4 * vfs operations that deal with files
6 * Copyright (C) International Business Machines Corp., 2002,2010
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <asm/div64.h>
40 #include "cifsproto.h"
41 #include "cifs_unicode.h"
42 #include "cifs_debug.h"
43 #include "cifs_fs_sb.h"
46 static inline int cifs_convert_flags(unsigned int flags
)
48 if ((flags
& O_ACCMODE
) == O_RDONLY
)
50 else if ((flags
& O_ACCMODE
) == O_WRONLY
)
52 else if ((flags
& O_ACCMODE
) == O_RDWR
) {
53 /* GENERIC_ALL is too much permission to request
54 can cause unnecessary access denied on create */
55 /* return GENERIC_ALL; */
56 return (GENERIC_READ
| GENERIC_WRITE
);
59 return (READ_CONTROL
| FILE_WRITE_ATTRIBUTES
| FILE_READ_ATTRIBUTES
|
60 FILE_WRITE_EA
| FILE_APPEND_DATA
| FILE_WRITE_DATA
|
64 static u32
cifs_posix_convert_flags(unsigned int flags
)
68 if ((flags
& O_ACCMODE
) == O_RDONLY
)
69 posix_flags
= SMB_O_RDONLY
;
70 else if ((flags
& O_ACCMODE
) == O_WRONLY
)
71 posix_flags
= SMB_O_WRONLY
;
72 else if ((flags
& O_ACCMODE
) == O_RDWR
)
73 posix_flags
= SMB_O_RDWR
;
76 posix_flags
|= SMB_O_CREAT
;
78 posix_flags
|= SMB_O_EXCL
;
80 posix_flags
|= SMB_O_TRUNC
;
81 /* be safe and imply O_SYNC for O_DSYNC */
83 posix_flags
|= SMB_O_SYNC
;
84 if (flags
& O_DIRECTORY
)
85 posix_flags
|= SMB_O_DIRECTORY
;
86 if (flags
& O_NOFOLLOW
)
87 posix_flags
|= SMB_O_NOFOLLOW
;
89 posix_flags
|= SMB_O_DIRECT
;
94 static inline int cifs_get_disposition(unsigned int flags
)
96 if ((flags
& (O_CREAT
| O_EXCL
)) == (O_CREAT
| O_EXCL
))
98 else if ((flags
& (O_CREAT
| O_TRUNC
)) == (O_CREAT
| O_TRUNC
))
99 return FILE_OVERWRITE_IF
;
100 else if ((flags
& O_CREAT
) == O_CREAT
)
102 else if ((flags
& O_TRUNC
) == O_TRUNC
)
103 return FILE_OVERWRITE
;
108 int cifs_posix_open(char *full_path
, struct inode
**pinode
,
109 struct super_block
*sb
, int mode
, unsigned int f_flags
,
110 __u32
*poplock
, __u16
*pnetfid
, int xid
)
113 FILE_UNIX_BASIC_INFO
*presp_data
;
114 __u32 posix_flags
= 0;
115 struct cifs_sb_info
*cifs_sb
= CIFS_SB(sb
);
116 struct cifs_fattr fattr
;
117 struct tcon_link
*tlink
;
118 struct cifs_tcon
*tcon
;
120 cFYI(1, "posix open %s", full_path
);
122 presp_data
= kzalloc(sizeof(FILE_UNIX_BASIC_INFO
), GFP_KERNEL
);
123 if (presp_data
== NULL
)
126 tlink
= cifs_sb_tlink(cifs_sb
);
132 tcon
= tlink_tcon(tlink
);
133 mode
&= ~current_umask();
135 posix_flags
= cifs_posix_convert_flags(f_flags
);
136 rc
= CIFSPOSIXCreate(xid
, tcon
, posix_flags
, mode
, pnetfid
, presp_data
,
137 poplock
, full_path
, cifs_sb
->local_nls
,
138 cifs_sb
->mnt_cifs_flags
&
139 CIFS_MOUNT_MAP_SPECIAL_CHR
);
140 cifs_put_tlink(tlink
);
145 if (presp_data
->Type
== cpu_to_le32(-1))
146 goto posix_open_ret
; /* open ok, caller does qpathinfo */
149 goto posix_open_ret
; /* caller does not need info */
151 cifs_unix_basic_to_fattr(&fattr
, presp_data
, cifs_sb
);
153 /* get new inode and set it up */
154 if (*pinode
== NULL
) {
155 cifs_fill_uniqueid(sb
, &fattr
);
156 *pinode
= cifs_iget(sb
, &fattr
);
162 cifs_fattr_to_inode(*pinode
, &fattr
);
171 cifs_nt_open(char *full_path
, struct inode
*inode
, struct cifs_sb_info
*cifs_sb
,
172 struct cifs_tcon
*tcon
, unsigned int f_flags
, __u32
*poplock
,
173 __u16
*pnetfid
, int xid
)
178 int create_options
= CREATE_NOT_DIR
;
181 desiredAccess
= cifs_convert_flags(f_flags
);
183 /*********************************************************************
184 * open flag mapping table:
186 * POSIX Flag CIFS Disposition
187 * ---------- ----------------
188 * O_CREAT FILE_OPEN_IF
189 * O_CREAT | O_EXCL FILE_CREATE
190 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
191 * O_TRUNC FILE_OVERWRITE
192 * none of the above FILE_OPEN
194 * Note that there is not a direct match between disposition
195 * FILE_SUPERSEDE (ie create whether or not file exists although
196 * O_CREAT | O_TRUNC is similar but truncates the existing
197 * file rather than creating a new file as FILE_SUPERSEDE does
198 * (which uses the attributes / metadata passed in on open call)
200 *? O_SYNC is a reasonable match to CIFS writethrough flag
201 *? and the read write flags match reasonably. O_LARGEFILE
202 *? is irrelevant because largefile support is always used
203 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
204 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
205 *********************************************************************/
207 disposition
= cifs_get_disposition(f_flags
);
209 /* BB pass O_SYNC flag through on file attributes .. BB */
211 buf
= kmalloc(sizeof(FILE_ALL_INFO
), GFP_KERNEL
);
215 if (backup_cred(cifs_sb
))
216 create_options
|= CREATE_OPEN_BACKUP_INTENT
;
218 if (tcon
->ses
->capabilities
& CAP_NT_SMBS
)
219 rc
= CIFSSMBOpen(xid
, tcon
, full_path
, disposition
,
220 desiredAccess
, create_options
, pnetfid
, poplock
, buf
,
221 cifs_sb
->local_nls
, cifs_sb
->mnt_cifs_flags
222 & CIFS_MOUNT_MAP_SPECIAL_CHR
);
224 rc
= SMBLegacyOpen(xid
, tcon
, full_path
, disposition
,
225 desiredAccess
, CREATE_NOT_DIR
, pnetfid
, poplock
, buf
,
226 cifs_sb
->local_nls
, cifs_sb
->mnt_cifs_flags
227 & CIFS_MOUNT_MAP_SPECIAL_CHR
);
233 rc
= cifs_get_inode_info_unix(&inode
, full_path
, inode
->i_sb
,
236 rc
= cifs_get_inode_info(&inode
, full_path
, buf
, inode
->i_sb
,
244 struct cifsFileInfo
*
245 cifs_new_fileinfo(__u16 fileHandle
, struct file
*file
,
246 struct tcon_link
*tlink
, __u32 oplock
)
248 struct dentry
*dentry
= file
->f_path
.dentry
;
249 struct inode
*inode
= dentry
->d_inode
;
250 struct cifsInodeInfo
*pCifsInode
= CIFS_I(inode
);
251 struct cifsFileInfo
*pCifsFile
;
253 pCifsFile
= kzalloc(sizeof(struct cifsFileInfo
), GFP_KERNEL
);
254 if (pCifsFile
== NULL
)
257 pCifsFile
->count
= 1;
258 pCifsFile
->netfid
= fileHandle
;
259 pCifsFile
->pid
= current
->tgid
;
260 pCifsFile
->uid
= current_fsuid();
261 pCifsFile
->dentry
= dget(dentry
);
262 pCifsFile
->f_flags
= file
->f_flags
;
263 pCifsFile
->invalidHandle
= false;
264 pCifsFile
->tlink
= cifs_get_tlink(tlink
);
265 mutex_init(&pCifsFile
->fh_mutex
);
266 INIT_WORK(&pCifsFile
->oplock_break
, cifs_oplock_break
);
268 spin_lock(&cifs_file_list_lock
);
269 list_add(&pCifsFile
->tlist
, &(tlink_tcon(tlink
)->openFileList
));
270 /* if readable file instance put first in list*/
271 if (file
->f_mode
& FMODE_READ
)
272 list_add(&pCifsFile
->flist
, &pCifsInode
->openFileList
);
274 list_add_tail(&pCifsFile
->flist
, &pCifsInode
->openFileList
);
275 spin_unlock(&cifs_file_list_lock
);
277 cifs_set_oplock_level(pCifsInode
, oplock
);
278 pCifsInode
->can_cache_brlcks
= pCifsInode
->clientCanCacheAll
;
280 file
->private_data
= pCifsFile
;
284 static void cifs_del_lock_waiters(struct cifsLockInfo
*lock
);
287 * Release a reference on the file private data. This may involve closing
288 * the filehandle out on the server. Must be called without holding
289 * cifs_file_list_lock.
