode(trans
, root
, inode
);
6565 nr
= trans
->blocks_used
;
6566 ret
= btrfs_end_transaction_throttle(trans
, root
);
6567 btrfs_btree_balance_dirty(root
, nr
);
6571 btrfs_free_block_rsv(root
, rsv
);
6580 * create a new subvolume directory/inode (helper for the ioctl).
6582 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
6583 struct btrfs_root
*new_root
, u64 new_dirid
)
6585 struct inode
*inode
;
6589 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
6590 new_dirid
, S_IFDIR
| 0700, &index
);
6592 return PTR_ERR(inode
);
6593 inode
->i_op
= &btrfs_dir_inode_operations
;
6594 inode
->i_fop
= &btrfs_dir_file_operations
;
6596 set_nlink(inode
, 1);
6597 btrfs_i_size_write(inode
, 0);
6599 err
= btrfs_update_inode(trans
, new_root
, inode
);
6606 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
6608 struct btrfs_inode
*ei
;
6609 struct inode
*inode
;
6611 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
6616 ei
->space_info
= NULL
;
6620 ei
->last_sub_trans
= 0;
6621 ei
->logged_trans
= 0;
6622 ei
->delalloc_bytes
= 0;
6623 ei
->disk_i_size
= 0;
6626 ei
->index_cnt
= (u64
)-1;
6627 ei
->last_unlink_trans
= 0;
6629 spin_lock_init(&ei
->lock
);
6630 ei
->outstanding_extents
= 0;
6631 ei
->reserved_extents
= 0;
6633 ei
->ordered_data_close
= 0;
6634 ei
->orphan_meta_reserved
= 0;
6635 ei
->dummy_inode
= 0;
6637 ei
->delalloc_meta_reserved
= 0;
6638 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
6640 ei
->delayed_node
= NULL
;
6642 inode
= &ei
->vfs_inode
;
6643 extent_map_tree_init(&ei
->extent_tree
);
6644 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
6645 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
6646 mutex_init(&ei
->log_mutex
);
6647 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
6648 INIT_LIST_HEAD(&ei
->i_orphan
);
6649 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
6650 INIT_LIST_HEAD(&ei
->ordered_operations
);
6651 RB_CLEAR_NODE(&ei
->rb_node
);
6656 static void btrfs_i_callback(struct rcu_head
*head
)
6658 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
6659 INIT_LIST_HEAD(&inode
->i_dentry
);
6660 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
6663 void btrfs_destroy_inode(struct inode
*inode
)
6665 struct btrfs_ordered_extent
*ordered
;
6666 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6668 WARN_ON(!list_empty(&inode
->i_dentry
));
6669 WARN_ON(inode
->i_data
.nrpages
);
6670 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
6671 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
6672 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
6673 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
6676 * This can happen where we create an inode, but somebody else also
6677 * created the same inode and we need to destroy the one we already
6684 * Make sure we're properly removed from the ordered operation
6688 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
6689 spin_lock(&root
->fs_info
->ordered_extent_lock
);
6690 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
6691 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
6694 spin_lock(&root
->orphan_lock
);
6695 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
6696 printk(KERN_INFO
"BTRFS: inode %llu still on the orphan list\n",
6697 (unsigned long long)btrfs_ino(inode
));
6698 list_del_init(&BTRFS_I(inode
)->i_orphan
);
6700 spin_unlock(&root
->orphan_lock
);
6703 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
6707 printk(KERN_ERR
"btrfs found ordered "
6708 "extent %llu %llu on inode cleanup\n",
6709 (unsigned long long)ordered
->file_offset
,
6710 (unsigned long long)ordered
->len
);
6711 btrfs_remove_ordered_extent(inode
, ordered
);
6712 btrfs_put_ordered_extent(ordered
);
6713 btrfs_put_ordered_extent(ordered
);
6716 inode_tree_del(inode
);
6717 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
6719 btrfs_remove_delayed_node(inode
);
6720 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
6723 int btrfs_drop_inode(struct inode
*inode
)
6725 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6727 if (btrfs_root_refs(&root
->root_item
) == 0 &&
6728 !btrfs_is_free_space_inode(root
, inode
))
6731 return generic_drop_inode(inode
);
6734 static void init_once(void *foo
)
6736 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
6738 inode_init_once(&ei
->vfs_inode
);
6741 void btrfs_destroy_cachep(void)
6743 if (btrfs_inode_cachep
)
6744 kmem_cache_destroy(btrfs_inode_cachep
);
6745 if (btrfs_trans_handle_cachep
)
6746 kmem_cache_destroy(btrfs_trans_handle_cachep
);
6747 if (btrfs_transaction_cachep
)
6748 kmem_cache_destroy(btrfs_transaction_cachep
);
6749 if (btrfs_path_cachep
)
6750 kmem_cache_destroy(btrfs_path_cachep
);
6751 if (btrfs_free_space_cachep
)
6752 kmem_cache_destroy(btrfs_free_space_cachep
);
6755 int btrfs_init_cachep(void)
6757 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
6758 sizeof(struct btrfs_inode
), 0,
6759 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
6760 if (!btrfs_inode_cachep
)
6763 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
6764 sizeof(struct btrfs_trans_handle
), 0,
6765 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6766 if (!btrfs_trans_handle_cachep
)
6769 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
6770 sizeof(struct btrfs_transaction
), 0,
6771 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6772 if (!btrfs_transaction_cachep
)
6775 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
6776 sizeof(struct btrfs_path
), 0,
6777 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6778 if (!btrfs_path_cachep
)
6781 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space_cache",
6782 sizeof(struct btrfs_free_space
), 0,
6783 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6784 if (!btrfs_free_space_cachep
)
6789 btrfs_destroy_cachep();
6793 static int btrfs_getattr(struct vfsmount
*mnt
,
6794 struct dentry
*dentry
, struct kstat
*stat
)
6796 struct inode
*inode
= dentry
->d_inode
;
6797 u32 blocksize
= inode
->i_sb
->s_blocksize
;
6799 generic_fillattr(inode
, stat
);
6800 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
6801 stat
->blksize
= PAGE_CACHE_SIZE
;
6802 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
6803 ALIGN(BTRFS_I(inode
)->delalloc_bytes
, blocksize
)) >> 9;
6808 * If a file is moved, it will inherit the cow and compression flags of the new
6811 static void fixup_inode_flags(struct inode
*dir
, struct inode
*inode
)
6813 struct btrfs_inode
*b_dir
= BTRFS_I(dir
);
6814 struct btrfs_inode
*b_inode
= BTRFS_I(inode
);
6816 if (b_dir
->flags
& BTRFS_INODE_NODATACOW
)
6817 b_inode
->flags
|= BTRFS_INODE_NODATACOW
;
6819 b_inode
->flags
&= ~BTRFS_INODE_NODATACOW
;
6821 if (b_dir
->flags
& BTRFS_INODE_COMPRESS
)
6822 b_inode
->flags
|= BTRFS_INODE_COMPRESS
;
6824 b_inode
->flags
&= ~BTRFS_INODE_COMPRESS
;
6827 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
6828 struct inode
*new_dir
, struct dentry
*new_dentry
)
6830 struct btrfs_trans_handle
*trans
;
6831 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
6832 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
6833 struct inode
*new_inode
= new_dentry
->d_inode
;
6834 struct inode
*old_inode
= old_dentry
->d_inode
;
6835 struct timespec ctime
= CURRENT_TIME
;
6839 u64 old_ino
= btrfs_ino(old_inode
);
6841 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
6844 /* we only allow rename subvolume link between subvolumes */
6845 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
6848 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
6849 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
6852 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
6853 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
6856 * we're using rename to replace one file with another.
6857 * and the replacement file is large. Start IO on it now so
6858 * we don't add too much work to the end of the transaction
6860 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
6861 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
6862 filemap_flush(old_inode
->i_mapping
);
6864 /* close the racy window with snapshot create/destroy ioctl */
6865 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
6866 down_read(&root
->fs_info
->subvol_sem
);
6868 * We want to reserve the absolute worst case amount of items. So if
6869 * both inodes are subvols and we need to unlink them then that would
6870 * require 4 item modifications, but if they are both normal inodes it
6871 * would require 5 item modifications, so we'll assume their normal
6872 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6873 * should cover the worst case number of items we'll modify.
6875 trans
= btrfs_start_transaction(root
, 20);
6876 if (IS_ERR(trans
)) {
6877 ret
= PTR_ERR(trans
);
6882 btrfs_record_root_in_trans(trans
, dest
);
6884 ret
= btrfs_set_inode_index(new_dir
, &index
);
6888 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6889 /* force full log commit if subvolume involved. */
6890 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
6892 ret
= btrfs_insert_inode_ref(trans
, dest
,
6893 new_dentry
->d_name
.name
,
6894 new_dentry
->d_name
.len
,
6896 btrfs_ino(new_dir
), index
);
6900 * this is an ugly little race, but the rename is required
6901 * to make sure that if we crash, the inode is either at the
6902 * old name or the new one. pinning the log transaction lets
6903 * us make sure we don't allow a log commit to come in after
6904 * we unlink the name but before we add the new name back in.