291 void cifsFileInfo_put(struct cifsFileInfo
*cifs_file
)
293 struct inode
*inode
= cifs_file
->dentry
->d_inode
;
294 struct cifs_tcon
*tcon
= tlink_tcon(cifs_file
->tlink
);
295 struct cifsInodeInfo
*cifsi
= CIFS_I(inode
);
296 struct cifs_sb_info
*cifs_sb
= CIFS_SB(inode
->i_sb
);
297 struct cifsLockInfo
*li
, *tmp
;
299 spin_lock(&cifs_file_list_lock
);
300 if (--cifs_file
->count
> 0) {
301 spin_unlock(&cifs_file_list_lock
);
305 /* remove it from the lists */
306 list_del(&cifs_file
->flist
);
307 list_del(&cifs_file
->tlist
);
309 if (list_empty(&cifsi
->openFileList
)) {
310 cFYI(1, "closing last open instance for inode %p",
311 cifs_file
->dentry
->d_inode
);
313 /* in strict cache mode we need invalidate mapping on the last
314 close because it may cause a error when we open this file
315 again and get at least level II oplock */
316 if (cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_STRICT_IO
)
317 CIFS_I(inode
)->invalid_mapping
= true;
319 cifs_set_oplock_level(cifsi
, 0);
321 spin_unlock(&cifs_file_list_lock
);
323 cancel_work_sync(&cifs_file
->oplock_break
);
325 if (!tcon
->need_reconnect
&& !cifs_file
->invalidHandle
) {
329 rc
= CIFSSMBClose(xid
, tcon
, cifs_file
->netfid
);
333 /* Delete any outstanding lock records. We'll lose them when the file
336 mutex_lock(&cifsi
->lock_mutex
);
337 list_for_each_entry_safe(li
, tmp
, &cifsi
->llist
, llist
) {
338 if (li
->netfid
!= cifs_file
->netfid
)
340 list_del(&li
->llist
);
341 cifs_del_lock_waiters(li
);
344 mutex_unlock(&cifsi
->lock_mutex
);
346 cifs_put_tlink(cifs_file
->tlink
);
347 dput(cifs_file
->dentry
);
351 int cifs_open(struct inode
*inode
, struct file
*file
)
356 struct cifs_sb_info
*cifs_sb
;
357 struct cifs_tcon
*tcon
;
358 struct tcon_link
*tlink
;
359 struct cifsFileInfo
*pCifsFile
= NULL
;
360 char *full_path
= NULL
;
361 bool posix_open_ok
= false;
366 cifs_sb
= CIFS_SB(inode
->i_sb
);
367 tlink
= cifs_sb_tlink(cifs_sb
);
370 return PTR_ERR(tlink
);
372 tcon
= tlink_tcon(tlink
);
374 full_path
= build_path_from_dentry(file
->f_path
.dentry
);
375 if (full_path
== NULL
) {
380 cFYI(1, "inode = 0x%p file flags are 0x%x for %s",
381 inode
, file
->f_flags
, full_path
);
388 if (!tcon
->broken_posix_open
&& tcon
->unix_ext
&&
389 (tcon
->ses
->capabilities
& CAP_UNIX
) &&
390 (CIFS_UNIX_POSIX_PATH_OPS_CAP
&
391 le64_to_cpu(tcon
->fsUnixInfo
.Capability
))) {
392 /* can not refresh inode info since size could be stale */
393 rc
= cifs_posix_open(full_path
, &inode
, inode
->i_sb
,
394 cifs_sb
->mnt_file_mode
/* ignored */,
395 file
->f_flags
, &oplock
, &netfid
, xid
);
397 cFYI(1, "posix open succeeded");
398 posix_open_ok
= true;
399 } else if ((rc
== -EINVAL
) || (rc
== -EOPNOTSUPP
)) {
400 if (tcon
->ses
->serverNOS
)
401 cERROR(1, "server %s of type %s returned"
402 " unexpected error on SMB posix open"
403 ", disabling posix open support."
404 " Check if server update available.",
405 tcon
->ses
->serverName
,
406 tcon
->ses
->serverNOS
);
407 tcon
->broken_posix_open
= true;
408 } else if ((rc
!= -EIO
) && (rc
!= -EREMOTE
) &&
409 (rc
!= -EOPNOTSUPP
)) /* path not found or net err */
411 /* else fallthrough to retry open the old way on network i/o
415 if (!posix_open_ok
) {
416 rc
= cifs_nt_open(full_path
, inode
, cifs_sb
, tcon
,
417 file
->f_flags
, &oplock
, &netfid
, xid
);
422 pCifsFile
= cifs_new_fileinfo(netfid
, file
, tlink
, oplock
);
423 if (pCifsFile
== NULL
) {
424 CIFSSMBClose(xid
, tcon
, netfid
);
429 cifs_fscache_set_inode_cookie(inode
, file
);
431 if ((oplock
& CIFS_CREATE_ACTION
) && !posix_open_ok
&& tcon
->unix_ext
) {
432 /* time to set mode which we can not set earlier due to
433 problems creating new read-only files */
434 struct cifs_unix_set_info_args args
= {
435 .mode
= inode
->i_mode
,
438 .ctime
= NO_CHANGE_64
,
439 .atime
= NO_CHANGE_64
,
440 .mtime
= NO_CHANGE_64
,
443 CIFSSMBUnixSetFileInfo(xid
, tcon
, &args
, netfid
,
450 cifs_put_tlink(tlink
);
454 /* Try to reacquire byte range locks that were released when session */
455 /* to server was lost */
456 static int cifs_relock_file(struct cifsFileInfo
*cifsFile
)
460 /* BB list all locks open on this file and relock */
465 static int cifs_reopen_file(struct cifsFileInfo
*pCifsFile
, bool can_flush
)
470 struct cifs_sb_info
*cifs_sb
;
471 struct cifs_tcon
*tcon
;
472 struct cifsInodeInfo
*pCifsInode
;
474 char *full_path
= NULL
;
476 int disposition
= FILE_OPEN
;
477 int create_options
= CREATE_NOT_DIR
;
481 mutex_lock(&pCifsFile
->fh_mutex
);
482 if (!pCifsFile
->invalidHandle
) {
483 mutex_unlock(&pCifsFile
->fh_mutex
);
489 inode
= pCifsFile
->dentry
->d_inode
;
490 cifs_sb
= CIFS_SB(inode
->i_sb
);
491 tcon
= tlink_tcon(pCifsFile
->tlink
);
493 /* can not grab rename sem here because various ops, including
494 those that already have the rename sem can end up causing writepage
495 to get called and if the server was down that means we end up here,
496 and we can never tell if the caller already has the rename_sem */
497 full_path
= build_path_from_dentry(pCifsFile
->dentry
);
498 if (full_path
== NULL
) {
500 mutex_unlock(&pCifsFile
->fh_mutex
);
505 cFYI(1, "inode = 0x%p file flags 0x%x for %s",
506 inode
, pCifsFile
->f_flags
, full_path
);
513 if (tcon
->unix_ext
&& (tcon
->ses
->capabilities
& CAP_UNIX
) &&
514 (CIFS_UNIX_POSIX_PATH_OPS_CAP
&
515 le64_to_cpu(tcon
->fsUnixInfo
.Capability
))) {
518 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
519 * original open. Must mask them off for a reopen.
521 unsigned int oflags
= pCifsFile
->f_flags
&
522 ~(O_CREAT
| O_EXCL
| O_TRUNC
);
524 rc
= cifs_posix_open(full_path
, NULL
, inode
->i_sb
,
525 cifs_sb
->mnt_file_mode
/* ignored */,
526 oflags
, &oplock
, &netfid
, xid
);
528 cFYI(1, "posix reopen succeeded");
531 /* fallthrough to retry open the old way on errors, especially
532 in the reconnect path it is important to retry hard */
535 desiredAccess
= cifs_convert_flags(pCifsFile
->f_flags
);
537 if (backup_cred(cifs_sb
))
538 create_options
|= CREATE_OPEN_BACKUP_INTENT
;
540 /* Can not refresh inode by passing in file_info buf to be returned
541 by SMBOpen and then calling get_inode_info with returned buf
542 since file might have write behind data that needs to be flushed
543 and server version of file size can be stale. If we knew for sure
544 that inode was not dirty locally we could do this */
546 rc
= CIFSSMBOpen(xid
, tcon
, full_path
, disposition
, desiredAccess
,
547 create_options
, &netfid
, &oplock
, NULL
,
548 cifs_sb
->local_nls
, cifs_sb
->mnt_cifs_flags
&
549 CIFS_MOUNT_MAP_SPECIAL_CHR
);
551 mutex_unlock(&pCifsFile
->fh_mutex
);
552 cFYI(1, "cifs_open returned 0x%x", rc
);
553 cFYI(1, "oplock: %d", oplock
);
554 goto reopen_error_exit
;
558 pCifsFile
->netfid
= netfid
;
559 pCifsFile
->invalidHandle
= false;
560 mutex_unlock(&pCifsFile
->fh_mutex
);
561 pCifsInode
= CIFS_I(inode
);
564 rc
= filemap_write_and_wait(inode
->i_mapping
);
565 mapping_set_error(inode
->i_mapping
, rc
);
568 rc
= cifs_get_inode_info_unix(&inode
,
569 full_path
, inode
->i_sb
, xid
);
571 rc
= cifs_get_inode_info(&inode
,
572 full_path
, NULL
, inode
->i_sb
,
574 } /* else we are writing out data to server already
575 and could deadlock if we tried to flush data, and
576 since we do not know if we have data that would
577 invalidate the current end of file on the server
578 we can not go to the server to get the new inod
581 cifs_set_oplock_level(pCifsInode
, oplock
);
583 cifs_relock_file(pCifsFile
);
591 int cifs_close(struct inode
*inode
, struct file
*file
)
593 if (file
->private_data
!= NULL
) {
594 cifsFileInfo_put(file
->private_data
);
595 file
->private_data
= NULL
;
598 /* return code from the ->release op is always ignored */
602 int cifs_closedir(struct inode
*inode
, struct file
*file
)
606 struct cifsFileInfo
*pCFileStruct
= file
->private_data
;
609 cFYI(1, "Closedir inode = 0x%p", inode
);
614 struct cifs_tcon
*pTcon
= tlink_tcon(pCFileStruct
->tlink
);
616 cFYI(1, "Freeing private data in close dir");
617 spin_lock(&cifs_file_list_lock
);
618 if (!pCFileStruct
->srch_inf
.endOfSearch
&&
619 !pCFileStruct
->invalidHandle
) {
620 pCFileStruct
->invalidHandle
= true;
621 spin_unlock(&cifs_file_list_lock
);
622 rc
= CIFSFindClose(xid
, pTcon
, pCFileStruct
->netfid
);
623 cFYI(1, "Closing uncompleted readdir with rc %d",
625 /* not much we can do if it fails anyway, ignore rc */
628 spin_unlock(&cifs_file_list_lock
);
629 ptmp
= pCFileStruct
->srch_inf
.ntwrk_buf_start
;
631 cFYI(1, "closedir free smb buf in srch struct");
632 pCFileStruct
->srch_inf
.ntwrk_buf_start
= NULL
;
633 if (pCFileStruct
->srch_inf
.smallBuf
)
634 cifs_small_buf_release(ptmp
);
636 cifs_buf_release(ptmp
);
638 cifs_put_tlink(pCFileStruct
->tlink
);
639 kfree(file
->private_data
);
640 file
->private_data
= NULL
;
642 /* BB can we lock the filestruct while this is going on? */
647 static struct cifsLockInfo
*
648 cifs_lock_init(__u64 offset
, __u64 length
, __u8 type
, __u16 netfid
)
650 struct cifsLockInfo
*lock
=
651 kmalloc(sizeof(struct cifsLockInfo
), GFP_KERNEL
);
654 lock
->offset
= offset
;
655 lock
->length
= length
;
657 lock
->netfid
= netfid
;
658 lock
->pid
= current
->tgid
;
659 INIT_LIST_HEAD(&lock
->blist
);
660 init_waitqueue_head(&lock
->block_q
);
665 cifs_del_lock_waiters(struct cifsLockInfo
*lock
)
667 struct cifsLockInfo
*li
, *tmp
;
668 list_for_each_entry_safe(li
, tmp
, &lock
->blist
, blist
) {
669 list_del_init(&li
->blist
);
670 wake_up(&li
->block_q
);
675 __cifs_find_lock_conflict(struct cifsInodeInfo
*cinode
, __u64 offset
,
676 __u64 length
, __u8 type
, __u16 netfid
,
677 struct cifsLockInfo
**conf_lock
)
679 struct cifsLockInfo
*li
, *tmp
;
681 list_for_each_entry_safe(li
, tmp
, &cinode
->llist
, llist
) {
682 if (offset
+ length
<= li
->offset
||
683 offset
>= li
->offset
+ li
->length
)
685 else if ((type
& LOCKING_ANDX_SHARED_LOCK
) &&
686 ((netfid
== li
->netfid
&& current
->tgid
== li
->pid
) ||
698 cifs_find_lock_conflict(struct cifsInodeInfo
*cinode
, struct cifsLockInfo
*lock
,
699 struct cifsLockInfo
**conf_lock
)
701 return __cifs_find_lock_conflict(cinode
, lock
->offset
, lock
->length
,
702 lock
->type
, lock
->netfid
, conf_lock
);
706 * Check if there is another lock that prevents us to set the lock (mandatory
707 * style). If such a lock exists, update the flock structure with its
708 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
709 * or leave it the same if we can't. Returns 0 if we don't need to request to
710 * the server or 1 otherwise.
713 cifs_lock_test(struct cifsInodeInfo
*cinode
, __u64 offset
, __u64 length
,
714 __u8 type
, __u16 netfid
, struct file_lock
*flock
)
717 struct cifsLockInfo
*conf_lock
;
720 mutex_lock(&cinode
->lock_mutex
);
722 exist
= __cifs_find_lock_conflict(cinode
, offset
, length
, type
, netfid
,
725 flock
->fl_start
= conf_lock
->offset
;
726 flock
->fl_end
= conf_lock
->offset
+ conf_lock
->length
- 1;
727 flock
->fl_pid
= conf_lock
->pid
;
728 if (conf_lock
->type
& LOCKING_ANDX_SHARED_LOCK
)
729 flock
->fl_type
= F_RDLCK
;
731 flock
->fl_type
= F_WRLCK
;
732 } else if (!cinode
->can_cache_brlcks
)
735 flock
->fl_type
= F_UNLCK
;
737 mutex_unlock(&cinode
->lock_mutex
);
742 cifs_lock_add(struct cifsInodeInfo
*cinode
, struct cifsLockInfo
*lock
)
744 mutex_lock(&cinode
->lock_mutex
);
745 list_add_tail(&lock
->llist
, &cinode
->llist
);
746 mutex_unlock(&cinode
->lock_mutex
);
750 * Set the byte-range lock (mandatory style). Returns:
751 * 1) 0, if we set the lock and don't need to request to the server;
752 * 2) 1, if no locks prevent us but we need to request to the server;
753 * 3) -EACCESS, if there is a lock that prevents us and wait is false.
756 cifs_lock_add_if(struct cifsInodeInfo
*cinode
, struct cifsLockInfo
*lock
,
759 struct cifsLockInfo
*conf_lock
;
765 mutex_lock(&cinode
->lock_mutex
);
767 exist
= cifs_find_lock_conflict(cinode
, lock
, &conf_lock
);
768 if (!exist
&& cinode
->can_cache_brlcks
) {
769 list_add_tail(&lock
->llist
, &cinode
->llist
);
770 mutex_unlock(&cinode
->lock_mutex
);
779 list_add_tail(&lock
->blist
, &conf_lock
->blist
);
780 mutex_unlock(&cinode
->lock_mutex
);
781 rc
= wait_event_interruptible(lock
->block_q
,
782 (lock
->blist
.prev
== &lock
->blist
) &&
783 (lock
->blist
.next
== &lock
->blist
));
786 mutex_lock(&cinode
->lock_mutex
);
787 list_del_init(&lock
->blist
);
790 mutex_unlock(&cinode
->lock_mutex
);
795 * Check if there is another lock that prevents us to set the lock (posix
796 * style). If such a lock exists, update the flock structure with its
797 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
798 * or leave it the same if we can't. Returns 0 if we don't need to request to
799 * the server or 1 otherwise.
802 cifs_posix_lock_test(struct file
*file
, struct file_lock
*flock
)
805 struct cifsInodeInfo
*cinode
= CIFS_I(file
->f_path
.dentry
->d_inode
);
806 unsigned char saved_type
= flock
->fl_type
;
808 if ((flock
->fl_flags
& FL_POSIX
) == 0)
811 mutex_lock(&cinode
->lock_mutex
);
812 posix_test_lock(file
, flock
);
814 if (flock
->fl_type
== F_UNLCK
&& !cinode
->can_cache_brlcks
) {
815 flock
->fl_type
= saved_type
;
819 mutex_unlock(&cinode
->lock_mutex
);
824 * Set the byte-range lock (posix style). Returns:
825 * 1) 0, if we set the lock and don't need to request to the server;
826 * 2) 1, if we need to request to the server;
827 * 3) <0, if the error occurs while setting the lock.
830 cifs_posix_lock_set(struct file
*file
, struct file_lock
*flock
)
832 struct cifsInodeInfo
*cinode
= CIFS_I(file
->f_path
.dentry
->d_inode
);
835 if ((flock
->fl_flags
& FL_POSIX
) == 0)
838 mutex_lock(&cinode
->lock_mutex
);
839 if (!cinode
->can_cache_brlcks
) {
840 mutex_unlock(&cinode
->lock_mutex
);
843 rc
= posix_lock_file_wait(file
, flock
);
844 mutex_unlock(&cinode
->lock_mutex
);
849 cifs_push_mandatory_locks(struct cifsFileInfo
*cfile
)
851 int xid
, rc
= 0, stored_rc
;
852 struct cifsLockInfo
*li
, *tmp
;
853 struct cifs_tcon
*tcon
;
854 struct cifsInodeInfo
*cinode
= CIFS_I(cfile
->dentry
->d_inode
);
855 unsigned int num
, max_num
;
856 LOCKING_ANDX_RANGE
*buf
, *cur
;
857 int types
[] = {LOCKING_ANDX_LARGE_FILES
,
858 LOCKING_ANDX_SHARED_LOCK
| LOCKING_ANDX_LARGE_FILES
};
862 tcon
= tlink_tcon(cfile
->tlink
);
864 mutex_lock(&cinode
->lock_mutex
);
865 if (!cinode
->can_cache_brlcks
) {
866 mutex_unlock(&cinode
->lock_mutex
);
871 max_num
= (tcon
->ses
->server
->maxBuf
- sizeof(struct smb_hdr
)) /
872 sizeof(LOCKING_ANDX_RANGE
);
873 buf
= kzalloc(max_num
* sizeof(LOCKING_ANDX_RANGE
), GFP_KERNEL
);
875 mutex_unlock(&cinode
->lock_mutex
);
880 for (i
= 0; i
< 2; i
++) {
883 list_for_each_entry_safe(li
, tmp
, &cinode
->llist
, llist
) {
884 if (li
->type
!= types
[i
])
886 cur
->Pid
= cpu_to_le16(li
->pid
);
887 cur
->LengthLow
= cpu_to_le32((u32
)li
->length
);
888 cur
->LengthHigh
= cpu_to_le32((u32
)(li
->length
>>32));
889 cur
->OffsetLow
= cpu_to_le32((u32
)li
->offset
);
890 cur
->OffsetHigh
= cpu_to_le32((u32
)(li
->offset
>>32));
891 if (++num
== max_num
) {
892 stored_rc
= cifs_lockv(xid
, tcon
, cfile
->netfid
,
893 li
->type
, 0, num
, buf
);
903 stored_rc
= cifs_lockv(xid
, tcon
, cfile
->netfid
,
904 types
[i
], 0, num
, buf
);
910 cinode
->can_cache_brlcks
= false;
911 mutex_unlock(&cinode
->lock_mutex
);
918 /* copied from fs/locks.c with a name change */
919 #define cifs_for_each_lock(inode, lockp) \
920 for (lockp = &inode->i_flock; *lockp != NULL; \
921 lockp = &(*lockp)->fl_next)
924 cifs_push_posix_locks(struct cifsFileInfo
*cfile
)
926 struct cifsInodeInfo
*cinode
= CIFS_I(cfile
->dentry
->d_inode
);
927 struct cifs_tcon
*tcon
= tlink_tcon(cfile
->tlink
);
928 struct file_lock
*flock
, **before
;
929 struct cifsLockInfo
*lck
, *tmp
;
930 int rc
= 0, xid
, type
;
932 struct list_head locks_to_send
;
936 mutex_lock(&cinode
->lock_mutex
);
937 if (!cinode
->can_cache_brlcks
) {
938 mutex_unlock(&cinode
->lock_mutex
);
943 INIT_LIST_HEAD(&locks_to_send
);
946 cifs_for_each_lock(cfile
->dentry
->d_inode
, before
) {
948 length
= 1 + flock
->fl_end
- flock
->fl_start
;
949 if (flock
->fl_type
== F_RDLCK
|| flock
->fl_type
== F_SHLCK
)
954 lck
= cifs_lock_init(flock
->fl_start
, length
, type
,
960 lck
->pid
= flock
->fl_pid
;
962 list_add_tail(&lck
->llist
, &locks_to_send
);
968 list_for_each_entry_safe(lck
, tmp
, &locks_to_send
, llist
) {
969 struct file_lock tmp_lock
;
972 tmp_lock
.fl_start
= lck
->offset
;
973 stored_rc
= CIFSSMBPosixLock(xid
, tcon
, lck
->netfid
, lck
->pid
,
974 0, lck
->length
, &tmp_lock
,
978 list_del(&lck
->llist
);
982 cinode
->can_cache_brlcks
= false;
983 mutex_unlock(&cinode
->lock_mutex
);
990 cifs_push_locks(struct cifsFileInfo
*cfile
)
992 struct cifs_sb_info
*cifs_sb
= CIFS_SB(cfile
->dentry
->d_sb
);
993 struct cifs_tcon
*tcon
= tlink_tcon(cfile
->tlink
);
995 if ((tcon
->ses
->capabilities
& CAP_UNIX
) &&
996 (CIFS_UNIX_FCNTL_CAP
& le64_to_cpu(tcon
->fsUnixInfo
.Capability
)) &&
997 ((cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_NOPOSIXBRL
) == 0))
998 return cifs_push_posix_locks(cfile
);
1000 return cifs_push_mandatory_locks(cfile
);
1004 cifs_read_flock(struct file_lock
*flock
, __u8
*type
, int *lock
, int *unlock
,
1007 if (flock
->fl_flags
& FL_POSIX
)
1009 if (flock
->fl_flags
& FL_FLOCK
)
1011 if (flock
->fl_flags
& FL_SLEEP
) {
1012 cFYI(1, "Blocking lock");
1015 if (flock
->fl_flags
& FL_ACCESS
)
1016 cFYI(1, "Process suspended by mandatory locking - "
1017 "not implemented yet");
1018 if (flock
->fl_flags
& FL_LEASE
)
1019 cFYI(1, "Lease on file - not implemented yet");
1020 if (flock
->fl_flags
&
1021 (~(FL_POSIX
| FL_FLOCK
| FL_SLEEP
| FL_ACCESS
| FL_LEASE
)))
1022 cFYI(1, "Unknown lock flags 0x%x", flock
->fl_flags
);
1024 *type
= LOCKING_ANDX_LARGE_FILES
;
1025 if (flock