6906 btrfs_pin_log_trans(root
);
6909 * make sure the inode gets flushed if it is replacing
6912 if (new_inode
&& new_inode
->i_size
&& S_ISREG(old_inode
->i_mode
))
6913 btrfs_add_ordered_operation(trans
, root
, old_inode
);
6915 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
6916 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
6917 old_inode
->i_ctime
= ctime
;
6919 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
6920 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
6922 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6923 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
6924 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
6925 old_dentry
->d_name
.name
,
6926 old_dentry
->d_name
.len
);
6928 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
6929 old_dentry
->d_inode
,
6930 old_dentry
->d_name
.name
,
6931 old_dentry
->d_name
.len
);
6933 ret
= btrfs_update_inode(trans
, root
, old_inode
);
6938 new_inode
->i_ctime
= CURRENT_TIME
;
6939 if (unlikely(btrfs_ino(new_inode
) ==
6940 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
6941 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
6942 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
6944 new_dentry
->d_name
.name
,
6945 new_dentry
->d_name
.len
);
6946 BUG_ON(new_inode
->i_nlink
== 0);
6948 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
6949 new_dentry
->d_inode
,
6950 new_dentry
->d_name
.name
,
6951 new_dentry
->d_name
.len
);
6954 if (new_inode
->i_nlink
== 0) {
6955 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
6960 fixup_inode_flags(new_dir
, old_inode
);
6962 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
6963 new_dentry
->d_name
.name
,
6964 new_dentry
->d_name
.len
, 0, index
);
6967 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
6968 struct dentry
*parent
= new_dentry
->d_parent
;
6969 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
6970 btrfs_end_log_trans(root
);
6973 btrfs_end_transaction_throttle(trans
, root
);
6975 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
6976 up_read(&root
->fs_info
->subvol_sem
);
6982 * some fairly slow code that needs optimization. This walks the list
6983 * of all the inodes with pending delalloc and forces them to disk.
6985 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
6987 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
6988 struct btrfs_inode
*binode
;
6989 struct inode
*inode
;
6991 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
6994 spin_lock(&root
->fs_info
->delalloc_lock
);
6995 while (!list_empty(head
)) {
6996 binode
= list_entry(head
->next
, struct btrfs_inode
,
6998 inode
= igrab(&binode
->vfs_inode
);
7000 list_del_init(&binode
->delalloc_inodes
);
7001 spin_unlock(&root
->fs_info
->delalloc_lock
);
7003 filemap_flush(inode
->i_mapping
);
7005 btrfs_add_delayed_iput(inode
);
7010 spin_lock(&root
->fs_info
->delalloc_lock
);
7012 spin_unlock(&root
->fs_info
->delalloc_lock
);
7014 /* the filemap_flush will queue IO into the worker threads, but
7015 * we have to make sure the IO is actually started and that
7016 * ordered extents get created before we return
7018 atomic_inc(&root
->fs_info
->async_submit_draining
);
7019 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
7020 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
7021 wait_event(root
->fs_info
->async_submit_wait
,
7022 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
7023 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
7025 atomic_dec(&root
->fs_info
->async_submit_draining
);
7029 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
7030 const char *symname
)
7032 struct btrfs_trans_handle
*trans
;
7033 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
7034 struct btrfs_path
*path
;
7035 struct btrfs_key key
;
7036 struct inode
*inode
= NULL
;
7044 struct btrfs_file_extent_item
*ei
;
7045 struct extent_buffer
*leaf
;
7046 unsigned long nr
= 0;
7048 name_len
= strlen(symname
) + 1;
7049 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
7050 return -ENAMETOOLONG
;
7053 * 2 items for inode item and ref
7054 * 2 items for dir items
7055 * 1 item for xattr if selinux is on
7057 trans
= btrfs_start_transaction(root
, 5);
7059 return PTR_ERR(trans
);
7061 err
= btrfs_find_free_ino(root
, &objectid
);
7065 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