->fl_type
== F_WRLCK
) {
1026 cFYI(1, "F_WRLCK ");
1028 } else if (flock
->fl_type
== F_UNLCK
) {
1031 /* Check if unlock includes more than one lock range */
1032 } else if (flock
->fl_type
== F_RDLCK
) {
1034 *type
|= LOCKING_ANDX_SHARED_LOCK
;
1036 } else if (flock
->fl_type
== F_EXLCK
) {
1039 } else if (flock
->fl_type
== F_SHLCK
) {
1041 *type
|= LOCKING_ANDX_SHARED_LOCK
;
1044 cFYI(1, "Unknown type of lock");
1048 cifs_getlk(struct file
*file
, struct file_lock
*flock
, __u8 type
,
1049 bool wait_flag
, bool posix_lck
, int xid
)
1052 __u64 length
= 1 + flock
->fl_end
- flock
->fl_start
;
1053 struct cifsFileInfo
*cfile
= (struct cifsFileInfo
*)file
->private_data
;
1054 struct cifs_tcon
*tcon
= tlink_tcon(cfile
->tlink
);
1055 struct cifsInodeInfo
*cinode
= CIFS_I(cfile
->dentry
->d_inode
);
1056 __u16 netfid
= cfile
->netfid
;
1059 int posix_lock_type
;
1061 rc
= cifs_posix_lock_test(file
, flock
);
1065 if (type
& LOCKING_ANDX_SHARED_LOCK
)
1066 posix_lock_type
= CIFS_RDLCK
;
1068 posix_lock_type
= CIFS_WRLCK
;
1069 rc
= CIFSSMBPosixLock(xid
, tcon
, netfid
, current
->tgid
,
1070 1 /* get */, length
, flock
,
1071 posix_lock_type
, wait_flag
);
1075 rc
= cifs_lock_test(cinode
, flock
->fl_start
, length
, type
, netfid
,
1080 /* BB we could chain these into one lock request BB */
1081 rc
= CIFSSMBLock(xid
, tcon
, netfid
, current
->tgid
, length
,
1082 flock
->fl_start
, 0, 1, type
, 0, 0);
1084 rc
= CIFSSMBLock(xid
, tcon
, netfid
, current
->tgid
,
1085 length
, flock
->fl_start
, 1, 0,
1087 flock
->fl_type
= F_UNLCK
;
1089 cERROR(1, "Error unlocking previously locked "
1090 "range %d during test of lock", rc
);
1094 if (type
& LOCKING_ANDX_SHARED_LOCK
) {
1095 flock
->fl_type
= F_WRLCK
;
1099 rc
= CIFSSMBLock(xid
, tcon
, netfid
, current
->tgid
, length
,
1100 flock
->fl_start
, 0, 1,
1101 type
| LOCKING_ANDX_SHARED_LOCK
, 0, 0);
1103 rc
= CIFSSMBLock(xid
, tcon
, netfid
, current
->tgid
,
1104 length
, flock
->fl_start
, 1, 0,
1105 type
| LOCKING_ANDX_SHARED_LOCK
,
1107 flock
->fl_type
= F_RDLCK
;
1109 cERROR(1, "Error unlocking previously locked "
1110 "range %d during test of lock", rc
);
1112 flock
->fl_type
= F_WRLCK
;
1118 cifs_move_llist(struct list_head
*source
, struct list_head
*dest
)
1120 struct list_head
*li
, *tmp
;
1121 list_for_each_safe(li
, tmp
, source
)
1122 list_move(li
, dest
);
1126 cifs_free_llist(struct list_head
*llist
)
1128 struct cifsLockInfo
*li
, *tmp
;
1129 list_for_each_entry_safe(li
, tmp
, llist
, llist
) {
1130 cifs_del_lock_waiters(li
);
1131 list_del(&li
->llist
);
1137 cifs_unlock_range(struct cifsFileInfo
*cfile
, struct file_lock
*flock
, int xid
)
1139 int rc
= 0, stored_rc
;
1140 int types
[] = {LOCKING_ANDX_LARGE_FILES
,
1141 LOCKING_ANDX_SHARED_LOCK
| LOCKING_ANDX_LARGE_FILES
};
1143 unsigned int max_num
, num
;
1144 LOCKING_ANDX_RANGE
*buf
, *cur
;
1145 struct cifs_tcon
*tcon
= tlink_tcon(cfile
->tlink
);
1146 struct cifsInodeInfo
*cinode
= CIFS_I(cfile
->dentry
->d_inode
);
1147 struct cifsLockInfo
*li
, *tmp
;
1148 __u64 length
= 1 + flock
->fl_end
- flock
->fl_start
;
1149 struct list_head tmp_llist
;
1151 INIT_LIST_HEAD(&tmp_llist
);
1153 max_num
= (tcon
->ses
->server
->maxBuf
- sizeof(struct smb_hdr
)) /
1154 sizeof(LOCKING_ANDX_RANGE
);
1155 buf
= kzalloc(max_num
* sizeof(LOCKING_ANDX_RANGE
), GFP_KERNEL
);
1159 mutex_lock(&cinode
->lock_mutex
);
1160 for (i
= 0; i
< 2; i
++) {
1163 list_for_each_entry_safe(li
, tmp
, &cinode
->llist
, llist
) {
1164 if (flock
->fl_start
> li
->offset
||
1165 (flock
->fl_start
+ length
) <
1166 (li
->offset
+ li
->length
))
1168 if (current
->tgid
!= li
->pid
)
1170 if (cfile
->netfid
!= li
->netfid
)
1172 if (types
[i
] != li
->type
)
1174 if (!cinode
->can_cache_brlcks
) {
1175 cur
->Pid
= cpu_to_le16(li
->pid
);
1176 cur
->LengthLow
= cpu_to_le32((u32
)li
->length
);
1178 cpu_to_le32((u32
)(li
->length
>>32));
1179 cur
->OffsetLow
= cpu_to_le32((u32
)li
->offset
);
1181 cpu_to_le32((u32
)(li
->offset
>>32));
1183 * We need to save a lock here to let us add
1184 * it again to the inode list if the unlock
1185 * range request fails on the server.
1187 list_move(&li
->llist
, &tmp_llist
);
1188 if (++num
== max_num
) {
1189 stored_rc
= cifs_lockv(xid
, tcon
,
1195 * We failed on the unlock range
1196 * request - add all locks from
1197 * the tmp list to the head of
1200 cifs_move_llist(&tmp_llist
,
1205 * The unlock range request
1206 * succeed - free the tmp list.
1208 cifs_free_llist(&tmp_llist
);
1215 * We can cache brlock requests - simply remove
1216 * a lock from the inode list.
1218 list_del(&li
->llist
);
1219 cifs_del_lock_waiters(li
);
1224 stored_rc
= cifs_lockv(xid
, tcon
, cfile
->netfid
,
1225 types
[i
], num
, 0, buf
);
1227 cifs_move_llist(&tmp_llist
, &cinode
->llist
);
1230 cifs_free_llist(&tmp_llist
);
1234 mutex_unlock(&cinode
->lock_mutex
);
1240 cifs_setlk(struct file
*file
, struct file_lock
*flock
, __u8 type
,
1241 bool wait_flag
, bool posix_lck
, int lock
, int unlock
, int xid
)
1244 __u64 length
= 1 + flock
->fl_end
- flock
->fl_start
;
1245 struct cifsFileInfo
*cfile
= (struct cifsFileInfo
*)file
->private_data
;
1246 struct cifs_tcon
*tcon
= tlink_tcon(cfile
->tlink
);
1247 struct cifsInodeInfo
*cinode
= CIFS_I(file
->f_path
.dentry
->d_inode
);
1248 __u16 netfid
= cfile
->netfid
;
1251 int posix_lock_type
;
1253 rc
= cifs_posix_lock_set(file
, flock
);
1257 if (type
& LOCKING_ANDX_SHARED_LOCK
)
1258 posix_lock_type
= CIFS_RDLCK
;
1260 posix_lock_type
= CIFS_WRLCK
;
1263 posix_lock_type
= CIFS_UNLCK
;
1265 rc
= CIFSSMBPosixLock(xid
, tcon
, netfid
, current
->tgid
,
1266 0 /* set */, length
, flock
,
1267 posix_lock_type
, wait_flag
);
1272 struct cifsLockInfo
*lock
;
1274 lock
= cifs_lock_init(flock
->fl_start
, length
, type
, netfid
);
1278 rc
= cifs_lock_add_if(cinode
, lock
, wait_flag
);
1284 rc
= CIFSSMBLock(xid
, tcon
, netfid
, current
->tgid
, length
,
1285 flock
->fl_start
, 0, 1, type
, wait_flag
, 0);
1291 cifs_lock_add(cinode
, lock
);
1293 rc
= cifs_unlock_range(cfile
, flock
, xid
);
1296 if (flock
->fl_flags
& FL_POSIX
)
1297 posix_lock_file_wait(file
, flock
);
1301 int cifs_lock(struct file
*file
, int cmd
, struct file_lock
*flock
)
1304 int lock
= 0, unlock
= 0;
1305 bool wait_flag
= false;
1306 bool posix_lck
= false;
1307 struct cifs_sb_info
*cifs_sb
;
1308 struct cifs_tcon
*tcon
;
1309 struct cifsInodeInfo
*cinode
;
1310 struct cifsFileInfo
*cfile
;
1317 cFYI(1, "Lock parm: 0x%x flockflags: 0x%x flocktype: 0x%x start: %lld "
1318 "end: %lld", cmd
, flock
->fl_flags
, flock
->fl_type
,
1319 flock
->fl_start
, flock
->fl_end
);
1321 cifs_read_flock(flock
, &type
, &lock
, &unlock
, &wait_flag
);
1323 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
1324 cfile
= (struct cifsFileInfo
*)file
->private_data
;
1325 tcon
= tlink_tcon(cfile
->tlink
);
1326 netfid
= cfile
->netfid
;
1327 cinode
= CIFS_I(file
->f_path
.dentry
->d_inode
);
1329 if ((tcon
->ses
->capabilities
& CAP_UNIX
) &&
1330 (CIFS_UNIX_FCNTL_CAP
& le64_to_cpu(tcon
->fsUnixInfo
.Capability
)) &&
1331 ((cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_NOPOSIXBRL
) == 0))
1334 * BB add code here to normalize offset and length to account for
1335 * negative length which we can not accept over the wire.
1337 if (IS_GETLK(cmd
)) {
1338 rc
= cifs_getlk(file
, flock
, type
, wait_flag
, posix_lck
, xid
);
1343 if (!lock
&& !unlock
) {
1345 * if no lock or unlock then nothing to do since we do not
1352 rc
= cifs_setlk(file
, flock
, type
, wait_flag
, posix_lck
, lock
, unlock
,
1358 /* update the file size (if needed) after a write */
1360 cifs_update_eof(struct cifsInodeInfo
*cifsi
, loff_t offset
,
1361 unsigned int bytes_written
)
1363 loff_t end_of_write
= offset
+ bytes_written
;
1365 if (end_of_write
> cifsi
->server_eof
)
1366 cifsi
->server_eof
= end_of_write
;
1369 static ssize_t
cifs_write(struct cifsFileInfo
*open_file
, __u32 pid
,
1370 const char *write_data
, size_t write_size
,
1374 unsigned int bytes_written
= 0;
1375 unsigned int total_written
;
1376 struct cifs_sb_info
*cifs_sb
;
1377 struct cifs_tcon
*pTcon
;
1379 struct dentry
*dentry
= open_file
->dentry
;
1380 struct cifsInodeInfo
*cifsi
= CIFS_I(dentry
->d_inode
);
1381 struct cifs_io_parms io_parms
;
1383 cifs_sb
= CIFS_SB(dentry
->d_sb
);
1385 cFYI(1, "write %zd bytes to offset %lld of %s", write_size
,
1386 *poffset
, dentry
->d_name
.name
);
1388 pTcon
= tlink_tcon(open_file
->tlink
);
1392 for (total_written
= 0; write_size
> total_written
;
1393 total_written
+= bytes_written
) {
1395 while (rc
== -EAGAIN
) {
1399 if (open_file
->invalidHandle
) {
1400 /* we could deadlock if we called
1401 filemap_fdatawait from here so tell
1402 reopen_file not to flush data to
1404 rc
= cifs_reopen_file(open_file
, false);
1409 len
= min((size_t)cifs_sb
->wsize
,
1410 write_size
- total_written
);
1411 /* iov[0] is reserved for smb header */
1412 iov
[1].iov_base
= (char *)write_data
+ total_written
;
1413 iov
[1].iov_len
= len
;
1414 io_parms
.netfid
= open_file
->netfid
;
1416 io_parms
.tcon
= pTcon
;
1417 io_parms
.offset
= *poffset
;
1418 io_parms
.length
= len
;
1419 rc
= CIFSSMBWrite2(xid
, &io_parms
, &bytes_written
, iov
,
1422 if (rc
|| (bytes_written
== 0)) {
1430 cifs_update_eof(cifsi
, *poffset
, bytes_written
);
1431 *poffset
+= bytes_written
;
1435 cifs_stats_bytes_written(pTcon
, total_written
);
1437 if (total_written
> 0) {
1438 spin_lock(&dentry
->d_inode
->i_lock
);
1439 if (*poffset
> dentry
->d_inode
->i_size
)
1440 i_size_write(dentry
->d_inode
, *poffset
);
1441 spin_unlock(&dentry
->d_inode
->i_lock
);
1443 mark_inode_dirty_sync(dentry
->d_inode
);
1445 return total_written
;
1448 struct cifsFileInfo
*find_readable_file(struct cifsInodeInfo
*cifs_inode
,
1451 struct cifsFileInfo
*open_file
= NULL
;
1452 struct cifs_sb_info
*cifs_sb
= CIFS_SB(cifs_inode
->vfs_inode
.i_sb
);
1454 /* only filter by fsuid on multiuser mounts */
1455 if (!(cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_MULTIUSER
))
1458 spin_lock(&cifs_file_list_lock
);
1459 /* we could simply get the first_list_entry since write-only entries
1460 are always at the end of the list but since the first entry might
1461 have a close pending, we go through the whole list */
1462 list_for_each_entry(open_file
, &cifs_inode
->openFileList
, flist
) {
1463 if (fsuid_only
&& open_file
->uid
!= current_fsuid())
1465 if (OPEN_FMODE(open_file
->f_flags
) & FMODE_READ
) {
1466 if (!open_file
->invalidHandle
) {
1467 /* found a good file */
1468 /* lock it so it will not be closed on us */
1469 cifsFileInfo_get(open_file
);
1470 spin_unlock(&cifs_file_list_lock
);
1472 } /* else might as well continue, and look for
1473 another, or simply have the caller reopen it
1474 again rather than trying to fix this handle */
1475 } else /* write only file */
1476 break; /* write only files are last so must be done */
1478 spin_unlock(&cifs_file_list_lock
);
1482 struct cifsFileInfo
*find_writable_file(struct cifsInodeInfo
*cifs_inode
,
1485 struct cifsFileInfo
*open_file
;
1486 struct cifs_sb_info
*cifs_sb
;
1487 bool any_available
= false;
1490 /* Having a null inode here (because mapping->host was set to zero by
1491 the VFS or MM) should not happen but we had reports of on oops (due to
1492 it being zero) during stress testcases so we need to check for it */
1494 if (cifs_inode
== NULL
) {
1495 cERROR(1, "Null inode passed to cifs_writeable_file");
1500 cifs_sb
= CIFS_SB(cifs_inode
->vfs_inode
.i_sb
);
1502 /* only filter by fsuid on multiuser mounts */
1503 if (!(cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_MULTIUSER
))
1506 spin_lock(&cifs_file_list_lock
);
1508 list_for_each_entry(open_file
, &cifs_inode
->openFileList
, flist
) {
1509 if (!any_available
&& open_file
->pid
!= current
->tgid
)
1511 if (fsuid_only
&& open_file
->uid
!= current_fsuid())
1513 if (OPEN_FMODE(open_file
->f_flags
) & FMODE_WRITE
) {
1514 cifsFileInfo_get(open_file
);
1516 if (!open_file
->invalidHandle
) {
1517 /* found a good writable file */
1518 spin_unlock(&cifs_file_list_lock
);
1522 spin_unlock(&cifs_file_list_lock
);
1524 /* Had to unlock since following call can block */
1525 rc
= cifs_reopen_file(open_file
, false);
1529 /* if it fails, try another handle if possible */
1530 cFYI(1, "wp failed on reopen file");
1531 cifsFileInfo_put(open_file
);
1533 spin_lock(&cifs_file_list_lock
);
1535 /* else we simply continue to the next entry. Thus
1536 we do not loop on reopen errors. If we
1537 can not reopen the file, for example if we
1538 reconnected to a server with another client
1539 racing to delete or lock the file we would not
1540 make progress if we restarted before the beginning
1541 of the loop here. */
1544 /* couldn't find useable FH with same pid, try any available */
1545 if (!any_available
) {
1546 any_available
= true;
1547 goto refind_writable
;
1549 spin_unlock(&cifs_file_list_lock
);
1553 static int cifs_partialpagewrite(struct page
*page
, unsigned from
, unsigned to
)
1555 struct address_space
*mapping
= page
->mapping
;
1556 loff_t offset
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
1559 int bytes_written
= 0;
1560 struct inode
*inode
;
1561 struct cifsFileInfo
*open_file
;
1563 if (!mapping
|| !mapping
->host
)
1566 inode
= page
->mapping
->host
;
1568 offset
+= (loff_t
)from
;
1569 write_data
= kmap(page
);
1572 if ((to
> PAGE_CACHE_SIZE
) || (from
> to
)) {
1577 /* racing with truncate? */
1578 if (offset
> mapping
->host
->i_size
) {
1580 return 0; /* don't care */
1583 /* check to make sure that we are not extending the file */
1584 if (mapping
->host
->i_size
- offset
< (loff_t
)to
)
1585 to
= (unsigned)(mapping
->host
->i_size
- offset
);
1587 open_file
= find_writable_file(CIFS_I(mapping
->host
), false);
1589 bytes_written
= cifs_write(open_file
, open_file
->pid
,
1590 write_data
, to
- from
, &offset
);
1591 cifsFileInfo_put(open_file
);
1592 /* Does mm or vfs already set times? */
1593 inode
->i_atime
= inode
->i_mtime
= current_fs_time(inode
->i_sb
);
1594 if ((bytes_written
> 0) && (offset
))
1596 else if (bytes_written
< 0)
1599 cFYI(1, "No writeable filehandles for inode");
1607 static int cifs_writepages(struct address_space
*mapping
,
1608 struct writeback_control
*wbc
)
1610 struct cifs_sb_info
*cifs_sb
= CIFS_SB(mapping
->host
->i_sb
);
1611 bool done
= false, scanned
= false, range_whole
= false;
1613 struct cifs_writedata
*wdata
;
1618 * If wsize is smaller than the page cache size, default to writing
1619 * one page at a time via cifs_writepage
1621 if (cifs_sb
->wsize
< PAGE_CACHE_SIZE
)
1622 return generic_writepages(mapping
, wbc
);
1624 if (wbc
->range_cyclic
) {
1625 index
= mapping
->writeback_index
; /* Start from prev offset */
1628 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
1629 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
1630 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
1635 while (!done
&& index
<= end
) {
1636 unsigned int i
, nr_pages
, found_pages
;
1637 pgoff_t next
= 0, tofind
;
1638 struct page
**pages
;
1640 tofind
= min((cifs_sb
->wsize
/ PAGE_CACHE_SIZE
) - 1,
1643 wdata
= cifs_writedata_alloc((unsigned int)tofind
);
1650 * find_get_pages_tag seems to return a max of 256 on each
1651 * iteration, so we must call it several times in order to
1652 * fill the array or the wsize is effectively limited to
1653 * 256 * PAGE_CACHE_SIZE.
1656 pages
= wdata
->pages
;
1658 nr_pages
= find_get_pages_tag(mapping
, &index
,
1659 PAGECACHE_TAG_DIRTY
,
1661 found_pages
+= nr_pages
;
1664 } while (nr_pages
&& tofind
&& index
<= end
);
1666 if (found_pages
== 0) {
1667 kref_put(&wdata
->refcount
, cifs_writedata_release
);
1672 for (i
= 0; i
< found_pages
; i
++) {
1673 page
= wdata
->pages
[i
];
1675 * At this point we hold neither mapping->tree_lock nor
1676 * lock on the page itself: the page may be truncated or
1677 * invalidated (changing page->mapping to NULL), or even
1678 * swizzled back from swapper_space to tmpfs file
1684 else if (!trylock_page(page
))
1687 if (unlikely(page
->mapping
!= mapping
)) {
1692 if (!wbc
->range_cyclic
&& page
->index
> end
) {
1698 if (next
&& (page
->index
!= next
)) {
1699 /* Not next consecutive page */
1704 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
1705 wait_on_page_writeback(page
);
1707 if (PageWriteback(page
) ||
1708 !clear_page_dirty_for_io(page
)) {
1714 * This actually clears the dirty bit in the radix tree.
1715 * See cifs_writepage() for more commentary.