7066 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
7067 S_IFLNK
|S_IRWXUGO
, &index
);
7068 if (IS_ERR(inode
)) {
7069 err
= PTR_ERR(inode
);
7073 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
7079 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
7083 inode
->i_mapping
->a_ops
= &btrfs_aops
;
7084 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7085 inode
->i_fop
= &btrfs_file_operations
;
7086 inode
->i_op
= &btrfs_file_inode_operations
;
7087 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
7092 path
= btrfs_alloc_path();
7098 key
.objectid
= btrfs_ino(inode
);
7100 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
7101 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
7102 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
7106 btrfs_free_path(path
);
7109 leaf
= path
->nodes
[0];
7110 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
7111 struct btrfs_file_extent_item
);
7112 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
7113 btrfs_set_file_extent_type(leaf
, ei
,
7114 BTRFS_FILE_EXTENT_INLINE
);
7115 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
7116 btrfs_set_file_extent_compression(leaf
, ei
, 0);
7117 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
7118 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
7120 ptr
= btrfs_file_extent_inline_start(ei
);
7121 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
7122 btrfs_mark_buffer_dirty(leaf
);
7123 btrfs_free_path(path
);
7125 inode
->i_op
= &btrfs_symlink_inode_operations
;
7126 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
7127 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7128 inode_set_bytes(inode
, name_len
);
7129 btrfs_i_size_write(inode
, name_len
- 1);
7130 err
= btrfs_update_inode(trans
, root
, inode
);
7135 nr
= trans
->blocks_used
;
7136 btrfs_end_transaction_throttle(trans
, root
);
7138 inode_dec_link_count(inode
);
7141 btrfs_btree_balance_dirty(root
, nr
);
7145 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7146 u64 start
, u64 num_bytes
, u64 min_size
,
7147 loff_t actual_len
, u64
*alloc_hint
,
7148 struct btrfs_trans_handle
*trans
)
7150 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7151 struct btrfs_key ins
;
7152 u64 cur_offset
= start
;
7155 bool own_trans
= true;
7159 while (num_bytes
> 0) {
7161 trans
= btrfs_start_transaction(root
, 3);
7162 if (IS_ERR(trans
)) {
7163 ret
= PTR_ERR(trans
);
7168 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, min_size
,
7169 0, *alloc_hint
, (u64
)-1, &ins
, 1);
7172 btrfs_end_transaction(trans
, root
);
7176 ret
= insert_reserved_file_extent(trans
, inode
,
7177 cur_offset
, ins
.objectid
,
7178 ins
.offset
, ins
.offset
,
7179 ins
.offset
, 0, 0, 0,
7180 BTRFS_FILE_EXTENT_PREALLOC
);
7182 btrfs_drop_extent_cache(inode
, cur_offset
,
7183 cur_offset
+ ins
.offset
-1, 0);
7185 num_bytes
-= ins
.offset
;
7186 cur_offset
+= ins
.offset
;
7187 *alloc_hint
= ins
.objectid
+ ins
.offset
;
7189 inode
->i_ctime
= CURRENT_TIME
;
7190 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
7191 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
7192 (actual_len
> inode
->i_size
) &&
7193 (cur_offset
> inode
->i_size
)) {
7194 if (cur_offset
> actual_len
)
7195 i_size
= actual_len
;
7197 i_size
= cur_offset
;
7198 i_size_write(inode
, i_size
);
7199 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
7202 ret
= btrfs_update_inode(trans
, root
, inode
);
7206 btrfs_end_transaction(trans
, root
);
7211 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7212 u64 start
, u64 num_bytes
, u64 min_size
,
7213 loff_t actual_len
, u64
*alloc_hint
)
7215 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7216 min_size
, actual_len
, alloc_hint
,
7220 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
7221 struct btrfs_trans_handle
*trans
, int mode
,
7222 u64 start
, u64 num_bytes
, u64 min_size
,
7223 loff_t actual_len
, u64
*alloc_hint
)
7225 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7226 min_size
, actual_len
, alloc_hint
, trans
);
7229 static int btrfs_set_page_dirty(struct page
*page
)
7231 return __set_page_dirty_nobuffers(page
);
7234 static int btrfs_permission(struct inode
*inode
, int mask
)
7236 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7237 umode_t mode
= inode
->i_mode
;
7239 if (mask
& MAY_WRITE
&&