1717 set_page_writeback(page
);
1719 if (page_offset(page
) >= mapping
->host
->i_size
) {
1722 end_page_writeback(page
);
1726 wdata
->pages
[i
] = page
;
1727 next
= page
->index
+ 1;
1731 /* reset index to refind any pages skipped */
1733 index
= wdata
->pages
[0]->index
+ 1;
1735 /* put any pages we aren't going to use */
1736 for (i
= nr_pages
; i
< found_pages
; i
++) {
1737 page_cache_release(wdata
->pages
[i
]);
1738 wdata
->pages
[i
] = NULL
;
1741 /* nothing to write? */
1742 if (nr_pages
== 0) {
1743 kref_put(&wdata
->refcount
, cifs_writedata_release
);
1747 wdata
->sync_mode
= wbc
->sync_mode
;
1748 wdata
->nr_pages
= nr_pages
;
1749 wdata
->offset
= page_offset(wdata
->pages
[0]);
1752 if (wdata
->cfile
!= NULL
)
1753 cifsFileInfo_put(wdata
->cfile
);
1754 wdata
->cfile
= find_writable_file(CIFS_I(mapping
->host
),
1756 if (!wdata
->cfile
) {
1757 cERROR(1, "No writable handles for inode");
1761 rc
= cifs_async_writev(wdata
);
1762 } while (wbc
->sync_mode
== WB_SYNC_ALL
&& rc
== -EAGAIN
);
1764 for (i
= 0; i
< nr_pages
; ++i
)
1765 unlock_page(wdata
->pages
[i
]);
1767 /* send failure -- clean up the mess */
1769 for (i
= 0; i
< nr_pages
; ++i
) {
1771 redirty_page_for_writepage(wbc
,
1774 SetPageError(wdata
->pages
[i
]);
1775 end_page_writeback(wdata
->pages
[i
]);
1776 page_cache_release(wdata
->pages
[i
]);
1779 mapping_set_error(mapping
, rc
);
1781 kref_put(&wdata
->refcount
, cifs_writedata_release
);
1783 wbc
->nr_to_write
-= nr_pages
;
1784 if (wbc
->nr_to_write
<= 0)
1790 if (!scanned
&& !done
) {
1792 * We hit the last page and there is more work to be done: wrap
1793 * back to the start of the file
1800 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
1801 mapping
->writeback_index
= index
;
1807 cifs_writepage_locked(struct page
*page
, struct writeback_control
*wbc
)
1813 /* BB add check for wbc flags */
1814 page_cache_get(page
);
1815 if (!PageUptodate(page
))
1816 cFYI(1, "ppw - page not up to date");
1819 * Set the "writeback" flag, and clear "dirty" in the radix tree.
1821 * A writepage() implementation always needs to do either this,
1822 * or re-dirty the page with "redirty_page_for_writepage()" in
1823 * the case of a failure.
1825 * Just unlocking the page will cause the radix tree tag-bits
1826 * to fail to update with the state of the page correctly.
1828 set_page_writeback(page
);
1830 rc
= cifs_partialpagewrite(page
, 0, PAGE_CACHE_SIZE
);
1831 if (rc
== -EAGAIN
&& wbc
->sync_mode
== WB_SYNC_ALL
)
1833 else if (rc
== -EAGAIN
)
1834 redirty_page_for_writepage(wbc
, page
);
1838 SetPageUptodate(page
);
1839 end_page_writeback(page
);
1840 page_cache_release(page
);
1845 static int cifs_writepage(struct page
*page
, struct writeback_control
*wbc
)
1847 int rc
= cifs_writepage_locked(page
, wbc
);
1852 static int cifs_write_end(struct file
*file
, struct address_space
*mapping
,
1853 loff_t pos
, unsigned len
, unsigned copied
,
1854 struct page
*page
, void *fsdata
)
1857 struct inode
*inode
= mapping
->host
;
1858 struct cifsFileInfo
*cfile
= file
->private_data
;
1859 struct cifs_sb_info
*cifs_sb
= CIFS_SB(cfile
->dentry
->d_sb
);
1862 if (cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_RWPIDFORWARD
)
1865 pid
= current
->tgid
;
1867 cFYI(1, "write_end for page %p from pos %lld with %d bytes",
1870 if (PageChecked(page
)) {
1872 SetPageUptodate(page
);
1873 ClearPageChecked(page
);
1874 } else if (!PageUptodate(page
) && copied
== PAGE_CACHE_SIZE
)
1875 SetPageUptodate(page
);
1877 if (!PageUptodate(page
)) {
1879 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1883 /* this is probably better than directly calling
1884 partialpage_write since in this function the file handle is
1885 known which we might as well leverage */
1886 /* BB check if anything else missing out of ppw
1887 such as updating last write time */
1888 page_data
= kmap(page
);
1889 rc
= cifs_write(cfile
, pid
, page_data
+ offset
, copied
, &pos
);
1890 /* if (rc < 0) should we set writebehind rc? */
1897 set_page_dirty(page
);
1901 spin_lock(&inode
->i_lock
);
1902 if (pos
> inode
->i_size
)
1903 i_size_write(inode
, pos
);
1904 spin_unlock(&inode
->i_lock
);
1908 page_cache_release(page
);
1913 int cifs_strict_fsync(struct file
*file
, loff_t start
, loff_t end
,
1918 struct cifs_tcon
*tcon
;
1919 struct cifsFileInfo
*smbfile
= file
->private_data
;
1920 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1921 struct cifs_sb_info
*cifs_sb
= CIFS_SB(inode
->i_sb
);
1923 rc
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
1926 mutex_lock(&inode
->i_mutex
);
1930 cFYI(1, "Sync file - name: %s datasync: 0x%x",
1931 file
->f_path
.dentry
->d_name
.name
, datasync
);
1933 if (!CIFS_I(inode
)->clientCanCacheRead
) {
1934 rc
= cifs_invalidate_mapping(inode
);
1936 cFYI(1, "rc: %d during invalidate phase", rc
);
1937 rc
= 0; /* don't care about it in fsync */
1941 tcon
= tlink_tcon(smbfile
->tlink
);
1942 if (!(cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_NOSSYNC
))
1943 rc
= CIFSSMBFlush(xid
, tcon
, smbfile
->netfid
);
1946 mutex_unlock(&inode
->i_mutex
);
1950 int cifs_fsync(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1954 struct cifs_tcon
*tcon
;
1955 struct cifsFileInfo
*smbfile
= file
->private_data
;
1956 struct cifs_sb_info
*cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
1957 struct inode
*inode
= file
->f_mapping
->host
;
1959 rc
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
1962 mutex_lock(&inode
->i_mutex
);
1966 cFYI(1, "Sync file - name: %s datasync: 0x%x",
1967 file
->f_path
.dentry
->d_name
.name
, datasync
);
1969 tcon
= tlink_tcon(smbfile
->tlink
);
1970 if (!(cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_NOSSYNC
))
1971 rc
= CIFSSMBFlush(xid
, tcon
, smbfile
->netfid
);
1974 mutex_unlock(&inode
->i_mutex
);
1979 * As file closes, flush all cached write data for this inode checking
1980 * for write behind errors.
1982 int cifs_flush(struct file
*file
, fl_owner_t id
)
1984 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1987 if (file
->f_mode
& FMODE_WRITE
)
1988 rc
= filemap_write_and_wait(inode
->i_mapping
);
1990 cFYI(1, "Flush inode %p file %p rc %d", inode
, file
, rc
);
1996 cifs_write_allocate_pages(struct page
**pages
, unsigned long num_pages
)
2001 for (i
= 0; i
< num_pages
; i
++) {
2002 pages
[i
] = alloc_page(__GFP_HIGHMEM
);
2005 * save number of pages we have already allocated and
2006 * return with ENOMEM error
2017 for (i
= 0; i
< num_pages
; i
++)
2023 size_t get_numpages(const size_t wsize
, const size_t len
, size_t *cur_len
)
2028 clen
= min_t(const size_t, len
, wsize
);
2029 num_pages
= clen
/ PAGE_CACHE_SIZE
;
2030 if (clen
% PAGE_CACHE_SIZE
)
2040 cifs_iovec_write(struct file
*file
, const struct iovec
*iov
,
2041 unsigned long nr_segs
, loff_t
*poffset
)
2043 unsigned int written
;
2044 unsigned long num_pages
, npages
, i
;
2045 size_t copied
, len
, cur_len
;
2046 ssize_t total_written
= 0;
2047 struct kvec
*to_send
;
2048 struct page
**pages
;
2050 struct inode
*inode
;
2051 struct cifsFileInfo
*open_file
;
2052 struct cifs_tcon
*pTcon
;
2053 struct cifs_sb_info
*cifs_sb
;
2054 struct cifs_io_parms io_parms
;
2058 len
= iov_length(iov
, nr_segs
);
2062 rc
= generic_write_checks(file
, poffset
, &len
, 0);
2066 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
2067 num_pages
= get_numpages(cifs_sb
->wsize
, len
, &cur_len
);
2069 pages
= kmalloc(sizeof(struct pages
*)*num_pages
, GFP_KERNEL
);
2073 to_send
= kmalloc(sizeof(struct kvec
)*(num_pages
+ 1), GFP_KERNEL
);
2079 rc
= cifs_write_allocate_pages(pages
, num_pages
);
2087 open_file
= file
->private_data
;
2089 if (cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_RWPIDFORWARD
)
2090 pid
= open_file
->pid
;
2092 pid
= current
->tgid
;
2094 pTcon
= tlink_tcon(open_file
->tlink
);
2095 inode
= file
->f_path
.dentry
->d_inode
;
2097 iov_iter_init(&it
, iov
, nr_segs
, len
, 0);
2101 size_t save_len
= cur_len
;
2102 for (i
= 0; i
< npages
; i
++) {
2103 copied
= min_t(const size_t, cur_len
, PAGE_CACHE_SIZE
);
2104 copied
= iov_iter_copy_from_user(pages
[i
], &it
, 0,
2107 iov_iter_advance(&it
, copied
);
2108 to_send
[i
+1].iov_base
= kmap(pages
[i
]);
2109 to_send
[i
+1].iov_len
= copied
;
2112 cur_len
= save_len
- cur_len
;
2115 if (open_file
->invalidHandle
) {
2116 rc
= cifs_reopen_file(open_file
, false);
2120 io_parms
.netfid
= open_file
->netfid
;
2122 io_parms
.tcon
= pTcon
;
2123 io_parms
.offset
= *poffset
;
2124 io_parms
.length
= cur_len
;
2125 rc
= CIFSSMBWrite2(xid
, &io_parms
, &written
, to_send
,
2127 } while (rc
== -EAGAIN
);
2129 for (i
= 0; i
< npages
; i
++)
2134 total_written
+= written
;
2135 cifs_update_eof(CIFS_I(inode
), *poffset
, written
);
2136 *poffset
+= written
;
2137 } else if (rc
< 0) {
2143 /* get length and number of kvecs of the next write */
2144 npages
= get_numpages(cifs_sb
->wsize
, len
, &cur_len
);
2147 if (total_written
> 0) {
2148 spin_lock(&inode
->i_lock
);
2149 if (*poffset
> inode
->i_size
)
2150 i_size_write(inode
, *poffset
);
2151 spin_unlock(&inode
->i_lock
);
2154 cifs_stats_bytes_written(pTcon
, total_written
);
2155 mark_inode_dirty_sync(inode
);
2157 for (i
= 0; i
< num_pages
; i
++)
2162 return total_written
;
2165 ssize_t
cifs_user_writev(struct kiocb
*iocb
, const struct iovec
*iov
,
2166 unsigned long nr_segs
, loff_t pos
)
2169 struct inode
*inode
;
2171 inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
2174 * BB - optimize the way when signing is disabled. We can drop this
2175 * extra memory-to-memory copying and use iovec buffers for constructing
2179 written
= cifs_iovec_write(iocb
->ki_filp
, iov
, nr_segs
, &pos
);
2181 CIFS_I(inode
)->invalid_mapping
= true;
2188 ssize_t
cifs_strict_writev(struct kiocb
*iocb
, const struct iovec
*iov
,
2189 unsigned long nr_segs
, loff_t pos
)
2191 struct inode
*inode
;
2193 inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
2195 if (CIFS_I(inode
)->clientCanCacheAll
)
2196 return generic_file_aio_write(iocb
, iov
, nr_segs
, pos
);
2199 * In strict cache mode we need to write the data to the server exactly
2200 * from the pos to pos+len-1 rather than flush all affected pages
2201 * because it may cause a error with mandatory locks on these pages but
2202 * not on the region from pos to ppos+len-1.
2205 return cifs_user_writev(iocb
, iov
, nr_segs
, pos
);
2209 cifs_iovec_read(struct file
*file
, const struct iovec
*iov
,
2210 unsigned long nr_segs
, loff_t
*poffset
)
2215 unsigned int bytes_read
= 0;
2216 size_t len
, cur_len
;
2218 struct cifs_sb_info
*cifs_sb
;
2219 struct cifs_tcon
*pTcon
;
2220 struct cifsFileInfo
*open_file
;
2221 struct smb_com_read_rsp
*pSMBr
;
2222 struct cifs_io_parms io_parms
;
2230 len
= iov_length(iov
, nr_segs
);
2235 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
2237 /* FIXME: set up handlers for larger reads and/or convert to async */
2238 rsize
= min_t(unsigned int, cifs_sb
->rsize
, CIFSMaxBufSize
);
2240 open_file
= file
->private_data
;
2241 pTcon
= tlink_tcon(open_file
->tlink
);
2243 if (cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_RWPIDFORWARD
)
2244 pid
= open_file
->pid
;
2246 pid
= current
->tgid
;
2248 if ((file
->f_flags
& O_ACCMODE
) == O_WRONLY
)
2249 cFYI(1, "attempting read on write only file instance");
2251 for (total_read
= 0; total_read
< len
; total_read
+= bytes_read
) {
2252 cur_len
= min_t(const size_t, len
- total_read
, rsize
);
2256 while (rc
== -EAGAIN
) {
2257 int buf_type
= CIFS_NO_BUFFER
;
2258 if (open_file
->invalidHandle
) {
2259 rc
= cifs_reopen_file(open_file
, true);
2263 io_parms
.netfid
= open_file
->netfid
;
2265 io_parms
.tcon
= pTcon
;
2266 io_parms
.offset
= *poffset
;
2267 io_parms
.length
= cur_len
;
2268 rc
= CIFSSMBRead(xid
, &io_parms
, &bytes_read
,
2269 &read_data
, &buf_type
);
2270 pSMBr
= (struct smb_com_read_rsp
*)read_data
;
2272 char *data_offset
= read_data
+ 4 +
2273 le16_to_cpu(pSMBr
->DataOffset
);
2274 if (memcpy_toiovecend(iov
, data_offset
,
2275 iov_offset
, bytes_read
))
2277 if (buf_type
== CIFS_SMALL_BUFFER
)
2278 cifs_small_buf_release(read_data
);
2279 else if (buf_type
== CIFS_LARGE_BUFFER
)
2280 cifs_buf_release(read_data
);
2282 iov_offset
+= bytes_read
;
2286 if (rc
|| (bytes_read
== 0)) {
2294 cifs_stats_bytes_read(pTcon
, bytes_read
);
2295 *poffset
+= bytes_read
;
2303 ssize_t
cifs_user_readv(struct kiocb
*iocb
, const struct iovec
*iov
,
2304 unsigned long nr_segs
, loff_t pos
)
2308 read
= cifs_iovec_read(iocb
->ki_filp
, iov
, nr_segs
, &pos
);
2315 ssize_t
cifs_strict_readv(struct kiocb
*iocb
, const struct iovec
*iov
,
2316 unsigned long nr_segs
, loff_t pos
)
2318 struct inode
*inode
;
2320 inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
2322 if (CIFS_I(inode
)->clientCanCacheRead
)
2323 return generic_file_aio_read(iocb
, iov
, nr_segs
, pos
);
2326 * In strict cache mode we need to read from the server all the time
2327 * if we don't have level II oplock because the server can delay mtime
2328 * change - so we can't make a decision about inode invalidating.
2329 * And we can also fail with pagereading if there are mandatory locks
2330 * on pages affected by this read but not on the region from pos to
2334 return cifs_user_readv(iocb
, iov
, nr_segs
, pos
);
2337 static ssize_t
cifs_read(struct file
*file
, char *read_data
, size_t read_size
,
2341 unsigned int bytes_read
= 0;
2342 unsigned int total_read
;
2343 unsigned int current_read_size
;
2345 struct cifs_sb_info
*cifs_sb
;
2346 struct cifs_tcon
*pTcon
;
2348 char *current_offset
;
2349 struct cifsFileInfo
*open_file
;
2350 struct cifs_io_parms io_parms
;
2351 int buf_type
= CIFS_NO_BUFFER
;
2355 cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
2357 /* FIXME: set up handlers for larger reads and/or convert to async */
2358 rsize
= min_t(unsigned int, cifs_sb
->rsize
, CIFSMaxBufSize
);
2360 if (file
->private_data
== NULL
) {
2365 open_file
= file
->private_data
;
2366 pTcon
= tlink_tcon(open_file
->tlink
);
2368 if (cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_RWPIDFORWARD
)
2369 pid
= open_file
->pid
;
2371 pid
= current
->tgid
;
2373 if ((file
->f_flags
& O_ACCMODE
) == O_WRONLY
)
2374 cFYI(1, "attempting read on write only file instance");
2376 for (total_read
= 0, current_offset
= read_data
;
2377 read_size
> total_read
;
2378 total_read
+= bytes_read
, current_offset
+= bytes_read
) {
2379 current_read_size
= min_t(uint
, read_size
- total_read
, rsize
);
2381 /* For windows me and 9x we do not want to request more
2382 than it negotiated since it will refuse the read then */
2384 !(pTcon
->ses
->capabilities
& CAP_LARGE_FILES
)) {
2385 current_read_size
= min_t(uint
, current_read_size
,
2389 while (rc
== -EAGAIN
) {
2390 if (open_file
->invalidHandle
) {
2391 rc
= cifs_reopen_file(open_file
, true);
2395 io_parms
.netfid
= open_file
->netfid
;
2397 io_parms
.tcon
= pTcon
;
2398 io_parms
.offset
= *poffset
;
2399 io_parms
.length
= current_read_size
;
2400 rc
= CIFSSMBRead(xid
, &io_parms
, &bytes_read
,
2401 ¤t_offset
, &buf_type
);
2403 if (rc
|| (bytes_read
== 0)) {
2411 cifs_stats_bytes_read(pTcon
, total_read
);
2412 *poffset
+= bytes_read
;
2420 * If the page is mmap'ed into a process' page tables, then we need to make
2421 * sure that it doesn't change while being written back.
2424 cifs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2426 struct page
*page
= vmf
->page
;
2429 return VM_FAULT_LOCKED
;
2432 static struct vm_operations_struct cifs_file_vm_ops
= {
2433 .fault
= filemap_fault
,
2434 .page_mkwrite
= cifs_page_mkwrite
,
2437 int cifs_file_strict_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2440 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
2444 if (!CIFS_I(inode
)->clientCanCacheRead
) {
2445 rc
= cifs_invalidate_mapping(inode
);
2450 rc
= generic_file_mmap(file
, vma
);
2452 vma
->vm_ops
= &cifs_file_vm_ops
;
2457 int cifs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2462 rc
= cifs_revalidate_file(file
);
2464 cFYI(1, "Validation prior to mmap failed, error=%d", rc
);
2468 rc
= generic_file_mmap(file
, vma
);
2470 vma
->vm_ops
= &cifs_file_vm_ops
;
2475 static int cifs_readpages(struct file
*file
, struct address_space
*mapping
,
2476 struct list_head
*page_list
, unsigned num_pages
)
2479 struct list_head tmplist
;
2480 struct cifsFileInfo
*open_file
= file
->private_data
;
2481 struct cifs_sb_info
*cifs_sb
= CIFS_SB(file
->f_path
.dentry
->d_sb
);
2482 unsigned int rsize
= cifs_sb
->rsize
;
2486 * Give up immediately if rsize is too small to read an entire page.
2487 * The VFS will fall back to readpage. We should never reach this
2488 * point however since we set ra_pages to 0 when the rsize is smaller
2489 * than a cache page.
2491 if (unlikely(rsize
< PAGE_CACHE_SIZE
))
2495 * Reads as many pages as possible from fscache. Returns -ENOBUFS
2496 * immediately if the cookie is negative
2498 rc
= cifs_readpages_from_fscache(mapping
->host
, mapping
, page_list
,
2503 if (cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_RWPIDFORWARD
)
2504 pid
= open_file
->pid
;
2506 pid
= current
->tgid
;
2509 INIT_LIST_HEAD(&tmplist
);
2511 cFYI(1, "%s: file=%p mapping=%p num_pages=%u", __func__
, file
,
2512 mapping
, num_pages
);
2515 * Start with the page at end of list and move it to private
2516 * list. Do the same with any following pages until we hit
2517 * the rsize limit, hit an index discontinuity, or run out of
2518 * pages. Issue the async read and then start the loop again
2519 * until the list is empty.
2521 * Note that list order is important. The page_list is in
2522 * the order of declining indexes. When we put the pages in
2523 * the rdata->pages, then we want them in increasing order.
2525 while (!list_empty(page_list
)) {
2526 unsigned int bytes
= PAGE_CACHE_SIZE
;
2527 unsigned int expected_index
;
2528 unsigned int nr_pages
= 1;
2530 struct page
*page
, *tpage
;
2531 struct cifs_readdata
*rdata
;
2533 page
= list_entry(page_list
->prev
, struct page
, lru
);
2536 * Lock the page and put it in the cache. Since no one else
2537 * should have access to this page, we're safe to simply set
2538 * PG_locked without checking it first.