7240 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
7241 if (btrfs_root_readonly(root
))
7243 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
7246 return generic_permission(inode
, mask
);
7249 static const struct inode_operations btrfs_dir_inode_operations
= {
7250 .getattr
= btrfs_getattr
,
7251 .lookup
= btrfs_lookup
,
7252 .create
= btrfs_create
,
7253 .unlink
= btrfs_unlink
,
7255 .mkdir
= btrfs_mkdir
,
7256 .rmdir
= btrfs_rmdir
,
7257 .rename
= btrfs_rename
,
7258 .symlink
= btrfs_symlink
,
7259 .setattr
= btrfs_setattr
,
7260 .mknod
= btrfs_mknod
,
7261 .setxattr
= btrfs_setxattr
,
7262 .getxattr
= btrfs_getxattr
,
7263 .listxattr
= btrfs_listxattr
,
7264 .removexattr
= btrfs_removexattr
,
7265 .permission
= btrfs_permission
,
7266 .get_acl
= btrfs_get_acl
,
7268 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
7269 .lookup
= btrfs_lookup
,
7270 .permission
= btrfs_permission
,
7271 .get_acl
= btrfs_get_acl
,
7274 static const struct file_operations btrfs_dir_file_operations
= {
7275 .llseek
= generic_file_llseek
,
7276 .read
= generic_read_dir
,
7277 .readdir
= btrfs_real_readdir
,
7278 .unlocked_ioctl
= btrfs_ioctl
,
7279 #ifdef CONFIG_COMPAT
7280 .compat_ioctl
= btrfs_ioctl
,
7282 .release
= btrfs_release_file
,
7283 .fsync
= btrfs_sync_file
,
7286 static struct extent_io_ops btrfs_extent_io_ops
= {
7287 .fill_delalloc
= run_delalloc_range
,
7288 .submit_bio_hook
= btrfs_submit_bio_hook
,
7289 .merge_bio_hook
= btrfs_merge_bio_hook
,
7290 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
7291 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
7292 .writepage_start_hook
= btrfs_writepage_start_hook
,
7293 .set_bit_hook
= btrfs_set_bit_hook
,
7294 .clear_bit_hook
= btrfs_clear_bit_hook
,
7295 .merge_extent_hook
= btrfs_merge_extent_hook
,
7296 .split_extent_hook
= btrfs_split_extent_hook
,
7300 * btrfs doesn't support the bmap operation because swapfiles
7301 * use bmap to make a mapping of extents in the file. They assume
7302 * these extents won't change over the life of the file and they
7303 * use the bmap result to do IO directly to the drive.
7305 * the btrfs bmap call would return logical addresses that aren't
7306 * suitable for IO and they also will change frequently as COW
7307 * operations happen. So, swapfile + btrfs == corruption.
7309 * For now we're avoiding this by dropping bmap.
7311 static const struct address_space_operations btrfs_aops
= {
7312 .readpage
= btrfs_readpage
,
7313 .writepage
= btrfs_writepage
,
7314 .writepages
= btrfs_writepages
,
7315 .readpages
= btrfs_readpages
,
7316 .direct_IO
= btrfs_direct_IO
,
7317 .invalidatepage
= btrfs_invalidatepage
,
7318 .releasepage
= btrfs_releasepage
,
7319 .set_page_dirty
= btrfs_set_page_dirty
,
7320 .error_remove_page
= generic_error_remove_page
,
7323 static const struct address_space_operations btrfs_symlink_aops
= {
7324 .readpage
= btrfs_readpage
,
7325 .writepage
= btrfs_writepage
,
7326 .invalidatepage
= btrfs_invalidatepage
,
7327 .releasepage
= btrfs_releasepage
,
7330 static const struct inode_operations btrfs_file_inode_operations
= {
7331 .getattr
= btrfs_getattr
,
7332 .setattr
= btrfs_setattr
,
7333 .setxattr
= btrfs_setxattr
,
7334 .getxattr
= btrfs_getxattr
,
7335 .listxattr
= btrfs_listxattr
,
7336 .removexattr
= btrfs_removexattr
,
7337 .permission
= btrfs_permission
,
7338 .fiemap
= btrfs_fiemap
,
7339 .get_acl
= btrfs_get_acl
,
7341 static const struct inode_operations btrfs_special_inode_operations
= {
7342 .getattr
= btrfs_getattr
,
7343 .setattr
= btrfs_setattr
,
7344 .permission
= btrfs_permission
,
7345 .setxattr
= btrfs_setxattr
,
7346 .getxattr
= btrfs_getxattr
,
7347 .listxattr
= btrfs_listxattr
,
7348 .removexattr
= btrfs_removexattr
,
7349 .get_acl
= btrfs_get_acl
,
7351 static const struct inode_operations btrfs_symlink_inode_operations
= {
7352 .readlink
= generic_readlink
,
7353 .follow_link
= page_follow_link_light
,
7354 .put_link
= page_put_link
,
7355 .getattr
= btrfs_getattr
,
7356 .permission
= btrfs_permission
,
7357 .setxattr
= btrfs_setxattr
,
7358 .getxattr
= btrfs_getxattr
,
7359 .listxattr
= btrfs_listxattr
,
7360 .removexattr
= btrfs_removexattr
,
7361 .get_acl
= btrfs_get_acl
,
7364 const struct dentry_operations btrfs_dentry_operations
= {
7365 .d_delete
= btrfs_dentry_delete
,
7366 .d_release
= btrfs_dentry_release
,