2540 __set_page_locked(page
);
2541 rc
= add_to_page_cache_locked(page
, mapping
,
2542 page
->index
, GFP_KERNEL
);
2544 /* give up if we can't stick it in the cache */
2546 __clear_page_locked(page
);
2550 /* move first page to the tmplist */
2551 offset
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
2552 list_move_tail(&page
->lru
, &tmplist
);
2554 /* now try and add more pages onto the request */
2555 expected_index
= page
->index
+ 1;
2556 list_for_each_entry_safe_reverse(page
, tpage
, page_list
, lru
) {
2557 /* discontinuity ? */
2558 if (page
->index
!= expected_index
)
2561 /* would this page push the read over the rsize? */
2562 if (bytes
+ PAGE_CACHE_SIZE
> rsize
)
2565 __set_page_locked(page
);
2566 if (add_to_page_cache_locked(page
, mapping
,
2567 page
->index
, GFP_KERNEL
)) {
2568 __clear_page_locked(page
);
2571 list_move_tail(&page
->lru
, &tmplist
);
2572 bytes
+= PAGE_CACHE_SIZE
;
2577 rdata
= cifs_readdata_alloc(nr_pages
);
2579 /* best to give up if we're out of mem */
2580 list_for_each_entry_safe(page
, tpage
, &tmplist
, lru
) {
2581 list_del(&page
->lru
);
2582 lru_cache_add_file(page
);
2584 page_cache_release(page
);
2590 spin_lock(&cifs_file_list_lock
);
2591 cifsFileInfo_get(open_file
);
2592 spin_unlock(&cifs_file_list_lock
);
2593 rdata
->cfile
= open_file
;
2594 rdata
->mapping
= mapping
;
2595 rdata
->offset
= offset
;
2596 rdata
->bytes
= bytes
;
2598 list_splice_init(&tmplist
, &rdata
->pages
);
2601 if (open_file
->invalidHandle
) {
2602 rc
= cifs_reopen_file(open_file
, true);
2606 rc
= cifs_async_readv(rdata
);
2607 } while (rc
== -EAGAIN
);
2610 list_for_each_entry_safe(page
, tpage
, &rdata
->pages
,
2612 list_del(&page
->lru
);
2613 lru_cache_add_file(page
);
2615 page_cache_release(page
);
2617 cifs_readdata_free(rdata
);
2625 static int cifs_readpage_worker(struct file
*file
, struct page
*page
,
2631 /* Is the page cached? */
2632 rc
= cifs_readpage_from_fscache(file
->f_path
.dentry
->d_inode
, page
);
2636 page_cache_get(page
);
2637 read_data
= kmap(page
);
2638 /* for reads over a certain size could initiate async read ahead */
2640 rc
= cifs_read(file
, read_data
, PAGE_CACHE_SIZE
, poffset
);
2645 cFYI(1, "Bytes read %d", rc
);
2647 file
->f_path
.dentry
->d_inode
->i_atime
=
2648 current_fs_time(file
->f_path
.dentry
->d_inode
->i_sb
);
2650 if (PAGE_CACHE_SIZE
> rc
)
2651 memset(read_data
+ rc
, 0, PAGE_CACHE_SIZE
- rc
);
2653 flush_dcache_page(page
);
2654 SetPageUptodate(page
);
2656 /* send this page to the cache */
2657 cifs_readpage_to_fscache(file
->f_path
.dentry
->d_inode
, page
);
2663 page_cache_release(page
);
2669 static int cifs_readpage(struct file
*file
, struct page
*page
)
2671 loff_t offset
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
2677 if (file
->private_data
== NULL
) {
2683 cFYI(1, "readpage %p at offset %d 0x%x\n",
2684 page
, (int)offset
, (int)offset
);
2686 rc
= cifs_readpage_worker(file
, page
, &offset
);
2694 static int is_inode_writable(struct cifsInodeInfo
*cifs_inode
)
2696 struct cifsFileInfo
*open_file
;
2698 spin_lock(&cifs_file_list_lock
);
2699 list_for_each_entry(open_file
, &cifs_inode
->openFileList
, flist
) {
2700 if (OPEN_FMODE(open_file
->f_flags
) & FMODE_WRITE
) {
2701 spin_unlock(&cifs_file_list_lock
);
2705 spin_unlock(&cifs_file_list_lock
);
2709 /* We do not want to update the file size from server for inodes
2710 open for write - to avoid races with writepage extending
2711 the file - in the future we could consider allowing
2712 refreshing the inode only on increases in the file size
2713 but this is tricky to do without racing with writebehind
2714 page caching in the current Linux kernel design */
2715 bool is_size_safe_to_change(struct cifsInodeInfo
*cifsInode
, __u64 end_of_file
)
2720 if (is_inode_writable(cifsInode
)) {
2721 /* This inode is open for write at least once */
2722 struct cifs_sb_info
*cifs_sb
;
2724 cifs_sb
= CIFS_SB(cifsInode
->vfs_inode
.i_sb
);
2725 if (cifs_sb
->mnt_cifs_flags
& CIFS_MOUNT_DIRECT_IO
) {
2726 /* since no page cache to corrupt on directio
2727 we can change size safely */
2731 if (i_size_read(&cifsInode
->vfs_inode
) < end_of_file
)
2739 static int cifs_write_begin(struct file
*file
, struct address_space
*mapping
,
2740 loff_t pos
, unsigned len
, unsigned flags
,
2741 struct page
**pagep
, void **fsdata
)
2743 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
2744 loff_t offset
= pos
& (PAGE_CACHE_SIZE
- 1);
2745 loff_t page_start
= pos
& PAGE_MASK
;
2750 cFYI(1, "write_begin from %lld len %d", (long long)pos
, len
);
2752 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2758 if (PageUptodate(page
))
2762 * If we write a full page it will be up to date, no need to read from
2763 * the server. If the write is short, we'll end up doing a sync write
2766 if (len
== PAGE_CACHE_SIZE
)
2770 * optimize away the read when we have an oplock, and we're not
2771 * expecting to use any of the data we'd be reading in. That
2772 * is, when the page lies beyond the EOF, or straddles the EOF
2773 * and the write will cover all of the existing data.
2775 if (CIFS_I(mapping
->host
)->clientCanCacheRead
) {
2776 i_size
= i_size_read(mapping
->host
);
2777 if (page_start
>= i_size
||
2778 (offset
== 0 && (pos
+ len
) >= i_size
)) {
2779 zero_user_segments(page
, 0, offset
,
2783 * PageChecked means that the parts of the page
2784 * to which we're not writing are considered up
2785 * to date. Once the data is copied to the
2786 * page, it can be set uptodate.
2788 SetPageChecked(page
);
2793 if ((file
->f_flags
& O_ACCMODE
) != O_WRONLY
) {
2795 * might as well read a page, it is fast enough. If we get
2796 * an error, we don't need to return it. cifs_write_end will
2797 * do a sync write instead since PG_uptodate isn't set.
2799 cifs_readpage_worker(file
, page
, &page_start
);
2801 /* we could try using another file handle if there is one -
2802 but how would we lock it to prevent close of that handle
2803 racing with this read? In any case
2804 this will be written out by write_end so is fine */
2811 static int cifs_release_page(struct page
*page
, gfp_t gfp
)
2813 if (PagePrivate(page
))
2816 return cifs_fscache_release_page(page
, gfp
);
2819 static void cifs_invalidate_page(struct page
*page
, unsigned long offset
)
2821 struct cifsInodeInfo
*cifsi
= CIFS_I(page
->mapping
->host
);
2824 cifs_fscache_invalidate_page(page
, &cifsi
->vfs_inode
);
2827 static int cifs_launder_page(struct page
*page
)
2830 loff_t range_start
= page_offset(page
);
2831 loff_t range_end
= range_start
+ (loff_t
)(PAGE_CACHE_SIZE
- 1);
2832 struct writeback_control wbc
= {
2833 .sync_mode
= WB_SYNC_ALL
,
2835 .range_start
= range_start
,
2836 .range_end
= range_end
,
2839 cFYI(1, "Launder page: %p", page
);
2841 if (clear_page_dirty_for_io(page
))
2842 rc
= cifs_writepage_locked(page
, &wbc
);
2844 cifs_fscache_invalidate_page(page
, page
->mapping
->host
);
2848 void cifs_oplock_break(struct work_struct
*work
)
2850 struct cifsFileInfo
*cfile
= container_of(work
, struct cifsFileInfo
,
2852 struct inode
*inode
= cfile
->dentry
->d_inode
;
2853 struct cifsInodeInfo
*cinode
= CIFS_I(inode
);
2856 if (inode
&& S_ISREG(inode
->i_mode
)) {
2857 if (cinode
->clientCanCacheRead
)
2858 break_lease(inode
, O_RDONLY
);
2860 break_lease(inode
, O_WRONLY
);
2861 rc
= filemap_fdatawrite(inode
->i_mapping
);
2862 if (cinode
->clientCanCacheRead
== 0) {
2863 rc
= filemap_fdatawait(inode
->i_mapping
);
2864 mapping_set_error(inode
->i_mapping
, rc
);
2865 invalidate_remote_inode(inode
);
2867 cFYI(1, "Oplock flush inode %p rc %d", inode
, rc
);
2870 rc
= cifs_push_locks(cfile
);
2872 cERROR(1, "Push locks rc = %d", rc
);
2875 * releasing stale oplock after recent reconnect of smb session using
2876 * a now incorrect file handle is not a data integrity issue but do
2877 * not bother sending an oplock release if session to server still is
2878 * disconnected since oplock already released by the server
2880 if (!cfile
->oplock_break_cancelled
) {
2881 rc
= CIFSSMBLock(0, tlink_tcon(cfile
->tlink
), cfile
->netfid
,
2882 current
->tgid
, 0, 0, 0, 0,
2883 LOCKING_ANDX_OPLOCK_RELEASE
, false,
2884 cinode
->clientCanCacheRead
? 1 : 0);
2885 cFYI(1, "Oplock release rc = %d", rc
);
2889 const struct address_space_operations cifs_addr_ops
= {
2890 .readpage
= cifs_readpage
,
2891 .readpages
= cifs_readpages
,
2892 .writepage
= cifs_writepage
,
2893 .writepages
= cifs_writepages
,
2894 .write_begin
= cifs_write_begin
,
2895 .write_end
= cifs_write_end
,
2896 .set_page_dirty
= __set_page_dirty_nobuffers
,
2897 .releasepage
= cifs_release_page
,
2898 .invalidatepage
= cifs_invalidate_page
,
2899 .launder_page
= cifs_launder_page
,
2903 * cifs_readpages requires the server to support a buffer large enough to
2904 * contain the header plus one complete page of data. Otherwise, we need
2905 * to leave cifs_readpages out of the address space operations.
2907 const struct address_space_operations cifs_addr_ops_smallbuf
= {
2908 .readpage
= cifs_readpage
,
2909 .writepage
= cifs_writepage
,
2910 .writepages
= cifs_writepages
,
2911 .write_begin
= cifs_write_begin
,
2912 .write_end
= cifs_write_end
,
2913 .set_page_dirty
= __set_page_dirty_nobuffers
,
2914 .releasepage
= cifs_release_page
,
2915 .invalidatepage
= cifs_invalidate_page
,
2916 .launder_page
= cifs_launder_page
,